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Summary

 UK and Ireland classification

EUNIS 2008 A2.2313 Nephtys cirrosa-dominated littoral fine sand

JNCC 2015 LS.LSa.FiSa.Po.Ncir Nephtys cirrosa dominated littoral fine sand

JNCC 2004 LS.LSa.FiSa.Po.Ncir Nephtys cirrosa dominated littoral fine sand

1997 Biotope

 Description

This biotope LS.LSa.FiSa.Po.Ncir occurs mainly on the mid and lower shore on moderately wave-
exposed and sheltered coasts, with medium to fine clean sand which remains damp throughout the
tidal cycle and contains little organic matter. The sediment is not usually well sorted and may
contain a fraction of coarse sand. It is often rippled and typically lacks an anoxic sub-surface layer.
The polychaete infauna is dominated by Nephtys cirrosa, Magelona mirabilis, Spio
martinensis, Spiophanes bombyx and Paraonis fulgens. The presence of polychaetes may be seen as
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coloured burrows running down from the surface of the sediment. Nemertean worms may be
present. The amphipods Pontocrates spp. and Bathyporeia spp., as well as Cumopsis goodsiri and the
shrimp Crangon crangon are typically present. The bivalve Macomangulus tenuis is scarce or absent.
Po.Ncir may be present higher up on the shore than Po.Aten, or lower down than AmSco.Eur or
Ol.FS.  The infaunal community of this biotope may change seasonally, as increased storminess
during winter months may reduce sediment stability and the ability of some species to survive.
Some species, such as the shrimp Crangon crangon avoid these conditions by seasonal migration to
deeper water (Moore, 1991). (Information taken from Connor et al., 2004; JNCC, 2015).

 Depth range

Mid shore, Lower shore

 Additional information

-

 Listed By

- none -

 Further information sources

Search on:

   JNCC

http://www.google.co.uk/search?q=iNephtys+cirrosa/i+-+dominated+littoral+fine+sand
http://scholar.google.co.uk/scholar?q=iNephtys+cirrosa/i+-+dominated+littoral+fine+sand
http://www.google.co.uk/search?q=LS.LSa.FiSa.Po.Ncir
https://mhc.jncc.gov.uk/search/?q=LS.LSa.FiSa.Po.Ncir
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Sensitivity review

 Sensitivity characteristics of the habitat and relevant characteristic species

The biotope LS.LSa.FiSa.Po occurs on moderately exposed or sheltered beaches of medium and
fine, usually clean, sand, though the sediment may on rare occasions contain a small silt and clay
fraction. The biotope occurs mainly on the lower part of the shore, and relatively frequently on the
mid-shore, remains damp throughout the tidal cycle and contains little organic matter. The
infaunal community is dominated by a range of polychaete species such as Nephtys cirrosa, Paraonis
fulgens, Spio spp., Pygospio elegans, Ophelia rathkei and Scoloplos armiger. The
amphipods Bathyporeia spp. and Pontocrates arenarius frequently occur, and nemerteans are often
present. On some North Wales shores, the presence of Arenicola species characterizes the lowest
part of the shore, with a range of species characteristic of the shallow sublittoral. These include
sparsely distributed Echinocardium, Acrocnida brachiata, Ensis siliqua and Fabulina fabula. The Po
biotope is split into three sub-biotopes, between which there can be a large degree of overlap. The
bivalve Macomangulus tenuis sub-biotope is characterized by slightly more stable and fine
sediments than the other two sub-biotopes (Conner et al. 2004).  Nephtys cirrosa, Paraonis
fulgens, Spio spp., and Pygospio elegans are reviewed as characterizing species although, during
stormy winters, the sediment may become de-stabilised, leading to the disappearance of some
macroinfaunal species. The lugworm Arenicola marina may be present occasionally, usually as a
temporary recruitment and is likely to be washed out during storms. Capitella capitella is also
reviewed as it is a characterizing species of sub-biotopes in more exposed locations. 

LS.LSa.FiSa.Po.Pful sub-biotope occurs less often in sheltered locations but mainly on the mid and
lower shore of moderately wave-exposed coasts. The medium and fine clean sand may contain less
silt fraction but also remains damp throughout the tidal cycle and contains little organic matter.
Polychaetes make up the greater part of the community and are dominated by Paraonis
fulgens, Capitella capitata, Pygospio elegans, Ophelia rathkei and Eteone longa. Nemerteans may also
be present. The amphipods Bathyporeia pilosa and Bathyporeia sarsi are often present.

LS.LSa.FiSa.Po.Aten sub-biotope occurs in similar conditions to FiSa.Po, on the mid and lower
shore on moderately wave-exposed and sheltered coasts. This sub-biotope contains fine sand (in
comparison to the medium and fine sand with small silt content found in FiSa.Po. The infaunal
community is dominated by the abundant bivalve Macomangulus tenuis together with a range of
polychaetes. Polychaetes that are characterizing for this biotope include Nephtys cirrosa, Paraonis
fulgens and Spio filicornis. Burrowing amphipods Bathyporeia spp. may occur in some samples of this
biotope.

LS.LSa.FiSa.Po.Ncir biotope occurs in the same position, mainly on the mid and lower shore on
moderately wave-exposed and sheltered coasts. The sediment contains medium to fine clean sand,
is not usually well sorted and may contain a fraction of coarse sand. The polychaete infauna is
dominated by Nephtys cirrosa, Magelona mirabilis, Spio martinensis, Spiophanes bombyx and Paraonis
fulgens. The presence of polychaetes may be seen as coloured burrows running down from the
surface of the sediment. Nemertean worms may be present. The amphipods Pontocrates spp.
and Bathyporeia spp., as well as Cumopsis goodsiri and the shrimp Crangon crangon are typically
present. The bivalve Macomangulus is scarce or absent.

Therefore, LS.LSa.FiSa.Po and its sub-biotopes are characterized by the fine to medium sand in a
moderately exposed to sheltered wave climate that remains damp throughout the tidal cycle but is
occasionally affected by storms. The dominant fauna are polychaetes and mobile burrowing
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amphipods, although the abundance of bivalve Macomangulus tenuis varies between sub-biotopes.
Sub-biotopes are mainly distinguished by changes in sediment grain size to either finer or coarser
material and changes in silt fraction but otherwise, their sensitivity to pressures is similar.  The
sensitivity assessment is based on the sensitivity of the dominant polychaetes and to a lesser
extent the sensitivity of mobile amphipods and Macomangulus tenuis where appropriate. 

 Resilience and recovery rates of habitat

Nephtys cirrosa is a relatively long-lived polychaete with a lifespan of six to possibly as much as nine
years. It matures at one year and the females release over 10,000 (and up to 80,000 depending on
species) eggs of 0.11-0.12 mm from April through to March. These are fertilized externally and
develop into an early lecithotrophic larva and a later planktotrophic larva which spends as much as
12 months in the water column before settling from July-September. The genus Nephtys has a
relatively high reproductive capacity and widespread dispersion during the lengthy larval phase. It
is likely to have a high recoverability following disturbance (MES, 2010).

Paraonis fulgens, is a small polychaete, up to 3 cm in length. Paraonis fulgens displays growth and
reproduction strategies typical of opportunistic species.  It occurred in highly dynamic
communities in German estuaries in a community of opportunistic species (Nehmer et al., 2003). 
Therefore, it is likely to show rapid recovery.  Paraonis fulgens is thought to feed exclusively on
benthic diatoms so that its abundance and recovery is likely to be affected by changes in levels of
primary productivity (Gaston et al., 1992).  Spiophanes spp. (e.g. Spiophanes filicornis, Spiophanes
martinensis, Spiophanes bombyx) have opportunistic life strategies (Kröencke, 1980; Niermann et al.,
1990).  They are characterized by small size, rapid maturation and short-lifespan of 1-2 years and
produce large numbers of small propagules.  It is often found at the early successional stages of
variable, unstable habitats that it is quick to colonize following perturbation (Pearson &
Rosenberg, 1978). For example, two years after dredging, the abundance of opportunistic species
was generally elevated relative to pre-dredging levels and the communities were numerically
dominated (50-70%) by Spiophanes bombyx (Gilkinson et al., 2005). Van Dalfsen et al. (2000) found
that polychaetes recolonized a dredged area within 5-10 months (cited from Boyd et al., 2005) and
their biomass was predicted to recover within 2-4 years.

Capitella capitata is a classic opportunist species possessing life-history traits of rapid
development, many reproductions per year, high recruitment and high death rates (Grassle &
Grassle, 1974; McCall 1977). The Capitella species complex displays reproductive variability.
Planktonic larvae are able to colonize newly disturbed patches but after settlement, the species
can produce benthic larvae brooded within the adult tube to rapidly increase the population
before displacement by more competitive species (Gray, 1979). Shull (1997) demonstrated that
recolonization occurs by larval settlement, bedload transport and by burrowing. Thus, when
conditions are suitable, the time for the community to reach maturity is likely to be less than six
months.  Bolam & Fernandes (2002) and Shull (1997) noted that Capitella capitata can colonize
azoic sediments rapidly in relatively high numbers and experimental studies, using defaunated
sediments, have shown that on small scales Capitella can recolonize to background densities within
12 days (Grassle &Grassle 1974; McCall 1977). In Burry Inlet, Wales, tractor towed cockle
harvesting led to a reduction in density of some species but Capitella capitata had almost trebled its
abundance within the 56 days in a clean sandy area (Ferns et al., 2000). In favourable conditions,
maturity can be reached in <3 months and growth rate is estimated to be 3 cm per year. Adult
potential dispersal is up to 1 km.  

