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Abstract
 

Two novel beamforming methods based on multidimensional finite impulse response 

(FIR) filters are proposed for broadband-bandpassed signals received by uniformly dis­

tributed 1D/2D antenna arrays. For cognitive radio (CR) systems, an adaptive complex-

coefficient 2D FIR asymmetric-trapezoidal filter-based beamforming method is proposed. 

The proposed beamforming 2D filter is designed such that its 2D trapezoidal passband 

closely encloses the region of support (ROS) of the spectral components of the desired 

subscriber signal and such that its 2D stopband encloses the ROSs of the spectra of the 

co-channel interfering subscriber signals and a dominant component of receiver noise. The 

proposed novel closed-form design method achieves near-optimal passband and stopband 

characteristics while instantaneously adapting to variations of the operation frequency 

band and bandwidth and of the time varying directions of arrival of the desired signal. 

A novel method based on a complex-coefficient 3D FIR frustum filter has been pro­

posed as a pre-coherent dedispersion broadband beamformer for pulsar timing/profile 

studies in order to significantly suppress off-dish signals such as radio frequency interfer­

ence (RFI), ground thermal noise and receiver noise in focal plane array (FPA) signals. 

Accurate simulations of electromagnetic fields using the Focal Field Synthesizer (FFS) 

program imply that the ROSs of the spectra of space-time sampled FPA signals corre­

sponding to dish-reflected celestial signals of interest (SOI) of the FPA is a 3D frustum-

shaped volume F. Also, it is shown that the ROSs of the 3D power spectral density of RFI 

and ground thermal noise occupies the volume just outside the surface of the frustum F. 

The frustum-shaped passband of the proposed 3D filter is designed to encompass most 

of the volume of frustum F, ensuring that most of the energy of the SOIs is transmitted 

to the output, where as the 3D stopband attenuates the most of the spectral components 

of off-dish FPA signals. Simulation results show that the proposed 3D FIR frustum 
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filter-based beamformer achieves the lowest mean-square-error (MSE) compared to the
 

conventional 2D spatial-only beamformer and 3D conjugate-field-matching beamformer.
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Chapter 1
 

Beamforming of Broadband-Bandpassed Signals using
 

Multidimensional FIR Filters
 

1.1 Introduction 

Humans are immersed in a sea of signals, some of those are generated naturally and 

some of those are results of human activity. Also, some of these signals, such as prop­

agating electromagnetic (EM) waves in the band 400 - 790 THz (i.e. the optical band) 

and propagating acoustic waves in the band 20 - 20,000 Hz (i.e. the audible band), can 

be directly perceived by human sensors. However, most of the signals such as EM ra­

diation in radio, microwave, infrared, ultraviolet, X-ray and Gamma-ray bands in the 

environment are not perceived by human sensors. In order to extract the information 

carried by the directly unperceivable signals and to enhance the desired signals in the 

optical-band and audible-band, engineers have designed and implemented special sensor 

& processing systems. Many of these sensor & processing systems employ “sensor ar­

rays” for receiving the propagating signals of interest. The received signals are processed 

in order to enhance the desired signals while suppressing interfering signals and contam­

inating noise. Examples of such sensor-array & processing systems, also known as array 

processing systems, include mobile and wireless communication systems [1][2], radio tele­

scopes [3][4], fixed- and synthetic- aperture radar systems [5][6], active and passive sonar 

systems [7][8], ultrasound and tomographic biomedical imaging systems [9][10] and audio 

processing systems [11][12]. 

Among modern wireless communication systems, Cognitive Radio (CR) systems are 

of increasing interest for the optimal management of the available radio spectrum, trans­
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mitting power, and wireless modulation techniques for the facilitation of a broad range 

of communication and entertainment applications [13][14][15][16]. Software defined ra­

dio (SDR) architectures have been proposed for CR systems that exploit dynamic al­

location of the radio spectrum and modulation techniques [13][15][17], where real-time 

dynamic spectral utilization is achieved by maintaining several sub-bands for different 

subscriber/application clusters and is managed by sensing the spectral occupancy at 

regular time intervals [13][15]. Consider the scenario shown in Figure 1.1, where the 

1D uniformly distributed antenna array (UDAA) of a CR system [14] is used to receive 

groups of co-channel RF signals transmitted by the mobile communication devices on a 

high-speed commuter train and by both mobile wireless and fixed wireless devices in an 

apartment building. In general, the group of signals transmitted by the mobile devices 

on the commuter train may be of low power compared to the group of signals transmitted 

from the wireless devices in the building. Hence, receiving beams, as shown in Figure 1.1, 

must be formed in order to faithfully recover the two groups of co-channel signals trans­

mitted by the devices in the train and the devices in the building, respectively. Further, 

the beam pointed at the train must be regularly adapted in time in order to track the 

train as it moves along the tracks. 

Also consider a different scenario shown in Figure 1.2, where the EM waves emanated 

from the celestial sources S1 and S2 are first reflected by the paraboloidal reflector and 

subsequently received by the 2D focal plane array (FPA) [18]. FPAs are under investi­

gation as a means of increasing the field of view (FoV) for the observations in the lower 

mid-band (i.e. 0.5 - 1.7 GHZ) of the Square Kilometre Array (SKA) [19]. The SKA will 

be the world’s largest aperture synthesis radio telescope upon its completion in 2020 at an 

estimated cost of $ 2 billion [19]. It has been proposed that approximately 1,000 - 2,000 

paraboloidal reflector antennas in the SKA will be equipped with FPAs where, each FPA 

may contain 100-200 or more wideband elemental antennas, such as Vivaldi elements 
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1D UDAA
Cognitive Radio 

(CR) System

Receiving beams 

High-speed 
commuter train

Apartment-
building

Figure 1.1: A scenario in which a CR system is receiving RF signals from many wireless 
mobile devices on a high-speed commuter train and many fixed and mobile communica­
tion devices in an apartment building. 

[20]. In addition to the induced signals in response to the desired celestial signals of 

interests from S1 and S2, the FPA outputs may also contain man-made radio frequency 

interference (RFI) [21], contaminating noise induced due to the thermal radiation in the 

vicinity of the receiver antenna and the noise induced in low noise amplifiers (LNAs). 

Given that the celestial EM waves are extremely weak, highly sensitive receiving beams, 

as shown in Figure 1.2, must be formed in order to extract the information carried by the 

celestial EM radiation from S1 and S2 in the presence of receiver noise, ground thermal 

radiation noise and RFI. 

In both of above mentioned scenarios, the objective of forming receiving beams is to 

selectively enhance the desired signals and to suppress the co-channel interfering signals 

and the receiver noise, and is based on the directions of arrival (DOAs)1 of the propagat­

ing signals received by an array of sensors [22]. Beamforming has been extensively used 

1The direction of arrival is the direction unit vector of the source of a signal with respect to the 
receiver array. The exact definition of the DOA is given in chapter 2 of this thesis. 
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A Paraboloidal 
Reflector Antenna in 
the SKA 

A Focal Plane Array  
(FPA) 

Celestial Sources 
1S 2S

Receiving 
beams 

Figure 1.2: A scenario in which an antenna in a radio telescope receives EM waves from 
different celestial sources. 

in various array processing applications including wireless and mobile communications 

[23][24], radio astronomy [25], radar [5], active and passive sonar [26] and directional audio 

systems [27][28]. However, in most legacy applications in wireless communications, radio 

astronomy and radar the signals of interests are temporally-narrowband-bandpassed2 sig­

nals and thus, employ temporally-narrowband-bandpass beamforming methods. In such 

applications, the optimal performance of the employed narrowband-bandpass beamform­

ing methods is designed to achieve for a single frequency3 . However, in some of the 

modern array processing applications, specially for radio astronomy [18][29][30], radar 

[31][32] and wireless communications [23][33][34] the signals of interest are temporally­

broadband-bandpassed signals. Therefore, such array processing applications require ad­

2The criterion for characterizing the temporally-narrowband-bandpassed (NB-BP) signal and the 
temporally-broadband-bandpassed (BB-BP) signal is given in chapter 2. 

3In general at the carrier frequency of the narrowband-bandpassed signal. 
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vanced broadband-bandpass beamforming methods that yield optimal (or near-optimal) 

performance for the entire bandwidth of the signals of interest. 

In general, beamforming systems can be implemented either in continuous-time with 

analog circuits or in discrete-time with digital circuits in hardware or software [35][36][37]. 

However, for some modern array processing applications, digital signal processing (DSP) 

methods are often preferred over the continuous-time analog alternatives because, DSP 

systems allow faster implementation, easy reconfiguration, higher accuracy, reliability 

and robustness, wider availability and lower cost of implementation and maintenance 

[38][39][40]. 

1.2 Contributions of this Thesis 

This thesis presents the investigation of optimal4 or near optimal design methods and 

efficient-implementation techniques for discrete-time multidimensional (MD) finite im­

pulse response (FIR) filters used in broadband-bandpass beamforming methods for real-

time applications. Here, two broadband-bandpass beamforming applications are con­

sidered in detail. The first is adaptive beamforming of broadband-bandpassed signals 

received by a 1D-UDAA of a CR system having a SDR front-end. Here, an adaptive 

complex-coefficient 2D FIR trapezoidal filter-based beamformer is proposed. The sec­

ond application is beamforming of broadband-bandpassed FPA signals in paraboloidal 

receiver antennas for mitigating RFI and thermal radiation noise for broadband detec­

tion processes. Here, a complex-coefficient 3D FIR frustum filter-based beamformer is 

proposed. For both applications, the concepts and theories of multidimensional signal 

processing (MDSP) [41][42][43][44][45][46] have been exploited in analyzing the properties, 

in both space-time and spectral domains, of propagating “spatio-temporal” (ST)5 signals 

4In the sense of a given metric (i.e. mean-square-error, min-max, etc.) 
5Here, the term “spatio” implies one or more spatial dimension where the term “temporal” implies 

time or a dimension proportional to time. 
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that are received by an array of sensors placed in the propagation medium and in de­

signing the ideal transfer functions for the MD FIR filters that lead to optimal receiving 

beamforming systems. The proposed beamforming methods are expected to yield lower 

distortions of the desired signals, higher attenuation of the interfering signals and sys­

tem noise with easy adaptability and lower computational complexity that improve the 

performance and reduce the cost of these real-time applications. 

Broadband-Bandpass Beamforming for Cognitive Radio (CR) Systems using 

Complex-Coefficient 2D FIR Trapezoidal Filters 

A novel adaptive discrete-domain method based on a complex-coefficient 2D FIR trape­

zoidal filter is proposed for the beamforming of temporally-broadband-bandpassed signals 

in the context of a CR system. For CR systems, in almost all the cases, the receiver is in 

the far-field region of the transmitter. Hence, the simplified ST plane-wave (PW) propa­

gation model [43] may be assumed for the received signals by 1D-UDAAs in CR systems. 

The proposed beamforming method is in two stages. In the first stage, pre-beamforming 

processing is applied at the front-end of the CR system where the outputs of 1D-UDAA 

elements are RF pre-filtered, amplified by LNAs, complex-temporal-demodulated and 

synchronously-sampled using software tunable analog and digital systems, thereby yield­

ing a complex-valued 2D ST sample sequence. Then, in the second stage of the method, 

the above 2D ST sampled sequence is processed using a complex-coefficient 2D FIR filter 

having an asymmetric trapezoidal-shaped passband. This filter is designed so that its 

2D passband closely encloses the region of support (ROS) of the spectral components 

of the desired ST PW and so that its 2D stopband encloses the ROSs of the spectra of 

the interfering ST PWs and a dominant component of the receiver noise. The proposed 

novel closed-form design method for the realization of this beamforming 2D filter achieves 

near-optimal passband and stopband characteristics while simultaneously and instanta­

neously adapting to variations of the operation-frequency band, of the bandwidth and 
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of the time varying DOAs of the signal. Further, the 2D filter is implemented using a 

parallel-connected array of complex-coefficient 1D FIR filter structures, whereby each of 

the 1D FIR filter structure can be implemented using low-cost DSP hardware having 

high throughputs. The simulation results show that the required filter coefficients may 

be evaluated within few hundredths of a second using the proposed method implemented 

on a general purpose computer. Here it is shown that, compared with previously re­

ported methods, the proposed method achieves the best overall trade-off with respect to 

distortion of the desired passband signal, stopband attenuation of interfering signals and 

instantaneous adaptations of the operating frequency band, of the bandwidth and of the 

time varying DOAs. Parts of this work have been published in [47][48][49]. 

Broadband-Bandpass Beamforming of FPA Signals using 3D FIR Frustum 

Filters 

A novel discrete-domain method is proposed as a pre-coherent-dedispersion broadband 

beamformer for pulsar timing [30] and pulsar profile studies [50] in order to significantly 

suppress RFI signals, the dominant thermal noise from the ground and the receiver noise 

in FPA signals using a single real-time ST 3D FIR frustum filter. The proposed method 

depends on the following facts about the 3D regions of support (ROSs) of the spectra 

of space-time sampled FPA signals, which are explained in detail in chapters 3 and 5. 

First, that the ROS of the spectrum of far-field dish-reflected direct down-converted 

and complex-quadrature-sampled [51] FPA signals of interest is a 3D frustum6-shaped 

volume, within the principal Nyquist cube in 3D frequency space, where the dimensions 

of the corresponding 3D cone are primarily determined by the diameter (D) and the 

focal length (F ) of the paraboloidal reflector. Also, it is shown that the ROS of the 

3D power spectral density (PSD) of the dominant component of the spatio-temporally­

sampled thermal noise from the ground occupies the volume that is just outside the 

6i.e. a section of a cone dissected by two parallel planes that are perpendicular to the axis of the 
cone. 
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surface of the frustum that corresponds to the ROS of the celestial signals of interest. 

With similar analysis, it is also shown that the ROS of the 3D spectra of off-dish RFI 

signals also occupies the same region. However for simplicity, it is assumed that the ROS 

of the 3D PSD of the spatio-temporally-sampled broadband receiver noise occupies most 

of the volume of the Nyquist cube in 3D frequency space and is almost spectrally-flat 

over the lower-mid band temporal frequency range. In practice, the exact shape of the 

3D receiver noise power-spectral density function within the Nyquist cube is determined 

by the 1D temporal-power-spectral-density function of the receiver noise and the non-

ideal inter-elemental-antenna mutual-coupling of the noise across the FPA [52][53][54]. 

Based on the above properties of the ROSs of 3D spectra, the frustum-shaped passband 

of the proposed 3D filter is designed to encompass most of the 3D ROS of the focal-plane 

spectra of far-field dish-reflected celestial signals, implying that the resulting 3D stopband 

attenuates the major component of off-dish FPA signals. Simulation results show that 

the proposed 3D FIR frustum filter-based beamformer achieves the lowest MSE compared 

to the conventional 2D spatial only beamformer and 3D conjugate-field-matching (CFM) 

beamformer. Parts of this work have been published in [55][56]. 

The Focal Region Signals of a Paraboloidal Reflector and the Corresponding 

Spectra 

The electric fields observed around the focal region in response to the reflected far-

field EM waves from an ideal circular-aperture prime-focus paraboloidal reflector and 

the corresponding spectra are analyzed using the “Huygens’ Principle Approximation” 

[57](pp. 34). Following Huygens’ Principle Approximation, it is shown that under certain 

assumptions, the focal region EM field can be modeled as a superposition of EM BB-BP 

ST PWs that are emanating from point sources on the surface of the reflector, which are 

induced in response to the incident far-field EM waves. Hence, the ROS the spectrum 

of focal electric-field is given by the composite ROSs of the spectra of EM BB-BP ST 
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PWs. In case of a circular-aperture prime-focus paraboloidal reflector, it is shown that 

ideally the ROS of the spectrum of the electric-field observed on the focal-plane is a 3D 

frustum. Also, it is shown that the shape of the frustum is determined by the diameter 

(D) and the focal-length (F ) of the particular circular-aperture prime-focus paraboloidal 

reflector. This has been verified by using the Focal Field Synthesizer (FFS), a 

computer program that is developed in order to evaluate focal region electric fields of 

a paraboloid by exploiting the extensive parallel processing capabilities of the graphics 

processing unit (GPU) of a computer for fast evaluation of computationally intensive 

numerical integrations. The accuracy of the electric fields calculated with the FFS is 

verified by the field patterns generated with GRASP9 [58], which is a EM field evaluation 

software that is widely used in analyzing reflector antennas. In this thesis, the details of 

the ROSs of the spectrum of the focal region electric fields are exploited in designing the 

beamforming 3D FIR frustum filters in chapter 5. The focal fields generated using the 

FFS is exploited in generating the ideal phase response of the 3D beamforming transfer 

function in chapter 5. Also in chapter 5, the test sequences for focal region electric fields, 

which are used in determining the performance of the broadband beamformers, are also 

synthesized by using the field patterns generated by the FFS. Parts of this work have 

been included in a manuscript for the subsequent publication in the Springer Journal on 

Electrical Engineering. The manuscript is currently under review. 

Finite-Word-Length Effects of Beamforming MD FIR Filter Implementations 

The required throughputs for the proposed real-time beamforming applications for CR 

systems and FPAs are in the range of several hundred mega-samples per second (MSPS) 

to several Giga-samples per-second (GSPS). Such high throughputs necessitate the beam-

forming MD FIR filters proposed in this thesis including those proposed in [47][55][56][59], 

to be implemented using finite-word-length DSP hardware in high speed very large 

scale integrated (VLSI) circuits [60]. However, finite-word-length DSP implementation 
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may cause errors and degrade the maximum possible signal-to-noise-and-distortion ratio 

(SNDR) achievable at the output of the proposed beamforming MD FIR filters of partic­

ular order [61]. Hence, the careful assignments of register-lengths (i.e. word-lengths) for 

input data, filter coefficients of the MD FIR filters and the outputs of digital-multipliers 

and -adders are required to minimize the degradation of the SNDR and avoid overflow 

errors [62] in the output while minimizing the hardware complexity of the beamforming 

MD FIR filters of the particular order. Note that the structure of the MD FIR filters 

determines the transfer function distortion and the quantization noise contribution at 

the final output of the beamformer. Here, the proposed beamforming MD FIR filters 

are implemented with parallel connected array of direct-form or transformed direct-form 

real-valued 1D FIR filter structures. 

With the example of the polyphase 2D FIR double-trapezoidal filter-based beam­

former7, the degradations of the SNDR at the output of the proposed MD FIR filter-

based beamformers implemented with parallel connected arrays of direct-form 1D FIR 

filters for a given configuration of DSP resources are investigated both theoretically and 

empirically. First, theoretical estimates of the SNDR at the output of the beamform­

ers are made following the accepted models of quantization noise [61][65][66] for a given 

DSP configuration in terms of the assigned world-lengths for input-data, filter coefficients 

products from multipliers and partial-sums from adders. Then, the SNDR at the output 

of the beamformers is calculated empirically through Monte Carlo simulations under 

the same DSP configurations using the MATLAB R® Fixed-Point Toolbox. It is observed 

that the theoretical estimates and simulation resulted agree well. Also, the steps for 

the implementation of the beamforming polyphase 2D FIR trapezoidal filter in a Xilinx 

Virtex-4 Sx35 ff668-10 FPGA chip [67] is also summarized in chapter 6. Parts of this 

work have been published in [68]. 

7This beamforming method has been proposed by the candidate in his MSc. thesis [63] and also 
published in [59][64]. 
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1.3 Outline of this Thesis 

The remainder of this thesis is arranged as follows. The key concepts and terminology 

used in this thesis are introduced in chapter 2. In section 2.2, the important properties 

of propagating EM waves are briefly reviewed. The spectra of 4D BB-BP ST PWs and 

the corresponding 3D/2D spatio-temporal signals observed on a plane and on a line in 

the 3D space in response to a propagating EM wave are derived in section 2.3, which 

refers to Appendix A. The concepts of the antenna response function and the antenna 

impulse response are introduced in section 2.4. A detailed spectral analysis is given in 

sections 2.5 and 2.6 for 3D/2D signal sequences observed in 2D-UDPAs and 1D-UDAAs 

in response to propagating EM BB-BP ST PWs. Also, the criteria for avoiding aliasing 

in 2D-UDPAs and 1D-UDAAs are stated there. The distortions of the spectra of signal 

sequences from finite-extent 2D-UDPAs and 1D-UDAAs are analyzed in section 2.7. 

Finally, three possible temporal sampling schemes are suggested for sampling 3D and 2D 

signal sequences from 2D-UDPAs and 1D-UDAAs. 

The electric fields observed around the focal region in response to the reflected far-

field EM waves from an ideal circular-aperture prime-focus paraboloidal reflector and the 

corresponding spectra are analyzed in chapter 3. The properties of the electric fields on 

the focal plane and the corresponding spectra are derived in section 3.2. The ROSs of 

the spectra of the focal electric-fields are deduced in subsection 3.2.1 using the Huygens’ 

Principle Approximation and the concepts that have been introduced in chapter 2. In 

subsection 3.2.2, the predicted ROSs of the spectra of the focal electric fields are compared 

with the ROSs of the spectra of simulated focal electric fields, which are evaluated using 

the FFS. The design of the GPU-accelerated FFS program is explained in section 3.3. The 

system specifications and the input parameters for the FFS are stated in subsection 3.3.1. 

Using the fundamental Maxwell’s equations and the physical optics (PO) approximation, 

the radiation integral for the focal region EM field is derived in subsection 3.3.2. In order 
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to fully exploit the extensive parallel processing capabilities of the GPU, the radiation 

integral is reorganized as a numerical summation using the Newton-Cotes algorithm in 

subsection 3.3.3. Examples of the electric-field patterns evaluated using the FFS are 

given in subsection 3.3.4. Here, the normalized focal electric-field patterns evaluated 

with the FFS are compared with the electric-field patterns evaluated with GRASP9 for 

the same set of specifications. 

In chapter 4, a novel adaptive discrete-domain method based on a complex-coefficient 

2D FIR trapezoidal filter is proposed for the beamforming of temporally-broadband­

bandpassed signals in the context of a CR system. A brief introduction of CR systems 

is given in section 4.2. In section 4.3, a detailed mathematical analysis is carried out 

analyzing the signal processing conducted in the SDR front-end of a CR systems. Pre­

viously proposed beamforming methods that can be used in enhancing the temporally­

broadband-bandpassed signals associated with CR systems are briefly reviewed in sec­

tion 4.4. The design of the beamforming complex-coefficient 2D FIR filter having an 

asymmetric trapezoidal shaped passband is explained in detail in section 4.5. A design 

example of a beamforming 2D FIR trapezoidal filter that satisfies a selected group spec­

ifications is given in subsection 4.5.3. In subsection 4.5.4, the 1D output sequence of the 

beamforming 2D FIR filter is analyzed in detail. The implementation of the beamforming 

complex-coefficient 2D FIR filter is briefly discussed in subsection 4.5.5. The proposed 

2D FIR trapezoidal filter-based beamforming method is compared with similar beam-

forming methods in section 4.6. In section 4.7, an example of an adaptive beamforming 

scenario for a receiving arm of a CR system has been simulated. 

In chapter 5, a novel discrete-domain method is proposed for the suppression of RFI 

signals, the dominant thermal noise from the ground and the receiver noise in FPA signals 

using a single real-time ST 3D FIR frustum filter. In section 5.2, the key science projects 

and the engineering specifications of the SKA are briefly introduced. A detailed analysis 
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of the celestial SOIs, the off-dish RFI and noise due to ground thermal radiation observed 

at the outputs of the FPA elemental antennas and the corresponding spectra are given 

in subsections 5.3.1, 5.3.2 and 5.3.3, respectively. The various noise sources contributing 

to the outputs of the array of LNAs and the effects of noise coupling in the FPA receiver 

are briefly reviewed in subsection 5.3.4. In subsection 5.3.5, the pre-beamforming signal 

processing architecture of a typical FPA receiver is briefly reviewed. The design of beam-

forming complex-coefficient 3D FIR frustum filter for processing broadband pulsar signals 

is explained in detailed in section 5.4. In subsection 5.4.1, the 3D transfer function for 

the ideal beamformer is derived and in subsection 5.4.2, a combined frequency-sampling 

and 3D window-based method for the design of beamforming 3D FIR frustum filters is 

proposed. A design example of a beamforming 3D FIR frustum filter is given in subsec­

tion 5.4.3. In section 5.5, the proposed method is compared with the conventional 2D 

spatial-only beamformer and the 3D conjugate-field-matching (CFM) beamformer based 

on the means-square-error (MSE) estimate between the ideal dispersed pulse and the 

outputs of each beamformer. 

In chapter 6, the finite-word-length effects of the SNDR of proposed MD FIR filter-

based broadband beamforming methods are analyzed. A brief theoretical analysis on the 

sources of quantization noise and errors due to finite-word-length representation of input-

data and the outputs of digital-multipliers and -adders and transfer function distortions 

due to finite-word-length representation of filter coefficients of MD FIR filters is given 

in section 6.2. The distortions of the transfer functions due to finite-word-length repre­

sentation of filter-coefficients of the beamforming polyphase 2D FIR double-trapezoidal 

filter, the beamforming complex-coefficient 2D FIR asymmetric-trapezoidal filter and the 

beamforming complex-coefficient 3D FIR frustum filter are studied with examples in sub­

sections 6.3.1, 6.3.2 and 6.3.3, respectively. In subsection 6.4.1, a theoretical model is 

developed for the estimation of the SNDR at the output of a beamforming MD FIR filters 
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with the example of the polyphase 2D FIR double-trapezoidal filter-based beamformer 

implemented with a parallel connected array of direct form 1D FIR filters. Following 

the proposed theoretical model, the estimates of the SNDRs are evaluated in subsec­

tion 6.4.2 for the beamforming polyphase 2D FIR double-trapezoidal filter implemented 

with different DSP configurations. For the same set of DSP configurations, the aver­

age SNDRs of the beamforming polyphase 2D FIR double-trapezoidal filters that are 

evaluated with Monte Carlo simulations are given in subsection 6.4.3. In section 6.5, 

an example of the FPGA implementation of the polyphase 2D FIR double-trapezoidal 

filter-based beamformer with a given DSP configuration is outlined. An estimate of the 

FPGA resources required for the full implementation of this beamformer for a set of 

different DSP configurations is given in Table 6.2. 

Finally, the concluding remarks of the proposed beamforming MD FIR filters, the 

focal-field synthesis program, the combined theoretical and empirical estimation method 

for the SNDR at the outputs of beamforming MD FIR filters and an overview of the 

future work on the beamforming MD FIR filters are given in chapter 7. 
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Chapter 2
 

Propagating Broadband-Bandpassed Signals and the
 

Corresponding Spectra
 

2.1 Introduction 

A detailed review of the broadband-bandpassed signals and their spectra that correspond 

to propagating far-field EM signals received by planar and linear arrays is given in this 

chapter. It has been widely accepted that the propagating signals emanating from a 

far-field point source can be considered as a 4D spatio-temporal1 (ST) plane-wave (PW) 

over a finite spatial region. This wave propagation model has been assumed in determin­

ing the criteria for optimum broadband beamformer design for wireless communications 

as explained in chapter 4 of the thesis. Also, the same model has been extended in 

chapter 3 in determining the distribution of spectral components of the focal-field of a 

paraboloidal reflector in response to far-field celestial signals. Here, emphasis is given 

to the spectral domain properties of the temporally-broadband-bandpassed (BB-BP) ST 

signals at various stages of the signal processing architecture prior to the beamforming 

operation. 

This chapter is arranged as follows. The polarization properties of the EM waves 

propagating through the 3D space in the far-field are briefly studied in section 2.2. In 

Section 2.3, the important properties of 4D ST PWs, which corresponds to far-field 

propagating EM waves and the corresponding spectra are analyzed giving prominence to 

temporally-broadband-bandpassed (BB-BP) ST PWs. Further in this section, ST signals 

observed on a plane and on a line in the 3D space in response to 4D ST BB-BP PWs 

1A Spatio-Temporal (ST) signal is a multidimensional (MD) signal that is a function of at least one 
spatial dimension in the three-dimensional (3D) space and one temporal dimension. 
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and the corresponding spectra are also studied. The reception of EM BB-BP signals
 

using an array of wideband antennas is discussed in detailed in section 2.4. The ideal 

spectra of signal sequences observed at the output of elemental antennas in 2D uniformly 

distributed planar arrays (2D-UDPAs) and 1D uniformly distributed antenna arrays (1D­

DUAAs) are evaluated in sections 2.5 and 2.6, respectively. In section 2.7, the spectral-

spreading and the spectral-leakage distortions of the spectra of finite-extent 3D/2D signal 

sequences observed at the outputs of elemental antennas of 2D-UDPAs and 1D-DUAAs 

are discussed. Here, a compensation method that can achieve an acceptable trade-off 

between spectral-spreading and spectral-leakage is also suggested. Finally, in section 2.8, 

three possible temporal sampling schemes that can be used in periodic temporal sampling 

of the 3D/2D signal sequences from 2D-UDPAs and 1D-DUAAs are briefly introduced. 

The Notation Scheme 

In this chapter, similar notational labels have been used in denoting the continuous-

domain ST signals and the corresponding sampled mixed-domain and discrete-domain 

versions at the various stages of the signal processing architecture. However, in order to 

avoid any ambiguities, a subscript-based notation scheme is adopted. According to this 

scheme, an alpha-numeric subscript, which is up to three-characters long, is appended 

to the label in order to specify the dimension, domain and the spectral-occupancy of 

the specified ST signal, respectively. The numerical subscripts “4”,“3” and “2”, which 

appear first in the subscript, denote 4D, 3D and 2D ST signals2 respectively, where the 

subscript letters “C”, “M” and “D”, which immediately follow the numerical-subscript, 

denote continuous-domain, mixed-domain and discrete-domain ST signals, respectively. 

Further, the subscript letters “B”, “P” and “F” may be added as the third character 

of the subscript in order to denote temporally-baseband, temporally-bandpassed and 

temporally-intermediate-frequency (IF) band ST signals, respectively. For example, a 2D 

2Note, for brevity, the subscript “1” is not used to denote 1D temporal signals. 
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continuous-domain temporally-baseband ST PW is denoted by pw2CB(x, t). Also, second 

order subscripts are used to denote individual ST signals in a group of ST signals. For 

example, pw2CBR (nx, nt) is used to denote the desired 2D space-time sampled temporally 

baseband ST PW in the group pw2CBq (nx, nt); q = 1, 2, .., R, .., Q. The corresponding 

frequency domain spectra of the ST signals or sequences are specified by interchanging 

lowercase letters in their labels with uppercase letters. For example, the 4D continuous-

domain Fourier transform (4D-CDFT) pair of a 4D continuous-domain plane-wave signal 

is denoted by 

4D-CDFT
pw4C(x, y, z, t) ←→ PW4C(fx, fy, fz, ft). 

However, this notation scheme may lead to longer labels and therefore, it is relaxed in 

later chapters if there is little ambiguity regarding the dimension and the domain of 

referred signals and sequences. 

2.2 Propagation of EM Waves through the 3D Space 

Consider the example shown in Figure 2.1, where a radio-frequency (RF) signal, emanat­

ing from the antenna of a modern mobile communication device, propagates towards the 

one-dimensional (1D) uniformly distributed antenna-array (UDAA) at the front-end of a 

CR system. Figure 2.1 also shows that the propagating wavefronts of the RF signal take 

a spherical shape in the near field of the transmitting antenna. However, as these spher­

ical wavefronts propagate away from the transmitting antenna toward the far field, the 

wavefronts spread in such a manner that those can be approximated by planar wavefronts 

over a finite area. In case of EM signals emanating from celestial sources, which are at 

distances ranging from several millions of kilometers to several hundreds of light-years 

from the surface of the earth, this planar-wavefront approximation applies even better. 

Hence, in the far field, propagating EM waves in 3D space (x, y, z) ∈ R3 can be closely 

approximated by vector-valued 4D continuous-domain ST PWs over a finite area [69]. 
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Figure 2.1: A RF signal originating from a modern mobile communication device propa­
gates through the 3D space and is received by a 1D uniformly distributed antenna-array 
(1D-UDAA) of a CR System. 

A detailed analysis on the transmission antennas and EM wave propagation according 

to the fundamental Maxwell’s equations is out of the scope of this thesis. Nevertheless, 

a brief review of the “polarization” of propagating EM waves is given in the following 

because it is important in analyzing the antenna arrays for receiving EM waves. 

2.2.1 Polarization of Propagating EM Waves: A Review 

Propagating EM ST PWs are transversal waves3 that consist of alternately oscillating 

electric and magnetic fields [70]. Hence, the electric-field component epw4C(x, y, z, t), and 

the magnetic-field component mpw4C(x, y, z, t), of an ideal continuous-domain vector-

valued 4D ST PW empw4C(x, y, z, t) are related such that 

  
epw4C(x, y, z, t) = Z mpw4C(x, y, z, t) × p̂ , (2.1) 

mpw4C(x, y, z, t) = Z−1
 
p̂ × mpw4C(x, y, z, t)

 
, (2.2) 

3i.e. The direction of wave propagation is perpendicular to both electric and magnetic fields. 
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where Z is the impedance of the propagation medium and p̂ is the unit vector along 

the direction of propagation (DOP) of the vector-valued 4D ST PW [70](pp. 20). Note 

that both the electric-field component epw4C(x, y, z, t) and the magnetic-field component 

mpw4C(x, y, z, t) individually contain all the temporal information carried by the 4D ST 

PW empw4C(x, y, z, t). According to [70](pp. 21-23), any EM ST PW empw4C(x, y, z, t), 

can be decomposed into two EM ST PWs empw4C1 
(x, y, z, t) and empw4C2 

(x, y, z, t) 

such that the corresponding electric-field components are given by 

pol	 pol epw4C(x, y, z, t) = Ê1 pw4C1 (x, y, z, t) + Ê2 pw4C2 (x, y, z, t), (2.3) 

pol pol where the unit vectors Ê1 , Ê2 and p̂ are orthogonal to each other. That is the vector 

Epol Epol Epol Epol dot product between any two of the three is zero; ˆ • ˆ = ˆ • p̂ = ˆ • p̂ = 0. 1 2 1 2 

Note that pw4C1 (x, y, z, t) and pw4C2 (x, y, z, t) are ideal continuous-domain scalar-valued 

4D ST PWs. The electric-field of empw4C1 
(x, y, z, t) is confined to a plane along the 

Epol vectors p̂ and ˆ1	 and the electric-field of empw4C2 
(x, y, z, t) is confined to a plane along 

Epol the vectors p̂ and	 ̂ 2 such that these two planes are orthogonal to each other. 

If the scalar-valued 4D ST PWs pw4C1 (x, y, z, t) and pw4C2 (x, y, z, t) in (2.3) are uncor­

related then the vector-valued 4D ST PW empw4C(x, y, z, t) is a completely unpolarized 

EM ST PW. Such completely unpolarized EM ST PWs are commonly observed among 

the celestial EM radiation received on the surface of the earth [70](ch. 12). Nevertheless, 

if pw4C1 (x, y, z, t) and pw4C2 (x, y, z, t) are partially correlated then empw4C(x, y, z, t) is 

a partially polarized EM ST PW, as observed in EM radiation from the Sun in radio-

and microwave- bands [70](ch. 12). However, if pw4C1 (x, y, z, t) = β pw4C2 (x, y, z, t), 

where β is a complex-valued constant, then empw4C(x, y, z, t) is a completely polarized 

or fully polarized EM ST PW. Completely polarized EM ST PWs are commonly ob­

served among signals transmitted from wireless communication devices and in weather 

radar [70](ch. 12). 

The type of polarization of a completely polarized EM ST PW is specified by the 
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magnitude and phase of the complex constant β that in turn specifies the orientation 

of the electric field vector on a plane, which is perpendicular to the DOP unit-vector 

p [70]. For the general case of β  = 0, the electric-field vector of the fully polarized 

EM ST PW empw4C(x, y, z, t) traces a perfect-ellipse on the perpendicular plane thus, 

such EM ST PWs are called elliptical-polarized EM ST PWs. However, for the special 

case where |β| = 1 and ∠β = ±π/2, the electric-field vector of the fully polarized EM 

ST PW empw4C(x, y, z, t) traces a perfect circle on the perpendicular plane. Note that 

∠β = +π/2 corresponds to right-circular polarization and ∠β = −π/2 corresponds to left-

circular polarization, respectively. Hence, such EM ST PWs are called circular-polarized 

EM ST PWs. For another special case where ∠β = 0◦ or ∠β = 180◦, the electric-field 

vector of the fully polarized EM ST PW empw4C(x, y, z, t) traces a straight-line on the 

perpendicular-plane thus, the electric-field is confined to a plane along the DOP. Such 

EM ST PWs are called linear-polarized EM ST PWs. According to the above mentioned 

property of linear-polarized EM ST PWs, each of the two decomposed EM ST PWs 

empw4C1 
(x, y, z, t) and empw4C2 

(x, y, z, t), whose electric-field component is specified 

in (2.3), is a linear-polarized EM ST PW. Therefore, any EM ST PW can be decomposed 

into two linear-polarized EM ST PWs, where the corresponding electric-field vectors are 

confined to two orthogonal planes along the DOP [70](ch. 12). 