The polychaete Pygospio elegans has life-history strategies that allow rapid colonization and
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population increase in disturbed and defaunated patches where there is little competition from
other species. Pygospio elegans exhibits several reproductive strategies (a trait known as
poecilogony). Larvae may develop directly allowing rapid population increase in suitable patches
or they may have a planktonic stage (allowing colonization of new habitats). Experimental
defaunation studies have shown an increase in Pygospio elegans, higher than background
abundances within 2 months, reaching maximum abundance within 100 days (Van Colen et al.
2008).  Following a period of anoxia in the Bay of Somme (north France) that removed
cockles, Pygospio elegans increased rapidly but then decreased as cockle abundance recovered and
sediments were disturbed by cockle movement (Desprez et al., 1992). Re-colonization of Pygospio
elegans was observed in 2 weeks by Dittmann et al. (1999) following a 1 month long defaunation of
the sediment. However, McLusky et al. (1983) found that Pygospio elegans were significantly
depleted for >100 days after harvesting (surpassing the study monitoring timeline). Ferns et al.
(2000) found that tractor-towed cockle harvesting removed 83% of Pygospio elegans (initial density
of 1850 per m2).  In muddy sand habitats, Pygospio elegans had not recovered their original
abundance after 174 days (Ferns et al., 2000). These results are supported by work by Moore
(1991) who also found that cockle dredging can result in reduced densities of some polychaete
species, including Pygospio elegans. Rostron (1995) undertook experimental dredging of sandflats
with a mechanical cockle dredger, including a site comprised of stable, poorly sorted fine sands
with small pools and Arenicola marina casts with some algal growths. At this site, post-dredging,
there was a decreased number of Pygospio elegans with no recovery to pre-dredging numbers after
six months. Although numbers may be depleted in the short-term the evidence suggests that
Pygospio elegans is likely to recover within two years.

All three sub-biotopes may contain amphipods of the genus Bathyporeia. Bathyporeia spp. are
short-lived, reaching sexual maturity within 6 months with 6-15 eggs per brood, depending on
species. Reproduction may be continuous (Speybroeck et al., 2008) with one set of embryos
developing in the brood pouch whilst the next set of eggs is developing in the ovaries. However,
specific reproductive periods vary between species and between locations (Mettam, 1989) and
bivoltine patterns (twice yearly peaks in reproduction) have been observed (Mettam, 1989;
Speybroeck et al., 2008). Adult amphipods are highly mobile in the water column and
recolonization by the adults is likely to be a significant recovery pathway. The life-history traits of
rapid sexual maturation and production of multiple broods annually support rapid local
recolonization of disturbed sediments where some of the adult population remains.

Resilience assessment.  The biotope is characterized by opportunistic polychaetes and mobile
amphipods that are characteristic of biotopes subject to natural and/or anthropogenic
disturbance. Biotope resilience is considered to be High as populations of the characterizing
species are likely to recover within two years, even after severe depletion of the resident
populations or community, unless the substratum or other key habitat factors are altered.

 Hydrological Pressures
 Resistance Resilience Sensitivity

Temperature increase
(local)

High High Not sensitive
Q: High A: High C: Medium Q: High A: High C: High Q: High A: High C: Medium

Intertidal species are exposed to extremes of high and low air temperatures during periods of
emersion. They must also be able to cope with sharp temperature fluctuations over a short period
during the tidal cycle. In winter air temperatures are colder than the sea, conversely in summer air

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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temperatures are much warmer than the sea. Species that occur in the intertidal are therefore
generally adapted to tolerate a range of temperatures, with the width of the thermal niche
positively correlated with the height of the shore that the animal usually occurs at (Davenport &
Davenport, 2005). The geographic distribution of species characteristic of this biotope extends
south of the British Isles, further suggesting these species are likely to be resistant to an increase in
temperature. Infaunal species are likely to be protected to some extent from direct effects of acute
increases in temperature by sediment buffering, although increased temperatures may affect
infauna indirectly by stimulating increased bacterial activity and increased oxygen consumption.

Emery & Stevensen (1957) reported that Nephtys spp. could withstand summer temperatures of
30-35°C so is likely to withstand the benchmark acute temperature increase. An acute increase in
temperature at the benchmark level may result in physiological stress endured by the infaunal
species but is unlikely to lead to mortality. Nephtys cirrosa is an active worm that can swim short
distances and, therefore, it could avoid short-term changes in temperature by migrating away from
localised warmer spots.

No direct evidence was found to assess the sensitivity of Paraonis fulgens, however, this species is
recorded in warmer waters than the UK in the Gulf of Mexico. Paraonis fulgens was one of the most
abundant macrobenthic organisms collected in the shallow waters off Perdido Key, Florida, where
winter water temperatures average 22 °C (Gaston et al. 1992). Angulus tenuis is found off the
Norwegian coasts to the Mediterranean and north-west coast of Africa and is likely to be resistant
to temperature changes at the pressure benchmark.

Spiophanes bombyx is found in the Mediterranean (Hayward & Ryland, 1995), which is likely to be
warmer than the waters around Britain and Ireland.

Capitella capitata is a cosmopolitan species in coastal marine and estuarine soft sediment systems.
The global population is made up of several genetically distinct (and genetically isolated) sibling
species whose distributions overlap such that local Capitella capitata populations consist of several
co-occurring sibling species (Grassle & Grassle, 1976). Within the complex tolerances may vary
and local acclimation is possible. Capitella capitata has also been recorded in extreme environments
around hydrothermal vents (Gamenick & Giere, 1997), which suggests that the species complex
would be relatively tolerant to an increase in temperature. Experimental evaluation of the effects
of combinations of varying salinities and temperature on Capitella capitata were carried out by
Redman (1985) and Warren (1977). Redman (1985) found that length of life decreased as follows:
59 weeks at mid-temperature and salinity (15°C, 25ppt); 43 weeks at high temperature & high
salinity (18°C, 30 ppt); 33 weeks at lower temperature & high salinity (12°C, 30 ppt); 17 weeks at
high temperature and low salinity (18°C, 20ppt). Redman (1985) also found that net reproduction
(Ro: the mean number of offspring produced per female at the end of the cohort) decreased as
follows: 41.75 control; 36.69 under high salinity, high temperature; 2.19 high temperature, low
salinity; 2.16 low temperature, high salinity. Therefore, a combination of changes in temperature
and salinity may decrease the viability of the population. Warren (1977) used individual worms
collected from Warren Point (south-west England) to test response to high and low temperatures.
Worms were acclimated to 10°C for 10 days and subsequently heated in a water bath at 1°C per 5
min. When the temperature had reached 28°C worms were removed at 0.5°C intervals and
returned to a constant temperature of 10°C. The percentage mortality after 24 h was calculated.
Larvae were removed from the maternal tube and tested using the same method. The experiments
indicated that temperatures above 30°C were most critical; the upper lethal temperature was
31.5°C for adult worms and a little higher for the larvae.
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The amphipods that occur within this habitat are mobile and can avoid unfavourable conditions to
some extent. Bathyporeia life cycles vary between locations and this is related to temperature
(Mettam, 1989). Preece (1971) tested the temperature tolerances of Bathyporeia pilosa in the
laboratory. Individuals acclimated to 15°C for 24 hours were exposed to temperature increases
(water temperature raised by 0.2°C/minute). As the test temperatures were reached individuals
were removed, placed in seawater at 4°C and allowed to recover for 24 hours at which point
mortalities were tested. Amphipods were also allowed to bury into sediments and held at test
temperatures for 24 hours of 32.5°C, 31.8°C and 29.5°C before being allowed to recover in fresh
seawater at 15°C for a further 24 hours, before mortalities were assessed. Upper lethal
temperatures (the temperature at which 50% of individuals died for adult males and gravid
females of Bathyporeia pilosa were 39.4°C. These tests measured short-term exposure only and
species had a lower tolerance for longer-term (24-hour exposure). No mortality occurred
for Bathyporeia pilosa individuals held at 29.5°C and 30.8°C; however, 15% of individuals exposed
to water temperatures of 31.8°C and 96% at 32.5°C died.

Sensitivity assessment. Typical surface water temperatures around the UK coast vary, seasonally
from 4-19°C (Huthnance, 2010). A chronic increase in temperature throughout the year of 2°C
may fall within the normal temperature variation and an acute increase in water temperatures
from 19 to 24°C for a month may be tolerated by the characterizing species supported by deeper
burrowing and/or migration. It is likely that the characterizing species are able to resist a long-
term increase in temperature of 2°C and may resist a short-term increase of 5°C. Resistance and
resilience are, therefore assessed, as ‘High’ and the biotope is assessed as ‘Not Sensitive’ at the
benchmark level.

Temperature decrease
(local)

Medium High Low
Q: High A: Medium C: Medium Q: High A: Low C: Medium Q: High A: Low C: Medium

Intertidal species are exposed to extremes of high and low air temperatures during periods of
emersion. They must also be able to cope with sharp temperature fluctuations over a short period
during the tidal cycle. In winter air temperatures are colder than the sea, conversely in summer air
temperatures are much warmer than the sea. Species that occur in the intertidal are therefore
generally adapted to tolerate a range of temperatures, with the width of the thermal niche
positively correlated with the height of the shore that the animal usually occurs at (Davenport &
Davenport, 2005). Some of the characterizing species are found in colder waters that the UK
suggesting these can tolerate colder waters than typically encountered. Paraonis fulgens occurs in
colder waters than Irish and UK seas, such as the Bay of Fundy, Canada where winter
temperatures are between 0 and 4 °C (Risk & Tunnicliffe 2006). Spiophanes bombyx is found in the
waters off Denmark (Thorson, 1946) which are likely to be colder than British and Irish waters.
Macomangulus (syn. Angulus) tenuis is found off the Norwegian coasts to the Mediterranean and
north-west coast of Africa and is likely to be resistant to temperature changes at the pressure
benchmark. However, Nephtys cirrosa reaches its northern limit in Scotland and German Bight of
the North Sea. A decrease in temperature may result in loss of the species from the biotope in
these areas.

Wu et al. (1988) collected Capitella capitata individuals at seawater temperatures of -2° that
harboured mature oocytes indicating reproductive activity even under low temperatures. Warren
(1977) used Capitella captitata adults collected from Warren Point (south-west England) to test
response to high and low temperatures. Worms were acclimated to 10°C for 10 days before
testing. The worms were cooled in a water bath to experience a decrease in temperature of 1°C
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per 5 min. When the final temperature was reached worms were removed at 0.5 °C intervals and
returned to a constant temperature of 10°C. The percentage mortality after 24 hr was calculated.
Each experiment was repeated once. Larval Capitella capitata were removed from the maternal
tube and tested using the same method. Both adults and larvae of Capitella capitata were tolerant
of low temperatures, 50% of the adults and 65% of the larvae surviving at -1°C.

Crisp (1964) reported that species of amphipod seemed to be unharmed by the severe winter of
1962-1963. This may be due to burial in sediments buffering temperature or seasonal migration to
deeper waters to avoid freezing. In the winter migrations have also been observed for Bathyporeia
spp. (Fish & Fish, 1978; Fish & Preece, 1970). Preece (1971) tested the temperature tolerances of
Bathyporeia pilosa in the laboratory. Individuals acclimated to 15°C for 24 hours were placed in a
freezer in wet sediment. As test temperatures were reached individuals were removed and
allowed to recover for 24 hours at which point mortalities were tested. Amphipods were also
allowed to bury into sediments and held at test temperatures of -1°C, -3°C and -5°C for 24 hours
before being allowed to recover in fresh seawater at 15°C for a further 24 hours before mortalities
were assessed. The lower lethal short-term tolerances of Bathyporeia pilosa were
-13.6°C. Bathyporeia pilosa individuals could withstand temperatures as low as -1°C for 24 hours, at
-3°C, 5% of Bathyporeia pilosa died but this rose to 82% at -5°C.

Sensitivity assessment. Typical surface water temperatures around the UK coast vary seasonally
from 4-19°C (Huthnance, 2010). A chronic decrease in temperature throughout the year of 2°C
may fall within the normal temperature variation but an acute decrease in water temperatures
from 4°C to -1°C at the coldest part of the year may lead to freezing and lethal effects but may be
tolerated by the characterizing species through deeper burrowing and/or migration. However, the
abundance of Nephtys cirrosa may be reduced in northern examples of the biotope or severe
winters. Therefore, biotope resistance is assessed as Medium. However, resilience is probably
‘High’ and sensitivity is assessed as Low.

Salinity increase (local) Low High Low
Q: High A: NR C: NR Q: High A: Low C: Medium Q: Low A: Low C: Low

This biotope is found in full salinity (30-35 ppt) habitats (18-35 ppt) (JNCC, 2015).  A change at the
pressure benchmark is therefore assessed as a change to hypersaline conditions (>40 ppt) from full
salinity. Little evidence was found to assess responses to hypersalinity. However, monitoring at a
Spanish desalination facility where discharges close to the outfall reached a salinity of 53, found
that amphipods were sensitive to the increased salinity and that species free-living in the sediment
were most sensitive (De-la-Ossa-Carretero et al., 2016). Roberts et al. (2010) concluded that the
reported effects of brine discharges were limited and difficult to compare but identified some
trends. Hypersaline effluents tend to disperse quickly in well flushed environments like the habitat
this biotope occurs in. However, sediment communities were affected in the immediate vicinity of
brine discharges. For example, one of the studies reviewed found that the sediment became
dominated by nematodes, with polychaetes, crustaceans and molluscs only fond at a distance from
the outfall. Another study noted that the diversity of polychaete communities decreased adjacent
to the outfall and that the Ampharetidae were the most sensitive while the Paranoidae were the
least sensitive.  

Sensitivity assessment. No direct evidence was found to assess biotope sensitivity. However, if
the biotope was exposed to hypersaline effluents then a proportion of the community may be lost
and species diversity and abundances are likely to decrease. Therefore, a biotope resistance of
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'Low' is suggested. Resilience is probably 'High' (following the restoration of the usual salinity
regime) so that sensitivity is assessed as 'Low'.

Salinity decrease (local) High High Not sensitive
Q: High A: Medium C: Medium Q: High A: Low C: Medium Q: High A: Low C: Medium

Nephtys cirrosa were most abundant in salinities >30 psu in the German Bight (south-east North
Sea) (Meißner et al., 2008), while Spiophanes bombyx is a euryhaline species (Bailey-Brook, 1976;
Maurer & Lethem, 1980), inhabiting fully saline and estuarine habitats. Spio martinensis was a
characterizing species in estuarine channels and inlets in Germany, suggesting resistance to lower
salinities (Nehmer et al., 2003)

Sensitivity assessment.  Nephtys cirrosa is possibly the more sensitive to the lower range of the
‘variable’ or ‘reduced’ salinity category, although as a mobile species it will be resistant through
being able to move lower down the shore or away from freshwater run-off. Nephtys cirrosa displays
resistance to the pressure as the species occur at the mouths of estuaries and estuarine lagoons
where salinity may fall below 20 psu (Barnes, 1994), so are unlikely to be significantly impacted by
a reduction in salinity. In addition, as this biotope LS.LSa.FiSa.Po.Ncir is recorded from both full and
variable (18-30) salinity regimes it would probably tolerate 'reduced' salinity conditions for a year. 
Hence, resistance and resilience are both ‘High’ and sensitivity is, therefore, assessed as ‘Not
sensitive’.

Water flow (tidal
current) changes (local)

High High Not sensitive
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

The biotope and sub biotopes occur on moderately exposed or sheltered beaches. Tidal flow
velocities from very weak to moderately strong occur in the biotope LS.LSa.FiSa.Po suggesting
changes in flow velocity at the benchmark level are unlikely to impact the biotope as
characterizing species are likely to be resistant to a very weak to moderately strong flow
velocities. Changes in flow velocity are more likely to lead to changes between sub-biotopes. For
instance, 21% of records of LS.LSa.FiSa.Po.Ncir occur in moderately strong flow velocities
compared to 8% of records of LS.LSa.FiSa.Po.Pful (Paraonis fulgens, Capitella capitata, Pygospio
elegans) suggesting a change to the LS.LSa.FiSa.Po.Ncir sub-biotope is more likely under an
increase in flow velocity.  

Sensitivity assessment. The LS.LSa.FiSa.Po biotope (and sub-biotopes) occur in water flow
velocities from very weak to moderately strong and in a moderately strong to sheltered wave
climate The fine sand in low in mud and organic matter, which suggests it is well sorted and
oxygenated by water movement. Species characterizing the biotope are likely to be resistant to
changes at the pressure benchmark level (a 0.1-0.2 m/s change in flow) although changes between
sub-biotopes may occur if silt or mud content of the substratum changes. Resistance and resilience
are assessed as ‘High’ and sensitivity is assessed as ‘Not Sensitive’.

Emergence regime
changes

Medium High Low
Q: Low A: NR C: NR Q: High A: Low C: Medium Q: Low A: Low C: Low

Spiophanes bombyx is found in the intertidal so may be tolerant to some emersion of the
substratum. Nephtys cirrosa dominated the low intertidal species community sampled at DePanne,
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Belgium. There were good affinities with the subtidal Nephtys cirrosa species assemblage further
offshore, suggesting a decrease in emergence will have a limited impact on the species and the
associated biotopes (Degraer et al., 1999). A increase in emergence may allow the biotope to
extend up the shore if suitable habitat exists. However, a decrease in emergence may result in
drying of sediment between tides at the upper limit of the biotope and result in an extension of the
BarSa biotope (Connor et al., 2004). 

Sensitivity assessment. A decrease in emergence, and hence, drying of the sediment at the upper
limit of the biotope may cause the upper limit of this biotope to move down the shore, reducing its
extent. Although the individual polychaete species would probably migrate down the shore, the
upper extent of this biotope may be lost. Therefore, resistance is assessed as  'Medium'. Resilience
is probably 'High' so sensitivity is assessed as 'Low'.

Wave exposure changes
(local)

High High Not sensitive
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

The biotope and its sub-biotopes occur on moderately exposed or sheltered beaches. Increases
and decreases in wave exposure may lead to increased erosion or deposition. Species in
moderately exposed examples of the biotope are likely to be resistant to the dynamic nature of
substratum.

Increased wave exposure is likely to resuspend finer material and may lead to reduced abundance
of species, such as Capitella capitata that are absent when there is no mud content in the
substratum. The circulatory motion of wave action may also wash infauna such as Nepthys cirrosa
and Capitella capitata from the sediment in most exposed locations. Although increased wave
action is likely to wash some individuals from the sediment, recovery would be rapid.

Sensitivity assessment. An increase in significant wave height at the benchmark level is unlikely to
create a noticeable impact, where initial conditions are sheltered. Where conditions are
moderately exposed, infauna such as Nepthys cirrosa are likely to be washed from the sediment by
the largest waves. However, the biotope was reported to be naturally disturbed by winter storms
(Connor et al., 2004) and a 3-5% change in significant wave height (the benchmark) is unlikely to
affect the biotope adversely, Therefore, resistance and resilience are assessed as ‘High’, and the
biotope is assessed as, ‘Not Sensitive’ at the benchmark level.