According to (2.3), almost all the information carried by the vector-valued 4D ST PW 

empw4C1 
(x, y, z, t) are contained jointly in the scalar-valued 4D ST PWs pw4C(x, y, z, t) 

and pw4C2 (x, y, z, t). Therefore, the ST-domain and spectral-domain properties of the 

vector-valued 4D ST PWs can be deduced from the ST-domain and spectral-domain 

properties of the scalar-valued 4D ST PWs. For simplicity, in Section 2.3, the derivation 

of the MD CDFTs is limited to scalar-valued MD ST PWs. The spectra of vector-valued 

MD ST PWs are then deduced according to the linear relationship given in (2.3) with 

the substitution of respective MD-CDFTs of scalar-valued MD ST PWs. 
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2.3	 Analysis of Spatio-Temporal Planes Waves and the Corresponding 

Spectra 

An ideal scalar-valued 4D continuous-domain ST PW pw4C(x, y, z, t), shown in Figure 

2.2, may be expressed in the form 

pw4C(x, y, z, t) = wC(t + c −1(dxx + dyy + dzz)),	 (2.4) 

where d̂ = [dx dy dz] is the unit vector specifying the direction of arrival (DOA)4 in the 

3D space (x, y, z) ∈ R3 , c is the constant speed of wave propagation and wC(τ ); ∀ τ = 

t+c−1(dxx+dyy+dzz) ∈ R is the 1D temporal wavefront function in the DOA [42](pp. 289­

293). The dimensions Dim[x] = Dim[y] = Dim[z] = m, Dim[t] = s and Dim[c] = ms−1 . 

Note that the DOA unit vector d̂ can be expressed in terms of the inclination-angle θ, 

and the azimuth-angle φ of the point source of the signal, such that 

d̂ = [dx dy dz] = [sin(θ) cos(φ) sin(θ) sin(φ) cos(θ)], (2.5) 

where θ ∈ [0◦ , 180◦] and where φ ∈ [0◦ , 360◦]. Further, 

d2 
x + d2 

y + d2 
z = 1,	 (2.6) 

according to the definition of the DOA unit vector d̂. 

A 4D ST PW can be categorized according to the spectral content of the asso­

ciated 1D temporal wavefront function wC(t). For example, a 4D temporally base­

band ST PW pw4CB(x, y, z, t) is associated with a real-valued 1D temporally baseband 

wavefront function wCB(t) of temporal bandwidth BW . Here, WCB(ft) = 0; for all 

1D-CDFT
ft ∈/ (−BW, BW ), where the 1D-CDFT pair wCB(t) ←→ WCB(ft) [71] (pp. 41). 

A temporally-bandpassed wavefront function wCP(t), having a bandwidth of BW and 

center-frequency fC may be expressed as 

  
j2πfCtwCP(t) = Re wCB(t)e ,	 (2.7) 

4The DOA unit vector is related to the DOP unit vector such that d̂ = −p̂. 
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Figure 2.2: An ideal 4D ST PW pw4C(x, y, z, t) in 3D space (x, y, z) ∈ R3 having the 
DOA d̂ = [dx dy dz]. 

in terms of wCB(t), a temporally baseband wavefront function of bandwidth 0.5BW where 

fC ≥ 0.5BW > 0 [71] (pp. 196-199). According to [71] (pp. 198), the 1D-CDFT of wCB(t) 

can be expressed by 

WCP(ft) = 
1 

WCB(ft − fC) + W ∗ (−ft − fC) , (2.8)CB2 

where “∗” denotes complex conjugation operation. According to (2.8), WCP(ft) = 0; for 

all ft /∈ {(−fC − 0.5BW, −fC + 0.5BW ) ∪ (fC − 0.5BW, fC + 0.5BW )}. 

The relative spread of the temporal bandwidth of a temporally-bandpassed wavefront 

function wCP(t) is characterized by the bandwidth spread factor K, defined by 

K 6 
BW 

, (2.9)
2fmax 

where fmax = fC +0.5BW [59]. In this thesis, temporally-bandpassed wavefront functions 

having bandwidth spread factors higher than 0.125 are defined as temporally-broadband­

bandpassed (BB-BP) wavefront functions and the associated 4D ST PWs are known as 4D 

BB-BP ST PWs. However, the remainder of temporally-bandpassed wavefront functions 



  

  

23 

(i.e. K < 0.125) are defined as temporally-narrowband-bandpassed (NB-BP) wavefront
 

functions and the associated 4D ST PWs are known as 4D NB-BP ST PWs. Here, the 

emphasis is given to the analyses of propagating BB-BP ST PWs because in this thesis, 

the main objectives are the design and implementation of MD filters for beamforming of 

propagating BB-BP signals. 

2.3.1 4D BB-BP ST PWs and the Corresponding Spectra 

In order to analyze the frequency domain properties of the 4D continuous-domain BB-BP 

ST PW, its 4D-CDFT is evaluated. The 4D-CDFT of the 4D continuous-domain BB-BP 

ST PW pw4CP(x, y, z, t) is defined by 

+∞++++ 
−j2πfxx −j2πfy y −j2πfz z −j2πfttPW4CP(fx, fy, fz, ft) 6 pw4CP(x, y, z, t) e e e e dx dy dz dt, 

x,y,z,t=−∞ 

(2.10) 

where (fx, fy, fz, ft) ∈ R4 [41] and the dimensions Dim[fx] = Dim[fy] = Dim[fz] = m−1 

and Dim[ft] = s−1 . Substituting for pw4CP(x, y, z, t) in (2.10) with the equivalent tem­

porally BB-BP wavefront function in (2.4) yields, 

PW4CP(fx, fy, fz, ft) = 

+∞++++ 
wCP t+c −1(dxx+dyy+dzz) e −j2π(fxx+fy y+fz z+ftt) dx dy dz dt. (2.11) 

x,y,z,t=−∞ 

With a novel approach, the 4D CDFT (2.11) has been evaluated in detail in Appendix A.1. 

As shown there 

PW4CP(fx, fy, fz, ft) = WCP ft ·δ(c −1dxft − fx)·δ(c −1dyft −fy)·δ(c −1dzft −fz), (2.12) 

where WCP(ft) is the 1D-CDFT of wCP(t) and where δ(ft) is the 1D continuous-domain 

unit impulse function. 

For the ease of comparison among ST PWs propagating at different speeds, a scaled 

temporal-frequency space is defined such that fct 6 c−1ft, where the dimensions Dim[fx] 
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= Dim[fy] = Dim[fz] = Dim[fct] = m−1 . Now the 4D spectrum of a propagating 4D 

BB-BP ST PW is rewritten as 

PW4CP(fx, fy, fz, fct) = WCP cfct ·δ(dxfct − fx)·δ(dyfct −fy)·δ(dzfct −fz). (2.13) 

Following (2.8), (2.13) can also be expressed in terms of the equivalent 1D baseband 

spectrum WCB(cfct), such as 

PW4CP(fx, fy, fz, fct) =
 

1
 {WCB(cfct − fC) + W ∗ (−cfct − fC)}·δ(dxfct − fx)·δ(dyfct −fy)·δ(dzfct −fz).CB2

(2.14) 

The distribution of the spectral components of signals of interest is an important 

property in beamforming. The region in the respective domain where a multidimensional-

function is specified to be non-zero is defined as the region of support (ROS) of that 

function5 [41](ch. 1-2). Hence according to (2.13) and (2.14), the ROS of the spectrum 

PW4CP(fx, fy, fz, fct) is given by the 4D hyper-lines of intersection among the three 4D 

hyper-planes dxfct−fx = 0 and dyfct−fy = 0 and dzfct−fz = 0; in (fx, fy, fz, fct) ∈ R4 such 

that fct ∈ {(−c−1fC − 0.5c−1BW, −c−1fC + 0.5c−1BW ) ∪ (−c−1fC − 0.5c−1BW, c−1fC + 

0.5c−1BW )} where WCP(cfct) = 0. 

The 4D parametric equations of the 4D hyper-line of intersection corresponding to 

the three 4D hyper-planes dxfct− fx = 0 and dyfct− fy = 0 and dzfct− fz = 0 that passes 

through the origin O of the 4D frequency-space (fx, fy, fz, fct) ∈ R4 is given by 

4DHLineROS = dxfct, dyfct, dzfct, fct , (2.15) 

in terms of the Cartesian components [dx dy dz] of the DOA vector d̂ and 

4DHLineROS = sin(θ) cos(φ)fct, sin(θ) sin(φ)fct, cos(θ)fct, fct , (2.16) 

5Either in spatio-temporal or spectral domains. 
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in terms of the inclination and azimuth angles θ and φ. As θ varies in the range [0◦ , 180◦] 

and φ varies in the range [0◦ , 360◦], the 4D volume swept by the 4D hyper-line given 

in (2.16) represents a 4D double right-spherical hyper-cone [72]. Similar to a 3D double 

right-circular cone, a 4D double right-spherical hyper-cone consisted of two unbounded 

nappes, where the upper-nappe corresponds with the positive frequencies of fct, and the 

lower-nappe corresponds with the negative frequencies of fct [72]. Further, the projec­

tion of a 4D double right-spherical hyper-cone onto the 4D hyper-plane fct = 0, is a 3D 

sphere where the projections onto the 4D hyper-planes fx = 0, fy = 0 and fz = 0 are 

3D double right-circular cones [72]. Therefore, the range of all ROSs of the spectra of all 

propagating 4D BB-BP ST PWs are given by a 4D double right-spherical hyper-frustum6 , 

where upper-frustum corresponds to fct ∈ {(−c−1fC − 0.5c−1BW, −c−1fC +0.5c−1BW )} 

and lower-frustum corresponds to fct ∈ {(c−1fC − 0.5c−1BW, c−1fC + 0.5c−1BW )}, re­

spectively. It can be deduced that the projection of a 4D double right-spherical hyper-

frustum onto the 4D hyper-plane fct = 0, is a 3D double sphere-shell of inner-radius 

(c−1fC − 0.5c−1BW ) and outer-radius (c−1fC + 0.5c−1BW ), where the projections onto 

the 4D hyper-planes fx = 0, fy = 0 and fz = 0 are 3D double right-circular frustas (see 

Figure 2.5). 

The 4D-CDFT of EM 4D BB-BP ST PW 

Following (2.3), the 4D CDFT EPW4CP(fx, fy, fz, fct) of the vector-valued electric-field 

component epw4CP(x, y, z, t) associated with EM 4D BB-BP ST PW empw4CP(x, y, z, t) 

can be defined as 

pol pol EPW4CP(fx, fy, fz, fct) 6 Ê1 PW4CP1 (fx, fy, fz, fct) + Ê2 PW4CP2 (fx, fy, fz, fct), (2.17) 

where the 4D-CDFT pairs of the scalar-valued 4D BB-BP ST PWs are denoted by 

4D-CDFT
pw4CP1 (x, y, z, t) ←→ PW4CP1 (fx, fy, fz, fct) 

6A frustum is the volume that corresponds to a section of cone between two parallel slicing planes 
[73]. 
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and
 

4D-CDFT
pw4CP2 (x, y, z, t) ←→ PW4CP2 (fx, fy, fz, fct). 

pol pol Because the unit vectors Ê1 and Ê2 are orthogonal to each other, the spectral com­

ponents of PW4CP1 (fx, fy, fz, fct) and PW4CP2 (fx, fy, fz, fct) can be resolved separately 

even though their ROSs are coincided in 4D frequency-space (fx, fy, fz, fct) ∈ R4 . 

In the next two subsections, ST signals observed on a plane and on a line in the 3D 

space in response to propagating 4D BB-BP ST PWs are analyzed giving prominence to 

their spectral domain properties. This analysis is a precursor for analyzing EM waves 

received by 2D-UDPAs and 1D-UDAAs in the following sections and chapters. 

2.3.2 4D BB-BP ST PWs Observed on a Plane in the 3D Space and the Corresponding 

Spectra 

Without the loss of generality, assume a propagating 4D BB-BP ST PW is observed on 

the infinite plane z = 0 in the 3D space, as shown in Figure 2.3. Hence, the ST signal 

on the plane may be expressed by 

Plane3CP(x, y, t) = pw4CP(x, y, 0, t) = wCP(t + c −1(dxx + dyy)), (2.18) 

that has the form of 3D continuous-domain ST PW according to the definition of the 4D 

continuous-domain ST PW given in (2.4). Hence, Plane3CP(x, y, t) is redefined as a 3D 

continuous-domain BB-BP ST PW 

pw3CP(x, y, t) = Plane3CP(x, y, t) = wCP(t + c −1(dxx + dyy)). (2.19) 

Note that pw3CP(x, y, t) has no information of the exact value of the dz component of the 

DOA d̂ of the original pw4CP(x, y, z, t). Therefore, the 3D BB-BP ST PWs pw3CPO (x, y, t) 

and pw3CPI (x, y, t) that correspond to the two propagating 4D BB-BP PWs; the first 

pw4CPO (x, y, z, t), having the DOA d̂O = [dx dy dz], and the second pw4CPI (x, y, z, t), 

having the DOA d̂I = [dx dy − dz], are indistinguishable on the basis of their DOAs 
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Figure 2.3: A ST PW pw4C(x, y, z, t) having the DOA d̂ = [dx dy dz] is observed on the 
infinite extent plane z = 0 in 3D space. 

if those are observed on the plane z = 0 in 3D space. Note that the unit vector d̂I is 

the mirror-image of d̂O on the plane z = 0 in 3D space. In terms of the inclination 

angles and azimuth angles, two ST PWs observed on the plane z = 0 in 3D space 

are indistinguishable if and only if the inclination angles for their DOAs are related 

such that θO = θ and θI = 180◦ − θ, for any azimuth angle φ. This implies that 

by observing propagating 4D BB-BP ST PWs on the plane z = 0 in 3D space, is it 

impossible to determine whether the signals are arriving from the upper-hemisphere; 

such that θ ∈ [0◦ , 90◦] or the signals are arriving from the lower-hemisphere; such that 

θ ∈ [90◦ , 180◦]. However, for most applications this indistinguishability is of little concern 

because in such applications the interest is limited to the signals arriving from a single 
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hemisphere for θ ∈ [0◦ , 90◦]. For example, dense aperture arrays (DAAs) are designed in 

order to receive EM radiation from celestial sources distributed over the upper-hemisphere 

above the surface of the earth while suppressing the EM signals emanating from the 

surface of the earth [74]. 

Here, the 3D-CDFT of the 3D continuous-domain BB-BP ST PW pw3CP(x, y, t) is 

defined7 by 

+∞+++ 
−j2πfxx −j2πfy y −j2πcfcttPW3CP(fx, fy, fct) 6 pw3CP(x, y, t) e e e dx dy dt, (2.20) 

x,y,t=−∞ 

where (fx, fy, fct) ∈ R3 [41] and the dimensions Dim[fx] = Dim[fy] = Dim[fct] = m−1 . 

Substituting for pw3CP(x, y, t) in (2.20) with (2.19) yields 

+∞+++ 
−j2πfxx −j2πfy y −j2πcfcttPW3CP(fx, fy, fct) = wCP(t + c −1(dxx + dyy)) e e e dx dy dt. 

x,y,t=−∞ 

(2.21) 

As evaluated in Appendix A.2 

PW3CP(fx, fy, fct) = WCP cfct ·δ(dxfct − fx)·δ(dyfct −fy), (2.22) 

in terms of 1D BB-BP spectral function WCP(cfct) and 

1 
PW3CP(fx, fy, fct) = {WCB(cfct−fC)+W ∗ (−cfct−fC)}δ(dxfct−fx)δ(dyfct−fy), (2.23)CB2

in terms of 1D baseband spectral function WCB(cfct). Note that the projection of the 4D 

spectrum PW4CP(fx, fy, fz, fct) of the original 4D BB-BP ST PW pw4CP(x, y, z, t), which 

is given in (2.13), onto the 4D hyper-plane fz = 0 in (fx, fy, fz, fct) ∈ R4, such that 

++∞ 

Proj3CP(fx, fy, fct) = WCP cfct ·δ(dxfct − fx)·δ(dyfct −fy)·δ(dzfct −fz) dfz
 

fz =−∞
 

= WCP cfct ·δ(dxfct − fx)·δ(dyfct −fy), (2.24) 

7Note that ft is now substituted with cfct. 
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yields the same result given in (2.22) for the corresponding 3D-CDFT PW3CP(fx, fy, fct). 

According to 2.22 and 2.23, the ROS of PW3CP(fx, fy, fct) is given by the two line 

segments PQ and P 'Q' that are on the line of intersection between the two planes dxfct− 

fx = 0 and dyfct−fy = 0 in 3D frequency-space (fx, fy, fct) ∈ R3, as shown in Figure 2.4. 

Note that the line segment PQ corresponds to the positive temporal frequencies fct ∈ 

{(c−1fC −0.5c−1BW, c−1fC +0.5c−1BW )} and P 'Q' corresponds to the negative temporal 

frequencies fct ∈ {(−c−1fC − 0.5c−1BW, −c−1fC + 0.5c−1BW )}, respectively. The 3D 

parametric equations of the line of intersection between the two planes dxfct− fx = 0 and 

dyfct −fy = 0 that passes through the origin O of the 3D frequency-space (fx, fy, fct) ∈ 

R3 are given by 

3DLineROS = dxfct, dyfct, fct , (2.25) 

in terms of the Cartesian components [dx dy dz] of the DOA vector d̂ and 

3DLineROS = sin(θ) cos(φ)fct, sin(θ) sin(φ)fct, fct , (2.26) 

in terms of the inclination and azimuth angles θ and φ. As shown in Figure 2.4, the angle 

between the fct-axis and the line of intersection is α = tan−1(sin(θ)) where as the angle 

between fx-axis and the projection of the line of intersection on to the fct = 0 plane is φ. 

As θ varies in the range [0◦ , 90◦] and φ varies in the range [0◦ , 360◦], the 3D volume 

swept by the line given in (2.26) represents a 3D double right-circular cone having half-

cone angle αmax = 45◦ in (fx, fy, fct) ∈ R3 , as illustrated in Figure 2.5. The same 

volume is swept as θ varies in the range [90◦ , 180◦] and φ varies in the range [0◦ , 360◦]. 

Therefore, the range of ROSs of the spectra of all 3D BB-BP ST PWs observed on 

the plane z = 0 in response to propagating 4D BB-BP ST PWs all possible DOAs, is 

given by the two 3D right-circular frustum regions shown in Figure 2.5 that correspond 

to temporal frequencies fct ∈ {(−c−1fC − 0.5c−1BW, −c−1fC + 0.5c−1BW ) ∪ (c−1fC − 

0.5c−1BW, c−1fC + 0.5c−1BW )} in (fx, fy, fct) ∈ R3 . This 3D double frustum-shaped 

range of ROSs of 3D BB-BP ST PWs corresponds to the projection of the 4D double 
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Figure 2.4: The ROS, PQ and P ' Q ' , of the spectrum PW3CP(fx, fy, fct) is on the line of 
intersection between the two planes dxfct − fx = 0 and dyfct −fy = 0. 

hyper-frustum-shaped range of ROSs of propagating 4D BB-BP ST PWs on to the 4D 

frequency hyper-plane fz = 0, as mentioned in Section 2.3.1. 

Also, the indistinguishability of propagating 4D BB-BP ST PWs observed on a plane 

in 3D space can be explained using the ROSs of the spectra of PW3CP(fx, fy, fct). Ac­

cording to (2.25) and (2.26), the ROSs of PW3CPO (fx, fy, fct) and PW3CPI (fx, fy, fct), 

which are corresponding to DOAs 

d̂O = [dx dy dz] = [sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)], 

and 

d̂I = [dx dy − dz] = [sin(θ) cos(φ), sin(θ) sin(φ), − cos(θ)], 8 

coincide with each other. Hence, it is impossible to distinguish between the 4D BB-BP 

8Where sin(180◦ − θ) = sin(θ) and cos(180◦ − θ) = − cos(θ). 
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Figure 2.5: The 3D double right-circular frustum volume is the range of ROSs of the 
spectra PW3CP(fx, fy, fct) of all possible 4D BB-BP ST PWs observed on the plane 
z = 0 in 3D space. 

ST PWs pw4CPO (x, y, z, t) and pw4CPI (x, y, z, t) in terms of their DOAs by observing the 

ROSs of the spectra of observed 3D BB-BP ST PWs pw3CPO (x, y, t) and pw3CPI (x, y, t) 

on the plane z = 0 in 3D space. 

As deduced in (2.17), the spectrum EPW3CP(fx, fy, fct) of the electric-field compo­

nent epw3CP(x, y, t) observed on the plane z = 0 in 3D space in response to 4D EM 

BB-BP ST PW empw4CP(x, y, z, t) can be expressed as 

Epol Epol EPW3CP(fx, fy, fct) = ˆ1 PW3CP1 (fx, fy, fct) + ˆ2 PW3CP2 (fx, fy, fct), (2.27) 

where the 3D-CDFT pairs of the scalar-valued 3D BB-BP ST PWs are denoted by 

3D-CDFT 3D-CDFT
pw3CP1 (x, y, t) ←→ PW3CP1 (fx, fy, fct) and pw3C2 (x, y, t) ←→ PW3CP2 (fx, fy, fct). 

Note that the spectral components of PW3CP1 (fx, fy, ft) and PW3CP2 (fx, fy, ft) can be re­

solved separately even though their ROSs are coincided in 3D frequency-space (fx, fy, fct) ∈ 

Epol Epol R3, because the unit vectors ˆ1 and ˆ2 are orthogonal to each other. 
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2.3.3 4D BB-BP ST PWs Observed on a Line in 3D Space and the Corresponding 

Spectra 

Without the loss of generality assume a propagating 4D BB-BP ST PW is observed on 

the infinite line in 3D space along the x-axis (i.e. the line of intersection between the two 

planes y = 0 and z = 0 in 3D space), as shown in Figure 2.6. Hence, the signal on the 

line may be expressed by 

Line2CP(x, t) = pw4CP(x, 0, 0, t) = wCP(t + c −1dxx), (2.28) 

that has the form of 2D continuous-domain ST PW according to the definition of the 

4D continuous-domain ST PW given in (2.4). Hence, Line2CP(x, t) is redefined as a 2D 

continuous-domain BB-BP ST PW 

pw2CP(x, t) = Line2CP(x, t) = wCP(t + c −1dxx). (2.29) 

Note that pw2CP(x, t) has no information of exact values of the dy and dz components of 

the DOA d̂ of the original pw4CP(x, y, z, t). Therefore, the 2D BB-BP ST PWs pw2CP(x, t) 

that correspond to propagating 4D BB-BP PWs pw4CP(x, y, z, t), which correspond to the 

DOAs d̂C = [dxC dy dz]; where dxC is a constant such that |dxC | ≤ 1, and where dy and 

dz varies such that d2 + d2 = 1 − d2 , are indistinguishable on the basis of their DOAs y z xC 

if those are observed on the line along the x-axis. In other words, any 4D BB-BP ST 

PW observed on the line along the x-axis is identical in terms of its DOAs if and only if 

the inclination angle ϕ (see Figure 2.6 (right)) between the x-axis and the DOA vector 

remains a constant for all propagating 4D BB-BP PWs. However, for some applications 

this indistinguishability is of little concern because in such applications the interest is 

limited to propagating 4D BB-BP ST PWs arriving along the plane z = 0 in 3D space 

(i.e. θ = 90◦) and limited azimuth angular range (i.e. φ ∈ [0◦ , 180◦]). For example, 1D 

uniformly distributed antenna arrays (1D-UDAAs) are designed to receive EM radiation 

emitted by wireless subscribers spread across a certain sector (e.g. φ ∈ [30◦ , 150◦]) of the 
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Figure 2.6: A 4D ST PW pw4C(x, y, z, t) is observed on the infinitely-long continuous 
line along the x axis (left), reduces to a 2D ST PW pw2C(x, t) (right). 

coverage area on the surface of the earth (e.g. θ ≈ 90◦) while minimizing the response 

from signals arriving in other directions [24]. In practice, several such 1D-UDAAs are 

used to cover all the sectors of the coverage area [24]. 

The 2D-CDFT of the 2D continuous-domain BB-BP ST PW pw2CP(x, t) is defined9 

by 
+∞++ 

−j2πfxx −j2πcfcttPW2CP(fx, fct) 6 pw2CP(x, t) e e dx dt, (2.30) 

x,t=−∞ 

where (fx, fct) ∈ R2 [41]. Substituting for pw2CP(x, y, t) in (2.30) with (2.29) yields 

+∞++ 
−j2πfxx −j2πcfcttPW2CP(fx, fct) = wCP(t + c −1dxx) e e dx dt, (2.31) 

x,t=−∞ 

As evaluated in Appendix A.3 

PW2CP(fx, fct) = WCP cfct ·δ(dxfct − fx), (2.32) 

−19Note that ft is substituted with cfct and the dimensions Dim[fx] = Dim[fct] = m . 
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in terms of 1D BB-BP spectral function WCP(cfct) and 

1 
PW2CP(fx, fy, fct) = {WCB(cfct − fC) + W ∗ (−cfct − fC)}·δ(dx ), (2.33)CB fct − fx

2

in terms of 1D baseband spectral function WCB(cfct). Note that two successive pro­

jections of the 4D spectrum PW4CP(fx, fy, fz, fct) of the original 4D BB-BP ST PW 

pw4CP(x, y, z, t), which is given in (2.13), first onto the plane fz = 0 and then onto the 

plane fz = 0 in (fx, fy, fz, fct) ∈ R4, such that 

Proj2CP(fx, fct) 

++∞ ++∞ 

= WCP cfct ·δ(dxfct − fx)·δ(dyfct −fy)·δ(dzfct −fz)dfz dfy 

fy =−∞ fz =−∞ 

= WCP cfct ·δ(dxfct − fx), (2.34) 

yields the same result given in (2.32) for the corresponding 2D-CDFT PW2CP(fx, fct). 

According to (2.32) and (2.33), the ROS of PW2CP(fx, fct) is given by the line seg­

ments RS and R ' S ' on the straight-line dxfct−fx = 0 in the 2D frequency-space (fx, fct) ∈ 

R2, as show in Figure 2.7. Note that the line segment RS corresponds to the positive tem­

poral frequencies fct ∈ {(c−1fC − 0.5c−1BW, c−1fC + 0.5c−1BW )} and R ' S ' corresponds 

to the negative temporal frequencies fct ∈ {(−c−1fC − 0.5c−1BW, −c−1fC +0.5c−1BW )}, 

respectively. The 2D parametric equations of the line in 3D space corresponding to the 

ROS of PW2C(fx, fct), which passes through the origin O of the 2D frequency space 

(fx, fct) ∈ R2 are given by 

2DLineROS = dxfct, fct , (2.35) 

in terms of the Cartesian components [dx dy dz] of the DOA vector d̂ and 

2DLineROS = sin(θ) cos(φ)fct, fct , (2.36) 

in terms of the inclination and azimuth angles θ and φ. 
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Figure 2.7: The ROS RS (positive frequencies) and R ' S ' (negative frequencies) of the 
spectrum PW2CP(fx, fct) and the double isosceles-trapezoidal-shaped area corresponding 
to the range of ROSs of the spectra of all possible 2D ST PWs observed on the line along 
x-axis in 3D space. 

As θ varies in the range [0◦ , 180◦] and φ varies in the range [0◦ , 360◦], the 2D double 

fan-shaped area 121 ' 2 ' having half-apex angle αmax = 45◦ in the 2D frequency-space 

(fx, fct) ∈ R2, as illustrated in Figure 2.7, is swept by the line given in (2.36) multiple 

times. Hence, the range of ROSs of the spectra of all 2D BB-BP ST PWs observed on 

the line along the x-axis in response to propagating 4D BB-BP ST PWs of all possible 

DOAs, is given by the 2D double isosceles-trapezoidal-shaped shaded area 1234 ∪ 1 ' 2 ' 3 ' 4 ' 

shown in Figure 2.7. Note that the area 1234 ∪ 1 ' 2 ' 3 ' 4 ' corresponds to the projection 

of 3D double frustum-shaped volume shown in Figure 2.5 onto the 3D frequency plane 

fy = 0. 

Also, the indistinguishability of some propagating 4D BB-BP ST PWs observed on a 

line can be explained using the ROSs of the spectra PW2CP(fx, fct). According to (2.35), 

the ROS of any PW2CP(fx, fct), which is associated with a DOA d̂C = [dxC dy dz]; where 

dxC is a constant such that |dxC | ≤ 1 and dy and dz varies such that dy 
2 + dz 

2 = 1 − dx
2 
C 
, is 
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on the 2D parametric-line dxC fct, fct . Hence, it is impossible to distinguish 4D BB-BP 

ST PWs pw4CP(x, y, z, t) in terms of the associated DOAs by observing the ROSs of the 

spectra of 2D BB-BP ST PWs pw2CP(x, y, t) observed along the x-axis if the Cartesian 

components of the DOAs are related such that d2 + d2 = 1 − d2 , where the constant y z xC 

|dxC | ≤ 1. 

As deduced in (2.17) and (2.27), the spectrum EPW2CP(fx, fct) of the electric-field 

component epw2CP(x, t) observed on the line along the x-axis in 3D space in response 

to 4D EM BB-BP ST PW empw4CP(x, y, z, t) can be expressed as 

pol pol EPW2CP(fx, fct) = Ê1 PW2CP1 (fx, fct) + Ê2 PW2CP2 (fx, fct). (2.37) 

where the 2D-CDFT pairs of the scalar-valued 2D BB-BP ST PWs are denoted by 

2D-CDFT 2D-CDFT
pw2CP1 (x, t) ←→ PW2CP1 (fx, fct) and pw2C2 (x, t) ←→ PW2CP2 (fx, fct). Here also, 

the spectral components of PW2CP1 (fx, ft) and PW2CP2 (fx, ft) can be resolved separately 

even though their ROSs are coincided in 2D frequency-space (fx, fct) ∈ R2, because the 

Epol Epol unit vectors ˆ1 and ˆ2 are orthogonal to each other. 

2.4 EM BB-BP Signals Received by Arrays of Antennas 

In array processing applications considered here, the propagating EM waves are received 

by arrays of antennas; in particular, 2D uniformly distributed planar antenna arrays (2D­

UDPAs) (e.g. FPAs) and 1D uniformly distributed antenna arrays (1D-UDAAs). The 

signals induced in the broadband elemental antennas in such arrays are subsequently 

processed in order to extract the desired information carried by the propagating EM 

waves. In the following, a detailed analysis is given on the reception of EM ST PWs by 

a broadband elemental antenna in an uniformly distributed array. 

A typical scenario of a 2D-UDPA used in receiving EM ST PWs is shown in Figure 2.8. 

Here, it is assumed that the propagating EM 4D BB-BP ST PW empw4DP(x, y, z, t) 

emanating from a point source in the sky at the inclination angle θ0 and azimuth angle 
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Figure 2.8: A propagating EM ST PW is received by a 2D-UDPA consisted of broad­
band elemental antennas. The signal a[nx0, ny0](t) is observed at the output of [nx0, ny0]

th 

element in response to the propagating EM 4D ST PW empw4CP(x, y, z, t) emanating 
from a point source at (θ0, φ0) on the sky. 

φ0 is received on the 2D planar array on the plane z = 0 in 3D space. Also, the output 

terminals of each elemental antenna of the array is connected to a low noise amplifier 

(LNA) having matched input impedance [75][76][77]. The signal observed at the out­

put terminals of the [nx0, ny0]
th elemental antenna in response to the arriving EM 4D 

BB-BP ST PW empw4CP(x, y, z, t) is denoted by a[nx0, ny0](t). According to [78](ch. 4), 

a[nx0, ny0](t) depends on the vector valued antenna response pattern AR[nx, ny ](θ, φ, fct) 

at (θ0, φ0) for [nx0, ny0]
th elemental antenna and the spectral content of the wavefront 

function WCP(cfct) associated with the electric-field component epw4CP(x, y, z, t) of the 

4D EM BB-BP ST PW empw4CP(x, y, z, t). 
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2.4.1 Antenna Response Pattern 

The vector-valued antenna response pattern AR[nx, ny ](θ, φ, fct) of the [nx, ny]
th elemen­

tal antenna may be specified as the combined response 

AR[nx, ny ](θ, φ, fct) = 

ARX [nx, ny ](θ, φ, fct) ûx + ARY [nx, ny ](θ, φ, fct) ûy + ARZ [nx, ny ](θ, φ, fct) ûz, (2.38) 

of the ûx-, ûy - and ûz - components that are specified in terms of the scalar-valued 

response patterns ARX [nx, ny ](θ, φ, fct), ARY [nx, ny ](θ, φ, fct) and ARZ [nx, ny ](θ, φ, fct), re­

spectively. Note that ARX [nx, ny ](θ, φ, fct) determines the signal observed at the output 

]thterminals of the [nx, ny elemental antenna in response to a unit amplitude linear-

polarized EM 4D ST PW having the electric-field in the direction of unit vector ûx that 

has been emanating from a monochromatic point source of temporal frequency cfct where 

its position in the sky is given by the inclination angle θ and azimuth angle φ. Similarly, 

ARY [nx, ny ](θ, φ, fct) and ARZ [nx, ny ](θ, φ, fct) determine the antenna responses to linear-

polarized EM 4D ST PWs having the electric-field along the direction of the unit vectors 

ûy and ûz, respectively. 

2.4.2 The Relationship Between Antenna Response Pattern and Active Element Pattern 

According to the reciprocity-theorem [79][80], for the [nx0, ny0]
th elemental antenna in a 

uniformly distributed array, the antenna response pattern AR[nx0, ny0](θ, φ, fct), in receiv­

ing EM signals, and the active element pattern [81] AT[nx0, ny0](θ, φ, fct), in transmitting 

EM signals, are related such that 

AR[nx0, ny0](θ, φ, fct) = CTxRx AT[nx0, ny0](θ, φ, fct), (2.39) 

where CTxRx is the constant of proportionality [78](ch. 4). As defined in [53](pp. 106-112), 

the vector-valued active element pattern AT[nx0, ny0](θ, φ, fct) specifies the orientation, 

magnitude and phase of the electric-field at the direction given by the inclination angle 
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θ and azimuth angle φ in the far-field, when the [nx0, ny0]
th element is excited with 

a unit amplitude signal of temporal frequency cfct while all other elemental antennas 

are terminated with matching impedances. The mutual coupling among the elemental 

antennas in the array effects the active element pattern therefore, it is different from 

the isolated antenna element pattern [81]. For example, active element patterns may 

have nulls called scan blind spots [53](pp. 103), even though the isolated element pattern 

shows no such nulls. 

In hypothetical infinite-extent uniformly distributed arrays, the active element pat­

tern is identical for each elemental antennas because each elemental antenna is subjected 

to the same mutual coupling scenario [81]. Hence, the active element pattern for an 

infinite-extent array may be given by 

AT[nx0, ny0](θ, φ, fct) = ATO(θ, φ, fct), (2.40) 

where ATO(θ, φ, fct) is the elemental antenna pattern of the element at the origin O 

[81]. However, in finite-extent uniformly distributed arrays, the active element pattern 

AT[nx, ny ](θ, φ, fct) depends on the position (nx, ny) of the elemental antenna in the array. 

For example, in a 2D-UDPA the active element pattern of an element near the center of 

the array may differ significantly from that of an element at the edge of the array due to 

the difference between the two mutual coupling scenarios [81]. However, given an array 

contain more than 100 elemental antennas, adding “dummy-elements” around the edge 

of an array is expected to create a mutual coupling scenario that is almost identical at 

each element resulting a pseudo-infinite array. This has been attempted in the “Phased 

Array Demonstrator” (PHAD) [20], which has been designed and implemented by the 

Dominion Radio Astrophysical Observatory (DRAO), BC, Canada. For such arrays, the 

active element pattern AT[nx, ny ](θ, φ, fct) of any (nx, ny)
th element can be approximated 

with ATC(θ, φ, fct) that corresponds to an element near the center of a finite array. This 

approximation simplifies the analysis of array response and subsequently eases the beam 
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synthesis.
 

In practice, the antenna response pattern ARC(θ, φ, fct) of a pseudo infinite-extent 

array is determined using the reciprocity relationship given in (2.39) that in turn re­

quires the evaluation of active element pattern ATC(θ, φ, fct) for the respective array. 

Theoretical, numerical and empirical methods have been used in determining the active 

element patterns of antenna arrays of different element arrangements and those employ 

different types of elemental antennas. In [53], an extensive theoretical study is given 

on the infinite-extent and finite-extent antenna arrays using “Floquet Series” expansion 

of the EM modes associate with such arrays. Evaluation of wideband active element 

patterns using numerical methods based on Finite-Difference Time-Domain (FDTD), 

Method of Moments (MoM) and their variants are given in [82][83][84][85][86][87][88]. 

Finally, experimental analysis of active element patterns are given in [89][90][91][92]. 

2.4.3 An Example for an Active Element Pattern 

The Phased Array Demonstrator (PHAD) is a working engineering prototype that has 

been used as the front-end of a focal plane array (FPA) receiver [20][92]. In PHAD, 180 

linear polarized wideband Vivaldi elements are arranged in a square grid, where two ele­

ments are fixed perpendicular to each other at each grid point in order to receive the two 

orthogonal polarized components of EM signals of interest [20]. PHAD has been designed 

to cover the frequency range 1-2 GHz and the inter element distance has been set to the 

half wavelength at 2 GHz [20]. As mentioned earlier, PHAD contains dummy elements 

around the edge of the array so that the active element pattern AT[nx, ny ](θ, φ, fct) for any 

elemental Vivaldi antenna can be approximated by active element pattern ATC(θ, φ, fct) 

of an element near the center of the array. 