 Chemical Pressures
 Resistance Resilience Sensitivity

Transition elements &
organo-metal
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed but any evidence is presented where available.

Levels of contaminants that exceed the pressure benchmark may cause impacts. Bryan & Gibbs
(1983) reported lower sediment-metal concentrations in sandy areas than mud near the mouth of
Restronguet Creek, a branch of the Fal Estuary system which is heavily contaminated with metals.
Although heavy metals may not accumulate in the substratum to the extent that they would in
muddy substrata, characterizing infauna are likely to be susceptible. Bryan & Gibbs (1983)

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
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suggested that in populations of polychaetes exposed to heavy metal contamination for a long
period, metal resistance could be acquired. For example Nephtys hombergii from Restronguet
Creek seemed able to regulate copper. The head end of the worm became blackened and x-ray
microanalysis by Bryan & Gibbs (1983) indicated that this was caused by the deposition of copper
sulphide in the body wall. In the same study, Bryan & Gibbs (1983) presented evidence that
Nephtys hombergii from Restronguet Creek possessed increased tolerance to copper
contamination. Specimens from the Tamar Estuary had a 96 h LC50 of 250 µg/l, whilst those from
Restronguet Creek had a 96 h LC50 of 700 µg/l (35 psu; 13°C).

Hydrocarbon & PAH
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed but any evidence is presented where available.

Contamination at levels greater than the pressure benchmark may adversely influence the
biotope. Suchanek (1993) reviewed the effects of oil spills on marine invertebrates and concluded
that, in general, on soft sediment habitats, infaunal polychaetes, bivalves and amphipods were
particularly affected. Oil spills resulting from tanker accidents have caused deterioration of sandy
communities in the intertidal and shallow sublittoral. Subtidal sediments, however, may be at less
risk from oil spills unless oil dispersants are used, or if wave action causes dispersion of oil into the
water column and sediment mobility drives oil into the sediment (Elliott et al., 1998). Microbial
degradation of the oil within the sediment would increase the biological oxygen demand and
oxygen within the sediment may become significantly reduced. Species within the biotope have
been reported to be intolerant of oil pollution, e.g. amphipods (Suchanek, 1993). After the Amoco
Cadiz oil spill, there was a reduction in both the number of amphipod species and the number of
individuals (Cabioch et al., 1978). Initially, significant mortality would be expected, attributable to
toxicity. Amphipod populations have been reported not return to pre-spill abundances for five or
more years, which is most likely related to the persistence of oil within sediments (Southward,
1982). Nephtys species were amongst the fauna that was eradicated from sediments following the
1969 West Falmouth spill of Grade 2 diesel fuel documented by Sanders (1978). Multivariate
analysis showed that the Prestige oil spill scarcely affected the macroinfaunal community structure
during the study period (2003-2009) and its effect was limited just to the first campaign (2003), six
months after the Prestige accident (Junoy et al., 2013). Opportunistic species such as Capitella
capitata have been shown to increase in abundance close to sources of contamination. High
numbers of Capitella capitata have been recorded in hydrocarbon contaminated sediments (Ward
& Young, 1982; Olsgard, 1999; Petrich & Reish, 1979) and colonization of areas defaunated by
high hydrocarbon levels may be rapid (Le Moal, 1980). After a major spill of fuel oil in West
Virginia, Capitella capitata increased dramatically alongside large increases in Polydora ligni and
Prionospio sp. (Sanders et al. 1972, cited in Gray 1979).

Synthetic compound
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed but any evidence is presented where available.

Boon et al. (1985) reported that Nephtys species in the North Sea accumulated organochlorines
but, based on total sediment analyses, organochlorine concentrations in Nephtys species were not
correlated with the concentrations in the (type of) sediment which they inhabited.
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Radionuclide
contamination

No evidence (NEv) Not relevant (NR) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

No evidence was found to assess this pressure.

Introduction of other
substances

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed.

De-oxygenation Medium High Low
Q: High A: High C: Medium Q: High A: Medium C: Medium Q: High A: Medium C: Medium

No information concerning the reduced oxygen tolerance of Nephtys cirrosa was found but
evidence (Alheit, 1978; Arndt & Schiedek, 1997; Fallesen & Jørgensen, 1991) indicated a similar
species, Nephtys hombergii, to be very tolerant of episodic oxygen deficiency and at the benchmark
duration of one week. Nephtys cirrosa and Spio spp. were classified by Borja et al. (2000) as being
indifferent to enrichment, suggesting some resilience to de-oxygenation. Dense Capitella
capitata populations are frequently located in areas with greatly elevated organic content, even
though eutrophic sediments are often anoxic and highly sulfidic (Tenore 1977; Warren 1977;
Tenore & Chesney 1985; Bridges et al. 1994). The polychaetes Capitella capitata, Pygospio
elegans and Scoloplos armiger have all been reported to recolonize habitats following periods of
anoxia and hypoxia. 

Scoloplos armiger has been described as being present in low oxygen areas and as a dominant
species in the recolonization of previously anoxic areas (Pearson & Rosenberg, 1978).
Intertidal Scoloplos armiger is, in contrast to subtidal specimens, subject to hypoxia when tidal flats
are without oxygenated seawater during low tide (Kruse et al., 2004). Tolerance against hypoxia
and sulfide is low (Kruse et al., 2004), and worms may ascend into the oxic layer during low tide
(Schoettler & Grieshaber, 1988).  Capitella capitata exhibits a relatively high tolerance for sediment
hypoxia, hydrogen sulphide concentration, and other sediment conditions avoided by many
infauna (Henriksson, 1969). Forbes & Lopez (1990) experimentally demonstrated that reduced
oxygen concentrations (pO2 = 20 mm Hg or less) led to decreased Capitella capitata growth rates
and cessation of burrowing and feeding activity even when an abundance of food was provided.
The authors hypothesize that animals rely solely on anaerobic metabolism once this threshold is
crossed. Magnum & Van Winkle (1973) similarly observed that Capitella capitata oxygen uptake
ceased when pO2 fell to between 0-34 mm Hg. The fact that experimental worms lost body mass
under these conditions supports the contention that full aerobic metabolism cannot be sustained
at very low ambient oxygen conditions despite a very high affinity of Capitella
capitata haemoglobin for oxygen. Diaz & Rosenberg (1995) listed Capitella capitata as resistant of
moderate hypoxia.

Arenicola marina is subject to reduced oxygen concentrations regularly at low tide and is capable of
anaerobic respiration. The transition from aerobic to anaerobic metabolism takes several hours
and is complete within 6-8 hrs, although this is likely to be the longest period of exposure at low
tide. Fully aerobic metabolism is restored within 60 min once oxygen returns (Zeber & Schiedek,
1996). This species was able to survive anoxia for 90 hrs in the presence of 10 mmol/l sulphide in
laboratory tests (Zeber & Schiedek, 1996). Hydrogen sulphide (H2S) produced by
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chemoautotrophs within the surrounding anoxic sediment and may, therefore, be present
in Arenicola marina burrows. Although the population density of Arenicola marina decreases with
increasing H2S, Arenicola marina can detoxify H2S in the presence of oxygen and maintain a low
internal concentration of H2S. At high concentrations of H2S in the lab (0.5, 0.76 and 1.26 mmol/l)
the lugworm resorts to anaerobic metabolism (Zeber & Schiedek, 1996). At 16°C Arenicola
marina survived 72 hrs of anoxia but only 36 hrs at 20°C. Tolerance of anoxia was also seasonal,
and in winter anoxia tolerance was reduced at temperatures above 7°C. Juveniles have a lower
tolerance of anoxia but are capable of anaerobic metabolism (Zebe & Schiedek, 1996).
However, Arenicola marina was reported to be unaffected by short periods of anoxia and to survive
for 9 days without oxygen (Borden, 1931 and Hecht, 1932 cited in Dales, 1958; Hayward, 1994).
Diaz & Rosenberg (1995) listed Arenicola marina as a species resistant of severe hypoxia.

Sensitivity assessment.   The species characterizing the biotope are mobile and able to migrate
vertically to escape unsuitable conditions.  The biotope is characterized by well-sorted and
oxygenated sands, where the anoxic layer occurs below 10 cm and is patchy where it occurs
(Connor et al., 2004). This suggests that the resident species may not be adapted to low oxygen
levels but also that deoxygenation of the water column may be short-lived, especially as the
biotope is exposed at low tide.  Therefore, while some members of the community are known to be
tolerant, other species may be lost or reduced in abundance and resistance is assessed as of
'Medium'. Resilience is probably ‘High’ and sensitivity is assessed as Low. However, hypoxia or
anoxia caused by the bacterial decomposition of organic matter may be detrimental.

Nutrient enrichment Not relevant (NR) Not relevant (NR) Not sensitive
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure relates to increased levels of nitrogen, phosphorus and silicon in the marine
environment compared to background concentrations.  The benchmark is set at compliance with
WFD criteria for good status, based on nitrogen concentration (UKTAG, 2014).  In-situ primary
production is limited to microphytobenthos within and on sediments and the high levels of
sediment mobility may limit the level of primary production as abrasion would be likely to damage
diatoms (Delgado et al., 1991).

Sensitivity assessment.  The nutrient level is not a key factor structuring the biotope at the
pressure benchmark.   In general, however, primary production is low, this biotope is species-poor,
and characterizing species may be present at low abundances (depending on wave exposure). 

Organic enrichment High High Not sensitive
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Benthic responses to organic enrichment have been described by Pearson & Rosenberg (1978) and
Gray (1981).  In general, moderate enrichment increases food supply and increases productivity
and abundance. Nephtys cirrosa and Spio spp. were classified by Borja et al. (2000) as being
indifferent to enrichment. Dense Capitella capitata populations are frequently located in areas with
greatly elevated organic content such as areas of sewage disposal and below fish farms and mussel
long lines, even though eutrophic sediments are often anoxic and highly sulfidic (Gray, 1979;
Tenore, 1977;  Warren, 1977; Tenore & Chesney, 1985; Bridges et al., 1994; Haskoning, 2006;
Callier et al., 2007).

Sensitivity assessment. At the benchmark levels, resistance was assessed as ‘High’ as the main
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characterizing species are tolerant of organic enrichment and an input at the pressure benchmark
is unlikely to lead to gross pollution effects. A resilience of ‘High’ is assigned (by default) and the
biotope is assessed as ‘Not sensitive’.

 Physical Pressures
 Resistance Resilience Sensitivity

Physical loss (to land or
freshwater habitat)

None Very Low High
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

All marine and estuarine habitats and benthic species within them are considered to have a
resistance of ‘None’ to this pressure and to be unable to recover from a permanent loss of habitat
(resilience is ‘Very Low’).  Sensitivity within the direct spatial footprint of this pressure is,
therefore ‘High’.  Although no specific evidence is described confidence in this assessment is
‘High’, due to the incontrovertible nature of this pressure.

Physical change (to
another seabed type)

None Very Low High
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

A change to natural or artificial hard substratum would remove this sedimentary biotope and the
species. If pockets of fine sediment accumulate in pockets within the substrata then these areas
may be re-colonised by species associated with this biotope but these pockets of sediment would
not be equivalent to the biotope. Recovery will depend on the reinstatement of suitable habitat.

Sensitivity assessment. Based on the loss of suitable habitat, biotope resistance to this pressure is
assessed as ‘None’. Resilience is assessed as ‘Very low’ as the pressure benchmark refers to a
permanent change. Biotope sensitivity is, therefore ‘High’.

Physical change (to
another sediment type)

None High Medium
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

The benchmark for this pressure refers to a change in one Folk class.  The pressure benchmark
originally developed by Tillin et al. (2010) used the modified Folk triangle developed by Long
(2006) which simplified sediment types into four categories: mud and sandy mud, sand and muddy
sand, mixed sediments and coarse sediments.  The change referred to is, therefore, a change in
sediment classification rather than a change in the finer-scale original Folk categories (Folk, 1954). 
The change in one Folk class is considered to relate to a change in classification to adjacent
categories in the modified Folk triangle (Long, 2006). As this biotope occurs within fine sands and
muddy sands (JNCC, 2015), the change at the pressure benchmark refers to a potential change to
coarse sediments, mixed sediments, sand and muddy sands or mud.

The particle size of sediments and correlated physical and chemical factors (such as drainage,
organic matter content and hydrodynamic regime), is a key determinant of the structure of benthic
invertebrate assemblages (Van Hoey et al., 2004; Yates et al., 1993).  Infauna can be affected by
changes in sediment as many are adapted to burrow through certain grades of sediment (Trueman
& Ansell, 1969), decreased fine fractions will reduce habitat suitability for species that maintain
permanent burrows. Changes in sedimentary features may also influence the proportions of
suspension and deposit-feeding animals (Sanders, 1968), with deposit feeders favoured by
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increases in the proportion of silts and clays. In North America, cultivation of clam species
including the Manila clam, Tapes philippinarum usually involves some form of habitat modification
in the form of adding gravel or gravel and crushed shell over mud and sand beaches, to create a
more productive clam habitat (referred to as ‘gravelled clam plots’). Such habitat modifications
lead to alterations in the local environment and consequently faunal composition. Simenstad and
Fresh (1995, cited in Kaiser & Beadman, 2002) reported that the application of gravel to intertidal
sediments resulted in a shift from a polychaete to a bivalve and nemertean dominated community,
but emphasised that changes are likely to be site-specific.

Responses are also likely to be species-specific and depend on habitat preferences. Pygospio
elegans prefers fine sediments such as sand and mud; increased sediment coarseness is likely to
render sediments unsuitable for this species. Empirical evidence supporting this view is provided
by Bolam (1999) where experimental manipulation of sediments by implanting macroalgae mats
led to increased fine sediment fractions (with associated increased organic and water content)
which led to the establishment of Pygospio elegans. Capitella capitata was found in fine and medium
grain size sediments and was almost completely absent in sediments without mud in the Belgium
part of the North Sea (Degraer et al., 2006). This suggests that a change to muddy sand is likely to
result in increased abundance but a change to coarser or gravelly sand is likely to lead to reduced
abundance.

Nepthys cirrosa occurs in fine to coarser sands, with the greatest abundance in the Belgium part of
the North Sea recorded in medium grain sizes (Degraer et al., 2006). A change to gravelly sand is
unlikely to impact the species, however, a change to muddy sand may limit the species abundance
as the species displays a slight preference for low mud content levels < 10% (Degraer et al., 2006). 

Changes to finer sand are likely to result in increased abundance of Angulus tenuis and changes to
the sub-biotope LS.LSa.FiSa.Po.Aten, particularly in the low intertidal where the substratum
remains damp at low tide.

Sensitivity assessment. Individual members of the community are found in a range of different
sediment types, at different abundances. The character of the habitat is largely determined by the
sediment type, changes to this would lead to habitat re-classification. The addition of coarse sand
particles or fine particles in sufficient quantities would lead to the development of a different
habitat type.   Changes in sediment characteristics can lead to changes in community structure. An
increase in coarse sediments would lead to the development of a community typical of mixed
sediments, clean sands and/or gravels depending on the degree of change.  In general, an increase
to very coarse sediments may favour some amphipod species rather than burrowing polychaetes
and sessile tube-dwelling polychaetes. This change would alter the character of the biotope
present leading to re-classification, biotope resistance is assessed as 'None' and, as the change is
permanent, resilience is assessed as 'Very Low'. Biotope sensitivity is, therefore 'High'. 

Habitat structure
changes - removal of
substratum (extraction)

None High Medium

Q: Low A: NR C: NR Q: High A: Low C: Medium Q: Low A: Low C: Low

The process of extraction is considered to remove all biological components of the biotope group. 
If extraction occurred across the entire biotope, loss of the biotope would occur. Recovery would
require substratum to return to sand and with a finer silt fraction.

Sensitivity assessment. The resistance of the biotope to extraction is probably ‘None’. Resilience
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differs between species with slower recovery likely to be displayed by Nephtys cirrosa. Resilience is
assessed as ‘High’ (although if the substratum changed recovery could be prolonged) and biotope
sensitivity is assessed as ‘Medium’.

Abrasion/disturbance of
the surface of the
substratum or seabed

Medium High Low

Q: High A: High C: Medium Q: High A: Medium C: High Q: High A: Medium C: Medium

This biotope is present in disturbed and well sorted sands, the associated species are generally
present in low abundances and adapted to frequent disturbance. Therefore, resistance to surface
abrasion is probably ‘High’. The polychaete Nephtys cirrosa is adapted to life in unstable sediments
and survives through rapid burrowing (McDermott, 1983, cited from Elliott et al., 1998). This
characteristic is likely to protect this species from surface abrasion.

Paraonis fulgens were found to reduce in abundance in experimental areas exposed to trampling
(Reyes-Martínez et al., 2015), suggesting a lower resistance of this species to abrasion or surface
disturbance. Chandrasekara and Frid (1996) found that some species including Capitella
capitata and Scoloplos armiger reduced in abundance in intertidal muds, along a pathway heavily
trampled for five summer months (ca 50 individuals a day Bonsdorff & Pearson (1997) found that
sediment disturbance forced Capitella capitata deeper into the sediment, although the species was
able to burrow back through the sediment to the surface again. Juveniles and adults of Scoloplos
armiger stay permanently below the sediment surface and freely move without establishing
burrows. While juveniles are only found a few millimetres below the sediment surface, adults may
retreat to 10 cm depth or more (Reise, 1979; Kruse et al., 2004) and are likely to be more
protected. The egg cocoons are laid on the surface and hatching time is 2-3 weeks during which
these are vulnerable to surface abrasion.

Several studies have assessed the effects of trampling on other intertidal amphipods and these
assessments are used as a proxy. Comparisons between shores with low and high levels of
trampling found that the amphipod Bathyporeia pelagica is sensitive to human trampling, other
species including Pontocrates arenarius and the isopod Eurydice affinis also decreased in response to
trampling but Bathyporeia pelagica appeared to be the most sensitive  (Reyes-Martínez et al.,
2015). Changes in abundance of talitrid amphipods on urban beaches subject to high levels of
recreational use was also observed by Bessa et al. (2014), this study compared abundances
between samples taken ten years apart and thus the trends observed were not directly
attributable to trampling vs beach cleaning or other pressures although they illustrate a general
trend in density patterns as recreational use increases. Ugolini et al. (2008) carried out a controlled
trampling experiment on Talitrus saltator. Plastic cylinders of 110 cm diameter (area 0.95 m2) were
placed in the sand and all individuals trapped and counted, and 400 steps were made in a cylinder
in 15 minutes after the amphipods had reburied. The trampling rate was based on the observed
number of beach users and therefore represents a realistic level of exposure. Live individuals were
counted at the end of the experiment and 24 hours after. Trampling significantly reduced
abundance of the amphipods and after 24 hours the percentage of surviving amphipods dropped
to almost zero, while survival rates of control (untrampled) amphipods were unaffected. Abrasion
and compaction can, therefore, kill buried amphipods within sediments.