For a Vivaldi elemental antenna in PHAD that is arranged in the direction of ûx (see 
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Figure 2.8), the active element pattern is given by 

ATC(θ, φ, fct) = AT XC(θ, φ, fct) ûx, (2.41) 

where the ûy - and ûz - components are AT Y C(θ, φ, fct) = 0 and AT ZC(θ, φ, fct) = 

0. At the temporal frequency cfct0 = 1.45 GHz, the normalized magnitude of the ûx ­

component of the active element pattern AT XC(θ, φ, fct0 ) for the azimuth angles φ = 

0◦ , 45◦ and 90◦ are shown in Figure 2.9 (right) and for the azimuth angles φ = 135◦ , 180◦ 

and 270◦ are shown in Figure 2.9 (left). According to Figure 2.9, AT XC(θ, φ, fct) is 

almost independent of φ therefore, it is nearly circular symmetric around the z-axis. 

Also according to Figure 2.9, there are no deep nulls in the upper-hemispherical angular-

range θ ∈ [0◦ , 90◦] for φ = 0◦, 45◦, 90◦, 180◦, 225◦ and 270◦; thus, ATC(θ, φ, cfct0 ) of 

PHAD does not show any scan blindness at cfct0 = 1.45 GHz in this angular-range. 

However, a gradual reduction of magnitude is observed as θ increases from 0◦ to 90◦ . It 

is expected that ATC(θ, φ, fct) remains almost identical to that of ATC(θ, φ, cfct0 ) for 

all temporal frequencies cfct ∈ [1, 2] GHz. 

2.4.4 Signals Induced at an Elemental Antenna in Response to Propagating EM signals 

and the Corresponding Spectra 

Let’s reexamine the scenario of EM wave reception using a 2D-UDPA as shown in Fig­

ure 2.8, exploiting the facts stated in subsections 2.4.1, 2.4.2 and 2.4.3. Specifically, the 

EM 4D BB-BP ST PW empw4CP(x, y, z, t) is emanating from a point source in the sky 

at the inclination angle θ0 and azimuth angle φ0 and it is received by a pseudo-infinite 

2D-UDPA on the plane z = 0 in 3D space. It is assumed that this 2D-UDPA contains 

linear-polarized elemental antennas oriented along the direction of ûx (e.g. PHAD; sub­

section 2.4.3) that are arranged on a rectangular grid at intervals of Δx and Δy along 

the x-axis and y-axis, respectively. The output of each elemental antenna is connected 

to a matching LNA. 



42 

90ο 80ο 70ο 60ο 50ο 40ο 30ο 20ο 10ο 0ο 10ο 20ο 30ο 40ο 50ο 60ο 70ο 80ο 90ο
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

Active Element Pattern of PHAD at 1.45 GHz

M
ag

ni
tu

de
 - 

(d
B

)

Inclination angle (θ)

 

 

φ = 0ο

φ = 45ο

φ = 90ο

φ = 180ο

φ = 225ο

φ = 270ο

Figure 2.9: The normalized magnitude of the ûx-component of the active element pattern 
AT XC(θ, φ, fct0 ) at cfct0 = 1.45 GHz for the azimuth angles φ = 0◦ , 45◦ and 90◦ (right) 
and for the azimuth angles φ = 180◦ , 225◦ and 270◦ (left). (Recreated using the data 
extracted from the Figure 3 in [92].) 

According to (2.39) and (2.41), the antenna response pattern of any elemental antenna 

in this pseudo-infinite 2D-UDPA may be expressed by 

ARC(θ, φ, fct) = ARXC(θ, φ, fct) ûx. (2.42) 

Also according to subsection 2.2.1, the electric-field component epw4CP(x, y, z, t) of 

the propagating EM 4D BB-BP ST PW empw4CP(x, y, z, t) may be decomposed with 

respect to the linear polarized antenna response pattern ARX(θ, φ, fct) ûx, such that 

epw4CP(x, y, z, t) = pw4CPO (x, y, z, t) ûx + pw4CPX (x, y, z, t) ûx 
⊥ , (2.43) 

where ûx is the unit “co-polar” vector along the x-axis and ûx 
⊥ is the unit “cross­

polar” vector, which is orthogonal to ûx. Hence, the scalar-valued 4D BB-BP ST PW 
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pw4CPO (x, y, z, t) is called as the co-polar component where as pw4CPX (x, y, z, t) is called 

as the cross-polar component of epw4CP(x, y, z, t). Thus following (2.17) and (2.13), 

EPW4CP(fx, fy, fz, fct), the 4D-CDFT of epw4CP(x, y, z, t), can be expressed as 

EPW3CP(fx, fy, fz, fct) = WCPO cfct δ(dx0fct − fx)δ(dy0fct −fy)δ(dz0fct −fz) ûx 

) û⊥ , (2.44)+ WCPX cfct δ(dx0fct − fx)δ(dy0fct −fy)δ(dz0fct −fz x 

where dx0 = sin(θ0) cos(φ0), dy0 = sin(θ0) sin(φ0) and dz0 = cos(θ0). In (2.44), WCPO (cfct) 

and WCPX (cfct) denote the 1D-CDFTs of 1D BB-BP wavefront functions wCPO (t) and 

wCPX (t), which are associated with the co-polar component pw4CPO (x, y, z, t) and cross-

polar component pw4CPX (x, y, z, t), respectively. 

The Antenna Frequency Response 

As shown in Figure 2.8, the signal observed at the output terminals of the [nx0, ny0]
th ele­

mental antenna in response to the received EM 4D BB-BP ST PW empw4CP(x, y, z, t) is 

denoted by a[nx0, ny0](t). Following [78](ch. 4) and [93], it can be shown that A[nx0, ny0](cfct), 

the 1D-CDFT of the observed signal a[nx0, ny0](t), is given by 

A[nx0, ny0](cfct) = ARXC(θ0, φ0, fct) WCPO (cfct) PS[nx0, ny0](θ0, φ0, fct), (2.45) 

where 

j2π sin(θ0) cos(φ0)fctΔxnx0 j2π sin(θ0) sin(φ0)fctΔy ny0PS[nx0, ny0](θ0, φ0, fct) 6 e e , 

j2πdx0fctΔxnx0 j2πdy0fctΔy ny06 e e , (2.46) 

which specifies the phase-shift of the signal due to the displacement of the elemental 

antenna from the origin of the 2D-UDPA. Here, it is assumed the cross-polar response of 

the elemental antenna is negligible. Exploiting the unique relationship between the DOA 

of the propagating EM 4D BB-BP ST PW empw4CP(x, y, z, t), specified by (θ0, φ0), and 

the ROS of spectrum of its electric-field component EPW4CP(fx, fy, fz, fct), specified by 
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the parametric equations of the 4D hyper-line 

dx0fct, dy0fct, dz0fct, fct ≡ sin(θ0) cos(φ0)fct, sin(θ0) sin(φ0)fct, cos(θ0)fct, fct , 10 

in (fx, fy, fz, fct) ∈ R4 , the vector valued antenna frequency response function 

AF(fx, fy, fz, fct), can be defined such that 

AF(dx0fct, dy0fct, dz0fct, fct) 6 ARC(θ0, φ0, fct), (2.47) 

where the ûx-, ûy - and ûz - components of AF(fx, fy, fz, fct) are given by 

AF X(dx0fct, dy0fct, dz0fct, fct) = ARXC(θ0, φ0, fct), 

AF Y (dx0fct, dy0fct, dz0fct, fct) = ARY C(θ0, φ0, fct), (2.48) 

AF Z(dx0fct, dy0fct, dz0fct, fct) = ARZC(θ0, φ0, fct). 

According to the definition given in (2.47), AF(fx, fy, fz, fct) is defined only in the inside 

of the volume of 4D double right-spherical hyper-cone in (fx, fy, fz, fct) ∈ R4 that is 

introduced in subsection 2.3.1. For the rest of 4D frequency space (fx, fy, fz, fct) ∈ R4 , 

AF(fx, fy, fz, fct) remains undefined. 

Following (2.48) and exploiting the sampling property of the unit impulse function δ(·) 

[44] (pp. 14-15), (2.46) can be expressed as a triple-integral 

+∞+++ 
j2πfxΔxnx0 j2πfy Δy ny0A[nx0, ny0](cfct) = AF X(fx, fy, fz, fct) e e


fx,fy ,fz =−∞
 

WCPO (cfct)δ(dx0fct − fx)δ(dy0fct −fy)δ(dz0fct −fz) dfxdfydfz. (2.49) 

in the 3D frequency space (fx, fy, fz) ∈ R3 . However, according to (2.44), (2.49) can be 

rewritten as 

A[nx0, ny0](cfct) = 

+∞+++ 
j2πfxΔxnx0 j2πfy Δy ny0 dfxAF X(fx, fy, fz, fct)PW4CPO (fx, fy, fz, fct)e e dfydfz, (2.50) 

fx,fy ,fz =−∞ 

10These equations for 4DHLineROS have been stated previously in (2.15) and (2.16), respectively. 
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where PW4CPO (fx, fy, fz, ft) is the 4D-CDFT of pw4CPO (x, y, z, t). 

Generalizing (2.50), the spectral response A[nx0, ny0](cfct) of the (nx0, ny0)
th elemental 

antenna of a 2D-UDPA on the plane z = 0 in 3D space, which is having an arbitrary 

antenna response function AF(fx, fy, fz, fct), to an arbitrary EM 4D BB-BP ST PW 

empw4CP(x, y, z, t), can be expressed using the vector dot product, such that 

A[nx0, ny0](cfct) = 

+∞   +++ 
j2πfxΔxnx0AF(fx, fy, fz, fct) • EPW4CP(fx, fy, fz, fct) e ej2πfy Δy ny0 dfxdfydfz, 

fx,fy ,fz =−∞

(2.51) 

where EPW4CP(fx, fy, fz, fct) is the 4D-CDFT of epw4CP(x, y, z, t), which is the electric-

field component of empw4CP(x, y, z, t). Any arbitrary electric-field can be expressed 

as a linear combination of propagating EM 4D ST PWs such that ef4C(x, y, z, t) = 
i epw4Ci

(x, y, z, t) [94](pp. 24). Hence, the spectrum A[nx0, ny0](cfct) of the observed 

signal in response to ef4C(x, y, z, t), is given by 

A[nx0, ny0](cfct) = 

+∞   +++ 
j2πfxΔxnx0AF(fx, fy, fz, fct)•EF4C(fx, fy, fz, fct) e ej2πfy Δy ny0 dfxdfydfz, (2.52) 

fx,fy ,fz =−∞

4D-CDFT
where ef4C(x, y, z, t) ←→ EF4C(fx, fy, fz, ft). 

The Antenna Impulse Response 

The signal a[nx0, ny0](t), observed at the terminals of [nx0, ny0]
th elemental antenna in 

response to an arbitrary EM field ef4CP(x, y, z, t), can be determined by evaluating the 

inverse 1D-CDFT integral + +∞ 

a[nx0, ny0](t) = A[nx0, ny0](cfct) e
j2π{cfct}td{cfct}. (2.53) 

cfct =−∞ 
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Substituting for A[nx0, ny0](cfct) in (2.53) with (2.52) yields a quadruple-integral 

∞+++++ 
a[nx0, ny0](t) = AF(fx, fy, fz, fct) • EF4CP(fx, fy, fz, fct)
 

fx,fy ,fz ,cfct =−∞
 

j2πfxΔxnx0 j2πfy Δy ny0 j2πcfctt dfxe e e dfydfzdcfct, (2.54) 

in the 4D frequency space (fx, fy, fz, fct) ∈ R4 . According to [41](ch. 6), (2.54) is the 

inverse 4D-CDFT of the vector dot product AF(fx, fy, fz, fct) • EF4CP(fx, fy, fz, fct) 

evaluated for t ∈ R at x = Δxnx0, y = Δyny0 and z = 0. Using the properties of mD 

CDFT [44](pp. 25), (2.54) can be evaluated such that 

a[nx0, ny0](t) = 

+∞+++ 
{ai(x, y, z, t)8888 ef4CP(x, y, z, t)}δ(x−Δxnx0)δ(y−Δyny0)δ(z)dxdydz, 

x,y,z=−∞ 

(2.55) 

where ai(x, y, z, t) is defined as the antenna impulse response and where “8888” de­

notes the combined vector dot-product and 4D convolution operation. Note that the 

vector-valued antenna impulse response ai(x, y, z, t) and the vector-valued antenna 

frequency response function AF(fx, fy, fz, fct) are related through the 4D-CDFT, where 

the ûx-, ûy - and ûz - components of ai(x, y, z, t) are given by 

4D-CDFT
aix(x, y, z, t) ←→ AF X(fx, fy, fz, fct), 

4D-CDFT
aiy(x, y, z, t) ←→ AF Y (fx, fy, fz, fct), (2.56) 

4D-CDFT
aiz(x, y, z, t) ←→ AF Z(fx, fy, fz, fct). 

According to [44](ch. 3.1-3.2), the mathematical operations in the right hand side of (2.55) 

can be interpreted as the spatial-sampling of electric-field component ef4CP(x, y, z, t) with 

the non-ideal sampling function of antenna impulse response ai(x, y, z, t) at x = Δxnx0, 

y = Δyny0 and z = 0, where the [nx0, ny0]
th elemental antenna is located in 3D space. 
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2.5 3D Spectra of the Signals Observed at the Terminals of 2D Planar
 

Array 

Consider an ideal infinite-extent 3D mixed-domain11 signal sequence a3MP(nx, ny, t) that 

corresponds to the group of temporal signals a[nx, ny ](t) observed at the output of the 

)th(nx, ny elemental antenna in a pseudo-infinite 2D-UDPA on the plane z = 0 in 3D 

space in response to a propagating EM 4D BB-BP ST PW empw4CP(x, y, z, t) having 

the DOA [dx0 dy0 dz0]. In this particular array, the elemental antennas are arranged in a 

square grid at intervals of Δxy and the output of each elemental antenna is connected to a 

matching LNA. As in the case of PHAD (see subsection 2.4.3), each grid point of this array 

is fixed with two linear-polarized wideband elemental antennas (e. g. Vivaldi elements) 

perpendicular to each other along the directions ûx and ûy in order to receive the two 

orthogonally polarized components of empw4CP(x, y, z, t). For simplicity, the following 

analysis of spectral properties is limited to a part of a3MP(nx, ny, t), which correspond to 

the elemental antennas oriented along the direction of ûx. Identical spectral properties 

are expected for the rest of a3MP(nx, ny, t), which correspond to the elemental antennas 

oriented along the direction of ûy. 

For the elemental antennas oriented along the direction of ûx of this particular 2D­

UDPA, according to (2.42), (2.48) and (2.56), the antenna impulse response can be 

expressed as 

ai(x, y, z, t) = aix(x, y, z, t) ûx. (2.57) 

Hence following (2.55), the 3D mixed-domain antenna signal sequence a3MP(nx, ny, t) can 

be expressed as 

+∞ +∞+ + 
a3MP(nx, ny, t) = apwx3CP(x, y, t) δ(x − Δxynx) δ(y − Δxyny), (2.58) 

nx =−∞ ny =−∞ 

11In this case, discrete in the spatial domain on the xy-plane and continuous in the temporal domain. 
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where the equivalent 3D continuous-domain antenna output function is defined as 

++∞ 

apwx3CP(x, y, t) 6 {aix(x, y, z, t) ∗ ∗ ∗ ∗ pw4CPO (x, y, z, t)} δ(z) dz, (2.59) 

z=−∞ 

where pw4CPO (x, y, z, t) is the co-polar component of empw4CP(x, y, z, t) along ûx (see 

(2.43)) and where “∗∗∗∗” denotes the 4D convolution operation. 

In order to analyze the spectral properties of the 3D mixed-domain antenna signals 

a3MP(nx, ny, t), its 3D mixed-domain Fourier transform (3D-MDFT) is evaluated. The 

3D-MDFT of a3MP(nx, ny, t) defined by 

++∞ 

jωx −jωxnx −jωynyA3MP(e , ejωy , fct) 6 a3MP(nx, ny, t) e e e −j2πcfctt dt, (2.60) 
−∞ −∞n = n =x y 

∞ ∞+ ++ 

∞ ∞+ ++ 

−∞t=

where (ωx, ωy, fct) ∈ R3 [41](ch. 6). Nevertheless, according to [44](pp. 56-57), the 

+ 

+ 

3D-MDFT A3MP(e
jωx , ejωy , fct) may be expressed in the form 

1
 ωx − 2πmx ωy − 2πmy
A3MP(e

jωx , ejωy , fct) = AP W X3CPO , fct ,
,

Δ2 

xy 2πΔxy 2πΔxymx =−∞ my =−∞ 

(2.61) 

where AP W X3CPO (fx, fy, fct) is the 3D-CDFT of the equivalent 3D continuous-domain 

of AP W X3CPO , fct with 2D periodicity (2π, 2π) along ωx - and ωy - axes in 

antenna output function apwx3CP(x, y, t), which is given in (2.59). It is implied in 

(2.61) that A3MP(e
jωx , ejωy , fct) is given as the infinite series of periodic copies 

ωx ωy ,
2πΔxy 2πΔxy 

(ωx, ωy, fct) ∈ R3 . Here, the spectral properties of A3MP(e
jωx , ejωy , fct) is determined by 

exploiting the relationship in (2.61) that in turn requires the evaluation of the spectral 

properties of AP W X3CPO (fx, fy, fct) in (fx, fy, fct) ∈ R3 . 

The ROS of AP W X3CPO (fx, fy, fct) 

Following (2.59), it can be shown that +
 +∞ 

AP W X3CPO (fx, fy, fct) = AF X(fx, fy, fz, fct) PW4CPO (fx, fy, fz, fct) dfz, (2.62) 
fz =−∞ 
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where AF X(fx, fy, fz, fct) is the ûx-component of the antenna frequency response func­

tion and is given by the 4D-CDFT of aix(x, y, z, t) and where PW4CPO (fx, fy, fz, fct) is 

the 4D-CDFT of the pw4CPO (x, y, z, t). Substituting PW4CPO (fx, fy, fz, fct) in (2.62) with 

(2.13) yields, 

AP W X3CPO (fx, fy, fct) + +∞ 

= AF X(fx, fy, fz, fct) WCPO (cfct)δ(dx0fct − fx)δ(dy0fct −fy)δ(dz0fct −fz) dfz, 
fz =−∞ 

= AF X(fx, fy, dz0fct, fct) WCPO (cfct)δ(dx0fct −fx)δ(dy0fct −fy). (2.63) 

Note that in (2.63), AF X(fx, fy, dz0fct, fct) represents the slice of the 4D continuous-

domain antenna response function (ûx-component) AF X(fx, fy, fz, fct) taken on the 

plane fz = dz0fct in 4D frequency-space. Such a relationship can be expressed as a 

3D continuous-domain parametric-function AF X [dz ](fx, fy, fct) of the parameter dz in 

(fx, fy, fct) ∈ R3 that is defined as + +∞ 

AF X [dz ](fx, fy, fct) 6 AF X(fx, fy, fz, fct) δ(dzfct −fz) dfz. (2.64) 
fz =−∞ 

Hence, (2.63) can be rewritten as 

AP W X3CPO (fx, fy, fct) = AF X [dz0](fx, fy, fct) PW3CPO (fx, fy, fct), (2.65) 

because according to (2.22), 

WCPO (cfct)δ(dx0fct − fx)δ(dy0fct −fy) = PW3CPO (fx, fy, fct). 

The ROS of AP W X3CPO (fx, fy, fct) is given by the intersection of the ROSs 

of PW3CPO (fx, fy, fct) and AF X [dz ](fx, fy, fct) in (fx, fy, fct) ∈ R3 . According to sub­

section 2.3.2, PW3CPO (fx, fy, fct) represents the spectrum of the 3D continuous-domain 

signal observed on the 3D-plane z = 0 in response to the EM 4D BB-BP ST PW having 

the DOA d̂0 = [dx0 dy0 dz0]. As shown in Figure 2.4, the ROS of PW3CPO (fx, fy, fct) is 

' Q ' given by two line segments PQ and P on the line of intersection of the two 3D frequency 
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planes dx0fct −fx = 0 and dy0fct −fy = 0 in (fx, fy, fct) ∈ R3 . Note that PQ corresponds 

to the positive temporal frequencies cfct ∈ {fC − 0.5BW, fC +0.5BW )} and P ' Q ' corre­

sponds to the negative temporal frequencies cfct ∈ {(−fC − 0.5BW, −fC + 0.5BW )}. 

However, for all EM 4D BB-BP ST PWs having DOAs d̂ = [dx dy dz] such that 

d2 
x + d2 

y + d2 = 1, the line segments corresponding to ROSs of the spectra lay inside z 

the 3D double frustum region shown in the Figure 2.5. 

Let’s assume that the ûx-component of the active element pattern is circular-symmetric 

around the z-axis and its normalized-magnitude |AT X(θ, φ, fct)| = 0 in the angular­� 
ranges ΘP = {(θLi, θUi)} for all |fct| ∈ [c−1fC − 0.5c−1BW , c−1fC + 0.5c−1BW ]. Note i

that according to (2.5), the DOA unit vectors d̂P included in the vector-range 

  
DP ∈ [dxP dyP dzP] | [dxP = sin(θP) cos(φP), dyP = sin(θP) sin(φP) dzP = cos(θP)] , 

(2.66) 

correspond to all θP ∈ ΘP and φP ∈ [0◦ , 360◦]. Hence, according to the definitions (2.51) 

and (2.64), it can be shown that the 3D double frustum region, shown in Figure 2.5 in 

(fx, fy, fct) ∈ R3, is included in the ROS of AF X [dzP](fx, fy, fct) for all d̂P ∈ DP but, is 

¯excluded in the ROS of AF X ˆ̄ (fx, fy, fct) for all d̂P ∈/ DP. Therefore, for any d̂P ∈ DP,[dzP]

the ROS of AP W X3CPO (fx, fy, fct) is determined by the ROS of PW3CPO (fx, fy, fct), 

which is given by the two line segments PQ and P ' Q ' in (fx, fy, fct) ∈ R3 . However, for 

¯any d̂P ∈/ DP, AP W X3CPO (fx, fy, fct) = 0 because there is no intersection between the 

ROSs of PW3CPO (fx, fy, fct) and AF X ¯̂ (fx, fy, fct) in (fx, fy, fct) ∈ R3 . 
[dzP]

The ROS of A3MP(e
jωx , ejωy , fct) 

Let A3MP(e
jωx , ejωy , fct) be the 3D-MDFT of the infinite extent signal sequence 

a3MP(nx, ny, t) observed at the output of pseudo infinite 2D uniform array in response to 

propagating EM 4D BB-BP ST PW of DOA d̂P0, where d̂P0 ∈ DP (see (2.66)). Following 
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(2.61) and (2.65), A3MP(e
jωx , ejωy , fct) is given by + +1 

+∞ +∞
ωx − 2πmx ωy − 2πmy

A3MP(e
jωx , ejωy , fct) = 

Δ2 
AF X [dzP0] , , fct 

xy 2πΔxy 2πΔxymx =−∞ my =−∞ 

ωx −2πmx ωy −2πmy× WCPO (cfct)δ dxP0fct − δ dyP0fct − , (2.67)
2πΔxy 2πΔxy 

thus ROS of A3MP(e
jωx , ejωy , fct) is given by an infinite series of line segments correspond­

' Q ' ing to PQ and P along ωx- and ωy- axes with 2D periodicity (2π, 2π) in (ωx, ωy, fct) ∈ 

R3 . Therefore, the range of the ROSs of the spectra {A3MP(e
jωx , ejωy , fct)} corresponding 

to all EM 4D BB-BP ST PWs having DOAs d̂P ∈ DP is given by a series of double 3D 

right-circular frustum-shaped regions (see Figure 2.5) that are periodic along ωx- and ωy ­

axes with 2D periodicity (2π, 2π) in (ωx, ωy, fct) ∈ R3 . 

Figure 2.10 illustrates the plan-view of the range of ROSs of A3MP(e
jωx, ejωy, fct) looking 

down at the (ωx, ωy)-plane. The periodic concentric inner- and outer- circles represents 

the narrow-base of the frustum and the wide-base of the frustum, respectively. The radius 

of the inner-circle is given by the angular-frequency ωmin = 2πΔxyfmin sin(θM)/c, where 

the inter-antenna distance Δxy, the minimum temporal-frequency fmin = fC −0.5BW , c is 

the wave propagation speed and the inclination angle θM ∈ ΘP such that sin(θM) ≥ sin(θ) 

for all θ ∈ ΘP. Similarly, the radius of the outer-circle is given by the angular-frequency 

ωmax = 2πΔxyfmax sin(θM)/c, where fmax = fC + 0.5BW . As defined in section 2.3, fC 

denotes the center frequency and BW denotes the temporal bandwidth of the BB-BP 

wavefront functions associated with all propagating EM BB-BP ST PWs. 

If ωmax ≥ π, then the spectral components from the neighboring frusta overlap causing 

spatial aliasing in the spatial-angular frequency space (ωx, ωy) ∈ R2 . Due to cross spectral 

contamination, aliasing prohibits accurate recovery of the desired signal [42]. For this 

particular array, spatial aliasing can be avoided for temporal frequencies fct ≤ c−1fmax, 

if the inter element interval is selected such that Δxy ≤ 0.5 c/(fmax sin(θM)) that in 

turn confine ωmax ≤ π. Provided Δxy ≤ 0.5 c/(fmax sin(θM)), the spectral components 

A3MP(e
jωx , ejωy , fct) of the 3D antenna array signal sequence a3MP(nx, ny, t) in the 3D 
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Figure 2.10: The plan-view of the range of ROSs of A3MP(e
jωx , ejωy , fct). The inner-circle 

represent the narrow-base of the frustum having the radius ωmin where as the outer-circle 
represent the wide-base of the frustum having the radius ωmax. 

principle Nyquist region 3PNR = {|ωx; ωy| � π ∪ |fct| � c−1fmax} are given by 

jωx 
1 ωx ωy

A3MP(e , ejωy , fct) =
Δ2 

AF X [dzP0] , , fct[3PNR] 
xy 2πΔxy 2πΔxy 

ωx	 ωy× WCPO (cfct)δ dxP0fct − δ dyP0fct − . (2.68)
2πΔxy 2πΔxy 

2.6	 2D Spectra of the Signals Observed at the Terminals of 1D Linear 

Array 

Let’s consider a different scenario shown in Figure 2.11, where the propagating EM 4D 

BB-BP ST PW empw4CP(x, y, z, t) having the DOA [dx0 dy0 dz0] is received by a pseudo-

infinite 1D-UDAA containing linear-polarized wideband elemental antennas such as log 

periodic antennas or patch antennas [95]. The output of each elemental antenna of the 

1D-UDAA is connected to a matching LAN. Without the loss of generality, assume that 
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Mobile Communication device
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antenna-array (1D-UDAA)
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Figure 2.11: 1D uniformly distributed antenna array (1D-UDAA) in receiving EM 4D 
BB-BP ST PW empw4CP(x, y, z, t). 

the phase-centers [96](pp. 14-6) of the elemental antennas are arranged along the x-axis 

at uniform intervals of Δx such that the electric-field of the corresponding active element 

pattern is oriented along the direction of ûz. 

Assuming the ûx- and ûy- components are AEXC(θ, φ, fct) = 0 and AEY C(θ, φ, fct) = 

0, the active element pattern of any elemental antenna in this pseudo-infinite 1D-UDAA 

may be expresses following (2.39) and (2.41), such that 

AEC(θ, φ, fct) = AEZC(θ, φ, fct) ûz. (2.69) 

The typical normalized magnitude of z-component |AEZC(θ, φ, fct)| at θ = 90◦ for 

φ ∈ [0◦ , 360◦] at the temporal frequency |cfct0| ∈ [fC − 0.5BW, fC +0.5BW ] is shown in 

Figure 2.12 (a). Also, the normalized |AEZC(θ, φ, fct)| at φ = 90◦ for θ ∈ [0◦ , 90◦] and at 

φ = −90◦ for θ ∈ [0◦ , 90◦] at the temporal frequency |cfct0| ∈ [fC − 0.5BW, fC +0.5BW ] 

are shown in Figure 2.12 (b-right) and (b-left), respectively. 

Following subsections 2.4.1, 2.4.2, 2.4.3 and 2.4.4, the corresponding vector valued 

antenna frequency response function AP(fx, fy, fz, fct) can be defined with regards to 
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Figure 2.12: The ûz-component AEZC(θ, φ, fct) of a typical active element pat­
tern of a wideband elemental antenna in pseudo-infinite 1D-UDAA. The normal­
ized |AEZC(θ, φ, fct)| at θ = 90◦ for φ ∈ [0◦ , 360◦] at the frequency |cfcto| ∈ 
[fC −0.5BW, fC +0.5BW ] is shown in Figure 2.12 (a). The normalized |AEZC(θ, φ, fct)|
at φ = 90◦ for θ ∈ [0◦ , 90◦] and at φ = −90◦ for θ ∈ [0◦ , 90◦] at the frequency |cfct0| are 
shown in Figure 2.12 (b-right) and (b-left), respectively. 

AEC(θ, φ, fct) such that 

AP(dxfct, dyfct, dzfct, fct) 6 CTxRx AEC(θ, φ, fct), (2.70) 

where dx = sin(θ) cos(φ), dy = sin(θ) sin(φ) and dx = cos(θ) and where CTxRx is the 

constant of proportionality. Thus, according to (2.69), 

AP(fx, fy, fz, fct) = AP Z(fx, fy, fz, fct) ûz, (2.71) 

and the corresponding the vector valued antenna impulse response is given by 

aj(x, y, z, t) = ajz(x, y, z, t) ûz, (2.72) 

4D-CDFT
where ajz(x, y, z, t) ←→ AP Z(fx, fy, fz, ft). 
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As shown in Figure 2.11, the signal observed at the output of the nth 
x0 elemental an­

tenna of this in response to a propagating EM 4D BB-BP ST PW empw4CP(x, y, z, t) is 

denoted by anx0 (t). If the electric field component epw4CP(x, y, z, t) of empw4CP(x, y, z, t) 

is given by 

epw4CP(x, y, z, t) = pw4CPO (x, y, z, t) ûz + pw4CPX (x, y, z, t) û
⊥ 
z , (2.73) 

where for this case ûz is the unit co-polar vector along the z-axis and û⊥ 
z is the unit cross-

polar vector, which is orthogonal to ûz. Hence, pw4CPO (x, y, z, t) and pw4CPX (x, y, z, t) 

are the co-polar component and the cross-polar component, respectively. According to 

th(2.55), the signal observed at the output of nx0 elemental antenna may be given by 

+∞+++ 
anx0 (t) = {ajz(x, y, z, t)∗∗∗∗ pw4CPO (x, y, z, t)}δ(x−Δxnx0)δ(y)δ(z)dxdydz. (2.74) 

x,y,z=−∞ 

Consider an ideal infinite-extent 2D mixed-domain12 signal sequence a3MP(nx, t) that 

corresponds to the group of temporal signals anx (t) observed at the output of the nth 
x 

elemental antenna in a 1D-UDAA along the x-axis in response to a propagating EM 4D 

BB-BP ST PW empw4CP(x, y, z, t). Following (2.74), the 2D mixed-domain antenna 

signal sequence a2MP(nx, t) can be expressed as 

+∞+ 
a2MP(nx, t) = apwz2CP(x, t) δ(x − Δxynx), (2.75) 

nx =−∞ 

where the equivalent 2D continuous-domain antenna output function is defined as ++ +∞ 

apwz2CP(x, t) 6 {ajz(x, y, z, t) ∗ ∗ ∗ ∗ pw4CPO (x, y, z, t)} δ(y)δ(z) dy dz. (2.76) 
z,y=−∞

In order to analyze the spectral properties of the 2D mixed-domain antenna signals 

a2MP(nx, t), its 2D mixed-domain Fourier transform (2D-MDFT) is evaluated. The 2D­

MDFT of a2MP(nx, t) defined by + +∞ +∞+ 
−jωxnx −j2πcfctt dt,A2MP(e

jωx , fct) 6 a2MP(nx, t) e e (2.77) 
t=−∞ nx =−∞ 

12In this case, discrete in the spatial domain along x-axis and continuous in the temporal domain. 
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where (ωx, fct) ∈ R2 [41](ch. 6). Nevertheless, according to [44] (pp. 52-53), the spectrum 

A2MP(e
jωx , fct) may be expressed as in the form +1 

+∞
ωx − 2πmx

A2MP(e
jωx , fct) = AP WZ2CPO , fct , (2.78)

Δx 2πΔx mx =−∞ 

where AP WZ2CPO (fx, fct) is the 2D-CDFT of the equivalent 2D continuous-domain an­

tenna output function apwz2CP(x, t), which is given in (2.76). It is implied in (2.78), that 

ωxA2MP(e
jωx, fct) is given as the infinite series of periodic copies of AP WZ2CPO

(
2πΔx 

, fct) 

along ωx-axis with periodicity 2π in (ωx, fct) ∈ R2 . Here also, the spectral properties of 

A2MP(e
jωx, fct) is determined by exploiting the relationship in (2.78) that in turn requires 

the evaluation of the spectral properties of AP WZ2CPO
(fx, fct) in (ωx, fct) ∈ R2 . 

The ROS of AP WZ2CPO
(fx, fct) 

Following (2.76), it can be shown that ++ +∞ 

AP WZ2CPO (fx, fct) = AP Z(fx, fy, fz, fct) PW4CPO (fx, fy, fz, fct) dfydfz, (2.79) 
fz ,fy =−∞ 

where AP Z(fx, fy, fz, fct) is the ûz-component of antenna frequency response function 

(see 2.71 at page 54) and PW4CPO (fx, fy, fz, fct) is the 4D-CDFT of pw4CPO (x, y, z, t). 

Substituting PW4CPO (fx, fy, fz, fct) in (2.79) with (2.13) yields, 

AP WZ2CPO (fx, fct) ++ +∞ 

= AP Z(fx, fy, fz, fct)WCPO (cfct)δ(dxfct − fx)δ(dyfct −fy)δ(dzfct −fz) dfydfz, 
fz ,fy =−∞ 

= AP Z(fx, dyfct, dzfct, fct) WCPO (cfct)δ(dxfct −fx). (2.80) 

Note that in (2.80), AP Z(fx, dyfct, dzfct, fct) represents the slice of the 4D continuous-

domain antenna response function (ûz-component) AP Z(fx, fy, fz, fct) taken along to the 

line of intersection between two 4D-planes fz = dzfct and fy = dyfct. Such a relationship 

can be expressed as a 2D continuous-domain parametric-function AP Z [dy ,dz ](fx, fct) of 

the parameters (dy, dz) in (fx, fct) ∈ R2 that is defined as ++ +∞ 

AP Z [dy ,dz ](fx, fct) 6 AP Z(fx, fy, fz, fct)δ(dyfct −fy)δ(dzfct −fz) dfydfz. (2.81) 
fz ,fy =−∞ 
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Hence, (2.80) can be rewritten as
 

AP WZ2CPO (fx, fct) = AP Z [dy ,dz ](fx, fct) PW2CPO (fx, fct), (2.82) 

because according to (2.32) 

PW2CPO (fx, fct) = WCPO (cfct)δ(dxfct − fx). 

The ROS of AP WZ2CPO (fx, fct) is given by the intersection of the ROSs of 

AP Z [dy ,dz ](fx, fct) and PW2CPO (fx, fct) in (fx, fct) ∈ R2 . According to subsection 2.3.3, 

PW2CPO (fx, fct) represents the spectrum of the 2D continuous-domain signal observed 

on the 3D-line along the x-axis in response to the 4D BB-BP ST PW having the DOA 

[dx0 dy0 dz0]. As shown in Figure 2.7, the ROS of PW2CPO (fx, fct) is given by two line 

segments RS and R ' S ' on the line dx0fct − fx = 0 in (fx, fct) ∈ R2 . Note that RS 

corresponds to the positive temporal frequencies cfct ∈ {fC − 0.5BW, fC +0.5BW )} and 

R ' S ' corresponds to the negative temporal frequencies cfct ∈ {(−fC − 0.5BW, −fC + 

0.5BW )}. 

Let’s assume that for this particular array the normalized-magnitude of the 

ûz-component of the active element pattern |AT Z(θ, φ, fct)| = 0 in the angular-ranges � 
ΨB = {(θLi, θUi) and (φLi, φUi)} for all |fct| ∈ [c−1fC − 0.5c−1BW , c−1fC + 0.5c−1BW ].i

Note that according to (2.5), the DOA unit vectors d̂B included in the vector-range 

DB ∈ [dxB dyP dzP] | [dxB = sin(θB) cos(φB), dyB = sin(θB) sin(φB), dzB = cos(θB)] , 

(2.83) 

correspond to all (θB, φB) ∈ ΨB. Hence, according to the definitions (2.51) and (2.81), it 

can be shown that the 2D double trapezoidal region, shown in Figure 2.7 in (fx, fct) ∈ 

R2, is included in the ROS of AP Z [dyB,dzB](fx, fct) for all d̂B ∈ DB but, is excluded in 

¯the ROS of AP Z ¯̂ ˆ̄ (fx, fct) for all d̂B ∈/ DB. Therefore, for all d̂B ∈ DB, the ROS 
[dyB,dzB]

of AP WZ2CPO (fx, fct) is determined by the ROS of PW2CPO (fx, fct), which is given by 
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the two line segments RS and R ' S ' in (fx, fct) ∈ R2 (see Figure 2.7). However, for all 

d̂̄B ∈/ DB, AP WZ2CPO (fx, fct) = 0 because there is no intersection between the ROSs of 

PW2CPO (fx, fct) and AP Z ¯ ¯̂ (fx, fct) in (fx, fct) ∈ R2 . 
[d̂yB,dzB]

The ROS of A2MP(e
jωx , fct) 

Let A2MP(e
jωx , fct) be the 2D-MDFT of the infinite extent signal sequence 

a2MP(nx, t) observed at the output of pseudo infinite 1D-UDAA in response to propagat­

ing EM 4D BB-BP ST PW of DOA d̂B0, where d̂B0 ∈ DB (see (2.83)). Following (2.78) 

and (2.82), A2MP(e
jωx , fct) is given by 

+∞
1 + ωx −2πmx ωx −2πmx

A2MP(e
jωx, fct)= AP Z [dyB0,dzB0] , fct WCPO (cfct)δ dxB0fct − ,

Δx 2πΔx 2πΔx mx =−∞ 

(2.84) 

thus ROS of A2MP(e
jωx , fct) is given by an infinite series of line segments shown in Fig­

ure 2.13 along ωx-axis with periodicity (2π) in (ωx, fct) ∈ R2 . Therefore, the range 

of the ROSs of the spectra {A3MP(e
jωx , fct)} corresponding to all EM 4D BB-BP ST 

PWs having DOAs d̂B ∈ DB is given by a series of 2D double-trapezoid areas shown in 

Figure 2.13 that are periodic along ωx-axis with periodicity (2π) in (ωx, fct) ∈ R2 . 