Sensitivity assessment. The characterizing species Paraonis fulgens Capitella capitata and Scoloplos
armiger are reduced following abrasion impacts (trampling). However, species in the biotope are
adapted to disturbance. Hence, resistance is assessed as ‘Medium’. The resilience of Capitella
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capitata and other opportunistic species is very high but Nephtys cirrosa is likely to show longer
recovery times but overall resilience is assessed as ‘High’, although the potential for longer
recovery of Nephtys cirrosa should be accounted for. Sensitivity is, therefore, assessed as ‘Low’.

Penetration or
disturbance of the
substratum subsurface

Low High Low

Q: High A: High C: High Q: High A: High C: Medium Q: High A: High C: Medium

Nephtys cirrosa and Spiophanes bombyx were characterizing species of infauna assemblages in both
control and impact sample sites on the Thornton Bank Belgium (North Sea), before and after
dredging occurred as part of the construction process for an offshore wind farm (Coates et al.
2015). Recovery of assemblages occurred within one to two years at individual dredged sites. The
species potentially display resilience to dredging activities as past aggregate dredging had also
occurred before wind farm construction.

Nephtys cirrosa was found to be sensitive to experimental trawling disturbance over 18 months
(Tuck et al., 1998). Nephtys cirrosa is also likely to be vulnerable to dredging but can probably
accommodate limited sediment deposition from the dredging process (MES, 2010). Collie et
al. (2000) found that the abundance of Nephtys hombergii was negatively affected by fishing
activities. Mean response of infauna and epifauna communities to fishing activities was also much
more negative in mud and sand communities (such as this biotope) than other
habitats. Nephtys hombergii abundance also significantly decreased in areas of the Solent, UK,
where bait digging had occurred (Watson et al. 2007). Similarly, Nephtys hombergii abundance was
reduced by 50% in areas where tractor towed cockle harvesting was undertaken on experimental
plots in Burry inlet, south Wales, and had not recovered after 86 days (Ferns et al., 2000).

Capitella capitata, are soft-bodied, relatively fragile species inhabiting mucus tubes close to the
sediment surface. Abrasion and compaction of the surficial layer may damage individuals.
Capitella capitata and Pygospio elegans were categorised as AMBI fisheries Group IV- as ‘second-
order opportunistic species, which are sensitive to fisheries in which the bottom is disturbed. Their
populations recover relatively quickly however and benefit from the disturbance, causing their
population sizes to increase significantly in areas with intense fisheries’ (Gittenberger & Van Loon
2011). 

Spio filicornis is a soft-bodied organism that exposes its palps at the surface while feeding. It lives
infaunally in sandy sediment and any physical disturbance that penetrates the sediment, for
example, dredging or dragging an anchor, would lead to physical damage of Spio filicornis. However,
adult worms can burrow up to 10 cm and may escape the disturbance. Juveniles can only burrow
up to 2 cm into the sediment and are likely to be affected. However, individuals are likely to pass
through a passing scallop dredge due to their small size. Bergman & Hup (1992) reported that the
total density of spionids actually increased with increased fishing disturbance presumably due to
their ability to colonize newly exposed substratum. Hall et al. (1990) investigated the impact of
hydraulic dredging for razor clams. They reported that any effects only persisted for a short time,
with the community restored after approximately 40 days in stormy conditions. The population
density of Spio filicornis was slightly reduced in the dredged site relative to the control site but its
abundance had increased over that of the control site after 40 days. However, the control site
showed a similar level of variation in abundance.

Bergman & Santbrink (2000) found that direct mortality of gammarid amphipods, following a
single passage of a beam trawl (in silty sediments where penetration is greater) was 28%. Similar
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results were reported from experiments s in shallow, wave disturbed areas, using a toothed, clam
dredge. Bathyporeia spp. experienced a reduction of 25% abundance in samples immediately after
intense clam dredging, abundance recovered after one day (Constantino et al., 2009). Experimental
hydraulic dredging for razor clams resulted in no statistically significant differences in Bathyporeia
elegans abundances between treatments after one or 40 days (Hall et al., 1990), suggesting that
recovery from effects was very rapid. Ferns et al. (2000) examined the effects of a tractor-towed
cockle harvester on benthic invertebrates and predators in intertidal plots of muddy and clean
sand. Harvesting resulted in the loss of a significant proportion of the most common invertebrates
from both areas. In the muddy sand, the population of Bathyporeia pilosa remained significantly
depleted for more than 50 days, whilst the population in clean sand recovered more quickly. These
results agree with other experimental studies that clean sands tend to recover more quickly than
other habitat types with higher proportions of fine sediment (Dernie et al., 2003).

Bergman & Hup (1992) found that worm species (including Scoloplos armiger) showed no change in
total density after trawling a subtidal habitat. Conversely, a later study by Bergman & Santbrink
(2000) found that the direct mortality of Scoloplos armiger from a single passage of a beam trawl in
subtidal silty grounds was 18% of the population. Rostron (1995) undertook experimental
dredging of sandflats with a mechanical cockle dredger, including a site comprised of stable, poorly
sorted fine sands with small pools and Arenicola marina casts with some algal growths. At this site,
post-dredging Scoloplos armiger had disappeared from some dredged plots. Ferns et al. (2000) used
a tractor-towed cockle harvester, to extract cockles from intertidal plots of muddy sand and clean
sand, to investigate the effects on non-target organisms; 31% of the population of Scoloplos
armiger (initial density of 120 per m2) were removed. Populations of Scoloplos armiger remained
significantly depleted in the area of muddy sand for more than 50 days after harvesting. Ball et al.
(2000) found that species including Scoloplos armiger showed a significant decrease in abundance
of between 56-27% after 16 months of otter trawling at a previously unfished Scottish sea loch.
Chandrasekara and Frid (1996, cited in Tyler-Walters & Arnold, 2008) found that along a pathway
heavily used for five summer months (ca. 50 individuals/day), Scoloplos armiger reduced in
abundance. Recovery took place within 5-6 months. These studies suggest that Scoloplos armiger is
likely to be impacted by sediment disturbance and that recovery to previous densities may require
more than two years.

A number of studies have found that the abundance of the polychaete Pygospio elegans is reduced
by simulated cockle dredging (Hall & Harding, 1998; Moore, 1990; Ferns et al., 2000; Rostron,
1995).  Ferns et al. (2000) found that tractor towed cockle harvesting removed 83% of Pygospio
elegans (initial density 1850/ m2).  In muddy sand habitats, Pygospio elegans had not recovered to
the original abundance after 174 days (Ferns et al.,2000). Rostron (1995) also found that Pygospio
elegans had not recovered to pre-dredging numbers after six months. Conversely, Hall & Harding,
(1998) found that the abundance of Pygospio elegans increased significantly over 56 days following
suction dredging.  Pygospio elegans inhabits a fragile tube that projects above the sediment surface
and is probably more vulnerable to physical disturbance and abrasion than other, more deeply
buried, infaunal species.

Sensitivity assessment.  The evidence suggests that many of the characteristic species could suffer
a significant loss in abundance due to penetrative gear. Therefore, the resistance of the biotope is
assessed as ‘Low’, as a proportion of the population of characterizing species may be removed.
However, species in the biotope are adapted to disturbance and recover quickly so that resilience
is assessed as ‘High ’ and sensitivity as ‘Low’.
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Changes in suspended
solids (water clarity)

High High Not sensitive
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

The characterizing species live within the sand and are unlikely to be directly affected by an
increased concentration of suspended matter in the water column. Within the mobile sands
habitat storm events or spring tides may re-suspend or transport large amounts of material and
therefore species are considered to be adapted to varying levels of suspended
solids. Bathyporeia spp. feed on diatoms within the sand grains (Nicolaisen & Kanneworff, 1969), an
increase in suspended solids that reduced light penetration could alter food supply. However,
diatoms are able to photosynthesize while the tide is out and therefore a reduction in light during
tidal inundation may not affect this food source, depending on the timing of the tidal
cycle. Bathyporeia spp. may be regular swimmers within the surf plankton, where the concentration
of suspended particles would be expected to be higher (Fincham, 1970a).

However, the biotope is characterized by a low amount of organic matter and an increase in
suspended solids may cause a change in this factor if this is coupled with changes in hydrodynamics
that reduce particle re-suspension. Increased suspended solids are unlikely to have a direct impact
on infauna but increased organic matter may result in an increase in the abundance of
opportunistic species such as Capitella capitella. Biotope resistance is assessed as ‘High’ and
resilience as ‘High’ (by default) so that the biotope is assessed to be ‘Not sensitive’.

Smothering and siltation
rate changes (light)

High High Not sensitive
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

The characterizing species Pygospio elegans is limited by high sedimentation rates (Nugues et al.,
1996) and the species does not appear to be well adapted to oyster culture areas where there are
high rates of accumulation of faeces and pseudo faeces (Sornin et al., 1983; Deslous-Paoli et al.,
1992; Mitchell, 2006 and Bouchet & Sauriau, 2008).  Pygospio elegans is known to decline in areas
following the re-deposition of very fine particulate matter (Rhoads & Young, 1971; Brenchley,
1981). Experimental relaying of mussels on intertidal fine sands led to the absence of Pygospio
elegans compared to adjacent control plots. The increase in fine sediment fraction from increased
sediment deposition and biodeposition alongside possible organic enrichment and decline in
sediment oxygen levels was thought to account for this (Ragnarsson & Rafaelli, 1999).

Mobile and/or burrowing species (including molluscs and polychaetes such as Nephtys spp.,
and Scoloplos armiger) are generally considered to be able to reposition following periodic siltation
events or low levels of chronic siltation. Nephthys cirrosa occurs in fine to coarser sands, with the
greatest abundance in the Belgium part of the North Sea recorded in medium grain sizes (Degraer
et al., 2006). A light deposition of fine sediment may lead to small but insignificant changes in
abundance as it will reduce the available preferred habitat with medium grain size. As the tidal
flow is strong in this biotope, a light deposition of finer sediment is likely to be resuspended.
Resistance is likely to be high for Nephthys cirrosa at the benchmark level as this species is likely to
be able to reposition within sediments.