According to Figure 2.13, the length of the narrow-base of the trapezoid is given by 

the angular-frequency ωmin = 2πΔxfmin sin(θM) sin(φM)/c, where Δx is the inter-antenna 

distance, fmin = fC − 0.5BW is the minimum temporal-frequency, c is the wave propaga­

tion speed and (θM, φM) ∈ ΨP is the combined inclination angle and azimuth angle pair 

such that sin(θM) sin(φM) ≥ sin(θ) sin(φ) for all (θ, φ) ∈ ΨP. Similarly, the length of the 

wide-base is given by the angular-frequency ωmax = 2πΔxyfmax sin(θM) sin(φM)/c, where 

fmax = fC + 0.5BW . 

If ωmax ≥ π, then the spectral components from the neighboring trapezoids over­

laps causing spatial-aliasing in spatial-frequency space (ωx) ∈ R. For this particular 

array, spatial aliasing can be avoided for temporal frequencies cfct ≤ fmax, if the inter 

element interval is selected such that Δx ≤ 0.5 c/(fmax sin(θM) sin(φM)) that in turn con­
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The regions subjected to spatial aliasing

The regions subjected to spatial aliasing
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Figure 2.13: ROSs of 2D-MDFT of A2MP(e
jωx , fct) and the regions subjected to spa-

tial-aliasing. 

fine ωmax ≤ π. However, for temporal frequencies cfct ≥ fmax, spectral overlapping is 

unavoidable in some spectral regions as shown by the hatched-area in Figure 2.13. Fur­

ther, these spatially-aliased spectral components can be removed from A2MP(e
jωx , fct), 

either by temporal lowpass filtering (having a cutoff-frequency fCF = fmax) or temporal­

bandpass filtering to retain the frequency band |cfct| ∈ {fC − 0.5BW, fC + 0.5BW )}. 

Provided Δx ≤ 0.5 c/(fmax sin(θM) sin(φM)), the spectral components A2MP(e
jωx , fct) of 

the 2D antenna array signal sequence a2MP(nx, t) in the 2D principle Nyquist region 

2PNR = {|ωx| π ∪ |fct| c−1fmax} are given by 

ωx ωx
A2MP(e

jωx, fct) =AP Z [dyB0,dzB0] , fct WCPO (cfct)δ dxB0fct − . (2.85)
[2PNR] 2πΔx 2πΔx 

2.7 Distortions of the Spectra of Finite Aperture Arrays 

In subsection 2.5 and 2.6, infinite-extent 2D-UDPAs and 1D-UDAAs have been assumed 

in determining the ideal spectral properties of signals observed at the outputs of elemental 
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antennas in responses to propagating EM 4D BB-BP ST PWs. However in practice, 

both 2D-UDPAs and 1D-UDAAs only extend over a finite aperture on particular planes 

or lines, respectively. In spectral analysis of signal sequences from finite aperture arrays, 

the straightforward application of MD Fourier transform leads to spectral spreading and 

spectral leakage [44] (pp. 186). Such distortions of the spectra of finite extent signal 

sequences are studied briefly in the following. 

2.7.1 Distortions in the Spectra of Antenna Responses of Finite Extent 2D-UDPAs 

Consider a 2D-UDPA containing (2Nx + 1) × (2Ny + 1) wideband elemental antennas 

that are arranged in a rectangular-grid of (2Nx + 1)-columns along the ûx-direction and 

of (2Ny + 1)-rows along the ûy-direction. The finite-extent 3D mixed-domain signal 

sequence observed at the outputs of (2Nx +1) × (2Ny +1) elemental antennas in response 

to a propagating EM 4D BB-BP ST PW empw4CP(x, y, z, t) may be expressed as 

ar3MP(nx, ny, t) = a3MP(nx, ny, t) rect2D(nx, ny), (2.86) 

where the infinite-extent 3D mixed-domain signal sequence a3MP(nx, ny, t) is given in 

(2.58). Note that the “2D rectangular-window function” [97] (pp. 204) is defined by 

rect2D(nx, ny) 6 

⎧ ⎪⎨ ⎪⎩
 

1; for |nx| ≤ Nx and |ny| ≤ Ny, 
(2.87)
 

0; elsewhere.
 

Following [44] (pp. 58), the 3D-MDFT of finite-extent signal sequence ar3MP(nx, ny, t) is 

given by 

jωx jωx jωxAR3MP(e , ejωy , fct) = A3MP(e , ejωy , fct) ∗ ∗ ∗ {RECT2D(e , ejωy ) δ(fct)}, (2.88) 

where RECT2D(e
jωx , ejωy ) is the 2D discrete-domain Fourier transform (2D-DDFT) of 

rect2D(nx, ny). According to [42] (pp. 66), RECT2D(e
jωx , ejωy ) may be expressed as 

sin(ωx(2Nx + 1)/2) sin(ωy(2Ny + 1)/2)
RECT2D(e

jωx , ejωy ) = × . (2.89)
sin(ωx/2) sin(ωy/2) 
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Let’s consider the example of 2D rectangular window function rect2D(nx, ny) of size 

Nx = 16 and Ny = 8. The corresponding 2D normalized magnitude spectrum 

||RECT2D(e
jωx , ejωx )|| inside |(ωx, ωy)| ≤ π is shown in Figure 2.14 (a). As shown there, 

2π 2πRECT2D(e
jωx , ejωx ) has a main-lobe extending from ωx = − to ωx = along

(2Nx+1) (2Nx+1) 

2π 2πthe ωx-axis and from ωy = − to ωy = along the ωy-axis that contains (2Ny +1) (2Ny +1) 

about 90% of the spectral energy of ||RECT2D(e
jωx , ejωy )||2 . Also shown there, the 

side-lobes of ||RECT2D(e
jωx , ejωy )|| are slowly decaying and span the remaining space in 

|(ωx, ωy)| ≤ π. The cross-sectional magnitude spectrum ||RECT2D(e
jωx , ejωy )|| along the 

lines ωy = 0 and ωx = 0 are shown in Figure 2.14 (b) and (c), respectively. Note that 

the width of the main-lobe along ωy-axis is wider than the width of the main-lobe along 

ωx-axis. This due to the fact that the aperture is wider along the x-axis compared to the 

y-axis. 

In section 2.5, it has been shown that, if it exists, the ROS of A3MP(e
jωx , ejωy , fct) is 

given by an infinite series of periodic lines in (ωx, ωy, fct) ∈ R3 . However, as a result 

of 3D convolution with the “ripply-function” {RECT2D(e
jωx , ejωy )δ(fct)}, the spectral 

components of AR3MP(e
jωx , ejωy , fct) are not confined to set of periodic line segments as 

in the case of A3MP(e
jωx , ejωy , fct). In fact, the ROS of AR3MP(e

jωx , ejωy , fct) is distributed 

inside the entire 3D frequency space (ωx, ωy, fct) ∈ R3 . However, the spectral components 

accounting to about 90% of the total-energy of AR3MP(e
jωx , ejωy , fct) is consentrated in 

the vicinity of the line segments corresponding to the ROS A3MP(e
jωx , ejωy , fct) within 

4π 4πthe interval along the ωx-axis and the interval along the ωy-axis for all (2Nx+1) (2Ny +1) 

temporal frequencies fct. This effect is called as spectral-spreading. The rest of the energy 

of AR3MP(e
jωx , ejωy , fct) is distributed in a decaying set of side-lobes in (ωx, ωy, fct) ∈ R3 . 

This effect is called spectral-leakage. Thus, the straightforward application of 3D-MDFT 

on ar3MP(nx, ny, t) leads to spectral-leakage and spectral-spreading in (ωx, ωy, fct) ∈ R3 . 

In spectral analysis of the finite-extent a3MP(nx, ny, t), an acceptable trade-off can be 
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2D rectangular window rect2D(nx, ny) for Nx = 16 and Ny = 8. 

achieved between the spectral-leakage and the spectral-spreading by using a sufficient size 

2D array along with an appropriate 2D window function [98] to weight [43] (pp. 88) the 

aperture of 2D-UDPA. Let’s consider the example of “2D Hanning window function” 

[97] (pp. 204) that is defined with two cascading 1D Hanning functions hanxD(nx) = 

hanD(nx) of length (2Nx + 1) and hamyD(ny) = hanD(ny) of length (2Ny + 1), such that 

han2D(nx, ny) 6 hanxD(nx) × hanyD(ny). (2.90) 

Note that han2D(nx, ny) = 0 for all |nx| ≥ Nx + 1 and |ny| ≥ Ny + 1. Let’s 

consider the example of han2D(nx, ny) for Nx = 16 and for Ny = 8. Given the 2D­

2D-DDFT
DDFT pair han2D(nx, ny) ←→ HAN2D(e

jωx , ejωy ), Figure 2.15 (a) shows the 2D 

normalized magnitude spectrum ||HAN2D(e
jωx , ejωy )|| in |(ωx, ωy)| ≤ π. Compared 

to ||RECT2D(e
jωx , ejωx )|| shown in Figure 2.14 (a), the ripples in ||HAN2D(e

jωx , ejωy )|| 

decay rapidly as |(ωx, ωy)| → π. However, according to Figure 2.15 (b) and (c), the 

width of the main-lobe is almost double in ||HAN2D(e
jωx , ejωy )|| compared to that of 
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||RECT2D(e
jωx , ejωx )||. Therefore, the 3D convolution between A3MP(e

jωx , ejωy , fct) and 

{HAN2D(e
jωx , ejωy )δ(fct)} spreads the spectral components accounting to 99% of the 

total-energy concentrated at the vicinity of the set of periodic line segments correspond­

ing to the ROS of A3MP(e
jωx , ejωy , fct). However, here, the spectral components are 

distributed over a wider area. Hence, by using the 2D Hanning window function, a lower 

spectral leakage can be archived at the expense of higher spectral spreading. Using the 2D 

window function derived from two cascading 1D Kaiser window functions [66] (pp. 626), 

an arbitrary trade-off may be achieved between spectral-spreading and spectral-leakage 

in (ωx, ωy, fct) ∈ R3 . 

2.7.2 Distortions in the Spectra of Antenna Responses of Finite Extent 1D-UDAAs 

Consider a 1D-UDAA containing (2Nx + 1) wideband elemental antennas that are ar­

ranged along the ûx-direction. The finite-extent 2D mixed-domain signal sequence ob­

served at the outputs of (2Nx + 1) elemental antennas in response to a propagating EM 
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4D BB-BP ST PW empw4CP(x, y, z, t) may be expressed as 

ar2MP(nx, t) = a2MP(nx, t) rectD(nx), (2.91) 

where the infinite-extent 2D mixed-domain signal sequence a2MP(nx, t) is given in (2.75). 

Note that the “1D rectangular-window function” [66] (pp. 626) is defined by 

rectD(nx) 6 

⎧ ⎪⎨ ⎪⎩
 

1; for |nx| ≤ Nx, 
(2.92)
 

0; elsewhere.
 

Following [44] (pp. 55), the 2D-MDFT of finite-extent signal sequence ar2MP(nx, t) is 

given by 

AR2MP(e
jωx , fct) = A2MP(e

jωx , fct) ∗ ∗{RECTD(e
jωx ) δ(fct)}, (2.93) 

2D-DDFT

RECTD(e
jωx ) = (2.94) 

where the 1D-DDFT pair rectD(nx) ←→ RECTD(e
jωx ). According to [42] (pp. 66), 

RECTD(e
jωx ) may be expressed as 

sin(ωx(2Nx + 1)/2) 
. 

sin(ωx/2) 

The 1D normalized magnitude spectrum ||RECTD(e
jωx )|| of the 1D rectangular win­

dow rectD(nx) for Nx = 32, in |ωx| ≤ π is shown in Figure 2.16 (left). As shown there, 

2π 2πRECTD(e
jωx ) has a main-lobe extending from ωx = − to ωx = that con­

(2Nx+1) (2Nx+1) 

tains about 90% of the spectral energy of ||RECTD(e
jωx )||2 and (2Nx −1) slowly decaying 

side-lobes spaning the remainder of |ωx| ≤ π. In section 2.6, it has been shown that, 

if it exists, the ROS of A2MP(e
jωx , fct) is given by an infinite series of periodic lines in 

(ωx, fct) ∈ R2 (see Figure 2.13). However, as a result of 2D convolution with the ripply­

function (RECTD(e
jωx )δ(fct)), the spectral components of AR2MP(e

jωx , fct) are also not 

confined to set of periodic line segments as in the case of A2MP(e
jωx , fct). In fact, the 

ROS of AR2MP(e
jωx , fct) is distributed inside the entire 2D frequency space (ωx, fct) ∈ 

R2 . However, it can be shown that spectral components accounting to about 90% of 

the total-energy is consentrated in the vicinity of the line segments corresponding to 
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the ROS A2MP(e
jωx , fct) within the interval 4π along the ωx-axis for all temporal 

(2Nx+1) 

frequencies fct. The rest of the energy is distributed among (2Nx − 1) side-lobes in 

(ωx, fct) ∈ R2 . Thus, the straightforward application of 2D-MDFT on ar2MP(nx, t) leads 

to spectral-spreading and spectral-leakage in (ωx, fct) ∈ R2 . 

In spectral analysis of finite-extent a2MP(nx, t), an acceptable trade-off can be achieved 

between the spectral-leakage and the spectral-spreading by using a sufficient size 1D array 

along with an appropriate 1D window function to weight [43] (pp. 88) the aperture of 1D­

UDAA. For an example, the “1D Hamming window function” [66] (pp. 626) is used to 

weight the 1D-UDAA signals such that 

ah2MP(nx, t) = a2MP(nx, t) × hamD(nx). (2.95) 

Note that hamD(nx) = 0 for all |nx| ≥ Nx + 1. Following (2.93), the 2D-MDFT of 

ah2MP(nx, t) can be expressed as 

AH2MP(e
jωx , fct) = A2MP(e

jωx , fct) ∗ ∗HAMD(e
jωx )δ(fct), (2.96) 

1D-DDFT
where the 1D-DDFT pair hamD(nx) ←→ HAMD(e

jωx ). The 1D normalized mag­

nitude spectrum ||HAMD(e
jωx )|| for Nx = 32, in |ωx| ≤ π is shown in Figure 2.16 

4π 4π(right). The main-lobe of HAMD(e
jωx ) extends from ωx = − to ωx = 

(2Nx+1) (2Nx+1) 

and contains about 99.95% of the spectral energy of ||HAMD(e
jωx )||2 . Hence, the 2D 

convolution between HAMD(e
jωx ) and A2MP(e

jωx , fct) results little spectral-leakage but 

significant spectral-spreading compared to RECTD(e
jωx ) for the same lenght Nx. A 1D 

Kaiser window function [66] (pp. 626) can be used to achive an arbitrary trade-off between 

spectral-spreading and spectral-leakage in (ωx, fct) ∈ R2 . 
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2.8	 Temporal Sampling of Signals Observed at the Terminals of Antenna 

Array 

In sections 2.4, 2.5 and 2.6 the reception of propagating EM BB-BP ST PWs by using 

array of antennas have been discussed in detail. The signals induced at the outputs of the 

elemental antennas of those arrays are subjected to pre-processing and temporal-sampling 

before being processed by the subsequent signal processing/detection/extraction stages. 

The main objective in temporal sampling schemes is to avoid distortion of the signal 

spectra. In the following, three possible synchronous-sampling schemes, 

• The Direct Nyquist Sampling Scheme 

• The Complex-Quadrature Sampling Scheme 

• The Real-IF Sampling Scheme 

that can be employed for temporal-sampling the temporally-bandpassed array signal 

sequences are outlined briefly. As mentioned in sections 2.4, 2.5 and 2.6, the spectra of the 

signals of interest (SOIs) observed at the outputs of the elemental antennas in response to 
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propagating EM BB-BP ST PWs occupy the temporal bandwidth spanning the positive 

frequencies cfct ∈ (fC − 0.5BW, fC +0.5BW ) and the negative frequencies cfct ∈ (−fC − 

0.5BW, −fC + 0.5BW ). Also according to (2.8), either the positive or the negative 

frequency bands contain the desired information carried by the propagating EM BB-BP 

ST PWs. Hence, selecting either one of those sidebands of the array signal sequences is 

sufficient to extract that information. In the complex-quadrature sampling scheme, single 

sideband extraction is exploited to minimize the required sampling rate. However, lower 

pre-processing circuit complexities can be achieved with the direct Nyquist sampling 

scheme and the real-IF sampling scheme at the expense of higher sampling rate, where 

both the positive and negative frequency bands are extracted. 

2.8.1 The Direct Nyquist Sampling Scheme 

The Nyquist’s13 sampling theorem [71](pp. 347) specifies the conditions in order to avoid 

aliasing in the temporal frequency domain (ωt) in sampling a real-valued band-limited 

1D-CDFT
continuous-time signal wC(t) at regular time intervals. Given wC(t) ←→ WC(cfct), 

assume that the spectral components of WC(cfct) are confined to the band cfct ∈ 

(−fmax, fmax). Hence, according to the Nyquist’s sampling theorem the required temporal 

sampling-rate in sampling wC(t) should be fS ≥ 2fmax. 

In the direct Nyquist sampling scheme, first, each continuous-time signal from the 

output of the LNA, which is connected to an elemental antenna in a 2D-UDPAs or in a 

1D-UDAAs, is processed by a lowpass filter. This is done to suppress spectral components 

outside of the band fct ∈ (−fmax, fmax) that may lead to temporal aliasing. Then, each 

lowpass filtered signal is synchronously sampled at the rate fS = 2fmax, resulting 3D and 

2D discrete-domain sample sequences a3DP(nx, ny, nt) and a2DP(nx, nt), respectively. 

For 3D sample sequences a3DP(nx, ny, nt), the direct Nyquist sampling scheme ide­

13Also known as Whittakar’s cardinal theorem [99](pp. 32) or the Shannon’s sampling theorem 
[100](ch. 1). 
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to direct-Nyquist sampling of 3D/2D signal sequences a3MP(nx, ny, t) and a2MP(nx, t). 

ally transforms the spectral components in the 3D double frustum region in 3PNR = 

{|ωx; ωy| π ∪ |fct| c−1fmax} (see page 52), into the 3D principle Nyquist cube 

(3PNC = {|ωx; ωy; ωt| π}) shown in Figure 2.17 (left). Similarly, for 2D sample se­

quences a2DP(nx, nt), the direct Nyquist sampling scheme ideally transforms the spectral 

components in the 2D double trapezoidal region in 2PNR = {|ωx| π ∪ |fct| c−1fmax} 

(see page 59), into the 2D principle Nyquist square (2PNS = {|ωx; ωt| π}) shown in 

Figure 2.17 (right). 

As shown in Figure 2.17, the spectral components of the SOIs only occupy the 

2π(fC−0.5BW )temporal angular-frequency band |ωt| ∈ (ωL, ωU), where ωL = and ωU = 
fS 

2π(fC+0.5BW ) 
fS 

. The undesired spectral components in the rest of temporal angular-frequency 

band |ωt| ∈/ (ωL, ωU), which corresponds to the continuous temporal frequency band 

|cfct| ∈ (0, fC − 0.5BW ), are filtered out in subsequent signal processing stages. Af­

ter removing these undesired spectral components the operating sample rate of these 

subsequent signal processing stages can be lowered significantly. 

Instead of suppressing the undesired spectral components and subsequent down-

sampling of the sequence after temporal sampling, the desired temporal frequency bands 



69 

|cfct| ∈ (fC − 0.5BW, fC + 0.5BW ) can be first down-shifted, then lowpass filtered to 

remove all undesired spectral components and finally temporally sampled at much lower 

sampling rates than 2fmax, while avoiding temporal aliasing. Although the frequency 

shifting operations require more sophisticated pre-processing analog-circuitry in such 

temporal-sampling process, the overall reduction in the computational complexity due 

to lower sampling rates may be substantial for some applications [101]. The following 

outlines the complex-quadrature sampling scheme and the real-IF sampling scheme that 

employ the frequency down-shifting prior to temporal sampling process in order to reduce 

the sampling rate. 

2.8.2 The Complex-Quadrature Sampling Scheme 

The complex-quadrature sampling scheme employs complex-quadrature temporal-

demodulation [101] to down-shift14 the spectral components inside the positive frequency 

band cfct ∈ (fC − 0.5BW, fC + 0.5BW ), of the 3D/2D signal sequences a3MP(nx, ny, t) 

and a2MP(nx, t) to baseband without spectral overlapping as shown in Figure 2.18. The 

frequency down-shifting operation yields complex-valued 3D/2D signal sequences. Note 

that the desired spectral components are now in the temporal frequency band |cfct| ∈ 

(0, 0.5BW ). Next, these complex-valued 3D/2D signal sequences are lowpass-filtered in 

order to remove the undesired spectral components in |cfct| ∈/ (0, 0.5BW ). Finally, these 

lowpass-filtered complex-valued signal sequences may be sampled at the rate fs = BW 

(i.e. at the temporal sampling interval Ts = 1 = 1 ). According to Nyquist’s sam­
fs BW 

pling theorem, the complex-quadrature sampling scheme achieves the minimum possible 

temporal-sampling rate for a temporally-bandpassed signal having a bandwidth of BW . 

A detailed description of the complex-quadrature sampling scheme will be given in chap­

ter 4. 
14Or up-shift the spectral components inside the negative frequency band cfct ∈ (−fC −0.5BW, −fC + 

0.5BW ). 
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and a2MP(nx, t) to the baseband. 

2.8.3 The Real-IF Sampling Scheme 

The real-IF sampling scheme employs real-IF temporal-demodulation to down-shift the 

spectral contents in the positive frequency band cfct ∈ (fC − 0.5BW, fC + 0.5BW ), 

into the IF band cfct ∈ (0, BW ) and up-shift the negative frequency band cfct ∈ 

(−fC − 0.5BW, −fC + 0.5BW ), into the IF band cfct ∈ (−BW, 0), of the 3D/2D signal 

sequences a3MP(nx, ny, t) and a2MP(nx, t) without any spectral overlapping as shown in 

Figure 2.19. The IF-temporal demodulation yield real-valued 3D/2D signal sequences. 

Note that the desired spectral components are now in the temporal frequency band 

|cfct| ∈ (0, BW ). Next, these real-valued 3D/2D signal sequences are lowpass-filtered in 

order to remove the undesired spectral components in |cfct| ∈/ (0, BW ). Finally, these 

lowpass-filtered complex-valued signal sequences may be sampled at the rate fs = 2BW 

' 1 1(i.e. at the temporal sampling interval T = = ). Because in the real-IF sampling s f � 2BW s 

scheme the 3D/2D signal sequences a3MP(nx, ny, t) and a2MP(nx, t) are processed as real-

valued signals, it has about 50% less pre-processing analog-circuit complexity compared 

to the complex-quadrature sampling scheme. The concept of down-shifting the positive 
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frequency band and up-shifting the negative frequency band to IF bands is adopted in 

the real-IF tri-stage temporal sampler array, which has been proposed in [59]. 

2.9 Summary 

In this chapter, the key concepts and terminology used in this thesis have been introduced. 

First, the important properties of propagating EM waves have been briefly reviewed in 

section 2.2. It has been shown that propagating EM waves can be closely approximated 

by 4D ST PWs. The spectra of 4D BB-BP ST PWs and the corresponding 3D/2D 

signals observed on a plane and on a line in 3D space in response to a propagating EM 

wave have been derived in section 2.3. Next in section 2.4, the concepts of the antenna 

response function and the antenna impulse response have been introduced by extending 

the concept of the active element pattern of the respective arrays. In the proceeding 

chapters, the signals observed at the outputs of elemental antennas in 2D/1D uniformly 

distributed antenna arrays in response to propagating EM 4D BB-BP ST PWs have been 

specified in terms of the antenna response function and the antenna impulse response. 
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A detailed spectral analysis has been given in sections 2.5 and 2.6, for 3D/2D signal 

sequences observed in 2D-UDPAs and 1D-UDAAs, respectively. Also, the criteria for 

avoiding aliasing in 2D-UDPAs and 1D-UDAAs have been stated there. In section 2.7, 

the distortions of the spectra of signal sequences from finite-extent 2D-UDPAs and 1D­

UDAAs have been analyzed. It has been shown that using proper 2D/1D window function 

an acceptable trade-off can be achieved between the spectral-spreading and spectral-

leakage. Finally, three possible temporal sampling schemes have been suggested for 

sampling 3D and 2D signal sequences from 2D-UDPAs and 1D-UDAAs. 
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Chapter 3
 

The Focal Region Signals of a Paraboloidal Reflector and the
 

Corresponding Spectra
 

3.1 Introduction 

Paraboloidal reflector antennas have widespread applications that include radio 

astronomy, microwave-imaging, remote-sensing, space-science, deep-space communica­

tions, satellite broadcasting and satellite communications [102][103][104][105][106][107] 

[108][109]. It is expected that about 3,000 paraboloidal “dish” reflector antennas of 15 m 

diameter will be used in the Square Kilometer Array (SKA) in receiving celestial EM 

radiation in the frequency range of 0.5 - 10 GHz [110]. The SKA will be the largest 

aperture synthesis radio telescope system in the world and is planned to be fully com­

missioned by the year 2020 [19][110][111]. The principal engineering design goals for the 

SKA include achieving extremely high system sensitivity that is facilitated by the large 

collecting area and low noise receiver systems [19][110]. The system sensitivity of the 

SKA is expected to exceed that of current systems at least by a factor of 50 [111]. For 

achieving high sky survey scanning-speeds in the lower-mid frequency band (e.g. 0.5-1.7 

GHz), it has been proposed that novel focal plane array (FPA) receivers to be used with 

some of the paraboloidal reflector antennas in the SKA [19][110][111]. In order to achieve 

such high sensitivity in the lower-mid frequency band using FPAs, it is essential to have 

an accurate modeling of focal EM fields of a paraboloidal reflector. 

The electric-fields observed around the focal region in response to the reflected far-

field EM waves from an ideal circular-aperture prime-focus paraboloidal reflector and the 

corresponding spectra are analyzed in this chapter. The diffraction of reflected EM waves 
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in the focal region concentrates the power of propagating EM waves into a finite spatial 

region on the focal plane. Using the “Huygens’ Principle Approximation” [57](pp. 34), 

it is shown that ideally the ROS of the spectrum of the resulted electric-field on the focal 

plane in response to an incident EM BB-BP ST PW is given by a 3D double right-circular 

frustum. It is also shown that the dimensions of this frustum can be specified in terms 

of the focal length (F ) and the diameter (D) of the paraboloid. This is verified by using 

the Focal Field Synthesizer (FFS), a GPU1-accelerated computer program that is 

developed in order to evaluate focal region electric-fields of a paraboloid. Here, the focal 

electric-field is determined by integrating the electric-field components originated by the 

infinitesimal currents induced on the perfectly conducting surface of the paraboloid in 

response to an incident monochromatic EM ST PW. The extensive parallel processing 

capabilities of the GPU are exploited for fast evaluation of computationally intensive 

numerical integrations. It is shown that for the same set of specifications the focal region 

electric-fields evaluated with the FFS are almost identical to the focal region electric-fields 

evaluated by the GRASP92 . In this thesis, the details of the ROSs of the spectra of the 

focal region electric-fields are exploited in designing the beamforming 3D FIR frustum 

filters in chapter 5. Also in chapter 5, the test sequences for focal region electric-fields, 

which are synthesized using the FFS, are used in determining the performance of the 

broadband beamformers. 

This chapter is organized as follows. In section 3.2, the properties of the electric-fields 

on the focal region and the corresponding spectra are derived. Given that an arbitrary 

EM field can be expressed as a superposition of EM ST PWs [94](pp. 18), the ROS of the 

spectrum of the focal EM field is deduced in subsection 3.2.1 using the Huygens’ Principle 

Approximation and the concepts introduced in chapter 2 regarding propagating EM ST 

PWs received on a plane in 3D space, specifically in sections 2.3.1, 2.3.2, 2.4, 2.5 and 

1The Graphics Processing Unit of a personal computer or a workstation. 
2GRASP9 - is a EM field evaluation software that has been widely used in reflector antenna analysis 

[58]. 
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2.7.1. In subsection 3.2.2, the predicted ROSs of the spectra of the focal electric-fields 

are compared against the ROSs of the spectra of simulated focal electric-fields, which are 

evaluated using the FFS. The design of the GPU-accelerated FFS program is explained in 

section 3.3. The system specifications and the input parameters for the FFS are stated 

in subsection 3.3.1. The radiation integral for the focal region EM field is derived in 

subsection 3.3.2 using the fundamental Maxwell’s equations and the physical optics (PO) 

approximation [112](ch. 5). In subsection 3.3.3, the radiation integral is reorganized as 

a numerical summation using the Newton-Cotes algorithm [113] (pp. 247-264) in order 

to fully exploit the extensive parallel processing capabilities of the GPU. Examples of 

the electric-field patterns evaluated using the FFS are given in subsection 3.3.4. Also in 

this subsection, the normalized focal electric-field patterns evaluated with the FFS are 

compared against the electric-field patterns evaluated with GRASP9 for the same set of 

specifications. 

3.2	 The ROS of the Spectrum of the EM Field Observed on the Focal 

Region 

Previously, various attempts have been made to determine the distribution of EM fields in 

the focal region of a paraboloidal reflector in response to an incident EM ST PW. As given 

in [114](part II), some of these attempts were aimed at deriving a closed-from expression 

for the EM fields in the focal region. However, such expressions contain so-called special 

functions (e.g. Bessel functions and their variants [115](pp. 219-223)) and, therefore, in 

general are too complicated to visualize and interpret for a general understanding of the 

properties of the focal electric-field and their corresponding spectra. In the following, a 

simple methods has been proposed that deduce the ROS of the spectrum of focal region 

EM-field of a paraboloidal reflector in response to an incident EM ST PW. 
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3.2.1 Predicting the ROS of the Spectrum of the Focal Region Electric-Field
 

For simplicity, a circular-aperture prime-focus paraboloidal-dish reflector [57] is assumed 

here. In response to incident EM ST PWs, surface currents are induced on the ide­

ally conducting inner-surface of the paraboloidal-dish [57](pp. 34-39). According to the 

“Huygens’ Principle Approximation” [57](pp. 34), these surface-currents act as point 

sources that emit infinitesimal EM spherical wavefronts toward the focal region of the 

paraboloidal-dish as shown in Figure 3.1 [112](ch. 5). It is assumed that over a finite 

region around the focal point (O), these spherical wavefronts can be closely approximated 

by infinitesimal EM 4D ST PWs. Thus, over this region, the EM field is formed by the 

superposition of such infinitesimal EM 4D ST PWs that radiate from all points on the 

reflector surface. Hence following section 2.3.1, the ideal infinite extent focal EM filed 

may be written in the form of the summation of infinitesimal EM 4D ST PWs 

++ 
ÊPol efr(x, y, z, t) = θ,φ pwθ,φ(x, y, z, t), (3.1) 

θ φ 

EPol where ˆθ,φ is the polarization unit vector associated with each infinitesimal scalar-valued 

4D ST PW that is given by 

pwθ,φ(x, y, z, t) = wθ,φ c 
−1(sin(θ) cos(φ)x + sin(θ) sin(φ)y + cos(θ)z) + t . (3.2) 

Here, the DOA of this infinitesimal EM 4D ST PW is specified by the inclination angle 

θ and the azimuth angle φ, which correspond to the point of origin of the infinitesimal 

EM wave on the surface of the reflector dish. Note that the wavefront function wθ,φ(τ) 

corresponds to the 1D temporal wavefront function w(τ) that is associated with the 

incident EM ST PW arriving from a far-field source. However in (3.1), the polarization 

EPol unit vector ˆθ,φ depends on both the polarization of the incident EM ST PW and the 

unit normal-vector (i.e. n̂(r ' ) in Figure 3.9) at the point of origin (θ, φ) on the inner 

surface of the paraboloid. For the EM 4D ST PWs corresponding to this particular 

paraboloidal reflector, the associated azimuth angles are in the range φ ∈ (0◦ , 360◦), 
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Figure 3.1: Surface currents are induced in response to the incident EM PWs. The 
induced surface currents act as point sources that emits infinitesimal EM waves towards 
to focal plane. 

whereas the inclination angles are in the range θ ∈ (0◦, θmax). Given that the geometry 

of this particular paraboloidal dish is specified by the focal length F , and the aperture 

diameter D, it can be shown that   
−1 8(F/D)

θmax = tan . (3.3)
16(F/D)2 − 1

In the focal region, the vector-valued electric-field efr(x, y, z, t) can also be expressed 

with its components along directions of ûx, ûy and ûz, such that 

efr(x, y, z, t) = xfr(x, y, z, t) ûx + yfr(x, y, z, t) ûy + zfr(x, y, z, t) ûz. (3.4) 

Substituting for efr(x, y, z, t) in (3.1) with (3.4) yields 

++ 
EPol xfr(x, y, z, t) ûx + yfr(x, y, z, t) ûy + zfr(x, y, z, t) ûz = ˆ

θ,φ pwθ,φ(x, y, z, t), 
θ φ 

(3.5) 
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that implies 

++ 
EPol xfr(x, y, z, t) = (ˆθ,φ • ûx) pwθ,φ(x, y, z, t), (3.6a) 

θ φ ++ 
EPol yfr(x, y, z, t) = (ˆθ,φ • ûy) pwθ,φ(x, y, z, t), (3.6b) 

θ φ ++ 
EPol zfr(x, y, z, t) = (ˆθ,φ • ûz) pwθ,φ(x, y, z, t). (3.6c) 

θ φ 

Following the linearity-property of mD Fourier transform [41] (ch. 6), the 4D-CDFTs of 

xfr(x, y, z, t), yfr(x, y, z, t) and zfr(x, y, z, t) may be given by 

++ 
EPol XFR(fx, fy, fz, fct) = (ˆθ,φ • ûx) PWθ,φ(fx, fy, fz, fct), (3.7a) 

θ φ ++ 
EPol YFR(fx, fy, fz, fct) = (ˆθ,φ • ûy) PWθ,φ(fx, fy, fz, fct), (3.7b) 

θ φ ++ 
EPol ZFR(fx, fy, fz, fct) = (ˆθ,φ • ûz) PWθ,φ(fx, fy, fz, fct), (3.7c) 

θ φ 

where the 4D-CDFT pair for the infinitesimal 4D ST PW and its spectrum are de-

4D-CDFT
noted by pwθ,φ(x, y, z, t) ←→ PWθ,φ(fx, fy, fz, fct). According to (3.7a), the ROS of 

XFR(fx, fy, fz, fct) is given by the composite ROSs of PWθx,φx (fx, fy, fz, fct) for all angle-

EPol pairs (θx, φx) such that ˆ •ûx = 0 where θx ∈ (0◦, θmax) and φx ∈ (0◦ , 360◦). Similarly, θx,φx 

the ROS of YFR(fx, fy, fz, fct) is given by the composite ROSs of PWθy ,φy (fx, fy, fz, fct) 

EPol for all (θy, φy) such that ˆθy ,φy 
• ûy = 0 and the ROS of ZFR(fx, fy, fz, fct) is given by 

the composite ROSs of PWθz ,φz (fx, fy, fz, fct) for all (θz, φz) such that ÊPol • ûz = 0,θz ,φz 

where θy;z ∈ (0◦, θmax) and φy;z ∈ (0◦ , 360◦). 

Assume a scenario where a linearly ûy-polarized far-field EM BB-BP ST PW is in­

cident on the prime-focus paraboloidal reflector. For the resultant infinitesimal EM ST 

EPol EPol PWs ˆθ,φ pwθ,φ(x, y, z, t), it can be shown that ˆθ,φ • ûy = 0 for all θ ∈ (0◦, θmax) and all 

φ ∈ (0◦ , 360◦). Therefore, the ROS of YFR(fx, fy, fz, fct) is given by the composite ROSs 

of the spectra PWθ,φ(fx, fy, fz, fct). In section 2.3.1, it has been shown that the ROS of 

PWθ,φ(fx, fy, fz, fct) in the 4D frequency space (fx, fy, fz, fct) ∈ R4 is on the line of inter­
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section between the three 4D hyper-planes fx = sin(θ)cos(φ) fct, fy = sin(θ)sin(φ) fct and 

fz = cos(θ) fct for temporal frequencies ∀ |cfct| ∈/ (fC − 0.5BW, fC + 0.5BW ). As φ and 

θ varies in the respective ranges φ ∈ (0◦ , 360◦) and θ ∈ (0◦, θmax), the line of intersection 

sweeps the 4D hyper-volume HV4CP(fx, fy, fz, fct). The properties of HV4CP(fx, fy, fz, fct) 

can be interpreted by its projection into different 4D hyper-planes, which results 3D ob­

jects. The projection of HV4CP(fx, fy, fz, fct) onto the 4D hyper-plane fz = 0 is a 3D 

double right-circular frustum that corresponds to a 3D double right-circular cone that 

has its main axis along fct and a half-cone-angle 

αmax = tan−1 (sin(θmax)) , (3.8) 

as shown in Figure 3.2 (a). Given that prime-focus paraboloidal-dish reflectors of F/D­

ratios in the range (0.4, 0.6) have been proposed for the SKA [18], the half-cone angle 

associated with such dishes varies in the range αmax ∈ (35◦ , 42◦). Further, the projection 

of HV4CP(fx, fy, fz, fct) onto the 4D hyper-plane fct = 0 is given by the intersection 

between a 3D double right-circular cone along the axis fz and having a half-cone-angle 

θmax and a 3D sphere-shell of inner- and outer- radius c−1(fC − 0.5BW ) and c−1(fC + 

0.5BW ) as shown in Figure 3.2 (b). Also, the 3D projections of HV4CP(fx, fy, fz, fct) onto 

4D hyper-planes fx = 0 and fy = 0 yield an identical 3D volume that corresponds to a 

section of 3D double right-circular cone by an oblique plane is shown in Figure 3.2 (c). 

For a circular-polarized far-field EM BB-BP ST PW incident on the prime-focus 

EPol EPol paraboloidal reflector, it can be shown that both ˆθ,φ • ûx = 0 and ˆθ,φ • ûy = 0 for 

all θ ∈ (0◦, θmax) and all φ ∈ (0◦ , 360◦). Therefore as predicted above, the ROSs of 

XFR(fx, fy, fz, fct) and Y FR(fx, fy, fz, fct), which are the spectra of the ûx-component 

xfr(x, y, z, t), and the ûy-component yfr(x, y, z, t), of the focal-region electric-field 

efr(x, y, z, t), take the shape of HV4CP(fx, fy, fz, fct). 

EPol Because ˆθ,φ • ûz ≈ 0 for θ ≈ 0 and φ ∈ (0◦ , 360◦), for any incident far-field EM BB­

BP ST PW, the ROS of ZFP (fx, fy, fz, fct), which is the spectrum of the ûz-component 
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Figure 3.2: Projections of the 4D ROS of the spectra of focal electric fields on to the 4D 
hyper-planes (a) fz = 0 (b) fct = 0 and (c) fy = 0. 

of efr(x, y, z, t), does not corresponds to 4D hyper-volume HV4C(fx, fy, fz, fct) as in the 

case of ûx-component xfr(x, y, z, t) and ûy-component yfr(x, y, z, t). Nevertheless, it 

EPol can be shown that ˆθ,φ • ûz = 0 for some θ ≈ αmax and for some φ ∈ (0◦ , 360◦). Hence 

EPol and because ˆθ,φ • ûz = 0 for all θ ≥ αmax and for all φ ∈ (0◦ , 360◦), all the spectral 

components of ZFP (fx, fy, fz, fct) remain inside the 4D volume of HV4CP(fx, fy, fz, fct). 

The Electric-Field on the Focal Plane and the Corresponding Spectrum 

On the focal plane z = 0, the electric filed efp(x, y, t) may be expressed with respect to 

the focal region electric field efr(x, y, z, t) such that 

efp(x, y, t) = efr(x, y, z = 0, t), 

= xfr(x, y, z = 0, t) ûx + yfr(x, y, z = 0, t) ûy + zfr(x, y, z = 0, t) ûz. (3.9) 

Following section 2.3.2, given that the ûx-component of the focal plane electric field 

xfp(x, y, t) = xfr(x, y, z = 0, t), the corresponding spectrum XFP (fx, fy, fct) can be 

evaluated by the projection of XFR(fx, fy, fz, fct) on to the 4D hyper plane fz = 0. Simi­

larly, the 3D spectra Y FP (fx, fy, fct) and ZFP (fx, fy, fct) can be evaluated by projecting 

Y FR(fx, fy, fz, fct) and ZFR(fx, fy, fz, fct) on to the 4D hyper-plane fz = 0, respectively. 

Hence, the ROS of the spectrum Y FP (fx, fy, fct) of the ûy -component yfp(x, y, t) of the 

vector-valued focal electric-field efp(x, y, t) resulted by an incident linearly ûy-polarized 
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far-field EM BB-BP ST PW incident on a prime-focus paraboloidal reflector is predicted 

to be a 3D right-circular double frustum (see Figure 2.5 in page 31) that corresponds to 

a 3D cone of half-cone angle αmax in (fx, fy, fct) ∈ R3 . The same region is occupied 

by the spectral components of XFP (fx, fy, fct) and Y FP (fx, fy, fct), the spectra of ûy ­

and ûx - components xfp(x, y, t) and yfp(x, y, t) of focal plane electric field in response 

to a circular-polarized far-field EM BB-BP ST PW incident on the circular-aperture 

prime-focus paraboloidal reflector. 

3.2.2 Verification of the ROS of the Focal Plane EM Field by Numerical Simulation 

The above predicted ROS of the 3D spectrum of the focal plane electric-field efp(x, y, t) 

is verified using the sampled sequences of focal plane electric-field that are synthesized 

using the FFS, the GPU accelerated focal EM field evaluation software3 . In the following, 

spectra of focal field components corresponding to different paraboloidal geometries (i.e. 

the focal length F , and the diameter D combinations), temporal frequencies, types of 

polarization and the DOAs of the incident far-field EM ST PW, are evaluated and the 

corresponding ROSs are compared with the predicted ROS in section 3.2.1. 

ROSs of the Spectra of Synthesized Focal Electric-Field for a Band of 

Frequencies 

Let’s assume a prime-focus paraboloidal-reflector with D = 15 m and F = 6.75 m (i.e. 

F/D = 0.45). Here, the synthesized test-sequence of the focal electric-fields correspond 

to an incident linearly-ûy polarized EM ST PW that arrives along the prime-axis of the 

paraboloid (i.e. θ = 0◦ and φ = 0◦) and containing all temporal frequencies in the band 

spanning 1.2 GHz from 0.5 to 1.7 GHz. The focal electric-field is synthesized on the 

square area of size (1.7648 × 1.7648) m2, which is centered at the focal point (O) of the 

focal plane (i.e. z = 0) (see Figure 3.1). It is observed that the area of the focal plane is 

3The design of FFS is described in the second part of this chapter 
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much larger than the “focal spot” where the power of the incident PWs are focused in. 

3D-CDFT
Given the 3D-CDFT pair yfp(x, y, t) ←→ YFP (fx, fy, fct) for the ûy-component of 

the synthesized focal electric-field efp(x, y, t) and its spectrum, the equivalent iso-surface 

of the positive frequencies of the normalized spectrum ||YFP (fx, fy, fct)|| = 0.5, is shown 

in Figure 3.3. Note that spatial-frequency axes fx and fy are normalized. As shown in 

Figure 3.3 the “frustum-shaped” iso-surface agrees well with the predicted ideal ROS of 

the positive frequencies of the normalized spectrum of the focal electric-field. 

The contour plots corresponding to ||YFP (fx, fy, fct)|| = 0.5, ||XFP (fx, fy, fct)|| = 0.5 

and ||ZFP (fx, fy, fct)|| = 0.5 of the normalized spectra of ûy-, ûx- and ûz- components of 

the focal electric-field efpLiny(x, y, t), pertain to a linearly ûy-polarized monochromatic 

EM ST PW of temporal frequency (cfct) 1 GHz that is arriving along the prime-axis of the 

paraboloid of D = 15 m and F/D = 0.45, are shown by the solid-lines in Figure 3.4 (a), 

(b) and (c) (top-row). Similarly, the contour plots corresponding to ||YFP (fx, fy, fct)|| = 

0.5, ||XFP (fx, fy, fct)|| = 0.5 and ||ZFP (fx, fy, fct)|| = 0.5 of the normalized spectra 

of ûy-, ûx - and ûz - components of the focal electric-field efpCirc(x, y, t), pertain to a 

right-circular polarized monochromatic EM ST PW of temporal frequency (cfct) 1 GHz 

that is arriving along the prime-axis of the paraboloid of D = 15 m and F/D = 0.45 m, 

are shown by the solid-lines in Figure 3.4 (d), (e) and (f) (bottom-row). Note that the 

dashed-lines in the Figure 3.4 (a), (b), (c), (d), (e) and (f) represent the boundaries of the 

ROSs predicted in subsection 3.2.1 according to the Huygens’ Principle Approximation. 

For the spectra of efpLiny(x, y, t), which corresponds to the incident linearly ûy ­

polarized monochromatic EM ST PW, the contour-plot ||YFP (fx, fy, fct)|| = 0.5 is almost 

coincide with the predicted boundary as shown in Figure 3.4 (a). Also according to Fig­

ure 3.4 (b) and (c), the contour-plots ||XFP (fx, fy, fct)|| = 0.5 and ||ZFP (fx, fy, fct)|| = 

0.5 indicate that the spectral components of YFP (fx, fy, fct) and ZFP (fx, fy, fct) are 

remain inside of the predicted boundary. It has been observed that at any temporal fre­
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Figure 3.3: ||YFP (fx, fy, fct)|| = 0.5; The equivalent iso-surface of the positive fre­
quencies of the normalized spectrum of the ûy-component of the focal electric-field for 
temporal frequencies in the band 0.5 - 1.7 GHz. 

quency fct ∈ (0.5, 1.7) GHz, the contour plot ||YFP (fx, fy, fct)|| = 0.5, which corresponds 

to an incident linearly ûy-polarized EM BB-BP ST PW on a prime-focus paraboloidal 

reflector having D = 15 m and F/D = 0.45, is in good agreement with the boundary of 

the ROS that has been predicted in subsection 3.2.1. 

On the other hand, for the spectra of efpCirc(x, y, t), which corresponds to the in­

cident right-circular polarized monochromatic EM ST PW, the contour-plots 

||YFP (fx, fy, fct)|| = 0.5 and ||XFP (fx, fy, fct)|| = 0.5 are almost coincided with the 

predicted boundary as shown in Figure 3.4 (a) and (b). Also according to Figure 3.4 

(c), the contour-plot ||ZFP (fx, fy, fct)|| = 0.5 indicates that the spectral components of 

ZFP (fx, fy, fct) remain inside of the predicted boundary. It has been observed that at 

any temporal frequency fct ∈ (0.5, 1.7) GHz, the contour plots ||YFP (fx, fy, fct)|| = 0.5 

and ||XFP (fx, fy, fct)|| = 0.5, which correspond to an incident right-circular polarized EM 

BB-BP ST PW on a prime-focus paraboloidal reflector having D = 15 m and F/D = 0.45, 

are in good agreement with the identical-boundary of the ROSs that has been predicted 

in subsection 3.2.1. 
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Figure 3.4: Contour-plots ||YFP (fx, fy, fct)|| = 0.5 (left), ||XFP (fx, fy, fct)|| = 0.5 (cen­
ter) and ||ZFP (fx, fy, fct)|| = 0.5 (right) of the spectra of focal electric-field synthesized 
at 1 GHz (solid) and the boundary of the ROS predicted by Huygens’ Principle Approx­
imation (dashed). The top-row corresponds to an incident linearly ûy-polarized EM ST 
PW and the bottom-row corresponds to an incident right-circular polarized EM ST PW. 

The ROSs of the Spectra of Synthesized Focal Electric-Field for Different 

Focal Lengths 

Figure 3.5 (a) - (l) illustrate the predicted boundary lines of the ROSs (dashed) and the 

contour plots ||YFP (fx, fy, fct)|| = 0.5 (solid) of the normalized spectra of ûy-component 

of the focal electric-field efp(x, y, t), pertain to a linearly ûy-polarized monochromatic EM 

ST PW of temporal frequency (cfct) 1 GHz that is arriving along the prime-axis of a series 

of prime-focus paraboloidal reflectors having a constant diameter D = 15 m and different 

focal lengths F = 0.25D4 , F = 0.30D, F = 0.35D, F = 0.40D, F = 0.45D, F = 0.50D, 

4For F/D = 0.25, the circular-aperture of a prime-focus paraboloid falls on the focal plane. 
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Figure 3.5: Contour-plots ||Y FP (fx, fy, fct)|| = 0.5 (solid) of the spectra of focal electric– 
field evaluated for paraboloidal reflectors having different focal lengths and the boundaries 
(dashed) of the ROSs predicted by Huygens’ Principle Approximation. 

F = 0.55D, F = 0.60D, F = 0.65D, F = 0.70D, F = 0.75D and F = 0.80D. Note that 

as the focal lengths F and there by F/D-ratios increase, both the predicted and evaluated 

ROSs of the spectra of focal electric-field contract. As shown in Figure 3.5 (a) and (b), 

the contour plots ||YFP (fx, fy, fct)|| = 0.5 corresponding to focal lengths F = 0.25D 

and F = 0.30D are not agreeing with the predicted boundaries for the ROSs. Also, for 

F = 0.35D and F = 0.40D, the corresponding contour plots ||YFP (fx, fy, fct)|| = 0.5 

show variations in the magnitude of YFP (fx, fy, fct). This may be due to the fact that at 

distances as short as F = 0.25D, F = 0.30D, F = 0.35D and F = 0.40D, the reflected 
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EM waves of temporal frequency 1 GHz can not be assumed to be EM ST PWs on the 

focal plane. Nevertheless, the contour plots ||YFP (fx, fy, fct)|| = 0.5 shown in Figure 3.5 

(e) - (l) are almost coincide with the predicted ROSs. Moreover, all contour plots shown 

in Figure 3.5 (a) - (l) imply that the spectral components of the focal electric-field remain 

inside of the boundaries of the predicted ROS with Huygens’ Principle Approximation. 

The ROSs of the Spectra of Synthesized Focal Electric-Field for Different 

DOAs 

The predicted boundary lines (dashed) and the contour plots ||YFP (fx, fy, fct)|| = 0.5 

(solid) of the normalized spectra of ûy-component of the focal electric-field efp(x, y, t), 

pertain to a prime-focus paraboloidal reflector having the diameter D = 15 m and the 

focal length F = 6.75 m (i.e. F/D = 0.45), in response to a series of right-circular 

polarized monochromatic EM ST PWs of temporal frequency (cfct) 1 GHz that are 

having different DOAs are shown in Figure 3.6. The polar-grid in Figure 3.6 specifies 

the DOAs of monochromatic EM ST PWs in terms of the inclination angle θ and az­

imuth angle φ. Note that all the predicted boundary lines (dashed) and all the contour 

plots ||YFP (fx, fy, fct)|| = 0.5 (solid) are centered at the origin (0, 0) (not shown in Fig­

ure 3.6) of the normalized 2D frequency space (fx, fy) ∈ R2 as in the cases shown in 

Fugues 3.4 and 3.5. As shown in Figure 3.6, for DOAs specified by all combinations 

of θ ∈ (0◦ , 0.5◦ , 1◦ , 1.5◦ , 2◦) and φ ∈ (0◦ , 45◦ , 90◦ , 135◦ , 180◦ , 225◦ , 270◦ , 315◦), the con­

tour plots ||YFP (fx, fy, fct)|| = 0.5 are almost coincide with the predicted boundary for 

the ROS of the spectra of ûy-component of efp(x, y, t) for a prime focus paraboloid of 

F/D = 0.45 at cfct = 1 GHz. The same has been observed that for any DOA specified 

by θ ∈ (0◦ , 3.5◦) and φ ∈ (0◦ , 360◦) at any temporal frequency cfct ∈ (0.5, 1.7) GHz. 

This verifies that, if the DOA of the incident EM BB-BP ST PW remains within the 

small angular range from the axis of the paraboloid, then the ROS of the spectrum of 

resultant focal electric-field is given by a 3D double right-circular frustum as predicted 
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Figure 3.6: Contour-plots ||Y FP (fx, fy, fct)|| = 0.5 (solid) of the spectra of the focal 
electric-fields resulted by right-circular polarized incident EM ST PWs having different 
DOAs and the boundary (dashed) of the ROS predicted by Huygens’ Principle Approx­
imation. 

in subsection 3.2.1. 

From the observations made above using synthesized test sequences of the focal electric-

field patterns, which correspond to prime focus paraboloidal reflectors of different focal 

lengths5 and for both linear- and circular- polarized incident EM BB-BP ST PWs in 

the temporal frequency band (0.5, 1.7) GHz that are having different DOAs within the 

small angular range from the axis of the paraboloid, it can be confirmed that the ROSs of 

the spectra focal electric-field is given by a 3D double right-circular frustum as predicted 

5Provided the EM ST PW assumption holds for the infinitesimal EM waves originated by the surface 
currents on the reflector. 
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by the Huygens’ Principle Approximation. Even though this model is not sophisticated 

enough to predict the magnitude and phase of the spectrum of the focal electric-fields, 

the concept of the ROS of the spectra of focal electric-field provides valuable insight 

for the effective design of FPA signal processors. In chapter 5 of this thesis, the shape 

of the ROS of the spectrum of the focal electric-field is exploited in the design of the 

beamforming 3D FIR frustum filters. 

3.3 The Focal Field Synthesizer (FFS) 

The Focal Field Synthesizer (FFS) is a computer program that evaluates the electric-field 

within the focal region of a paraboloidal reflector using numerical integration techniques 

that exploit the extensive parallel processing capabilities of the GPU. The FFS achieves 

high computational efficiency in evaluating focal electric-fields for different combinations 

of paraboloidal dish geometries in response to incident EM ST PWs having different 

temporal frequencies, polarizations and DOAs. Therefore, it is a viable and a low-cost 

CAD tool for FPA receiver design for the SKA and other applications. In particular, the 

FFS is a frequency domain electric-field synthesis program that calculates the electric-

field in the focal region in response to an incident monochromatic fully-polarized EM 

ST PW on a perfectly conducting paraboloidal reflector with no aperture blockage (see 

Figure 3.7). The focal field patterns in response to non-monochromatic EM ST PWs can 

often be determined by appropriate superposition of monochromatic responses using the 

Fourier series representation of the wave front of the non-monochromatic EM ST PW. 

Since late seventies various computer programs have been developed to numerically 

simulate EM fields in the focal region using mini-computers and personal-computers 

(PCs) [116][117][118][119]. As summarized in [114][120], in the development of these 

computer programs, many analysis/synthesis techniques have been employed to approx­

imate the EM wave propagation and the induced surface current density at the reflector, 
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Figure 3.7: The considered arrangement of the reflector for the FFS and the used nota­
tions for specifying system parameters. 

such as (a) geometrical optics (GO), (b) physical optics (PO), (c) the geometrical theory 

of diffraction (GTD), (d) the physical theory of diffraction (PTD), (e) the method of 

moments (MOM), (f) the Gaussian beam method and (g) the finite-time-time-domain 

(FTTD) method (e.g. with Yee algorithm). The above mentioned analysis/synthesis 

techniques have advantages and disadvantages for determining EM fields for different 

reflector configurations, both in terms of accuracy and computational complexity in eval­

uation. In general, the MOM method and FTTD method achieve the most accurate 

results although their respective computational complexities are comparatively very high 

because of the electrically larger paraboloidal reflector [120]. The GO and Gaussian-beam 

methods are accurate only for specific orientations of the reflector. For most practical 

cases of reflectors, PO and PTD methods, in combination with the GTD method, can 

achieve sufficiently accurate results with acceptable computation times [120]. Hence, 

in the FFS, the PO approximation is used in determining the surface current density 



90 

induced by the incident EM ST PW.
 

Specialized parallel processing hardware devices, such as field programmable gate 

arrays (FPGAs) and graphics processor units (GPUs), have been used to increase the 

speed of numerical calculations for FTDT, MOM techniques [121][122][123][124][125]. 

GPUs are now widely used in modern personal computers (PCs) for manipulating high-

definition (HD) 3D graphical-objects in real time for applications in computer games and 

in animation [126][127]. As shown in Figure 3.8, a typical GPU architecture contains 

many processor cores and a common random access memory (RAM) module. Each 

processor core consists of a control unit, a cache memory and multiple arithmetic and 

logic units (ALUs) [128]. This many-core multi-threaded architecture facilitates the high-

speed parallel execution of single-instruction-multiple-data (SIMD) operations, which is 

the case for graphics processing. 

As a result of the rapid growth in the computer gaming industry over the last five 

years, there have been significant advances in GPU processing capabilities [126]. Also 

in the current market, PCs in the mid- to high-priced ranges are typically equipped 

with GPUs of moderate processing capabilities. NVIDIA, the largest GPU manufacturer 

in the world, foresaw the potential of GPU processing for “General Purpose - GPU” 

(GP-GPU) applications for non-graphical data and therefore developed the computa­

tional engine called Compute Unified Device Architecture (CUDA) and an integrated 

software development kit (SDK), based on the C programming language [126]. Further, 

third party software, known as “wrappers”, have been developed for other program­

ming languages, such as Python, Fortran, Java and MATLAB, to interface CUDA with 

the respective development environments [126][129][130]. These wrappers provide re­

searchers with the capability of rapid deployment of previously developed source codes 

with very few modifications in the respective development environment (e.g. MATLAB, 

Fortran). Nevertheless, the increased processing speeds that are achieved using wrapper 
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programs may be lower than that achieved using direct CUDA implementation. In the 

FFS, GPUmat [130], a wrapper for MATLAB, is exploited to transfer the SIMD opera­

tions and data of the focal electric-field calculations to the GPU for high-speed parallel 

execution. 

In order to validate the functionality of the FFS, the EM fields that are synthesized 

using the FFS has been compared with the focal fields6 generated by GRASP9 [58] 

from TICRA. GRASP9 is a widely used commercial CAD tool for analyzing EM fields 

scattered by reflector antennas [58]. Here, the focal EM fields calculated using the FFS 

have been compared against the electric-field patterns calculated by the GRASP9 for 

same sets of input specifications. The results show that the focal EM fields calculated 

by both the FFS and the GRASP9 are in good agreement. Further, it has been observed 

that the FFS achieves reductions of field evaluation processing times that range from 

150% to 280% compared to GRASP9. 

6GRASP9 simulations were conducted by Dr. Bruce Veidt and Dr. Rick Smegal of Dominion Radio 
Astrophysical Observatory (DRAO), Penticton, BC, Canada. This candidate is utterly grateful for both 
Dr. Veidt and Dr. Smegal for generating these test sequences. 
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3.3.1 The System Specifications and Notations used in the FFS 

In the FFS, the input specifications are the diameter (D), the focal length (F ), and 

the lateral offset (dOff), which specify the geometry of the paraboloidal dish, and the 

temporal frequency (ft ≡ cfct), the type of polarization (ÊPol), and the DOA (d̂), of the 

incident monochromatic fully-polarized EM ST PW. The co-ordinate system of choice, 

the arrangement of the paraboloidal reflector and the orientation and the polarization of 

the incident monochromatic EM ST PW of the FFS are shown in Figure 3.7 (see page 

89). As shown there, the focal point of the paraboloidal reflector is selected as the origin 

(O) of the Cartesian coordinate system of choice. For the FFS, only the paraboloidal 

reflectors of circular-apertures are considered. For the reflector arrangement shown in 

Figure 3.7, the lateral offset dOff, is the distance between the center of the projected 

circular-aperture on the z = 0 plane (i.e. x − y plane) and the z-axis, which coincides 

with the prime-axis [57] of the corresponding paraboloid of focal length F . Hence, the 

surface of the reflector is defined as 

2 2 g(x, y, z) 6 z + F − 
1 

x + y = 0, (3.10)
4F   

such that (x − dOff)2 + y2 ≤ 0.5D2 . Note that (x − dOff)2 + y2 ≤ 0.5D2 corresponds 

to the projected circular-aperture PCA(x, y) shown in Figure 3.7, which remains inside 

the square region x ∈ [dOff − 0.5D, dOff + 0.5D] and y ∈ [−0.5D, 0.5D]. 

The magnitude A and the phase ϕ of the incident monochromatic EM ST PW is 

specified with respect the origin (O), with the complex-valued scaling-factor M = Aejϕ. 

The orientation of the incident monochromatic EM ST PW is specified by its DOA with 

the inclination angle θ and the azimuth angle φ, where both angles are measured as 

shown in Figure 3.7. The corresponding DOA unit vector d̂ is given by 

d̂ ≡ cos(φ) sin(θ)ûx + sin(φ) sin(θ)ûy + cos(θ)ûz. (3.11) 

As mentioned in section 2.2.1, the electric-field component of a fully-polarized monochro­
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matic EM ST PW may be given by
 

epw(x, y, z, t) = pw(x, y, z, t)êH + β pw(x, y, z, t)êV, (3.12) 

where the orthogonal unit vectors êH and êV are oriented as shown in Figure 3.7. The 

parameter β specify the type of polarization of epw(x, y, z, t). For example, if ∠β = 0◦ 

or ∠β = 180◦, then epw(x, y, z, t) is a linear-polarized EM ST PW, where the direction 

of the electric-field is given by the vector combination êH + βêV. On the other hand, 

if |β| = 1 and ∠β = ±π/2, then epw(x, y, z, t) is a circular-polarized EM ST PW, 

where “ + ” sign corresponds to right-circular polarization and “ − ” sign corresponds 

to left-circular polarization, respectively. For all other values of β, epw(x, y, z, t) is a 

elliptical-polarized EM ST PW. However for the FFS, the type of polarization of the 

incident monochromatic EM ST PW is specified by the unit vector ÊPol in terms of the 

parameter β, the inclination angle θ, and the azimuth angle φ, of the EM ST PW, such 

that 

β cos(φ) − sin(φ) ûx + cos(φ) + β sin(φ) ûy + −β tan(θ)ûz 
ÊPol = (3.13)

(β2 sec2(θ) + 1) 

which satisfies the orthogonality condition d̂ • ÊPol = 0, where d̂ is the DOA unit vector 

of the incident EM ST PW that is given in (3.11). 

3.3.2 Focal Region EM Field Synthesis; A Review 

Consider the paraboloidal reflector surface shown in Figure 3.9, where its orientation in 

3D space is specified according to an arbitrarily selected co-ordinate system. Given t 

denotes the permittivity and µ denotes the permeability of the medium that the EM 

ST PW propagates, the electric-field E(r), at a point specified by the position vector 

r = x ûx + y ûy + z ûz, can be expressed as 

1 
E(r) = −j ω µ A(r) + \[\ • A(r)], (3.14)

j ω ε 
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Figure 3.9: Geometry of the reflector, incident PW and the reflected wave expressed 
using vector notation. 

[57] (pp. 30), where \ denotes the gradient operation [115](pp. 446-447) and \• denotes 

the divergence operation [115](pp. 453-454). According to the Maxwell’s equations, the 

magnetic vector potential A(r) [57] (pp. 30), in (3.14) is defined as a surface integral ++ 
A(r) 6 J(r ' ) G(ρ ' ) dS ' , (3.15) 

S 

of the surface current density J(r ' ), which is induced in response to the incident monochro­

matic EM ST PW of temporal angular frequency ω(= 2πft), and the Green’s function 

G(ρ ' ) [69](pp. 407-411) over the surface S ' of the paraboloidal reflector. Note that the 

Green’s function is defined as 

−j k ρ −j k|r−r |e e
G(ρ ' ) 6 = , (3.16)

4 π ρ' 4π |r − r '|

with reference to the point on the reflector surface, which is specified by the position 

' ' ' ' vector r = x ûx + y ûy + z ûz, and the point r, where the electric-field is evaluated. The 



�

  

�

   

�

++ � � 

95 

separation vector between r and r ' is defined as 

r − r ' 6 ρ ' R̂' , (3.17) 

with the magnitude ρ ' and the direction of the unit vector R̂' . Also, k = ω/c is the cor­

√ 
responding wavenumber and c = 1/ εµ is the speed of wave propagation in the medium 

where the incident EM ST PWs propagates [112]. Substituting (3.15) and (3.16) into 

(3.14) yields the radiation integral, ++ 
j

E(r) = − k2J(r ' ) + (\ • J(r ' )) \ G(ρ ' ) dS ' . (3.18)
ωε S 

According to [120](pp. 15-4-15-5), the evaluation of the gradient (\) and divergence (\•) 

operations in (3.18) results in 

−j jk 1 3jk 3 
E(r) = k2 − − J(r ' ) + −k2 + + (J(r ' ) • R̂')R̂' G(ρ ' ) dS ' . 

ωε S ρ' ρ'2 ρ' ρ'2 

(3.19) 

Assuming the contribution from the factors jk/ρ ' and 1/ρ '2 are negligible, E(r) in (3.19) 

can be approximated by ++   −jk2 

E(r) ≈ J(r ' ) − (J(r ' ) • R̂')R̂' G(ρ ' ) dS ' . (3.20)
ωε S

Assuming the inner surface of the paraboloidal reflector is near-perfect electric con­

ductor with no aperture blockage, here, the physical-optics (PO) [120](pp. 15-4–15-6) 

approximation is used in determining the surface current density J(r ' ) induced on the 

reflector surface. The PO approximation yields 

J(r ' ) = 2n̂(r ' ) × HInc
(r ' ), (3.21) 

where HInc is the incident magnetic field vector just outside the reflector surface at point 

r ' and n̂(r ' ) is the unit normal vector at point r ' on the reflector surface as shown in 

Figure 3.9. Here, by considering only the PO approximation, the possible reflected fields 
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at the edges of the reflector have been ignored [112]. Further, this approximation ignores 

the edge conditions, which requires the normal components of the surface current density 

to be zero and the tangential components of the same to be singular [112]. Nevertheless, 

it has been shown that the PO approximation can achieve highly accurate results in 

predicting EM fields, even for small reflectors having at least 5 wavelengths in diameter 

[120](pp. 15-4). According to PW propagation model given in section 2.2, the magnetic 

field at the point (r ' ) just outside the reflector surface is given by 

HInc(r 
1 

EInc(r ' ) × ˆ' ) = d , (3.22)
Z 

where Z = µ/ε is the characteristic impedance of the propagation medium, EInc(r ' ) 

is the incident electric-field and d̂ is the unit DOA vector shown in Figure 3.9. For a 

monochromatic EM ST PW, both HInc(r ' ) and EInc(r ' ) can be expressed relative to the 

EM fields HInc and EInc, at the origin O (or any other reference point), using a unit-O O 

magnitude scaling-factor to compensate the phase-change due to the propagation such 

that 

HInc(r jk[r •d̂] EInc(r jk[r •d̂]' ) = HInc e and ' ) = EInc e , (3.23)O O 

1/Z(EInc EPol where HInc = × d̂) and where EInc = M ̂ . Note that the complex-valued O O O 

scaling-factor M , specifies the magnitude and phase of the monochromatic EM ST PW 

at the reference point O. 

Substituting (3.23), (3.22) and (3.21) into (3.20) yields ++ −jk(ρ −[r •d̂])−jω ' ) × (EInc ' ) × (EInc e
E(r) = n̂(r O × d̂)− n̂(r O × d̂) •R̂' R̂' 

ρ' 
dS ' . 

2πc S 

(3.24) 

According to [115](pp. 496-497), the surface integral given in (3.24) can be rewritten as 

a 2D integral ++ −jk(ρ −[r •d̂])−jω ' )×(EInc ×ˆ ' ) × (EInc ×ˆ R' R̂' e ' E(r) = n̂(r d)− n̂(r d) • ˆ J dx ' dy ' .O O Σ2πc ρ'
 
(x ,y )∈PCA(x,y)
 

(3.25)
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of x ' and y ' variables spanning the projected circular-aperture PCA(x, y) of the reflector 

(see Figure 3.7). Also according to [115](pp. 502-503), the Jacobian of the integral 

tranform is given by 

JΣ 
' = (x '2 + y '2 + 4F 2)/2F , (3.26) 

which is only valid on PCA(x, y). The unit-normal vector to a 3D surface g(x ' , y ' , z ' ) = 0 

is defined by 
\(g(x ' , y ' , z ' )) 

n̂(r ' ) 6 , (3.27)
|\(g(x ' , y ' , z '))|

[115](pp. 493-494). Hence, the unit normal vector at the point r ' ≡ (x ' , y ' , z ' ) on the 

paraboloidal reflector surface, which is defined in (3.10), is given by 

n(r ' ) −xûx − yûy + 2F ûz 
n̂(r ' ) ≡ = . (3.28)

|n(r ')| (x '2 + y '2 + 4F 2) 

In (3.25), substituting for JΣ 
' with (3.26) and n̂(r ' ) with (3.28), yields the radiation 

integral ++ −jk(ρ −[r •d̂])−jω ' )×(EInc ' ) × (EInc e
E(r) = n(r O ×d̂)− n(r O ×d̂) •R̂' R̂' 

ρ' 
dx ' dy ' . 

4πF c 
(x ,y )∈PCA(x,y) 

(3.29) 

3.3.3 Numerical Integration of the Radiation Integral using a GPU 

Selecting of a Suitable Numerical Integration Method for GPU Processing 

In subsection 3.3.2, it has been shown that the electric-field at point r (see Figure 3.9) in 

the focal region of a paraboloidal reflector in response to an incident monochromatic EM 

ST PW can be obtained by evaluating the radiation integral (3.29). Previously, for deter­

mining the far field radiation of a reflector antenna, slightly different versions of (3.29) 

has been evaluated in [116][117][131][132][133] using different approaches. For example, 

a closed-form solution has been derived for a special case of the feed pattern in [131], 

whereas various numerical-integration techniques have been used in [116][117][132][133]. 

In general, the far-field close-form method and far-field numerical integration techniques 
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(e.g. [112] (pp. 42-44)) may be modified to evaluate the focal electric-field in 3.29. Fur­

ther, according to [134], Monte Carlo and Quasi-Monte Carlo methods can also be used 

in evaluating multiple integrals. Such methods use iterative algorithms, which are nu­

merically efficient for general evaluation in a central processing unit (CPU). 

The architectures of CPUs and GPUs are fundamentally different [128]. The CPUs 

are designed for execution of general purpose instructions while the GPUs are designed 

for execution of a limited set of instructions on a large set of data. Compared to a CPU, a 

GPU achieves the best acceleration when it is used for executing non-iterative arithmetic-

type SIMD operations [126]. Hence, the numerical integration methods that has been 

optimized for execution in a CPU may not be directly deployable in a GPU, or if deployed 

may not yield optimum results. For example, the libraries available for CUDA are limited 

and therefore, may not include the optimized instruction sets to evaluate the special 

functions, which are required in the integration methods summarized in [112][116][117], 

in the GPU. Also, the methods employing iterative evaluation to implement Monte Carlo 

and Quasi-Monte Carlo integration algorithms become inefficient when implemented in 

GPUs, because excessive data transfers in and out of the GPU may slow down the 

execution. However, the direct numerical integration algorithms [134] can be formulated 

into an algorithm of non-iterative arithmetic-type SIMD operations. Hence, for the FFS, 

the 2D extension of the simplest rectangular Newton-Cotes algorithm [113](pp. 247-264) 

has been selected for evaluating the radiation integral (3.29), using a GPU. Also for 

the FFS, it has been observed that the direct integration method yields better accuracy 

compared to the 2D FFT based integration method proposed in [112](pp. 42-44). 

Following the 2D rectangular Newton-Cotes algorithm, (3.29) can be approximated 
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by 

−jωΔm Δn 
++ 

' 
’) × (EInc × ˆE(r) ≈ n(rm’n O d)

4πF c 
m n 

−jk(ρ −[r •d̂])m’n’ m’n’e' ) × (EInc− n(r × d̂) •R̂' R̂' , (3.30)m’n’ O m’n’ m’n’ ρ ' m’n’ 

where Δm and Δn are the horizontal and vertical sampling intervals on the surface of 

the reflector. According to [113](pp. 253-254), as Δm → 0 and Δn → 0, the accuracy 

of the approximation in (3.30) improves, while increasing the computational complexity 

of the numerical integration. Hence, the selection of Δm and Δn in FFS is a trade-off 

between the accuracy and the computational complexity, and therefore the computation 

time. 

Arranging the Numerical Radiation Integral to Achieve the Maximum Possible 

Acceleration with a Typical GPU 

According to the system architecture of a GPU shown in Figure 3.8 (see page 91), a typi­

cal GPU contains many-processor-cores, where each core is assigned with a cache memory 

and many dedicated ALUs. Also, there is a common RAM shared by all processor cores. 

Therefore, Compared to general-purpose CPUs, GPUs are better designed for evalu­

ating computationally-intensive arithmetic algorithms in SIMD format [128]. However, 

extensive data transfers between the CPU and the GPU may diminish the accelerations 

achieved with GPU processing [126]. Hence, in the FFS, (3.30) is re-formulated in such 

a way that the bulk of the computationally intensive processing is presented in SIMD 

form. Also in the FFS, steps has been taken to minimize data transfers between CPU to 

GPU. 