Capitella capitata was categorised as AMBI sedimentation Group IV as a ‘second-order
opportunistic species, insensitive to higher amounts of sedimentation. Although they are sensitive
to strong fluctuations in sedimentation, their populations recover relatively quickly and even
benefit. This causes their population sizes to increase significantly in areas after a strong
fluctuation in sedimentation’ (Gittenberger & Van Loon 2011).
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Sensitivity assessment. None of the characterizing species is considered likely to be significantly
impacted by deposition of up to 5 cm of fine material. Resistance is assessed as ‘High’, resilience as
‘High’ and sensitivity is assessed as ‘Not sensitive’.

Smothering and siltation
rate changes (heavy)

Low High Low
Q: Medium A: Medium C: Medium Q: Medium A: Medium C: Medium Q: Medium A: Medium C: Medium

Studies have found that beach ‘replenishment’ or ‘nourishment’ that involves the addition of
sediments on beaches can have a number of impacts on the infauna (Peterson et al.,
2000; Peterson et al., 2006). Impacts are more severe when the sediment added differs
significantly in grain size or organic content (Nelson et al., 1989; Peterson et al., 2000). For
example, Maurer et al. (1981) found that the amphipod Parahaustorius longimerus, which occurs
intertidally in clean, well-sorted sands and is an active, effective burrower, was able to regain the
surface after being buried by sand far more easily than when buried under silt/clay mixtures. 

Nephtys cirrosa is a large infaunal species, with an adult size between 6 cm and 10 cm and capable
of moving through the sediment, suggesting some resilience to smothering. Nephtys cirrosa is an
active worm which demonstrates the characteristic swimming motion (a rapid lateral wriggling,
starting from the rear and increasing in amplitude towards the head) of the Nephtyidae.
Deposition of up to 30 cm of fine material is likely to bury some individuals beyond the typical 5 to
15 cm depth of tunnels. It is likely Nephtys cirrosa close to the surface may be capable of relocating
in the sediment although feeding and reproduction activities are likely to be interrupted.

Nephthys cirrosa occurs in fine to coarser sands, with the greatest abundance in the Belgium part of
the North Sea recorded in medium grain sizes (Degraer et al., 2006). Presence of fine material may
lead to small but insignificant changes in abundance as it will reduce the available preferred
habitat with medium grain size. As the tidal flow is strong in this biotope, a light deposition of finer
sediment is likely to be resuspended. Resistance is likely to be high to the presence of finer
material for Nephthys cirrosa but initial smothering is likely to cause some mortality and interrupt
feeding and reproduction activity at the benchmark level.

Capitella capitata has been categorised through expert and literature review, as AMBI
sedimentation Group IV – a second-order opportunistic species, insensitive to higher amounts of
sedimentation. Although they are sensitive to strong fluctuations in sedimentation, their
populations recover relatively quickly and even benefit. This causes their population sizes to
increase significantly in areas after a strong fluctuation in sedimentation (Gittenberger & Van Loon
2011).

 Bijkerk (1988, results cited from Essink, 1999) found that the maximal overburden through
which Bathyporeia could migrate was approximately 20 cm in mud and 40 cm in sand. No further
information was available on the rates of survivorship or the time taken to reach the surface and
no information was available for other characterizing species. 

Sensitivity assessment. Overall smothering by 30 cm of fine sediments may result in mortality of
characterizing species. Although some polychaetes may be able to reposition after sedimentation
at the pressure benchmark this will depend on the characteristics of the overburden and sedentary
species such as Pygospio elegans are likely to suffer high levels of mortality. The introduction of fine
sediment may also alter the sediment typical of the biotope causing a temporary shift in the
abundance of species. However, the opportunistic species occurring in the biotope are likely to
recover rapidly following sediment recovery. Biotope resistance is, therefore, assessed as ‘Low’,
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resilience is assessed as  ‘High’, following habitat recovery to fine sands and biotope sensitivity is
assessed as ‘Low’.

Litter Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Plastic debris breaks up to form microplastics. Microplastics have been shown to occur in marine
sediments and to be ingested by detritivores such as the amphipod Orchestia gammarellus, deposit
feeders such as Arenicola marina and holothurians, as well as by suspension feeders, e.g. Mytilus
edulis (Wright et al., 2013b; Browne et al., 2015).

Wright et al. (2013) showed that the presence of microplastics (5% UPVC) in a lab study
significantly reduced feeding activity when compared to concentrations of 1% UPVC and controls.
As a result, Arenicola marina showed significantly decreased energy reserves (by 50%), took longer
to digest food, and as a result decreased bioturbation levels, which would be likely to impact the
colonization of sediment by other species, reducing diversity in the biotopes the species occurs
within. Wright et al. (2013) suggested that in the intertidal regions of the Wadden Sea, where
Arenicola marina is an important ecosystem engineer, Arenicola marina could ingest 33 m3 of
microplastics a year.

In a similar experiment, Browne et al. (2013) exposed Arenicola marina to sediments with 5% PVC
particles or sand presorbed with pollutants nonylphenol and phenanthrene for 10 days. PVC is
dense and sinks to the sediment. The experiment used Both microplastics and sand transferred the
pollutants into the tissues of the lugworm by absorption through the gut. The worms accumulated
over 250% more of these pollutants from sand than from the PVC particulates. The lugworms
were also exposed to PVC particulates presorbed with plastic additive, the flame retardant
PBDE-47 and antimicrobial Triclosan. The worms accumulated up to 3,500% of the concentration
of theses contaminants when compared when to the experimental sediment. Clean sand and PVC
with contaminants reduced feeding but PVC with Triclosan reduced feeding by over 65%. In the
PVC with Triclosan treatments, 55% of the lugworms died.  Browne et al. (2013) concluded that
the contaminants tested reduced feeding, immunity, response to oxidative stress, and survival (in
the case of Triclosan).

Sensitivity assessment. Impacts from the pressure ‘litter’ would depend on upon the exact form of
litter or man-made object introduced.  Browne et al. (2015) suggested that if effects in the
laboratory occurred in nature, they could lead to significant changes in sedimentary communities
as Arenicola marina is an important bioturbator and ecosystem engineer in sedimentary habitats.
Arenicola marina does not reach high abundances in this biotope but other deposit-feeding
polychaetes could potentially ingest microplastics, although no evidence is available at present.
This pressure is 'Not assessed' as no benchmark has been defined for this pressure.

Electromagnetic changes No evidence (NEv) Not relevant (NR) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Electric and magnetic fields generated by sources such as marine renewable energy device/array
cables may alter behaviour of predators and affect infauna populations. Evidence is limited and
occurs for electric and magnetic fields below the benchmark levels, confidence in evidence of
these effects is very low.
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Field measurements of electric fields at North Hoyle wind farm, North Wales recorded 110µ V/m
(Gill et al. 2009). Modelled results of magnetic fields from typical subsea electrical cables, such as
those used in the renewable energy industry produced magnetic fields of between 7.85 and 20 µT
(Gill et al. 2009; Normandeau et al. 2012). Electric and magnetic fields smaller than those recorded
by in-field measurements or modelled results were shown to create increased movement in
thornback ray Raja clavata and attraction to the source in catshark Scyliorhinus canicular (Gill et al.
2009).

Flatfish including dab Limanda limanda and sole Solea solea are predators of many polychaete
species.  They have been shown to decrease in abundance in a wind farm array or remain at
distance from wind farm towers (Vandendriessche et al., 2015; Winter et al. 2010). However, larger
plaice increased in abundance (Vandendriessche et al., 2015). There have been no direct causal
links identified to explain these results.

Sensitivity assessment. No evidence was found on the effects of electric and magnetic fields on
the characterizing species. However, responses by flatfish and elasmobranchs suggest changes in
predator behaviour are possible. There is no evidence currently but if electromagnetic fields
affect predator-prey dynamics as further marine renewable energy devices are deployed, these
are likely to be over small spatial scales and unlikely to significantly impact the biotope.

Underwater noise
changes

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Species within the biotope can probably detect vibrations caused by noise. However, at the
benchmark level the community is unlikely to be sensitive to noise and this pressure is
therefore ‘Not relevant’.

Introduction of light or
shading

High High Not sensitive
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

As this feature is not characterized by the presence of primary producers shading is not
considered likely to alter the character of the habitat. As the characterizing biological assemblage
occurs within the sediment, an increase in light or shading is considered ‘Not relevant’. However,
shading may reduce the microphytobenthos component of this infralittoral biotope. Mucilaginous
secretions produced by these algae may stabilize fine substrata (Tait & Dipper, 1998). Shading will
prevent photosynthesis leading to death or migration of sediment microalgae, which may alter
sediment cohesion and food supply to higher trophic levels.

Sensitivity assessment. Changes in light are not considered to directly affect the biotope.
 However, some changes in behaviour or food supply for characterizing species could result.
Overall, resistance is assessed as High. Therefore, resilience is High and the biotope is assessed as
Not sensitive. 