In typical FPA applications, the focal field E(r) is evaluated at a set of L points 

rl = xl ûx + yl ûy + zl ûz; l = 1, .., L, either on a plane, on a surface or inside a volume, 

which requires repeated evaluations of the numerical radiation integral (3.30), for each 

point rl. In repeated evaluations of (3.30), pre-calculation of the common components 
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' ) × (EInc jk[r •ˆ’for any rl, namely n(r × d̂), e m’n d]) and −jωΔmΔn , and using these arrays m’n’ O 4πF c 

for all rl’s yields considerable reduction of the computational complexity of the total 

evaluation. However, the repeated calculations of (3.30) at each rl, require independent 

re-calculations of  
ρ ' ' ' ' 

@rl 
= (xl − x )2 + (yl − y )2 + (zl − z )2 , (3.31)m ,n m ,n m ,n m ,n 

' ' ' (xl − x )ûx + (yl − y )ûy + (zl − z )ûzm ,n m ,n m ,n 
R̂' = , (3.32)m ,n ρ ' @rl m ,n 

' m ,n and e −jkρ
/ρ ' . Given r is on the paraboloidal reflector surface, which is m ,n 

@rl
 

' '2 '2
specified in (3.10), z = (x + y )/4F − F . m ,n m ,n m ,n 

A typical pseudo-code for the FFS is shown in Figure 3.10, where both CPU and 

GPU are employed in processing for the evaluation of the numerical radiation integral 

(3.30). According to Figure 3.10, after specifying the reflector arrangement and PW 

' ) × (EInc × ˆ jk[rm’n’•ˆ −jωΔmΔnparameters, the common components n(r d), e d]) and , of m’n’ O 4πF c 

(3.30) are evaluated through CPU processing. The lack of parallelism of these three 

variables makes such evaluations unsuitable for GPU processing. On the other hand, the 

m ,nrequired repeated evaluations of ρ ' , R̂' , e −jkρ
and finally E(r) for any LP points m ,n m ,n 

can be arranged into SIMD format to be simultaneously evaluated in a GPU. However, 

in practice, LP is limited by the available computational resources of the GPU, implying 

a maximum of LPmax simultaneous evaluations of E(r). In this case the FFS requires to 

perform iL/LPmaxl7- number of evaluations of the section of the pseudo-code denoted 

by * in order to evaluate (3.30) for all L points. For the FFS, it has been observed that 

the limitations of the common RAM and the processor cache memory of the particular 

GPU limit the number of simultaneous evaluations of (3.30). Thus, the operational code 

of the FFS is refined in order to minimize the peak-memory requirement for evaluating 

the variables in (3.31) and 3.32 such that the optimal number of LPmax is achieved for 

the particular GPU. 

7iNp/Nq l denotes the ceiling operation that rounds-up the quotient of Np/Nq to the nearest integer. 
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Figure 3.10: The pseudo-code for the FFS. This code illustrates the use of the CPU and 
the GPU for processing different variables of (3.30) in order to achieve the maximum 
possible acceleration for the FFS. 
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Single Precision vs Double Precision Arithmetic in GPU Processing 

It is expected that using double-precision floating-point arithmetic operations (DFAOs) 

would lead to a better accuracy in evaluating the numerical radiation integral (3.30) 

compared to that evaluated using single-precision floating-point arithmetic operations 

(SFAOs). According to [128](Appendix A), low-end and mid-range GPUs only support 

SFAOs where high-end GPUs support both SFAOs and DFAOs. Nevertheless in GPUs, 

DFAOs has longer execution times compared to SFAOs [128]. Hence, in order to mini­

mize the computational time in GPU processing, SFAOs are employed in the FFS. How­

' ) × (EInc jk[r •d̂])’ever, in the FFS, the intermediate data sequences (e.g. n(r × d̂), e m’n
m’n’ O 

and −jωΔmΔn ) evaluated in the CPU are in double-precision floating-point (DF) format. 
4πF c 

Hence, before being transferred into the GPU for subsequent processing, these interme­

diate data variables are transformed into single-precision floating-point (SF) format (see 

Figure 3.10). It has been observed that there is no significant reduction in the accuracy of 

the focal field calculated with the FFS using SFAOs in GPU processing compared to the 

focal field calculated using DFAOs in CPU processing with the corresponding MATLAB 

code. 

Using a Wrapper Program vs Using the Direct CUDA Implementation for 

GPU Processing 

In the implementation of the FFS, MATLAB commands has been used for CPU pro­

cessing and extended MATLAB commands of the GPUmat [130], which is a wrapper 

for MATLAB that interfaces MATLAB with CUDA [126], for GPU processing. Even 

though it is expected that the direct implementation of the SIMD operation in CUDA 

would lead to the best possible acceleration of the numerical integration, the use of a 

wrapper program to interface CUDA for GPU processing has a few other advantages. 

First, the wrapper programs allow the rapid deployment of the original source code, which 

has been developed for the respective development environments (e.g. MATLAB, Java,
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FORTRAN, etc.), with only a few modifications [130]. The choice of development envi­

ronment may depend on the language familiarity of the developer. Second, knowledge of 

the architecture of the GPU is not required for the implementation in order to achieve 

considerable increases in the processing speed of the execution [130]. Also, the added 

features, such as the GPUmat compiler, allow the development of special sub-routines 

and saving those in GPU memory, which speed up the execution in repeated evaluations 

of the same program [130]. 

3.3.4 Examples of the FFS Field Calculations and Comparisons between the FFS and 

the GRASP9 

Some examples of focal electric-field patterns achieved using the FFS are presented in 

the following. Also, here, the focal electric-field patterns evaluated with the FFS are 

compared against the electric-field patterns evaluated using GRASP9 for the same set 

of specifications. GRASP9, which has been developed by TICRA, is a widely used 

CAD tool for analyzing EM fields scattered by reflector antennas [58]. In [90][135][136], 

researchers have used either GRASP9 or its predecessors in order to model focal field 

patterns. In GRASP9, for single reflector analysis, the PO approximation is assumed in 

determining the induced surface current density and the PTD approximation is assumed 

in determining the edge conditions [137]. It would be highly desirable had both the FFS 

and GRASP9 yielded identical field patterns for the same set of specifications. However, 

partly because the ignored edge conditions in the FFS, and also because of differences 

between the employed integration methods in GRASP9 and the FFS, minor differences 

have been observed between the calculated focal field patterns by the two field synthesis 

programs. 

In this example, a prime-focus (i.e. dOff = 0 ) paraboloidal reflector with D = 10 m 

and F = 6 m (i.e. F/D = 0.6) having a near-perfect conducting surface is considered. A 

linearly-ûy polarized (i.e. ÊPol = ûy) monochromatic EM ST PW of temporal frequency 
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(cfct) 1 GHz and the scaling-factor at the origin (O) M = 1, which is arriving from the 

direction specified by the inclination angle θ = 1.5◦ and the azimuth angle φ = 0◦, is 

incident on the paraboloidal reflector. The magnitude and the phase of the ûy-, ûx- and 

ûz - components of the electric-field EFFS on the focal plane (i.e. z = 0 see Figure 3.7), 

that has been evaluated using the FFS, are shown in Figure 3.11. Note the shown region, 

which corresponds to an area of 0.75 × 0.75 m2 centered at the origin O, is uniformly 

sampled into a grid of (51 × 51) points. In this example, for the numerical integration, 

a sampling grid of size was selected such that Δm = Δn = D/ iD/λl. In order to 

evaluate ûy-, ûx - and ûz - components of EFFS at a total of 2601 points, the FFS takes 

about 0.825 s on a Dell XPS-600 computer equipped with an Intel Pentium-IV (clock 

speed 3.4 GHz) CPU, 2 GB RAM and NVIDIA GeForce GTX 260 (Processor clock speed 

1242 MHz and Internal RAM 896 MB) GPU. 

Comparing the Focal Electric-Fields Evaluated by the FSS and GRASP9: A 

Qualitative Study 

The focal electric-field patterns EFFS, evaluated with the FFS, and EGRASP9, evaluated 

with GRASP9, for the same set of specifications are compared in the following. For 

ease of comparison between EFFS, and EGRASP9, both ûy-components are normalized by 

multiplying with the corresponding scaling-factors, which are defined as 

SCFFFS 6 
1 

and SCFGRASP9 6 
1 

,
max[|EFFS • ûy|] max[|EGRASP9 • ûy|]

and the respective ûx - and ûz - components of EFFS and EGRASP9 are scaled by the 

corresponding SCFFFS and SCFGRASP9. Note that the phase angle of the ûx-, ûx - and 

ûz - components of EFFS and EGRASP9 is given in degrees. For both EFFS and EGRASP9, 

compared to the ûy-component, the maximum relative magnitude of the ûx-component 

is 
max[|EFFS;GRASP9 • ûx|]

20 log10 = −28 dB,
max[|EFFS;GRASP9 • ûy|] 
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Figure 3.11: The electric-field pattern EFFS evaluated with the FFS. The magnitude 
(upper-row) and the phase (bottom-row) of the ûy - (left), ûx - (center) and ûz - (right) 
components of EFFS is sampled into a grid of (51×51) points on an area of 0.75×0.75m2 , 
in response to an incident linearly-ûy polarized EM ST PW of frequency 1 GHz. The 
DOA of the PW is specified by θ = 1.5◦ and φ = 0◦ . 

and the maximum relative magnitude of the ûz-component is 

max[|EFFS;GRASP9 • ûz|]
20 log10 = −10.5 dB. 

max[|EFFS;GRASP9 • ûy|] 

Also, as shown in Figure 3.11 (bottom-left) and Figure 3.11 (bottom-right), the phase 

within the “main-lobes” of the ûy-component and the ûz-component are approximately 

constant. However, according to Figure 3.11 (bottom-center), the phase for the ûx ­

components is approximately quadratic. Note that there are some inconsistencies of 

phase at some regions of the focal field, prominently at the edges of the main lobes where 

the magnitudes are relatively low (e.g. Figure 3.11 (bottom-right)). It is suspected that 

this effect is caused by quantization effects due to numerical integration. 
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A typical example of the electric-field difference
 

ΔE 6 EFFS − EGRASP9, (3.33) 

between the focal plane electric-field patterns EFFS and EGRASP9 are shown in Figure 3.12, 

where the corresponding EFFS and EGRASP9 are evaluated using the same set of pa­

rameters that had been used to evaluate the focal electric-field shown in Figure 3.11. 

Here, the magnitude and phase of the ûy-, ûx - and ûz - components of ΔE are shown 

in the top- and bottom- rows of Figure 3.12. Note that for the ease of comparison, 

the magnitude differences are normalized for the ûy-, ûx- and ûz- components such that 

|ΔE • ûx;y;z|/max[|ΔE • ûx;y;z|]. By comparing the magnitude of electric-field |EFFS| and 

the corresponding normalized magnitude differences ||ΔE||, which are shown in the top-

rows of Figure 3.11 and Figure 3.12, respectively, it can be seen that in the regions 

where the magnitude of the electric-field is higher, the normalized magnitude difference 

is lower. Hence, the magnitudes of the electric-field components evaluated by the FFS 

and GRASP9 are in good agreement. As shown in Figure 3.12 (bottom-center) for the ûx ­

component, there are no significant differences between the phase of EFFS and EGRASP9. 

Also shown in Figure 3.12 (bottom-left) and (bottom-right), the phase of the ûy- and ûz ­

components of EFFS and EGRASP9 differ only at very few points at the edges of the main 

lobes (see Figure 3.11). For most applications such differences can be ignored because 

the magnitudes at these edge points are relatively very small. 

Comparing the Focal Electric-Fields Evaluated by the FSS and GRASP9: A 

Quantitative Study 

Here, two figures of merit, the maximum-relative-difference (MRD) and the normalized­

mean-square-difference (NMSD), are used to quantify the differences in magnitudes of the 

ûy - ûx - and ûz - components of the focal plane electric-field patterns EFFS and EGRASP9, 

which are evaluated by the FFS and GRASP9, respectively. For the ûy - ûx - and ûz ­
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Figure 3.12: The magnitude and phase of the ûy-, ûx - and ûz - components of the elec­
tric-field difference ΔE between EFFS and EGRASP9, which are evaluated using the FFS 
and GRASP9 for the same set of specifications. 

components, the MRD and the NMSD are defined as 

max [|ΔE • ûx;y;z|]
MRDx;y;z 6 × 100%, (3.34)

max [|EFFS • ûx;y;z|] 

where ΔE is defined in (3.33) and ⎡ ⎤ 
|ΔE • ûx;y;z|2 

NMSDx;y;z 6 Mean ⎣ ⎦ . (3.35)
max [|ΔE • ûx;y;z|] 

The MRD specifies the maximum difference between the magnitudes of the focal electric-

field component relative to the maximum of the magnitude of the corresponding electric-

field component. On the other hand the NMSD specifies the distribution of the differences 

between focal electric-field components. For example, a lower NSMD implies the error 

distribution is limited to a narrow region of the focal plane, similar to Figure 3.12 (top­

center). 
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In the following, firstly, MRD and NMSD values are calculated for a series of focal 

plane electric-field patterns EFFS and EGRASP9, where the FFS employed different size 

grids over the surface of the reflector to perform the numerical integration. This leads 

to determination of the optimum grid size of the paraboloidal reflector that achieves 

the fastest computation time of the FFS while maintaining the accuracy. Secondly, 

MRD and NMSD values are evaluated for a series of EFFS patterns, which have been 

evaluated by using the speed optimized FFS, are compared against EGRASP9 patterns 

that corresponds to a series of EM ST PWs having different DOAs. Also, it has been 

mentioned in subsection 3.3.3 (see page 102), that the accuracy of EFFS depends on the 

precision of the intermediate numerical processing carried in the GPU. Finally, in order to 

determine the degradation of the accuracy due to the use of SFAOs for GPU processing, 

MRD and NMSD values are calculated for a series of EFFS, EGRASP9 and EMATLAB that 

corresponds to a series of EM ST PWs having different DOAs. Here, EMATLAB patterns 

are evaluated using the FFS’s equivalent version in MATLAB8, where DFAOs are used 

in the numerical evaluation of focal region electric-fields. 

Using different size grids on the reflector surface for the evaluation of 

the radiation integral in the FFS 

According to section 3.3.3, the accuracy of the numerical integration, which is given in 

(3.30), improves as the grid intervals on the reflector surface Δm → 0 and Δn → 0 but, 

as a result, the computational complexity increases. Therefore, Δ ' m and Δn have to be 

selected such that the required accuracy is achieved while minimizing the computational 

time. In the FFS, the surface of the reflector is segmented into a square-grid of size 

(N × N ≡ N2). In order to determine the optimal grid size for the FFS, a series 

of focal electric-field patterns EN 2 
have been evaluated for different size grids N2 = FFS 

82 , 162 , 322 , 642 , 1282 , 2562 , 5122 and 10242 . Here, a prime-focus paraboloidal reflector of 

8The original source code for FFS developed in MATLAB that runs exclusively in the CPU. 
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D = 10 m and F = 6 m (i.e. F/D = 0.6) and a linearly-ûy polarized monochromatic EM 

ST PW of temporal frequency (cfct) 1 GHz that is arriving from the direction θ = 0.5◦ 

and φ = 0◦ are assumed in evaluating the series of EN2 
The average execution times for FFS. 

the FFS in evaluating the series of EN2 
is given in the column 1 of Table 3.1. MRD values FFS 

that correspond to the ûy - ûx - and ûz - components of the series of EN2 
and EGRASP9,FFS 

the focal electric-field components calculated by GRASP9, are given in columns 2, 4 and 

6 in Table 3.1. Also, MRD values that correspond to the ûy - ûx- and ûz- components of 

and E10242 
the series of EN2 

, the focal electric-field components calculated by the FFS FFS FFS 

with the grid size 10242, are given in columns 3, 5, and 7 in Table 3.1. 

EN2 − E10242 
For ΔEFFS = FFS FFS , which correspond to the magnitude differences of the 

electric-field resulted by the FFS operating on a grid of N2 points and a grid of 10242 

points on the reflector surface, the values of MRDx;y;z are measures of the convergence 

of the ûy - ûx - and ûz - components of the numerical radiation integral given in (3.30). 

According to Table 3.1, the ûx-component is the fastest to converge, followed by the ûy ­

component component and the slowest to converge is the ûz-component. Nevertheless 

= EN2 
for ΔEGRASP9 FFS − EGRASP9, which correspond to the magnitude differences of the 

electric-field resulted by the FFS operating on a grid of N2 ≡ (N × N) points and the 

electric-field resulted by GRASP9, the values of MRDy;z that correspond to the ûy - and 

ûz - components reduce and converge to 0.435% and 1.15%, as the grid size increases. 

Further it has beeen observed that the NMSDy;z also reduces with the increasing number 

of grid points, which implies that the distribution of |ΔEGRASP9|2 reduces with the 

increase in the grid size. Hence, ûy - and ûz - components of EN2 
and EGRASP9 converge FFS 

as the grid size increases. Note that as number in grid points increases from (162), the 

values of MRDx increase slightly as given in column 4 of the Table 3.1. However, it has 

been observed that the NMSDx monotonically reduces with the increase in the grid size. 

This indicates that for the ûy-component of ΔEGRASP9 is only limited to a very narrow 
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Table 3.1: MRD values for ûy - ûx - and ûz - components of ΔEGRASP9 and ΔEFFS corre­
sponding to different size grids (N × N ≡ N2) on the reflector surface. 

Sampling 

grid size & 

the average 

MRD of the 

ûy-component 

(%) 

MRD of the 

ûx-component 

(%) 

MRD of the 

ûz-component 

(%) 
run time 

for the FFS ΔEGRASP9 ΔEFFS ΔEGRASP9 ΔEFFS ΔEGRASP9 ΔEFFS 

82 - 0.6875 s 

162 - 0.6875 s 

322 - 0.7500 s 

642 - 1.1094 s 

1282 - 3.4844 s 

2562 - 17.219 s 

5122 - 125.58 s 

10242 - 1262.53 s 

8.8971 

3.2240 

1.1910 

0.45604 

0.43986 

0.43701 

0.43637 

0.43568 

8.8367 

3.1765 

1.1349 

0.3623 

0.1285 

0.0524 

0.0152 

-

18.652 

6.3557 

6.9674 

7.3608 

7.3707 

7.4282 

7.4533 

7.4545 

17.779 

1.9341 

1.4815 

0.4901 

0.1866 

0.0404 

0.0316 

-

19.242 

4.6349 

2.2212 

1.3473 

1.1579 

1.1549 

1.1528 

1.1498 

19.184 

4.6873 

2.1382 

0.7125 

0.2178 

0.0783 

0.0305 

-

region similar to Figure 3.12 (top-center). 

The average run times of the FFS for different numbers of grid points on the reflector 

surface grid are given in the first column of Table 3.1. These run times have been achieved 

with a Dell-XPS computer equipped with an Intel Pentium-IV (clock speed 3.4 GHz) 

CPU, 2 GB RAM and NVIDIA GeForce GTX 260 (processor clock speed 1242 MHz and 

internal RAM 896 MB) GPU. Note, the average run time for GRASP9 for an identical 

field calculation is 2.5 s on a generic PC equipped with an Intel Pentium-IV (clock 

speed 3.0 GHz) CPU and 1 GB RAM at DRAO Penticton, BC, Canada. According 

to Table 3.1, the run times grow exponentially as the numbers of grid points increase. 
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Moreover, it has been observed that for lower number of grid points, for example for 

82 and 162, the processing time remained same. This is due to the fact that the GPU, 

which has been used for this particular example, has sufficient computational resources 

to simultaneously evaluate (3.30) at all (51 × 51) points in the focal plane, where each 

focal plane point corresponds to 82 or 162 grid on the reflector surface. Therefore, the 

time consuming data transfers between the CPU and the GPU need to be performed 

twice only. However, as the grid size increases, the available computational resources in 

the GPU are not sufficient to simultaneously evaluate (3.30) at all points. Therefore, 

such evaluations require several data transfers between the CPU and the GPU for the 

full evaluation. The data transfers between the CPU and the GPU are time consuming 

and therefore slow down the execution of the FFS. However, as given in Table 3.1, 

increasing the sampling grid size beyond 322 yields marginal increases in the accuracy 

of the focal EM fields calculated with the FFS even though the evaluation times are 

increased exponentially. Further, it has been observed that if the grids size is 342 then 

MRDy ≤ 1% for ΔEGRASP9. The avarage computation time for the FFS, which employs 

a grid of 342, is around 0.825 s. Hence, compared to GRASP9 that taks about 2.5 s for 

the evaluation of EGRASP9, the FFS is 284% faster in evalauating EFFS for the same set 

of specifications. 

EFFS Vs EGRASP9; At different inclination angles (θ) 

Consider the series of focal electric-fields, EFFS and EGRASP9, that correspond to focal 

plane (i.e. z = 0) electric-fields of a prime focus paraboloidal reflector of diameter 

D = 10 m and focal length F = 6 m (i.e. F/D = 0.6) that are resulted by a series 

of linear-ûy polarized monochromatic EM ST PWs of temporal frequency (cfct) 1 GHz, 

which are arriving from different directions that are specified by inclination angles θ = 

0◦ , 0.5◦ , 1◦ , 1.5◦ , 2◦ , 2.5◦ and 3◦ and the azimuth angle φ = 0. Here, the FFS is speed 

optimized by selecting the grid size of the reflector surface to be 342 such that the 
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sampling intervals are Δm = Δn ≈ 30 cm (= λ at cfct 1 GHz). Calculated MRD and 

NMSD values for ûy - ûx - and ûz - components of EFFS and EGRASP9 that correspond to 

different θ, are given in Table 3.2. According to Table 3.2, for all considered θ, MSDy 

fluctuates in the neighborhood of 0.9% and MSDx fluctuates in the neighborhood of 6.5%. 

Nevertheless with increasing θ, in general, NMSDy and NMSDx increase, which imply 

that the magnitude differences between ΔE • ûy and ΔE • ûx spread as θ increases. Also 

according to Table 3.2, as θ increses, both MSDz and NMSDz increase in general, which 

imply that the magnitude differences ΔE • ûz increase as θ increases. 

The precision of the intermediate calculations of the radiation integral; 

DFAOs Vs SFAOs 

It has been mentioned in subsection 3.3.3 (see page 102) that DFAOs are only supported 

in high-end GPUs and if supported, DFAOs have longer execution times compared to 

SFAOs in the same GPU. Hence, SFAOs are used for the GPU processing in the FFS, 

assuming that it may lead to faster evaluation times. However, this could lead to a 

reduction of accuracy of the focal electric-field patterns EFFS evaluated with the FFS. In 

order to determine the significance of the error due to the use of SFAOs instead of DFAOs, 

MRD and NMSD values are evaluated for the difference ΔEGRASP9 = EGRASP9 −EMATLAB 

between the focal plane electric-fields that are determined by GRASP9 and the FFS’s 

equivalent version in MATLAB that employs DFAOs and for the difference ΔEMATLAB = 

EMATLAB − EFFS between the focal electric-fields that are determined by the FFS and 

FFS’s equivalent version in MATLAB. Here, the focal electric-fields EGRASP9, EMATLAB 

and EFFS correspond to a series of linear-ûy polarized monochromatic EM ST PWs of 

temporal frequency (cfct) 1 GHz, which are arriving from different directions that are 

specified by inclination angles θ = 0◦ , 0.5◦ , 1◦ , 1.5◦ , 2◦ , 2.5◦ and 3◦ and the azimuth angle 

φ = 0 that are reflected by a prime-focus paraboloidal reflector of D = 10 m and F = 6 m. 

Note that in the FFS, a gird of size 342 is used for evaluating EMATLAB and EFFS. The 
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Table 3.2: Calculated MRD and NMSD values for ûy - ûx - and ûz - components of 
ΔE = EGRASP9 − EFFS at different inclination angles (θ) and at φ = 0◦ . 

Inclination ûy-component ûx-component ûz-component 

angle θ MRD(%) NMSD MRD(%) NMSD MRD(%) NMSD 

0.0◦ 

0.5◦ 

1.0◦ 

1.5◦ 

2.0◦ 

2.5◦ 

3.0◦ 

0.883 

0.927 

0.922 

0.919 

0.915 

0.918 

0.923 

0.37400 

0.36953 

0.38013 

0.37020 

0.37536 

0.39254 

0.39890 

6.1145 

6.8798 

6.1870 

6.3246 

6.4830 

6.4440 

6.3031 

0.08606 

0.07544 

0.08066 

0.08706 

0.11303 

0.11700 

0.11789 

1.5992 

1.6134 

1.6265 

1.6388 

1.6507 

1.6631 

1.6773 

0.42609 

0.42589 

0.43053 

0.43402 

0.44150 

0.45319 

0.45105 

corresponding MRD values for ΔEGRASP9 and ΔEMATLAB are given in Table 3.3. Note 

that MRD values for ΔE = EGRASP9 − EFFS (Table 3.2) and MRD values for ΔEGRASP9 

that corresponds to focal electric-fields of GRASP9 and the FFS’s equivalent version in 

MATLAB that employs DFAOs (Table 3.3; labeled with DP) are almost identical. This 

implies that there is no significant error due to the reduction of the precision by using 

SFAOs instead of DFAOs in GPU processing. This is further corroborated by the low 

MRD values, given in Table 3.3, for ΔEMATLAB, which corresponds to the FFS and the 

FFS’s equivalent version in MATLAB that employs DFAOs. 
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Table 3.3: Calculated MRD values for ûy - ûx - and ûz - components of ΔEGRASP9 and 
ΔEMATLAB for different inclination angles (θ) for φ = 0◦ . 

Incli 

angle 

MRD of the 

ûy-component 

(%) 

MRD of the 

ûx-component 

(%) 

MRD of the 

ûz-component 

(%) 

θ ΔEGRASP9 ΔEMATLAB ΔEGRASP9 ΔEMATLAB ΔEGRASP9 ΔEMATLAB 

0.0◦ 

0.5◦ 

1.0◦ 

1.5◦ 

2.0◦ 

2.5◦ 

3.0◦ 

0.883 

0.927 

0.922 

0.919 

0.915 

0.918 

0.923 

0.37400 

0.36953 

0.38013 

0.37020 

0.37536 

0.39254 

0.39890 

6.1145 

6.8798 

6.1870 

6.3246 

6.4830 

6.4440 

6.3031 

0.08606 

0.07544 

0.08066 

0.08706 

0.11303 

0.11700 

0.11789 

1.5992 

1.6134 

1.6265 

1.6388 

1.6507 

1.6631 

1.6773 

0.42609 

0.42589 

0.43053 

0.43402 

0.44150 

0.45319 

0.45105 

3.4 Summary 

The electric-fields observed around the focal region in response to the reflected far-field 

EM waves from an ideal paraboloidal reflector and the corresponding spectra have been 

analyzed in this chapter. In section 3.2, the ROS of the spectra of focal region electric-

field, which resulted by an incident EM BB-BP ST PW, has been predicted according 

to the Hyguens’ Principle Approximation. As derived in subsection 3.2.1, the predicted 

ROSs of the focal plane electric-field of a prime-focus paraboloidal reflector is given by a 

3D double right-circular frustum that corresponds to a 3D cone of half-cone angle αmax, 

which is specified in (3.8) in terms of the diameter D and the focal length F of the 

paraboloid. The properties of the predicted ROSs have been verified in subsection 3.2.2 
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by using focal region electric-field test-sequences synthesized with the FFS. Provided 

that the EM ST PW assumption holds for the infinitesimal EM waves originated by the 

surface currents on the reflector, the spectra of synthesized test sequences confirmed that 

the ROS of focal plane electric-field correspond to both linear- and circular- polarized 

incident EM BB-BP ST PWs in the temporal frequency band (0.5, 1.7) GHz that are 

having different DOAs within the small angular range from the axis of the paraboloid 

is indeed given by a 3D double right-circular frustum predicted in subsection 3.2.1. In 

chapter 5 of this thesis, the shape of the ROS of the spectrum of the focal electric-field 

predicted in section 3.2 is exploited in the design of the beamforming 3D FIR frustum 

filters. 

The design of the Focal Field Synthesizer (FFS), a GPU-accelerated computer pro­

gram has been explained in section 3.3. The FFS evaluates electric-fields in the focal 

region of a paraboloidal reflector in response to an incident monochromatic EM ST PW. 

One of the main objective in the design the FFS is to facilitate the design of the FPA 

receivers for the lower-mid frequency band (e.g. 0.5 - 1.7 GHz) of the SKA and evaluat­

ing the subsequent signal processing techniques (i.e.beamformers) for the FPAs as done 

in chapter 5. According to subsection 3.3.1, the input specifications of the FFS are the 

geometry of the paraboloidal reflector and the orientation, polarization and temporal fre­

quency of the incident monochromatic EM ST PW. As shown in Figure 3.7, the geometry 

of the paraboloid has been specified by the diameter D, focal length F and the offset of 

the circular-aperture dOff. The orientation of the incident monochromatic PW has been 

specified by the DOA with the inclination angle θ and the azimuth angle φ, which are 

measured with respect to the axis of the paraboloid and the polarization of the incident 

Em ST PW is specified by the polarization unit vector ÊPol. In subsection 3.3.2, the PO 

approximation has been used to determine the induced surface current density on the 

near-perfect conducting reflector surface with no aperture blocking. Also in this subsec­
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tion, the focal electric-field has been expressed as a double integral using Maxwell’s EM 

field equations, and evaluated numerically. Here for the numerical evaluation, the 2D 

Newton-Cotes method has been reformulated into SIMD format in order to achieve the 

best acceleration using a GPU. Further, the wrapper called GPUmat, has been exploited 

for interfacing the NVIDIA CUDA and Mathworks MATLAB development environments. 

This enables the straightforward deployment of MATLAB source code9 for the CPU and 

GPU combine processing of the FFS. The focal EM field components calculated by the 

FFS has been validated using TICRA GRASP9, which a commercial CAD tool. It has 

been shown that the electric-field patterns from both programs are in good agreement 

but, the CPU and GPU combined implementation of the FFS achieves 250% to 280% 

faster evaluations of focal electric-fields compared to the GRASP9. 

9With few slightly modified commands. 
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Chapter 4
 

Broadband-Bandpass Beamforming for Cognitive Radio (CR) 

Systems using Complex-Coefficient 2D FIR Trapezoidal Filters 

4.1 Introduction 

Cognitive radio (CR) systems are of increasing interest for the optimal management 

of the radio-spectrum in the next generation wireless communication systems, which 

will facilitate a broad range of communication/entertainment applications and services 

[13][14][15][16]. “Software Defined Radio” (SDR) architectures have been proposed for 

CR systems that exploit the dynamic allocation of the operational frequency band, 

the signal bandwidth, the transmission power, and the signal modulation techniques 

[13][15][17]. Non-conflicting spectral utilization in CR systems is achieved by sens­

ing the spectral occupancy of the allocated frequency bands in real-time [13][14][15]. 

Using “Smart Antennas” for the adaptive beamforming, CR systems effectively allo­

cate the radio-spectrum and efficiently control the power of transmitting signals so as 

to reduce interference [13][23][45]. Typically, CR systems span several designated fre­

quency bands and inherently employ temporally-broadband-bandpassed (BB-BP) signals 

[13][14][15][23]. 

A typical architecture of the receiving-arm of a CR system [13] (ch. 4) that contains 

software-tunable hardware at the front-end is shown in Figure 4.1. In order to cater 

to a geographically spread subscriber population by effective utilization of signal spec­

trum and transmission power, this particular CR system employs adaptive broadband­

bandpass beamforming. Here, the signals transmitted by the subscriber modules are 

received by the 1D uniformly-distributed antenna array (1D-UDAA). It is assumed that 
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for this CR system, almost all the time the 1D-UDAA is in the far-field region of the 

transmitters. Hence, the propagating EM waves transmitted by the subscriber modules 

of the CR system can be approximated as EM 4D BB-BP ST PWs in the finite region 

around the 1D-UDAA. Therefore, the signals observed at the outputs of elemental an­

tennas in a 1D-UDAA in response to EM 4D BB-BP ST PWs can be modeled as given in 

sections 2.4 and 2.6 of chapter 2. The received signals at the outputs of the 1D-UDAA are 

pre-filtered, complex-temporal-downconverted and synchronously sampled using an adap­

tive complex-quadrature temporal-sampler-array implemented with hybrid analog-digital 

circuitry based on the SDR architecture, thereby yielding a complex-valued 2D spatio­

temporal (ST) sample-sequence. The spectral sensing subsystem measures the signals 

at various stages of the front-end of the CR system in order to determine the spectral 

occupancy of the allocated frequency bands. 

The 2D ST sample-sequence is processed by a beamformer as shown in Figure 4.1. 

In the receiving arm, the objectives of beamforming are to selectively enhance the de­

sired signals according to their directions of arrival (DOAs) and to attenuate interfering 

signals, such as other co-channel signals and receiver noise [42][43]. Those real-time 

adaptive broadband-bandpass beamforming methods used by the CR systems must ac­

commodate the movement of subscriber modules within the coverage area [23][45] as 

well as the instantaneous changes of the operating frequency band and the bandwidth 

[13][15]. As shown in Figure 4.1, the 1D beamformer output sequence is further processed 

to demodulate and recover the subscriber module signals. 

In this chapter, a discrete-domain beamforming method is proposed for the adap­

tive beamforming of the desired temporally-broadband-bandpassed signals received by 

an 1D-UDAA of a CR system having a SDR-based receiver front-end. Here, the pro­

posed beamformer is a complex-coefficient 2D FIR trapezoidal filter that operates on the 

complex-valued 2D ST sample-sequence, which corresponds to complex-quadrature sam­
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pled 1D-UDAA outputs. The beamforming complex-coefficient 2D FIR filter is having 

an asymmetric-trapezoidal shaped passband, which is arranged to closely enclose the re­

gion of support (ROS) of the spectral components of the desired EM BB-BP ST PW. 

The corresponding 2D stopband encloses the ROSs of the spectra of interfering EM BB­

BP ST PWs. It is expected that the novel closed-form design method proposed here 

can achieve near-optimal passband and stopband characteristics while instantaneously 

adapting for changing carrier frequencies and operating bandwidth. It is shown that, 

compared with previously reported methods [101][138][139], the method proposed in this 

chapter achieves best overall trade-off considering the passband distortion of the desired 

signal, stopband attenuation of the interfering signals and instantaneous adaptation with 

the changing of operating frequency band and sampling rate. Further, the proposed de­

sign method allows easy tracking and thereby enhancing the desired EM BB-BP ST PWs 

having gradually time varying DOAs. Also, the beamforming filter is implemented with 

a parallel-connected array of complex-coefficient 1D FIR filters, whereby each of the 1D 

FIR filters can be implemented using low-cost DSP hardware at high throughputs. 

First, let’s distinguish the proposed method from other methods that employ 2D FIR 

trapezoidal filters. In [59][64], a broadband-bandpass beamforming method has been 

proposed that is based on a real-coefficient 2D FIR filter having a rotationally symmetric 

double-trapezoidal passband along with an IF sampling scheme where the special case of 

double sideband modulated (DSM) temporally-broadband-bandpassed signals is assumed 

(and then exploited) in order to reduce the operational sampling rate of the beamformer 

by 50%. In contrast, here the objective is to design a broadband beamformer for CR sys­

tems that have SDR front-ends and which invariably employ single sideband modulated 

(SSB) signals as well as a baseband complex-quadrature sampling scheme. In [48], a 

nonadaptive beamforming method has been proposed for such complex-quadrature sam­

pled signals, where the complex-coefficient 2D FIR filter has an asymmetric trapezoidal­
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shaped passband. Unlike in [48], in this chapter1, firstly, a novel algebraic closed-form 

design method has been proposed and secondly and most importantly, the proposed 

method facilitates the instantaneous adaptation of the operational frequency band and 

of the bandwidth. Finally, it has been shown through experimental means that the pro­

posed method is capable of real-time tracking and enhancement of desired signals having 

time-varying DOAs. 

This chapter is arranged as follows. A brief introduction of CR systems is given in 

section 4.2 discussing their importance in the next generation wireless communications 

and the SDR architectures used in realizing real-time adaptation of spectral resources. A 

detailed mathematical analysis on the signal processing conducted in the SDR front-end 

of a CR systems is given in section 4.3. In this analysis, the spectral properties of the 

complex-quadrature-sampled antenna signals are evaluated. Previously proposed beam-

forming methods that can be used in enhancing the temporally-broadband-bandpassed 

signals associated with CR systems are briefly reviewed in section 4.4. Here, attention 

is given to the interpolation delay-and-sum beamforming method, DFT based frequency 

domain beamforming method and the “Sekiguchi method” that employs a beamform­

ing 2D complex-coefficient FIR filter that has been designed using a combined approach 

of the spectral-transformation and the window methods. In section 4.5, the design of 

the beamforming complex-coefficient 2D FIR filter having an asymmetric trapezoidal 

shaped passband is explained in detail. The shape and orientation of the ideal asymmet­

ric trapezoidal-shaped passband of the beamforming complex-coefficient 2D FIR filter is 

proposed in subsection 4.5.1. Also, the limitation of the previously proposed broadband­

beamforming methods are briefly discussed here. The derivation of the ideal infinite 

extent 2D unit impulse response is given in subsection 4.5.2 where the beamforming 

complex-coefficient 2D FIR filter is approximated by truncating the infinite extent 2D 

unit impulse response with a 2D window function. A design example of a beamforming 

1Note that parts of this work have been published in [47]. 
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2D FIR trapezoidal filter that satisfies a selected group specifications is given in subsec­

tion 4.5.3. The 1D output sequence of the beamforming 2D FIR filter is analyzed in detail 

in subsection 4.5.4 and the implementation of the beamforming complex-coefficient 2D 

FIR filter is briefly discussed in subsection 4.5.5. The proposed 2D FIR trapezoidal filter-

based beamforming method is compared against similar beamforming methods in sec­

tion 4.6 using typical synthesized complex-quadrature sampled antenna signal sequences. 

In section 4.7, an example of an adaptive beamforming scenario for a receiving arm of a 

CR system has been simulated. The main objective of this simulation experiment is to 

study the ability of the proposed adaptive broadband beamforming method to maintain 

the signal to interference ratio (SIR) above a given threshold as the subscriber modules 

move around the coverage area. 

4.2 Cognitive Radio Systems; An Introduction 

The radio spectrum is the most valuable asset of modern wireless communication systems. 

Wireless communication service providers all around the world are competing for shares 

of the radio spectrum that have been auctioned for billions of dollars by telecommunica­

tion regulatory bodies [140]. Nevertheless, subscribers of modern wireless communication 

systems, in billions, are demanding a plethora of communication/entertainment appli­

cations and services that require large chucks of the radio spectrum. Examples of such 

applications and services include video conference calls, mobile high-Definition (HD) 

television (TV) and multi-player hyper-reality video games [141]. The demand for these 

applications and services has been steadily growing for the past few years and the CR 

systems may be able the meet this by effective management of the radio spectrum [13]. 

CR System may assist the stability and robustness of the supporting radio network 

[15]. For example, if the signal quality drops due to over congestion of subscribers in 

a particular channel then, the CR system can reassign some of the subscribers to a 
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different channel such that the overall signal quality may increase. If this move does 

not increase the signal quality, the same group or a different group of subscribers may 

be transferred to a close by base-station, which is having resources to handle the new 

group. This allows the communications between subscribers to continue uninterrupted 

while maintaining the quality of services. Further, a subscriber module in a CR system 

can select the most appropriate wireless communication standard for different service 

requests of the subscribers. For example, a subscriber module can select a Bluetooth 

communication standard to access a local printer, rather than using the WiFi commu­

nication standard. On the other hand, the same subscriber module may use the WiFi 

communication standard for Internet access and WCDMA communication standard for 

the voice or video calls. In order to accommodate the global seamless connectivity and 

economical transition among different applications and services, different wireless com­

munication standards such as WCDMA, GSM, EDGE, CDMA2000, HSPA, WiMAX, 

WiFi, Bluetooth, ZigBee, ect. are supported in CR systems [15]. 

For the wireless network regulators, the most important feature of the CR systems 

is the policy engine [13]. The role of the policy engine is to implement the spectral 

utilization rules for a particular CR system, which have been specified by the telecom­

munication regulatory body. Spectral utilization rules may vary for different wireless 

communication standards and for different regions of the world. Additional rules such as 

network usage policies (e.g. for fair use), network operator policies (e.g. for preventing 

illegal activities), and manufacturer policies (e.g. for locating lost or stolen devices) can 

be incorporated into the policy engine [13]. 

The software defined radio (SDR) front-ends enables the adaptive use of the radio 

spectrum in CR systems [13]. The concept of SDR has been developed since the early 

1990s, when the computational resources available in digital signal processors (DSPs) 

and General Purpose Processors (GPPs) became sufficient for the real time implementa­



124 

tion of modulation and signal processing functions and network management functions 

of wireless communication systems. Since the late 90’s, almost all wireless communica­

tion systems have been implemented using DSPs and GPPs [13]. This SDR architecture 

allows the basic hardware structure to be reused for new wireless system designs, thereby 

reducing the time and cost of engineering design, enabling volume purchasing, and opti­

mizing production of a common platform, while retaining the flexibility for sophisticated 

protocols and generation of waveforms [13]. 

An ideal SDR architecture, which is shown in Figure 4.2, consists of three main units; 

which are (a) the reconfigurable digital circuitry, (b) the software tunable analog RF cir­

cuitry with embedded impedance synthesizer and (c) the software tunable antenna sys­

tem [13]. The reconfigurable digital circuitry perform signal processing functions such as 

modulation/demodulation, waveform generation/detection and control of the analog RF 

circuitry and the antenna system. The software tunable analog circuitry perform signal 

up/down-conversion, analog-to-digital/digital-to-analog conversion, RF filtration, power 

amplification, low-noise amplification, separation and combination of RF signals. Note 

that the embedded impedance synthesizer effectively matches the transmitter/receiver 

impedances with the antenna array for different frequency bands. However, due to the 

limitation of state of the art technology the ideal SDR architecture is too costly and 

bulky to implement in practice. 

A contemporary architecture2 of the receiving arm of a typical SDR, which is sup­

ported by the state of the art technology, is shown in Figure 4.1. As shown there, the 

signals received by the 1D-UDAA are the input to an array of matching low noise am­

plifiers (LNAs). The amplified signals are then subjected to bandpass filtering in order 

to suppress undesired out-of-band signals. The filtered RF signals are processed by an 

array of “Variable Gain Amplifiers” (VGAs). Here, the signals are either amplified or 

2The architecture that include both the transmitting and the receiving arms is given in Fig. 4.3 of 
[13]. 
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Figure 4.2: An ideal architecture for the SDR front-end of a CR system. 

attenuated in order to maintain the amplitude of the signals approximately constant. 

The VGA is controlled by the control system of the CR system. The amplified RF sig­

nals containing bandpassed signals centered at frequency fIc are down-converted to a 

intermediate-frequency (IF) stage [71] using an array of synchronous software-tunable 

quadrature-downconverters [51]. The down-conversion process can be performed in ei­

ther single or multiple demodulator stages [13]. A typical software-tunable quadrature­

downconverter consists of software tunable internal “Automatic Gain Controller” (AGC) 

with peak detector and externally selectable IF filters to support different frequency bands 

and bandwidths. Consequently, software tunable analog-to-digital converters (ADC) syn­

chronously sample the inphase (I) and the quadrature (Q) components of the continuous-

time down-converted IF signals at the sample rate (ΩI) that yield the corresponding 

digitalized complex-valued (i.e I - Q) sample sequences. In some cases, these complex-

valued sample sequences are subjected to decimation [142] in order to reduce the data 

rate to ΩI, such that it matches with the bandwidth of the signals of interest. In order to 

determine the spectral occupancy of the allocated frequency bands, the spectral sensing 

subsystem measures the signals in the software-tunable quadrature-downconverters and 

software-tunable ADCs. A detailed mathematical analysis of the signal processing stages 

in SDR front-end of the CR system is given in section 4.3. 
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Wireless communication systems are interference limited systems [23]. Hence, smart
 

antennas and beamforming networks have been exploited in modern wireless communi­

cations systems in order to increase the capacity and to maintain the quality of service 

[24]. In CR systems, mainly two types of beamforming methods, which are the switched 

beam methods and the adaptive beam methods, have been employed. In switched beam 

methods, the beamformer is switched between a predefined set of beams in order to 

achieve the best signal to interference ratio (SIR). In adaptive beam methods, the beam-

former is adapted in real time to track and enhance the desired signals transmitted by 

a particular subscriber group as that group moves around the geographical area, while 

maintaining the SIR above the acceptable threshold. However, both switch and adaptive 

beam methods should be able to accommodate the instantaneous changes of the oper­

ating frequency band and the bandwidth in CR systems. The beamformer outputs are 

processed further in order to demodulate and recover the subscriber signals. Given the 

reciprocity between the signals in the receiving and transmitting arms of the front-end of 

the SDR [13] (ch. 4), the reciprocated application of the broadband beamforming meth­

ods that had been proposed for the receiving arm may also be used for beamforming for 

the transmission arms of a CR system. However for brevity, here, the focus is limited to 

adaptive beamforming in the receiving arm of a CR system. 

4.3 Signal Processing at the SDR Front-End of the CR System 

4.3.1 A Review on Signals Observed at the Outputs of Elementals Antennas 

Let’s reconsider the scenario shown in Figure 2.11 (see page 53), where the EM waves 

transmitted by the subscriber module of a CR system are propagating toward the pseudo-

infinite 1D-UDAA, which consisted of (2Nx + 1) linear-polarized wideband elemental 

antennas such as log periodic antennas or patch antennas [95] arranged at the inter 

element distance of Δx. It is assumed here that the subscriber module is in the far-field 
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of the 1D-UDAA and therefore, the propagating EM wave can be closely approximated 

by a EM 4D BB-BP ST PW over the region of the 1D-UDAA. In practice, the subscriber 

modules of a CR systems are located at heights that are within a hundred meters from 

the surface of the earth and therefore, the inclination angles corresponding to the DOAs 

of propagating EM ST PWs are θq ≈ 90◦ . According to example shown in Figure 2.12 

(see page 54), the gain of the antenna active element pattern is approximately unity for 

φ ∈ [30◦ , 150◦] for θq ≈ 90◦ . According to section 2.3 and section 2.6 of chapter 2, the 

signal anx (t) observed at the output of nth elemental antenna, where nx , Nx],x ∈ [−Nx

in response to the EM 4D BB-BP ST PW empw4CP(x, y, z, t) having the DOA d̂ = 

[dx, dy, dz] is given by 

+∞+++ 
anx (t) = {ai(x, y, z, t)8888 epw4CP(x, y, z, t)} δ(x−Δxnx)δ(y)δ(z)dxdydz, (4.1) 

x,y,z=−∞ 

where ai(x, y, z, t) is the vector-valued the antenna impulse response corresponding to 

the elemental antennas of the pseudo-infinite 1D-UDAA and epw4CP(x, y, z, t) of is the 

electric field component of empw4CP(x, y, z, t). Note that 8888 denotes the combined 

vector dot-product and 4D convolution operation. 

Now consider a scenario as shown in Figure 4.3 where Q different subscriber modules 

of the CR system are transmitting toward the 1D-UDAA. These EM waves may occupy 

different temporal frequency bands that have been allocated to the CR system. The 

electric-field ef4CP(x, y, z, t) around the 1D-UDAA may be modeled as a superposition 

of linear-polarized EM 4D BB-BP ST PWs 

Q Q+ 

outputs of the elemental antennas can be rewritten as 

+ 
ef4CP(x, y, z, t) = epw4CP(x, y, z, t) = pw4CPq (x, y, z, t) ûz, (4.2) 

q=1 q=1 

which have DOAs d̂q = [dxq, dyq, dzq]; q = 1, .., Q. Hence, the signals observed at the 

+Q
atnx (t) = aqnx (t), (4.3) 

q=1 
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Distributed subscriber modules of the CR system

Active element pattern for elemental 
antennas of the 1D-UDAA

1D-UDAA

Figure 4.3: A typical scenario where subscriber modules transmitting toward the 
1D-UDAA of a CR system. A typical active element pattern at θ = 90◦ that corre­
sponds to each of the elemental antennas in the 1D-UDAA is shown in the background. 

where according to (4.1) the antenna response for each linear-polarized EM 4D BB-BP 

ST PW pw4CPq (x, y, z, t) ûz; q = 1, .., Q, is given by 

+∞+++ 
aqnx (t) = aiz(x, y, z, t)∗ ∗ ∗ ∗pw4CPq (x, y, z, t) δ(x−Δxnx)δ(y)δ(z)dxdydz, (4.4) 

x,y,z=−∞ 

where the ûx- and ûy- components of ai(x, y, z, t) are aix(x, y, z, t) = 0 and aiy(x, y, z, t) = 

0. Note that each pw4CPq (x, y, z, t); q = 1, .., Q, is associated with a 1D temporal­

bandpassed wavefront function wq(t) such that 

pw4CPq 
(x, y, z, t) = wq(t + c −1(dxqx + dyqy + dzqz)). (4.5) 

4.3.2 Some Definitions of Parameters 

According to section 2.3 (see page 21), the 1D temporal-bandpassed wavefront function 

wCPq (t) with instantaneous-bandwidth ΩI, and the instantaneous center frequency fIc, 
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may be expressed as
 

j2πfIct ],wCPq (t) = Re[ ̃bq(t)e (4.6) 

where b̃q(t) is the baseband equivalent of the analytic function of the temporal-bandpassed 

wavefront function wCPq (t) and fIc ≥ ΩI > 0 [66] (pp. 738 - 742). Note that the modu­

lated subscriber information is carried by b̃q(t), which is having a instantaneous temporal 

bandwidth of 0.5ΩI [71] (pp. 194 - 195). As in section 2.3, here, the relative bandwidth 

of a temporally-bandpassed signal is characterized by the instantaneous bandwidth spread 

factor KI, defined as 
ΩI

KI 6 , (4.7)
2fImax 

where fImax(= fIc +0.5ΩI) is the instantaneous maximum temporal frequency of wCPq (t). 

The full allocated temporal bandwidth of the CR system is denoted by ΩFull. Here also, 

if a temporally-bandpassed signal wCPq (t) has KI ≥ 0.125, then it is considered to be 

a temporally-broadband-bandpassed signal. The utilization of the spectrum by the CR 

system is characterized by the instantaneous system utilization factor LI, defined as 

fImax
LI 6 , (4.8)

fSYSmax 

where fSYSmax is the upper limit of the temporal frequency of operation of the particular 

CR system considered here. Thus according to section 2.6, in order to avoid spatial alias­

ing, the inter-element distance of the 1D-UDAA has been selected as Δx = 0.5 c/fSYSmax. 

4.3.3 On the Complex-Quadrature Temporal-Sampling of LNA Outputs 

In general, the signals observed at the output of the elemental antennas in response to 

the propagating desired EM BB-BP ST PWs are contaminated with the signals induces 

in response to the propagating undesired out-of-band interfering EM ST PWs. As shown 

in Figure 4.1, the signals observed at the output of the elemental antennas are processed 

thby an array of LNAs. The signal at the output of the LNA connected to the nx elemental 
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antenna of the 1D-UDAA can be expressed as
 

Q+ 
lnanx (t) = aqnx (t) + γnx (t) + ηnx (t), (4.9) 

q=1 

where γnx (t) corresponds set of superimposed, out-of-band interfering signals and ηnx (t) 

is the receiver noise3 . In the SDR front end of the CR system, the LNA outputs are 

processed by an array of software-tunable RF filters that suppresses the out-of-band in­

terfering signals γnx (t). The remaining RF signals are the input to an array of VGAs 

that scales the signals such that the average magnitude of these signals remains a con­

stant. Next, these signals are processed by an array of synchronous software-tunable 

quadrature-downconverters, where the BB-BP signals Q (t) having the center q=1 aqnx 

frequency fIc are modulated by the inphase (I) sinusoid cos(2πfIct) and the quadrature 

(Q) sinusoid sin(2πfIct) [51]. The modulated I and Q signals are filtered to remove the 

undesired images at frequencies |cfct| ≥ 0.5ΩIc, where 0.5ΩI is the instantaneous band­

width of the desired baseband signal. Ideally, this process transfers the spectral compo­

nents in the temporal frequency band cfct ∈ [fIc − 0.5ΩI, fIc + 0.5ΩI] into the baseband 

cfct ∈ [−0.5ΩI, 0.5ΩI] and filters out the remaining spectral components. 

Ideally the outputs of the software-tunable quadrature-downconverters d (t), may dcnx 

+be expressed with the analytic functions [51] aqnx 
(t); q = 1, .., Q and ηn

+ 
x 
(t), of aqnx (t); 

q = 1, .., Q and ηnx (t), respectively, such that   
Q+ 

+ −j2πfIctd (t) = a (t) edcnx (t) + η+ . (4.10)qnx nx 

q=1 

+According to [66] (pp. 738 - 742), the analytic functions aqnx 
(t) and ηn

+ 
x 
(t), are defined 

as 

+ aqnx 
(t) 6 aqnx (t) + jǎqnx (t); q = 1, .., Q, and (4.11) 

ηn
+ 
x 
(t) 6 ηnx + jη̌nx , (4.12) 

th3For ease of analysis receiver noise is referred to the input of the LNA connected to the n antenna x 
element. 



  

131 

where ǎqnx (t); q = 1, .., Q and η̌nx (t), are the Hilbert transforms [51] of aqnx (t); q = 1, .., Q 

and ηnx (t), respectively. According to [66] (pp. 738 - 742), the Hilbert transforms of 

aqnx (t); q = 1, .., Q and ηnx (t) are defined as + ∞1 aqnx (τ) ǎqnx (t) 6 dτ ; q = 1, .., Q, and (4.13)
π τ =−∞ t − τ + ∞1 ηnx (τ)η̌nx (t) 6 dτ. (4.14)
π t − ττ =−∞ 

The downconverted signals d (t); nx + 1 are synchronously sampled by dcnx = 1, .., 2Nx 

an array of software-tunable ADCs at the instantaneous sampling rate fSI = ΩI (= Δ−1)It 

that yields a 2D complex-valued sample sequence 

x̃(nx, nt) ≡ xinx (nt) + jxqnx (nt),
 

Q
+ 
+ −j2πfIcΔItnt= aqnx 

(ΔItnt) + ηn
+ 
x 
(ΔItnt) e , (4.15) 

q=1 

for nx ∈ [−Nx, Nx] and nt ∈ Z, where the residual baseband equivalent noise component 

represented by η̌nx (ΔItnt). Note that xinx (nt) and xqnx (nt) denote the I (real) and Q 

(imaginary) components of the complex-valued sample sequence x̃(nx, nt). 

4.3.4 Spectra of the Complex-Quadrature Sampled BB-BP ST PWs 

According to (4.15), the ideal infinite extent complex-valued 2D sample sequence d̃(nx, nt) 

that corresponds to a complex-quadrature sampled antenna signals, which are induced 

by a EM 4D BB-BP ST PW pw4CPp(x, y, z, t) ûz, is given by 

+˜ −j2πfIcΔItntd(nx, nt) = apnx 
(ΔItnt)e , (4.16) 

for (nx, nt) ∈ Z2 . In order to analyze the frequency domain properties of the complex-

quadrature sampled antenna signals that are induced by a linear-polarized EM 4D BB­

BP ST PW pw4CPp (x, y, z, t) ûz, the 2D discrete-domain Fourier transform (2D-DDFT) 

[42] (pp. 32) of the 2D sample sequence d̃(nx, nt) is evaluated. 
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The 2D-DDFT D(ejωx , ejωt ), of the complex-valued 2D sample-sequence d̃(nx, nt), is 

defined as 
+∞ +∞+ + 

jωx jωt ) 6 ˜ −jnxωx −jntωtD(e , e d(nx, nt) e e , (4.17) 
nx =−∞ nt =−∞ 

jωt )for (ωx, ωt) ∈ R2 [42] (pp. 32). Nevertheless, according to [44] (pp. 54-55), D(ejωx , e

may be expressed in the form 

+∞ +∞
jωx 

1 + + ωx − 2πmx ωt − 2πmt
D(e , ejωt ) = DC , , (4.18)

Δx ΔIt 2πΔx 2πΔIt mx =−∞ mt =−∞ 

where DC(fx, ft) is the 2D-CDFT of the equivalent 2D continuous domain complex-

quadrature downconverted signal d jωx , ejωt ) may be dc(x, t). It is implied in (4.18) that D(e

ωx ωtexpressed as an infinite series of periodic copies of DC , with 2D-periodicity 
2πΔx 2πΔIt 

(2π, 2π) along ωx - and ωt - axes in (ωx, ωt) ∈ R2 . Here, D(ejωx , ejωt ) is determined by 

exploiting the relationship in (4.18) that in turn requires the evaluation of DC(fx, fct) in 

(fx, fct) ∈ R2 . 

˜ dAccording to (4.15), d(nx, nt), dc(x, t) and the analytic antenna output function 

+apnx 
(t) are related as 

˜ + −j2πfIcΔItnt dd(nx, nt) = apnx 
(ΔItnt)e = dc(Δxnx, ΔItnt). (4.19) 

+According to (4.11), apnx 
(t) may be given in terms of the equivalent 2D continuous-

domain antenna output function apwz2CP(x, t) that is defined in (2.76) (see page 55), 

such that + ∞j apwz2CP(Δxnx, τ)+ apnx 
(t) = apwz2CP(Δxnx, t) + dτ. (4.20)

π τ=−∞ t − τ 

Hence, the equivalent 2D continuous-domain temporal analytic antenna output function 

apwz + (x, t) can be defined as 2CP + ∞j apwz2CP(x, τ) 
apwz + (x, t) 6 apwz2CP(x, t) + dτ. (4.21)2CP π t − ττ =−∞ 

According to (4.19), (4.20) and (4.21), d 2CP(x, t) are related as dc(x, t) and apwz + 

d + −j2πfIctdc(x, t) = apwz 2CP(x, t)e . (4.22) 
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Thus, following the frequency shifting properties of the Fourier transform [41] (ch. 6), it
 

can be shown that 

DC(fx, fct) = AP WZ+ (fx, fct + c (4.23)2CP
−1fIc), 

where AP W Z+ (fx, fct) is the 2D-CDFT of apwz + (x, t). According to (4.23), in order2CP 2CP

to evaluate DC(fx, fct), first, AP W Z+ (fx, fct) has to be evaluated for (fx, fct) ∈ R2 .2CP

According to the properties of the Hilbert transform [66] (pp. 738 - 742), it can be 

shown that 

AP WZ+ (fx, fct) = AP WZ2CP(fx, fct) − jSGN(fct)AP WZ2CP(fx, fct), (4.24)2CP

where SGN(fct) is defined such that ⎧ ⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎩
 

1; fct > 0 

SGN(fct) 6 0; fct = 0 (4.25) 

−1; fct < 0. 

Note that AP WZ2CP(fx, fct), the 2D-CDFT of the equivalent 2D continuous-domain 

antenna output function apwz2CP(x, t) has been derived in section 2.6 and given in (2.82) 

as 

AP WZ2CPp (fx, fct) = AP Z [dpy ,dpz ](fx, fct) PW2CPp (fx, fct), 

where the 2D continuous-domain parametric-function AP Z [dpy ,dpz ](fx, fct) of the param­

eters (dpy, dpz) has been defined in (2.81) as ++ +∞ 

AP Z [dpy ,dpz ](fx, fct) 6 AP Z(fx, fy, fz, fct)δ(dpyfct −fy)δ(dpzfct −fz) dfydfz. 
fz ,fy =−∞ 

In (2.81), AP Z(fx, fy, fz, fct) represent the ûz-component of antenna frequency response 

function that relates to the vector-valued active element pattern AEC(θ, φ, fct) as defined 

in (2.70). Note that the spectrum of the 2D BB-BP ST PW PW2CPp (fx, fct), which is 
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observed on the 3D line along the x-axis in response to a 4D BB-BP ST PW having the 

DOA d̂p = [dpx dpy dpz], has been derived in subsection 2.3.3 such that 

PW2CPp (fx, fct) = WCPp (cfct)δ(dpxfct − fx). 

Substituting the above in (4.24) yields 

AP WZ+ (fx, fct) = 2CP

AP Z [dpy ,dpz ](fx, fct) WCPp (cfct) − jSGN(fct)WCPp (cfct) δ(dpxfct − fx). (4.26) 

According to the definition of the 1D temporal-bandpassed wavefront function wCPq (t) 

given in (4.6) and the definition of the analytic function given in (4.11), the analytic 

function w + (t) of wCPq (t) may be expressed in terms of the baseband equivalent of the CPp 

analytic function b̃q(t), such that 

+ j2πfIct wCPp 
(t) = wCPp (t) + jw̌CPp (t) = b̃p(t)e . (4.27) 

Therefore, following the properties of Fourier transform and Hilbert transform, it can be 

shown that 

W + (cfct) = WCPp (cfct) − jSGN(fct)WCPp (cfct) = Bp (4.28)CPp 
(cfct − fIc), 

1D-CDFT 1D-CDFT
where the 1D-CDFT pairs are w + (t) ←→ W + (t) ←→ CPp CPp 

(cfct), wCPp WCPp (cfct) 

1D-CDFT
and b̃p(t) ←→ Bp(cfct). Hence, (4.26) can be rewritten as 

AP WZ+ (fx, fct) = AP Z [dpy ,dpz ](fx, fct)Bp(cfct − fIc)δ(dpxfct − fx). (4.29)2CP

Now, DC(fx, fct) can be evaluated by substituting (4.29) into (4.23), that results 

DC(fx, fct) = AP Z [dpy ,dpz ](fx, fct + c −1fIc)Bp(cfct)δ(dpx(fct + c −1fIc)− fx). (4.30) 

ωx ωtIn the following, the properties of DC , analyzed because, according 
2πΔx 2πΔIt 

jωt )to (4.18), the 2D spectrum D(ejωx , e may be represented as an infinite series 

ωx ωtof periodic copies of DC , with 2D-periodicity (2π, 2π) along ωx- and ωt ­2πΔx 2πΔIt 

axes in (ωx, ωt) ∈ R2 . 
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ωx ωtThe ROS of DC ,
2πΔx 2πΔIt 

ωx ωtSubstituting (4.30) with fx = and cfct = , results 
2πΔx 2πΔIt 

ωx ωt 1 ωx c−1ωt
DC , = AP Z [dpy ,dpz ] , + c −1fIc

2πΔx 2πΔIt Δx ΔIt 2πΔx 2πΔIt 

ωt ωx ωt ×Bp δ − c −1dx +fIc . (4.31)
2πΔIt 2πΔx 2πΔIt 

Given that the instantaneous bandwidth spread factor is KI = ΩI/2fImax (see (4.7)), 

the instantaneous system utilization factor is LI = fImax/fSYSmax (see (4.8)), the inter-

element distance is Δx = 0.5cf−1 and the instantaneous temporal-sampling-interval SYSmax 

is ΔIt = Ω−1, (4.31) can be rewritten as It 

ωx ωt 1 ωx c−1ωt
DC , = AP Z [dpy ,dpz ] , + c −1fIc

2πΔx 2πΔIt Δx ΔIt 2πΔx 2πΔIt 

ωt ωx − LIdpx (KIωt + (1 − KI)π)×Bp δ , (4.32)
2πΔIt 2πΔx 

ωx ωtAccording to (4.32), the ROS of DC 
2πΔx 

, is given by the intersection of ROSs of 
2πΔIt 

ωx c−1ωt ωt ωx−LIdpx(KIωt+(1−KI)π)AP Z [dpy ,dpz ] , + c−1fIc , Bp and δ in (ωx, ωt) ∈2πΔx 2πΔIt 2πΔIt 2πΔx 

R2 . Because b̃p(t) is a temporally-baseband signal with temporal bandwidth 0.5ΩI, 

Bp(cfct) = 0; ∀ |cfct| > 0.5ΩI and therefore Bp
ωt = 0; ∀ |ωt| > π. Thus, the 

2πΔIt 

ωt ωx−LIdpx(KIωt+(1−KI)π)intersection of ROSs between Bp and δ 
2πΔx 

is given by the 
2πΔIt 

straight-line segment PQ shown in Figure 4.4, which is on 

ωx = LIdpx KIωt + π(1 − KI) , (4.33) 

for |ωt| > π. In case of EM waves transmitted from the subscriber modules of the CR 

system, the azimuth angles associated with the corresponding EM 4D BB-BP ST PW 

varies in the range φp ∈ [0◦ , 360◦], while the inclination angle is θp ∈ [85◦ , 95◦]. For 

the varying φp, the corresponding straight-line segment sweeps the 2D trapezoidal-shaped 

area marked with 1234 4 multiple times. 

4The shaded region in Figure 4.4 
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Figure 4.4: The ROS of the spectrum D(ejωx , ejωt ) in PNS{|ωx; ωt| ≤ π}. The range of 
all ROSs of D(ejωx , ejωt ) corresponding to DOAs corresponding to φp ∈ [0◦ , 180◦]. 

Let’s assume that for this particular 1D-UDAA the normalized-magnitude of 

the ûz-component of the active element pattern |AT Z(θ, φ, fct)| = 0 in the angular­� 
ranges ΨP = {θp∈(85◦ , 95◦) and φp∈(0◦ , 180◦)} for all temporal frequencies used by the 

CR system |cfct| ∈ [fSYSmax − ΩFull, fSYSmax]. Note that according to (2.5), the DOA unit 

vectors d̂P included in the vector-range 

DP ∈ [dxP dyP dzP] | [dxP = sin(θP) cos(φP), dyP = sin(θP) sin(φP), dzP = cos(θP)] , 

(4.34) 

correspond to all (θP, φP) ∈ ΨP. According to (4.34), dpx ≈ cos(φp), because sin(θp) ≈ 1 

for θp∈(85◦ , 95◦). According to the definitions (2.51) and (2.81), it can be shown that the 

2D trapezoidal shaped area 1234, shown in Figure 4.4 in (ωx, ωt) ∈ R2, is included in the 

c−1ωtROS of AP Z [dyP ,dzP ] 
ωx , + c−1fIc for all d̂P ∈ DP but, is excluded in the ROS of 

2πΔx 2πΔIt 

ωx c−1ωt ˆ̄AP Z ¯ ¯ , + c−1fIc for all dP ∈/ DP. Therefore, for all d̂P ∈ DP, the ROS 
[d̂yP,d̂zP] 2πΔx 2πΔIt 

ωx ωt ωt ωx−LI cos(φp)(KIωt+(1−KI)π)of DC , is determined by the ROS of Bp δ ,
2πΔx 2πΔIt 2πΔIt 2πΔx 

which is given by the line segment PQ in (ωx, ωt) ∈ R2 (see Figure 4.4). However, 

¯̂ ωx ωtfor all dP ∈/ DP, DC , = 0, because there is no intersection between the 
2πΔx 2πΔIt 

ωt ωx−LI cos(φp)(KIωt+(1−KI)π) ωx c−1ωtROSs of Bp δ and AP Z ¯̂ ¯̂ , + c−1fIc in
2πΔIt 2πΔx [dyP,dzP] 2πΔx 2πΔIt 

(ωx, ωt) ∈ R2 .
 

Given that the parameters |dpx| ≤ 1; ∀ [dpx dpy dpz] ∈ DP, |LI| ≤ 1 and |KI| ≤ 0.5, it
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can be shown that the spatial frequency components corresponding to the line-segment 

PQ are confined to the frequency range ωx ∈ (−π, π) for ∀ ωx ∈ (−π, π). There­

ωx ωtfore, the ROS of DC , remains inside the principle Nyquist square (PNS)
2πΔx 2πΔIt 

{|ωx; ωt| π}. This confirms that the selected inter-element distance Δx and the instan­

taneous temporal sampling-interval ΔIt prevent spatial- and temporal- aliasing in the 

complex-quadrature sampling performed by the SDR front end. This implies that inside 

the PNS, D(ejωx , ejωt ) may be given by 

jωx jωt )
1 ωx c−1ωt

D(e , e = AP Z [dpy ,dpz ] , + c −1fIc{|ωx,ωt|≤π} Δx ΔIt 2πΔx 2πΔIt 

ωt ωx − LIdpx (KIωt + (1 − KI)π)×Bp δ , (4.35)
2πΔIt 2πΔx 

The spectral density Z(ejωx , ejωt ), where the 2D-DDFT pair for the auto-correlation 

2D-DDFT
function for the 2D noise sequence is AutoCorr ηnx (ΔItnt) ←→ Z(ejωx , ejωt ), of the 

equivalent complex-quadrature sampled receiver noise ηnx (ΔItnt) is expected to occupy 

the entire PNS {|ωx; ωt| ≤ π} shown in Figure 4.4. 

On Spectral Leakage and Spectral Spreading 

The ideal complex-quadrature sampled antenna signals corresponds to EM 4D BB-BP 

ST PWs d̃(nx, nt) has an infinite number of spatial samples whereas the output x̃(nx, nt) 

(see (4.15)) of the complex-quadrature temporal sampler array is limited to 2Nx + 1 

spatial samples. As discussed in section 2.7, the straightforward 2D spectral analysis of 

x̃(nx, nt), leads spectral spreading and spectral leakage [42][44] in the direction of the 

spatial frequency ωx. However, an acceptable trade-off can be achieved between this 

spectral spreading and spectral leakage by using a sufficient number of sensors along 

with an appropriate 1D window function [42][66] to weight [43] (pp. 88) the aperture of 

the 1D-UDAA. 
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4.4	 Previously Proposed Broadband-Bandpass Beamforming Methods: 

A Review 

In this section, a few examples of the previously proposed discrete-domain broadband­

beamforming methods that can be employed to enhance desired signals in CR systems 

are briefly reviewed. Most previously proposed discrete-domain broadband-beamforming 

methods can be categorized as either frequency-domain broadband-beamforming methods 

or time-domain broadband-beamforming methods. The frequency-domain broadband­

beamforming methods [138][143][144] typically evaluate the discrete Fourier transform 

(DFT) of a segment of the sampled ST PW signals. Because of higher latency, the 

frequency-domain broadband-beamforming methods are not well suited for real-time 

adaptive applications. The legacy time-domain broadband-beamforming methods [145] 

[42][43][101][146][147] have been derived from the basic delay-and-sum concept [148]. 

Even though these delay-and-sum methods can be used for real-time adaptive broadband 

beamforming, the errors between the required exact time delays and the corresponding 

implemented approximate time delays typically result in considerable distortion of the 

desired beam-formed signal [145][146][149]. As a remedy, the frequency-invariant broad­

band beamforming methods [150][151][152][153][154] have been realized by extrapolat­

ing the narrowband beamforming methods for several different temporal frequencies in 

the desired frequency band using iterative optimization techniques. Even though these 

methods minimize the distortion, the design process is typically too computationally in­

tensive for the real-time adaptive tracking of ST PWs. In yet an another approach to 

time-domain broadband-beamforming, multidimensional (MD) filters have been used as 

broadband beamformers [139][155][156][157]. 

The frequency domain beamforming method proposed in [138], the digital interpola­

tion delay-and-sum beamforming method proposed in [101] and the “Sekiguchi Method”, 

which employs a 2D FIR filter, proposed in [139] are briefly reviewed in the following. 
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In section 4.6, the proposed 2D FIR asymmetric-trapezoidal filter-based beamforming 

method is compared against the beamforming methods [101][138][139] based on the at­

tenuation of the interfering signals, the distortion of the desired signal and the evaluation 

time of the beamforming coefficients. 

4.4.1 Digital Interpolation Beamforming for Broadband-Bandpassed Signals 

The digital interpolation beamforming method that has been proposed in [101] is a modi­

fication of the basic delay-and-sum [42] beamforming method. In the basic delay-and-sum 

beamforming, the sensor signals are delayed to match the propagation delays of the de­

sired ST PW arriving at the 1D uniformly distributed sensor array along a specified DOA. 

Here, it is expected that the coherent combination of antenna signals corresponding to 

the desired ST PW would enhance the associated wavefront signal with respect to the 

other propagating ST PWs having different DOAs and the receiver noise. In general, the 

antenna signals are scaled by 1D window-function in order to control the width of the 

main-lobe and the magnitude of the side-lobes of the beam-pattern [101]. 

The main objective of the digital interpolation beamforming method is to reduce 

the prohibitively high sampling rates that are required for the beamforming of BB-BP 

ST PWs using the basic delay-and-sum beamforming method. The requirement of the 

high sampling rates arises from two factors. First, the direct Nyquist sampling (see 

subsection 2.8.1) of BB-BP signals requires about 4 - 12 times higher sampling rates 

compared to the complex-quadrature sampling of the same signals. Secondly, in order to 

“steer” the beam towards the desired direction, the sampled sequences are required to be 

delayed by fractions of the Nyquist sampling interval. Hence for efficient beam steering, 

the antenna signals must be oversampled at 20 - 100 times higher rates compared to the 

Nyquist sampling rate [43]. 

A typical architecture of an interpolation beamformer is shown in Figure 4.5. As 

shown there the antenna signals anx (t); nx = [Nx, .., −1, 0, 1, .., Nx], are subjected to 
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complex-quadrature sampling. Next, 1D temporal sequence of x̃(nx, nt) for each nx 

is subjected to M -fold temporal interpolation that oversample the information carrying 

baseband equivalent signal sequences by a factor of M . Followed by that, the interpolated 

1D sequence x is scaled by the “phase-rotating-factor”, that is defined xd(nx, nt) for each nx 

as 

−jπ cos(φ̂0)LI(1−KI)nxcφ̂0 
(nx) 6 e , (4.36) 

where the anticipated azimuth angle φ̂0 of the DOA of the desired EM wave varies in 

the range φ̂0 ∈ [0◦ , 180◦]. As proposed in [101], for each nx = [Nx, .., −1, 0, 1, .., Nx], the 

phase-rotated 1D sequence cφ(nx)x )-samples, scaled by the xd(nx, nt) is delayed by Nφ(nx

coefficient wD(nx) and summed together such that 

Nx+ 
ỹDS(nt) = wD(nx) cˆ (nx) x nx, nt − Nˆ (nx) ,xd (4.37)φ0 φ0 

nx =−Nx 

in order to achieve the output ỹDS(nt) of the digital interpolation beamformer. Note that 

the samples delays for each nx is given by 

Nφ̂0 
(nx) = MLIKI cos(φ̂0) nx. (4.38) 

Note that the symbol lτl denotes the nearest integer of the real-number τ . In (4.37), 

wD(nx) specifies the 1D discrete-domain window-function of length (2Nx+1) that controls 

the main-lobe width and side-lobe magnitude of the beam-pattern. However, due to the 

M-fold interpolation, ỹDS(nt) is over-sampled by a factor of M , where the temporal 

bandwidth of ỹDS(nt) is confined to ωt ∈ [−π/M, π/M ]. Therefore, without distorting 

the information content, ỹDS(nt) can be decimated by a factor of M [142] (ch. 4), as 

shown in Figure 4.5. 