Barrier to species
movement

High High Not sensitive
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

Nephtys cirrosa produce pelagic larvae. Barriers that limit tidal excursion and flushing may reduce
connectivity but help to retain larvae. Capitella capitata and the associated species Pygospio
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elegans are capable of both benthic and pelagic dispersal. In the sheltered waters where this
biotope occurs, with reduced water exchange, in-situ reproduction may maintain populations
rather than long-range pelagic dispersal. As the tubificid oligochaetes that occur in this biotope
have benthic dispersal strategies via egg cocoons laid on the surface (Giere & Pfannkuche, 1982),
water transport is not a key method of dispersal over wide distances. The biotope is considered to
have ‘High’ resistance to the presence of barriers that lead to a reduction in tidal excursion,
resilience is assessed as ‘High’ (by default) and the biotope is considered to be ‘Not sensitive’

Death or injury by
collision

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

'Not relevant’ to seabed habitats.  NB. Collision by grounding vessels is addressed under ‘surface
abrasion’.

Visual disturbance Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Characterizing species may have some, limited, visual perception. As they live in the sediment the
species will most probably not be impacted at the pressure benchmark and this pressure is
considered 'Not relevant'.

 Biological Pressures
 Resistance Resilience Sensitivity

Genetic modification &
translocation of
indigenous species

Not relevant (NR) Not relevant (NR) Not relevant (NR)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Important characterizing species within this biotope are not cultivated or translocated. This
pressure is, therefore, considered ‘Not relevant’ to this biotope.

Introduction or spread of
invasive non-indigenous
species

Low Very Low High

Q: High A: High C: High Q: Low A: NR C: NR Q: Low A: Low C: Low

Coastal and estuarine areas are among the most biologically invaded systems in the world,
especially by molluscs such as the slipper limpet Crepidula fornicata and the Pacific
oyster Magallana gigas (OSPAR, 2009b). The two species have not only attained considerable
biomasses from Scandinavian to Mediterranean countries but have also generated ecological
consequences such as alterations of benthic habitats and communities, or food chain changes. In
the Wadden Sea, the main issue of concern is the pacific oyster (Magallana gigas), which has also
spread in the Thames estuary and along French intertidal flats. Padilla (2010) predicted
that Magallana gigas could either displace or overgrown mussels on rocky and sedimentary
habitats of low or high energy. In general, littoral sand sediments are mobile and winter storms
may remove sediments and wash-out some species (Connor et al., 2004) preventing the
establishment of larger, longer-lived species and the development of bivalve reefs. However, as
some beaches in which the biotope occurs may be relatively sheltered some colonization may

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking


Date: 2020-01-17 Nephtys cirrosa - dominated littoral fine sand - Marine Life Information Network

https://www.marlin.ac.uk/habitats/detail/1202 26

occur and sensitivity to invasive molluscs is considered.

In the Wadden Sea and the North Sea, Magallana gigas overgrows mussel beds in the intertidal
zone (Diederich 2005, 2006; Kochmann et al., 2008), although they did show a preference for
settling on conspecifics before the mussels and struggled to settle on mussels with a fucoid
covering. However, recruitment of Magallana gigas was significantly higher in the intertidal than
the shallow subtidal, although the survival of adult oysters or mussels in the subtidal is limited by
predation.

Crepidula fornicata is known to colonize and smother a wide range of sediments in the subtidal,
from mixed sediments to mud, especially in prior shellfish beds (e.g. of oysters and mussels)
(Blanchard, 1997; Minchin et al., 1995). Crepidula fornicata larvae may out-compete oyster
(Magallana gigas) larvae during summer months where the two species co-occur. Trophic
competition between adult Crepidula fornicata and Magallana gigas was reported in France during
winter and spring. In Mont Saint-Michel Bay, France, slipper limpet populations have affected
flatfish populations. Changes in habitat structure and reduced abundance of suspension-feeding
organisms (upon which the flatfish feed) were linked to slipper limpet extent (Decottignies et
al., 2007; Blanchard et al. 2008; and Kostecki et al., 2011 cited in Sewell & Sweet, 2011).  Ensis
siliqua occurs on some North Wales shores  (Connor et al., 2004). This species could co-occur with
or be replaced by a similar, but non-native species Ensis directus. However, such a change is unlikely
to alter the character of the biotope. 

Sensitivity assessment. Magallana gigas is predicted to invade sedimentary habitats, although no
direct examples exist to date and Magallana gigas recruitment is lower in the subtidal (Diederich
2005, 2006; Padilla, 2010). Crepdiula fornicata is a major invader and colonizer of subtidal
sediments. However, both species require hard substrata in the form of stones, debris or,
preferably, the shells conspecifics to colonize the habitat. This biotope is dominated by fine mud
and a shell fraction is not recorded in the description (Connor et al., 2004) but if artificial hard
debris (e.g. litter) was introduced to the habitat then it may provide an initial point for the
colonization of Crepidula in particular. Although it would probably take many years, colonization
by Crepidula would result in the complete modification of the habitat, reclassification and loss of
the biotope, although polychaete populations may survive in the sediment itself.  Therefore, a
precautionary resistance of 'Low' has been suggested with ‘Low’ confidence due to the lack of
direct evidence. Resilience is likely to be 'Very low' as a bed of Crepidula or Magallana gigas would
need to be removed before recovery could begin. Therefore, sensitivity is assessed as 'High'.

Introduction of microbial
pathogens

No evidence (NEv) No evidence (NEv) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

No evidence was found.

Removal of target
species

Low High Low
Q: Medium A: Low C: Medium Q: High A: Medium C: High Q: Medium A: Low C: Medium

Nephtys cirrosa is targeted by bait diggers, there is limited information on the effect of targeted
removal on Nephtys cirrosa populations, however, there is evidence on effects on Nephtys
hombergii. Nephtys hombergii is directly removed through commercial bait digging and by
recreational anglers and abundance significantly decreased in areas of the Solent, UK, where bait
digging (primarily for Nereis virens) had occurred (Watson et al. 2007). Recovery of Nephtys
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hombergii has been assessed to be high as re-population would occur initially relatively rapidly via
adult migration and later by larval recruitment. Dittman et al. (1999) observed that Nephtys
hombergii was amongst the macrofauna that colonized experimentally disturbed tidal flats within
two weeks of the disturbance that caused defaunation of the sediment. However, if sediment is
damaged recovery is likely to be slower, for instance, Nephtys hombergii abundance was reduced by
50% in areas where tractor towed cockle harvesting was undertaken on experimental plots in
Burry inlet, south Wales, and had not recovered after 86 days (Ferns et al., 2000).

Removal of Nephtys cirrosa by bait digging may cause short-term loss of food resources for
predators such as fish species including Limanda limanda and Pleuronectes platessa. As recovery is
medium to high, the long-term impacts on populations are likely to be small but will be dependent
upon the scale and frequency of bait digging activities.

Sensitivity assessment. Confidence in this assessment about the removal of Nephtys cirrosa is
'Low' as it is based on evidence of removal of Nephtys hombergii. However, biotope resistance is
assessed as ‘Low’ based on direct removal of a characterizing species, Resilience is assessed as
‘High’ as habitats that are not regularly harvested may recover rapidly, although it should be noted
that continued harvesting will inhibit recovery. Biotope sensitivity to a single harvesting event is
assessed as ‘Low’. It is important to consider that the spatial extent and duration of harvesting is
important to consider when assessing this pressure as smaller scale extraction may not impact the
entire extent of the biotope but greater scale extraction over a long period would cause longer-
term impacts.

Removal of non-target
species

Low High Low
Q: Medium A: Low C: Medium Q: Medium A: Low C: Medium Q: Medium A: Low C: Medium

Direct, physical impacts are assessed through the abrasion and penetration of the seabed
pressures, while this pressure considers the ecological or biological effects of by-catch. Species in
this biotope, including the characterizing species, may be damaged or directly removed by static or
mobile gears that are targeting other species (see abrasion and penetration pressures).

Collie et al. (2000) identified that intertidal communities (such as this biotope) suffered impacts
from impact from fishing activities. The review concluded that there were ecologically important
impacts from removal of >50% of fauna from bottom towed fishing activity (dredge and trawls)
(Collie et al., 2000). Kaiser et al. (2001) carried out experimental hand raking, similar to that used in
intertidal cockle fisheries. Both small and large raked plots showed changed communities in
comparison to control plots, smaller plots recovered in 56 days, whilst larger plots remained in an
altered state.

Collie et al. (2000) found that the abundance of a Nephtys hombergii was negatively affected by
fishing activities. Mean response of infauna and epifauna communities to fishing activities was also
much more negative in mud and sand communities (such as this biotope) than other habitats.
Nephtys hombergii abundance also significantly decreased in areas of the Solent, UK, where bait
digging had occurred (Watson et al. 2007). Similarly, Nephtys hombergii abundance was reduced by
50% in areas where tractor towed cockle harvesting was undertaken on experimental plots in
Burry inlet, south Wales, and had not recovered after 86 days (Ferns et al., 2000).

Sensitivity assessment. The incidental damage or removal of a proportion of the population (e.g.
by commercial bait digging) may change the character of the community temporarily.  The biotope
is disturbed seasonally by storms, (Connor et al., 2004) and may recover quickly.  However, long-
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term disturbance from repeated events e.g. by periodic bait digging (see above) may prolong
recovery. Biotope resistance is assessed as ‘Low’ based on removal or damage of characterizing
species, that on commercial scales can remove a large proportion of the population and lead to an
impacted community. Resilience is assessed as ‘High’ but it should be noted that continued
harvesting will impact the population and Nephtys cirrosa will take longer to recover if harvesting is
overextended spatial scales. Biotope sensitivity is assessed as ‘Low’. It is important to consider
that the spatial extent and duration of areas impacted by removal is important to consider when
assessing this pressure, as smaller scale extraction may not impact the entire extent of the biotope
but greater scale extraction over a long period would cause longer-term impacts. The type of
fishing activity is also important to consider in relation to the type and severity of the impact.
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