The digital interpolation beamforming process specified in (4.37) can be expressed as 

a 2D FIR filtering process. The unit impulse response h̃DS(nx, nt) of this delay-and-sum 

beamforming 2D FIR filter is defined by 

h̃DS(nx, nt) 6 wD(nx) cφ̂0 
(nx) δ2D nx, nt − Nφ̂0 

(nx) , (4.39) 
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Figure 4.5: A typical architecture of a interpolation delay-and-sum beamformer that has 
been proposed in [101]. 

where δ2D nx, nt is the 2D Kronecker delta-function [42] (ch. 1). The 2D input sequence 

of this 2D beamforming filter is given by the interpolated complex-valued 2D sequence xxd(nx, nt). According to [44] (pp. 54 - 55), the transfer function of the interpolation 

delay-and-sum beamforming 2D FIR filter may be given by 

+ +∞ ∞
ωx − 2πmx ωt − 2πmt

HDS(e
jωx , ejωt ) = HCDS , , (4.40)

2πΔx 2πΔItM−1 
mx =−∞ mt =−∞ 

where HCDS(fx, fct) the 2D-CDFT of the equivalent continuous-domain unit impulse 

response of the delay-and-sum beamformer dhcDS(x, t). Note that in this case the temporal 

sampling interval is ΔItM
−1 . hcDS(x, t) can be expressed as Following (4.39), d⎧ ⎛ ⎞⎫ ⎨ MLIKI cos(φ̂0) ⎬ 

−1 sinc(ΩIt)d ⎠hcDS(x, t) = wC(x) ccˆ (x) δ ⎝t + c x ∗ , (4.41)⎩ φ0 MLIKI ⎭ ΩI 

where wC(x) is the 1D equivalent continuous-domain window-function and where the 

phase rotations are resulted by the 1D equivalent continuous-domain phase-shift function 
−j2π cos(φ̂0)LI(1−KI)x 1D-CDFT

2Δxccφ̂0 
(x)6e . Given that sinc(ΩIt) ←→ rect( fx ), where rect( fx ) = 1 for 

ΩI ΩI ΩI 

sinc(ΩIt)|fx| ≤ 0.5ΩI and where rect( fx ) = 0 for |fx| > 0.5ΩI, the convolution with 
ΩI ΩI 

limits the filter response to |fct| ≤ [−0.5ΩIt, 0.5ΩIt]. Following the properties of Fourier 
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transform and the derivation of the 2D-CDFT of a 2D BB-BP ST PW in Appendix A.3, 

it can be shown that 

HCDS(fx, fct) ⎧ ⎛ ⎞⎫ ⎨ MLIKI cos(φ̂0) ⎬cos(φ̂0)LI(1 − KI) ⎠ fct 
= WC(fx)∗ ∗δ fx − ∗ ∗δ⎝fx − fct rect ,⎩ 2Δx MLIKI ⎭ ΩIt ⎛ ⎞ 

= WC
⎝fx − 

MLIKI cos( ̂φ0) 

MLIKI 
fct − 

cos( ̂φ0)LI(1 − KI) 
2Δx 

⎠ rect 
fct 
ΩIt 

. (4.42) 

1D-CDFT
where the 1D-CDFT pair wC(x) ←→ WC(fx). Hence, inside the PNS, the transfer 

function of the equivalent digital interpolation delay-and-sum beamforming process after 

the decimation can be expressed as ⎛ ⎞ 
ωx − MLIKI cos(φ̂0) M−1ωt −π cos(φ̂0)LI(1−KI)

jωx ⎝ ⎠[HDDS(e , ejωt )]{|ωx,ωt|≤π} = WC . 
2πΔx 

(4.43) 

According to [42] (ch. 6), the transfer function given in (4.43) corresponds to a 2D beam 

having uniform beamwidth along the axis that is on the straight line 

ωx = MLIKI cos(φ̂0) M−1ωt + π cos(φ̂0)LI(1 − KI) (4.44) 

inside the PNS. Note that the gradient of the axis can only take the fractional values 

lMLIKI cos(φ̂0)l 
M . Therefore, HDDS(e

jωx , ejωt ) can only be directed at certain azimuth angles 

φ̂D such that MLIKI cos(φ̂D) ∈ Z. The width of the main-lobe of the beam and the side-

lobe levels corresponding to HDDS(e
jωx , ejωt ) are determined by the magnitude response 

of the 1D window functions wD(nx). Examples of normalized magnitude responses of 

the 1D rectangular window function and 1D Hamming window function are given in 

section 2.7. 
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4.4.2 Frequency Domain Beamforming Methods for Broadband-Bandpassed Signals
 

In [138], several different versions of digital frequency-domain beamforming methods for 

direct Nyquist sampled ST PWs have been summarized and compared on the basis of 

the required computational complexity and memory. In these methods, the exact or an 

approximate of the DFT of a segment of the sampled ST PW signals has been evaluated 

along the an anticipated ROS, which corresponds to the anticipated DOA of the desired 

ST PW, in order to recover its spectral components. Hence, in digital frequency-domain 

broadband-bandpass beamforming of complex-quadrature sampled antenna sequences, in 

order to recover the spectral components of the desired BB-BP ST PW, the DFT of a 

segment of the sample sequence is evaluated along the anticipated ROS of the spectrum 

of the desired BB-BP ST PW, which has been given in (4.33) where dqx ≈ cos(φ̂0). The 

exact DFT evaluation methods proposed in [138] (sec II-A), can be modified to evaluate 

the DFT along the anticipated ROS ωx = LIKI cos(φ̂0)ωt + π cos(φ̂0)LI(1 − KI) in the 

PNS such that 

Nt Nx+ + 
−j cos(φ̂0)LI KIωt+π(1−KI) nx −jωtntYFB(e

jωt ) = wD(nx) x̃(nx, nt) e e , (4.45) 
nt=0 nt =−Nx 

where wD(nx) is the 1D discrete-domain window function, which controls the width of 

the mainlobe and the amplitude of the sidelobes. 

The digital frequency-domain broadband-bandpass beamforming process specified in 

(4.45) can also be expressed as a 2D FIR filtering process. The transfer function of the 

digital frequency-domain broadband-bandpass beamforming 2D FIR filter inside the PNS 

may be given by 

jωx 
ωx − cos(φ̂0)LI (KIωt + π(1 − KI))

[HFB(e , ejωt )]{|ωx,ωt|≤π} = WC . (4.46)
2πΔx 

1D-CDFT
where the 1D-CDFT pair wC(x) ←→ WC(fx) of the equivalent 1D continuous domain 

window function of wD(nx). Note that the transfer function for digital interpolation delay-

and-sum beamformer given in (4.43) and the transfer function of the digital frequency­
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domain broadband-bandpass beamformer given in (4.46) are almost identical. For the 

digital frequency-domain broadband-bandpass beamformer, the axis of the 2D beam-

shaped transfer function is given by 

ωx = cos( φ̂0)LI (KIωt + π(1 − KI)) . (4.47) 

However, the gradient of the axis of the transfer function of the frequency-domain 

broadband-bandpass beamformer can take any real value LIKI cos(φ̂0) unlike the gra­

dient of the axis of the interpolation delay-and-sum beamformer, which can take only 

fractional values. 

4.4.3 The Sekiguchi Method; A Beamforming 2D Complex-Coefficient FIR Filter Design
 

Method using a Combined Spectral-Transformation and Window Method
 

A nearly frequency-independent broadband-bandpass beamformer for signals received by
 

a 1D-UDAA has been proposed by Sekiguchi et. al. in [139]. In the Sekiguchi method, a
 

2D FIR ST filter has been proposed to process the complex-quadrature sampled antenna
 

signals and selectively enhance the desired signals. The transfer function of the 2D FIR
 

filter has been achieved using the spectral-transformation method [158] (ch. 6.4) such
 

that the main-lobe and the side-lobe characteristics of the spatial beam-pattern are nearly
 

independent of the temporal frequency. Also, a window method has been employed to
 

truncate the prohibitively high order of the direct frequency transformed 2D FIR filter.
 

A two-stage design process has been proposed in [139] for the design of the beam-

forming 2D FIR filter. At the first stage, the 2D frequency-space (Fx, Ft)
5 is mapped to 

a 1D frequency parameter F using the 2D to 1D spectral-transform that is defined by 

F 6 
Fx − Δxc 

−1fIc cos(φ̂0). (4.48)
(ΩI/fIc)Ft + 1 

Equation (4.48) can be rewritten using the usual group of parameters defined in subsec­

5Fx and Ft are normalized spatial and temporal frequencies, respectively. 
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tion 4.3.2 and by substituting Fx = ωx/2π and Ft = ωt/2π such that 

ωx − LI cos(φ̂0) (KIωt + (1 − KI)π)
F = . (4.49)

KIωt2 + π
(1−KI) 

Note that if F = 0, then ωx = LI cos(φ̂0) (KIωt + (1 − KI)π), which specifies the line 

segment PQ (see (4.33) in page 135), the ROS of the spectra of the complex-quadrature 

sampled desired signal. Also note that for non-zero |F | = F ' , the contour of (ωx, ωt) 

that satisfies (4.49) inside the PNS is an asymmetric-trapezoid6 . Given that the ideal 

2D frequency transform function inside the PNS may be expressed as 

jωx 
ωx − LI cos(φ̂0) (KIωt + (1 − KI)π)

[IT (e , ejωt )]{|ωx,ωt|≤π} = , (4.50)
KIωt2 + π

(1−KI) 

an approximate of associated 2D unit impulse response itd(nx, nt) can be evaluated by 

taking the 2D-IDFT of sampled IT (2πmx/Mx, 2πmt/Mt) for mx = 0, 1, .., Mx − 1 and 

mt = 0, 1, .., Mt − 1. Generally, almost all of the elements of itd(nx, nt) are non-zero and 

if the 2D sequence of size (Mx × Mt) employed directly in the following filter design 

process it would have led to an extremely high order 2D FIR filter. Therefore in [139], dit(nx, nt) is truncated by a 2D window function win2D(nx, nt) (see section 2.7.1) of size 

(2Nx + 1) × (2Nt + 1) such that 

atd (nx, nt) = win2D(nx, nt)itd(nx, nt). (4.51) 

According to [139], the 2D rectangular window has been deemed unsuitable for the trun­

cation process. Usually the window sizes for win2D(nx, nt) in (4.51) are restricted to 

Nx = 1, 2, 3 and Nt = 2, 3, 4. The transform function AT (ejωx , ejωt ) that corresponds to 

atd (nx, nt) can be evaluated by taking its 2D-DDFT. Finally, atd (nx, nt) is scaled by the 

scaling factors c1 6 2/(Tmax − Tmin) and c2 6 c1Tmax − 1 such that ⎧ ⎪⎨ dc1at(0, 0) − c2; (nx, nt) = (0, 0) 
ctd(nx, nt)= (4.52)⎪⎩ dc1at(nx, nt); (nx, nt) = (0, 0). 

6Note that the trapezoid-shaped passband specified in (4.49) is different than the trapezoid-shaped 
passband that corresponds to the ideal frequency invariant beam pattern proposed in section 4.5. 
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With this scaling, the range of scaled transform function CT (ejωx , ejωt ) has been limited 

to (−1, 1) as in the case of sinusoids. 

In the second stage, the McClellan-transform [159] has been used to evaluate the 

corresponding transfer function HSKG(e
jωx , ejωt ). However, first, a zero-phase prototype 

1D FIR filter [66] (pp. 641) has to be designed. The passband of the prototype filter 

determines the selectivity of the beamformer and the passband ripple and stopband 

attenuation of the prototype filter determine the distortions of the desired signal and the 

interference from the co-channel interfering signals, respectively. Given the coefficients 

of the 1D prototype filter of order 2N are p(n); n = −N, .., −1, 0, 1, .., N , the frequency 

response of the beamforming 2D FIR filter is given by 

N+ 
jωx jωx jωt )HSKG(e , ejωt ) = p(0) + p(n)Tn CT (e , e , (4.53) 

n=−N 

where Tn(·) is the nth-order Chebyshev polynomial of the first kind that can be expressed 

with the recursive relationship given in [44] (pp. 210). Next the 2D-IDFT of evaluated 

j2πmx/M j2πmt/M ' for the 2D sample sequence HSKG(e x , e t ) for mx = 0, 1, .., M x − 1 and 

' mt = 0, 1, .., M t −1 that yields hld SKG(nx, nt). Finally, a 2D window function win2D(nx, nt) 

of size (2Nx + 1, Nt) has been used to truncate hld SKG(nx, nt) such that 

h̃SKG(nx, nt) = win2D(nx, nt)hld (nx, nt). (4.54) 

The simulation results shown in [139] confirm that the proposed method can achieve 

lower distortion in the passband. However, for the adaptive beamforming as required in 

the CR systems, instantaneous determination of several key design parameters such as 

prototype 1D FIR trapezoidal filter and window sizes requires highly sophisticated design 

process that may take up to several seconds to evaluate all the beamformer coefficients. 
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4.5 The Beamforming Complex-Coefficient 2D FIR Trapezoidal Filter
 

The main objective of the beamformer to be used in the CR system is to process the 

complex-quadrature sampled antenna signals in order to recover the desired 1D tempo­

rally baseband user data signals transmitted by subscriber modules by selectively en­

hancing EM waves on the basis of DOAs in the presence of severe co-channel interference 

and receiver noise. Further, this beamforming method should be able to adapt instan­

taneously following the changes in the operational frequency-band in terms of the band­

width and the center-frequency and facilitate the real-time tracking of desired signals 

associated with the gradually time varying DOAs due to the movement of the subscriber 

modules. 

Reconsider the typical scenario of subscriber module distribution for a CR system 

shown in Figure 4.3 (see page 128), where the 1D-UDAA receives the EM waves transmit­

ted by QT + 1 different subscriber modules that are distributed around the geographical 

area. However, due to the directional nature of the active element pattern shown in Fig­

ure 4.3, only the EM waves corresponding to azimuth angles in the range φq ∈ [30◦ , 150◦] 

for q = 0, 1, .., QD, are effectively received by this particular 1D-UDAA. In order to dis­

tinguish the different groups of subscriber modules distributed in the geographical area, 

the CR system estimates the azimuth angle φ̂q that corresponds to the DOA of the EM 

waves transmitted by each of the subscriber modules. 

According to analysis of the spectral properties of the complex-quadrature sampled 

antenna signals given in subsection 4.3.4, inside the PNS, the ROS of the spectrum of 

a space-times sampled EM wave transmitted by a desired subscriber module is given by 

(4.33) and shown by the lines-segment PQ in Figure 4.4. Also, it has been derived that 

the range of the ROSs of the space-times sampled EM waves having DOAs specified by 

the inclination angles θp ≈ 90◦ and the azimuth angle in the range φq ∈ [0◦ , 180◦] is 

given by the shaded trapezoidal-shaped area denoted by 1234 in Figure 4.4. The spectra 
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of the desired subscriber signals and co-channel interfering signals occupy the area 1234 

where the spectral-density of receiver noise occupy the entire PNS. In order to selectively 

enhance the spectral components of the desired subscriber signal and to minimize the 

interference caused by other co-channel EM waves having different DOAs, the transfer 

function of the beamformer must closely enclose PQ, the ROS of the desired spectrum. 

In the following, first, the beam-shaped transfer functions of previously proposed 

methods [101][138] are briefly discussed highlighting the limitations of these methods. 

Next, the ideal transfer function that yields the minimum distortion of the desired sub­

scriber signals associated with time varying DOAs is proposed. 

4.5.1	 The Ideal Transfer Function for the Beamforming of Complex-Quadrature Sam­

pled 1D-UDAA Signals 

The Ideal 2D Uniform Bandwidth Beam-Shaped Transfer Function 

First, let’s consider the ideal 2D beam-shaped transfer function IHBEAM(e
jωx , ejωt ) having 

a uniform bandwidth as shown by the region ST UV inside the PNS in Figure 4.6. Note 

that ideally |IHBEAM(e
jωx , ejωt )| = 1 inside ST UV and |IHBEAM(e

jωx , ejωt )| = 0 elsewhere 

in the PNS in (ωx, ωt) ∈ R2 . Given that PQ, the ROS of D0(e
jωx , ejωt ), is perfectly 

aligned with the axis of ST UV as shown Figure 4.6 (left), the axis of the ideal 2D beam-

shaped transfer function is given by (4.33). Therefore, the four parameters, namely the 

instantaneous bandwidth spread factor KI, the instantaneous system utilization factor 

LI, the shift-angle α = tan−1(cos(φ0)) and the uniform bandwidth Δ, determine the 

orientation of ST UV in the PNS. 

In practice, the exact azimuth angle φ0 of the desired subscriber module signal is not 

precisely known at the CR system. Nevertheless, if the subscriber module moves, then 

φ0 may change during the transmission period. Hence, due to the difference between the 

actual DOA and anticipated DOA of the desired signal, there may be a small deviation 

between the axis of the ideal transfer function IHBEAM(e
jωx , ejωt ) and PQ, the ROS 
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Figure 4.6: The ROS of the spectrum D0(e
jωx , ejωt ) inside of PNS, which is denoted by 

PQ, and the ideal beam-shaped transfer function IHBEAM(e
jωx , ejωt ). Instances where 

the axis of IHBEAM(e
jωx , ejωt ) and PQ are perfectly aligned (left) and misaligned (right). 

of the spectrum of desired signal as shown in Figure 4.6 (right). If the misalignment 

between the axis of IHBEAM(e
jωx , ejωt ) and PQ is sufficiently large, then parts of PQ 

may fall outside the ST UV region as shown in Figure 4.6 (right). This may suppress 

the spectral components of the desired signals that lay outside of ST UV and may cause 

severe distortion in the final output. As a remedy, the uniform bandwidth Δ can be 

increased to reduce the chance of such misalignment distortions but, wider bandwidths 

allow more spectral components of co-channel interfering signals and receiver noise to 

contaminate the spectral components of the desired signals that ultimately degradates 

the signal to noise and interference ratio (SNIR) of the user data sequence. 

The non-ideal 2D beam-shaped transfer functions corresponding to the digital in­

terpolation delay-and-sum beamformer HDS(e
jωx , ejωt ) and the digital frequency domain 

beamformer HFB(e
jωx , ejωt ), which have been introduced in subsections 4.4.1 and 4.4.2, 

are also susceptible to the distortions of the desired signal due to the misalignment of the 

axis of the 2D beam-shaped transfer functions and the actual ROS of the desired signal. 

Between the transfer functions HDS(e
jωx , ejωt ) and HFB(e

jωx , ejωt ), the distortion of the 

desired signal can be even higher for HDS(e
jωx , ejωt ) because it can only be directed at cer­

tain azimuth angles φ̂D. Further, variations of the magnitude responses |HDS(e
jωx , ejωt )| 
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and |HFB(e
jωx , ejωt )|, within the main-lobe may also contribute to the distortion of the de­

sired signal. Also, the non zero magnitude responses |HDS(e
jωx , ejωt ) and |HFB(e

jωx , ejωt )| 

outside the main-lobe may cause the energy of the co-channel interfering signals that are 

having ROSs outside the main-lobe to leak in to the output. However, with the choice 

of the 1D window function wD(nx), the suppression of co-channel interfering signals can 

be controlled at the expense of the selectivity. 

The Ideal 2D Asymmetric Trapezoid-Shaped Transfer Function 

Let’s assume that in estimating the azimuth angles φq; q = 1, .., Q of the EM waves 

transmitted by Q subscriber modules, the experimental process [45] employed by the CR 

system considered here is associated with an uncertainty Δφ. This implies that φq, the 

actual azimuth angle of the qth EM wave lies in the range [ φ̂q − Δφ, φ̂q +Δφ]. Therefore, 

the ROS of the spectra D0(e
jωx , ejωt ), of complex-quadrature sampled antenna signals 

that corresponds to the EM wave transmitted by 0th subscriber module, lies inside the 

2D asymmetric trapezoidal region ABCD shown in Figure 4.7, which is bounded by the 

straight lines 

AD → ωx = LI(KIωt +(1 − KI)π) cos( φ̂0 +Δφ), 
(4.55) 

BC → ωx = LI(KIωt +(1 − KI)π) cos( φ̂0 − Δφ), 

inside the PNS |ωx; ωt| ≤ π. Therefore, the ideal transfer function IHTRAP(e
jωx , ejωt ) of 

the frequency-invariant beamformer is proposed such that the ideal magnitude response 

|IHTRAP(e
jωx , ejωt )| = 1 inside ABCD and |IHTRAP(e

jωx , ejωt )| = 0 elsewhere in the 

PNS. According to (4.55), the four parameters, namely the instantaneous bandwidth 

spread factor KI, the instantaneous system utilization factor LI, the estimated azimuth 

angle φ̂0 and the uncertainty in azimuth angle estimation Δφ, determine the orientation 

ˆof ABCD in the PNS. Note that irrespective of small estimation errors between φ0 

and φ0, PQ, the ROS of the desired spectra D0(e
jωx , ejωt ), remains inside of the ideal 

trapezoidal shaped region ABCD as shown in Figure 4.7 (right). Ideally, the beamformer 



151 

0( , )x tj jD e eω ω
ROS of 

1 2

34

xωππ−

tω
π

π−

(0,0)

P

Q

PNS
Trapezoid-shaped transfer 
function that is perfectly 
aligned with PQ

TRAP( , )x tj jIH e eω ω

TRAP( , )x tj jIH e eω ω

A B

CD

1 2

34

xωππ−

tω
π

π−

(0,0)

P

Q

PNS
0( , )x tj jD e eω ω

ROS of 

Trapezoid-shaped transfer 
function that is misaligned 
with PQ

A B

CD

Figure 4.7: The ROS of the spectrum D0(e
jωx , ejωt ) inside of PNS, which is denoted 

by PQ, and the ideal trapezoid-shaped transfer function IHTRAP(e
jωx , ejωt ). Instances 

where the axis of IHTRAP(e
jωx , ejωt ) and PQ are perfectly aligned (left) and misaligned 

(right). 

having the transfer function IHTRAP(e
jωx , ejωt ) can suppress all the co-channel interfering 

signals provided that the ROSs of the spectra of the co-channel interfering EM waves lie 

outside ABCD. 

As mentioned in subsection 4.4.3, the beamforming 2D FIR filter proposed by Sekiguchi 

et. al. in [139] also has an asymmetric trapezoid-shaped passband. However inside the 

PNS, the trapezoidal contour of (ωx, ωt) that satisfies (4.49) is different from the trape­

zoid specified in (4.55). Hence, for some values of φq and φ̂q, parts of PQ, the ROS of 

D0(e
jωx , ejωt ), may fall outside of the 2D trapezoid-shaped passband of HSKG(e

jωx , ejωt ), 

which has been proposed in [139]. This may lead to distortion of the desired signal at 

the output of the beamformer. 

4.5.2	 Approximation of the Complex-Coefficient 2D FIR Filter with a Trapezoidal-

Shaped Passband 

Because of the inherent stability and linear phase property of MD FIR filters [42][158], 

here, a transfer function associated with a 2D FIR filter-structure has been selected 

to approximate the proposed asymmetrical-trapezoidal-shaped passband that has been 

specified in (4.55). In the following, a 2D window-based method [42][44][158] has been 

employed to derive algebraic closed-form expressions for the coefficients of the beamform­
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ˆing 2D FIR trapezoidal filter as functions of the parameters KI, LI, φ0 and Δφ. 

As specified in subsection 4.5.1, the ideal magnitude response |IH(ejωx , ejωt )|, which 

corresponds to the 2D transfer function IH(zx, zt), equals unity inside the passband 

area given by ABCD in Figure 4.7 and zero elsewhere inside the PNS |ωx; ωt| ≤ π. 

The ideal phase response is ∠ [IH(ejωx , ejωt )] = 0 inside the PNS. According to these 

specifications and given the boundaries of the asymmetric-trapezoidal-shaped passband 

ABCD are specified in (4.55), the ideal infinite-extent complex-valued 2D unit impulse 

˜response h(nx, nt) of the ideal beamforming 2D FIR trapezoidal filter IH(zx, zt) may be 

evaluated following the definition of the inverse 2D discrete domain Fourier transform 

(2D-IDDFT) [42] (pp. 29-31) such that 

L+(ωt)++π + 
1 jωxnx jωtnth̃(nx, nt) = 1e e dωx dωt, (4.56)

(2π)2 

ωt =−π ωx =L−(ωt) 

for (nx, nt) ∈ Z2, where the limits are defined as 

L+(ωt) 6 LI(KIωt +(1 − KI)π) cos( φ̂0 − Δφ) and 

L−(ωt) 6 LI(KIωt +(1 − KI)π) cos( φ̂0 +Δφ). 

Evaluating (4.56) yields a closed-form algebraic function h̃(nx, nt) of parameters KI, LI, 

φ̂0 and Δφ. However for brevity, the detailed derivation of h̃(nx, nt) is omitted here. For 

all (nx, nt) ∈ Z2 , h̃(nx, nt) is given by the following expressions where a 6 cos(φ̂0 +Δφ) 

and b 6 cos(φ̂0 − Δφ). 

For the most general case where nx = 0, (aLIKInx + nt) = 0 and (bLIKInx + nt) = 0 

jπLI(1−KI)bnx jπLI(1−KI)anxsin (π (bLIKInx + nt)) e sin (π (aLIKInx + nt)) e
h̃(nx, nt) = − . 

j2π2nx (bLIKInx + nt) j2π2nx (aLIKInx + nt) 

(1.57(a)) 

The special cases 

For nx = 0, nt = 0, 

LI(1 − KI)(b − a)
h̃(0, 0) = . (1.57(b))

2 
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For nx = 0, nt = 0, 

(−1)nt LIKI(b − a)
h̃(0, nt) = . (1.57(c))

j2πnt 

For nx = 0, (aLIKInx + nt) = 0 and (bLIKInx + nt) = 0 

jπLI(1−KI)bnx jπLI(1−KI)anxsin (π (bLIKInx + nt)) e e
h̃(nx, nt) = − . (1.57(d))

j2π2nx (bLIKInx + nt) j2π2nx 

For nx = 0, (aLIKInx + nt) = 0 and (bLIKInx + nt) = 0 

jπLI(1−KI)bnx jπLI(1−KI)anxe sin (π (aLIKInx + nt)) e
h̃(nx, nt) = − . (1.57(e))

j2π2nx j2π2nx (aLIKInx + nt) 

For nx = 0, (aLIKInx + nt) = 0 and (bLIKInx + nt) = 0 

jπLI(1−KI)bnx jπLI(1−KI)anxe − e
h̃(nx, nt) = . (1.57(f)) 

j2π2nx 

Because h̃(nx, nt) extends infinitely in both the spatial and temporal dimensions and 

is non-causal in the temporal dimension, ideally h̃(nx, nt) cannot be realized using a 

2D ST FIR filter structure. Therefore, a 2D windowed [42] temporally-causal 2D unit 

impulse response has been defined such that 

g̃(nx, nt + Nt) 6 win2D(nx, nt) h̃(nx, nt), (4.58) 

where the 2D window function win2D(nx, nt) = 0 for |nx| > Nx and |nt| > Nt. In 

(4.58), the 2D impulse response g̃(nx, nt) of size (2Nx + 1) × (2Nt + 1) corresponds to the 

beamforming 2D FIR trapezoidal filter G(zx, zt) of order (2Nx ×2Nt). For the subsequent 

beamforming 2D FIR trapezoidal filter designs, a 2D Hamming window ham2D(nx, nt) of 

size ((2Nx + 1) × (2Nt + 1)) has been assumed. As given in section 2.7, ham2D(nx, nt) 

corresponds to two cascading 1D Hamming window functions hamD(nx) of length (2Nx + 

1) and hamD(nt) of length (2Nt + 1) such that ham2D(nx, nt) = hamD(nx) hamD(nt). 

In order to change the shape and orientation of the passband of G(zx, zt) with instan­

taneously selected frequency band and the sampling rate of the CR system, specified by 
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LI and KI, as well as to track and enhance the desired signals with time varying DOA, 

specified by φ̂0 and Δφ, the complex valued filter coefficients g̃(nx, nt) can be calculated 

instantaneously using the closed form expressions given in equations (1.57(a)) - (1.57(f)) 

multiplied by the 2D window function as given in (4.58) [44]. 

4.5.3 A Design Example of a Complex-Coefficient 2D FIR Trapezoidal Filter 

Let the beamforming complex-coefficient 2D FIR trapezoidal filter G(zx, zt) of order (40× 

32) be required to meet the specifications φ̂0 = 70◦, Δφ = 4◦ , KI = 0.1 and LI = 0.9. The 

corresponding unit impulse response g̃(nx, nt) is evaluated from (4.58) using the closed-

form expressions given in equations (1.57(a)) - (1.57(f)). A simple computer program 

implemented in MATLAB R©, takes around 0.125 s to evaluate the 1353 coefficients of 

g̃(nx, nt) using a Dell XPS-600 computer equipped with an Intel Pentium-IV (clock speed 

3.4 GHz) CPU and 2 GB of RAM. 

The properties of the frequency response G(ejωx , ejωt ) of the beamforming complex-

coefficient 2D FIR trapezoidal filter G(zx, zt) are shown in Figure 4.8. The resultant 

magnitude-frequency response |G(ejωx , ejωt )| is shown by the 3D surface plot of in Fig­

ure 4.8 (a), which specifies the selectivity of the beamformer. The -3 dB and -50 dB 

contours of |G(ejωx , ejωt )| and the ideal trapezoidal passband boundary ABCD, speci­

fied in (4.55), are shown in Figure 4.8 (b). As shown there, the -3 dB contour closely 

approximates the ideal passband boundary ABCD. 

The typical cross-sectional magnitude response and cross-sectional phase (wrapped) 

response taken along the passband of G(ejωx , ejωt ) (for the slanted cross-sectional plane 

shown in Figure 4.8 (b)) and projected onto the ωt-axis are shown in Figure 4.8 (c) and 

Figure 4.8 (e), respectively. Similarly, a typical cross-sectional magnitude response and a 

cross-sectional phase response, taken across the passband of (horizontal cross- sectional 

plane shown in Figure 4.8 (b)) and projected onto the ωx-axis, are shown in Figure 4.8 (d) 

and Figure 4.8 (f), respectively. According to the cross-sectional magnitude response 
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Figure 4.8: The properties of the 2D FIR trapezoidal filter of order (40 × 32) designed 
ˆ 40to meet the specifications φ0 = 700 , Δθ = , KI = 0.1 and LI = 0.9. The nor­

malized magnitude-frequency response |G(ejωx, ejωt )| (a). The boundary lines the ideal 
trapezoidal passband, -3 dB and -50 dB contours of |G(ejωx, ejωt )| and the cross-sectional 
planes taken along and across the passband (b). The cross-sectional magnitude (c) and 
phase (wrapped) (e) responses taken along the trapezoidal shaped passband. The cross– 
sectional magnitude (d) and phase (wrapped) (f) responses taken across the trapezoidal 
shaped passband. 
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shown in Figure 4.8 (c) and the contour plots shown in Figure 4.8 (b), the passband 

magnitude error is less than 0.5 dB within the central 90% of the operational temporal 

bandwidth and less than 1 dB within the central 95% of the operational temporal band­

width, respectively. This implies that the proposed 2D FIR trapezoidal filter beamformer 

has a frequency-invariant beam-pattern over more than 90% of the temporal bandwidth. 

By observing many such cross-sectional magnitude responses (e. g. Figure 4.8 (c) and 

Figure 4.8 (d)) and cross-sectional phase (wrapped) responses (e. g. Figure 4.8 (e) and 

Figure 4.8 (f)), it has been confirmed that the frequency response inside the passband of 

is indeed of unity magnitude and given by 

jωx jωt )  1 e −jωtNtG(e , e (4.59) 

According to Figure 4.8(d), the average attenuation level in the stopband of G(zx, zt) is 

around 60 dB. 

The average stopband gains and the compensated passband ripples of a series beam-

forming 2D FIR trapezoidal filters G(zx, zt) of order (40 × 32), which has been designed 

to be directed at a series of azimuth angles φ̂0 ∈ [30◦ , 150◦] for different angular widths 

Δφ ∈ {3◦ , 3.25◦ , 3.5◦ , 4◦ , 4.5◦ , 5◦ , 5.5◦ , 6◦ , 6.5◦} for the temporal frequency band of oper­

ation FB01 that corresponds to KI = 0.1 and LI = 1.0, are shown in Figure 4.9 and 

Figure 4.10, respectively. Here, in evaluating the compensated passband ripple, the pass-

band is approximated with a first order polynomial of temporal frequency ωt for a 90% 

spectral occupancy. Also, the average stopband gains and the compensated passband 

ripples of a series beamforming 2D FIR trapezoidal filters G(zx, zt) of order (40 × 32), 

which has been designed to be directed at a series of azimuth angles φ̂0 ∈ [30◦ , 150◦] for 

different angular widths Δφ ∈ {4◦ , 4.25◦ , 4.5◦ , 5◦ , 5.5◦ , 6◦ , 6.5◦ , 7◦ , 7.5◦ , 8◦} for the tempo­

ral frequency band of operation FB01 that corresponds to KI = 0.125 and LI = 0.8, are 

shown in Figure 4.11 and Figure 4.12, respectively. 

Note that Figures 4.9 and 4.11, the stopband attenuation of the beamformers max­

http:G(e,e(4.59
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Figure 4.9: The average stopband gains of the series of beamforming 2D FIR trapezoidal 
filters of order (40 ×32) for the operational temporal frequency band FB01 (i.e. KI = 0.1 
and LI = 1.0). This series of beamforming 2D FIR trapezoidal filters are designed to be 
directed at φ̂0 =∈ [30◦ , 150◦] for Δφ ∈ {3◦ , 3.25◦ , 3.5◦ , 4◦ , 4.5◦ , 5◦ , 5.5◦ , 6◦ , 6.5◦}. 

imizes for a given angular range Δφ at certain beam direction φ̂. For example, for the 

beam directions φ̂0 ∈ [70◦ , 110◦], the maximum stopband attenuations are achieved for 

Δφ = 3.25◦ , in FB01 and for Δφ = 4.25◦ , in FB02. It was observed in Figures 4.9 

and 4.11, for the beams directed at φ̂ ∈ [30◦ , 70◦] and φ̂ ∈ [110◦ , 150◦], higher stop-

band attenuation may be achieved at the expense of selectivity by increasing the angular 

widths. Also note that, considerably lower passband ripples are observed for wider angu­

lar ranges (e.g. Δφ = 60◦ , 6.5◦ for FB02 and Δφ = 7.5◦ , 8◦ for FB02) for beam direction 

φ̂ ∈ [80◦ , 100◦] as shown in Figures 4.12 and 4.12. However according to Figures 4.9 and 

4.11, for the particular beam directions φ̂ ∈ [80◦ , 100◦] and angular widths, the stopband 

attenuations are relatively high. 
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Figure 4.10: The compensated passband ripple of the series of beamforming 2D 
FIR trapezoidal filters of order (40 × 32) for the operational temporal frequency 
band FB01 (i.e. KI = 0.1 and LI = 1.0). This series of beamforming 
2D FIR trapezoidal filters are designed to be directed at φ̂0 =∈ [30◦ , 150◦] for 
Δφ ∈ {3◦ , 3.25◦ , 3.5◦ , 4◦ , 4.5◦ , 5◦ , 5.5◦ , 6◦ , 6.5◦}. 

4.5.4 The Output Sequence of the Beamformer; An Analysis 

As shown in Figure 4.1 and Figure 4.13 the output of the beamforming complex-coefficient 

2D FIR trapezoidal filter is a 1D complex-valued sequence. An analysis of the temporal 

and spectral properties of the 1D sequence is given in the following. The 1D output 

sequence of the proposed beamformer is given by ỹ(0, nt), where 

ỹ(nx, nt) = x̃(nx, nt)∗ ∗ g̃(nx, nt), (4.60) 

and where x̃(nx, nt) is the 2D complex-quadrature sampled antenna signals, which is 

given in (4.15), and g̃(nx, nt) is the filter-coefficients of the 2D FIR trapezoidal filter 

of order (2Nx + 1) × (2Nt + 1), which is given in (4.58). (Note that ∗∗ denotes 2D 
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Figure 4.11: The average stopband gains of the series of beamforming 2D FIR 
trapezoidal filters of order (40 × 32) for the operational temporal frequency band 
FB01 (i.e. KI = 0.125 and LI = 0.8). This series of beamforming 2D 
FIR trapezoidal filters are designed to be directed at φ̂0 =∈ [30◦ , 150◦] for 
Δφ ∈ {4◦ , 4.25◦ , 4.5◦ , 5◦ , 5.5◦ , 6◦ , 6.5◦ , 7◦ , 7.5◦ , 8◦}. 

convolution.) Taking the 2D-DDFT of both sides yields, 

jωx jωx jωt ) G(ejωx jωt ).Y (e , ejωt ) = X(e , e , e (4.61) 

According to (4.15) and (4.16), 

Q+ 
jωx jωx jωx jωt ),X(e , ejωt ) = Dq(e , ejωt ) + Z(e , e (4.62) 

q=0 

where the 2D-DDFT pair for the complex-quadrature sampled antenna signals cor-

2D−DDFT
responding to qth-subscriber module and its spectrum is given by d̃q(nx, nt) ←→ 

Dq(e
jωx , ejωt ). Note that Z(ejωx , ejωt ) represents the instantaneous spectrum of 2D se­

quence corresponding to sampled receiver noise. If only the ROS of the desired spectrum 

D0(e
jωx , ejωt ), is inside the passband of G(zx, zt), according to (4.35) the spectral com­

http:Z(e,e(4.62
http:X(e,e,e(4.61
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Figure 4.12: The compensated passband ripple of the series of beamforming 2D
 
FIR trapezoidal filters of order (40 × 32) for the operational temporal frequency
 
band FB01 (i.e. KI = 0.125 and LI = 0.8). This series of beamforming 
2D FIR trapezoidal filters are designed to be directed at φ̂0 =∈ [30◦ , 150◦] for 
Δφ ∈ {4◦ , 4.25◦ , 4.5◦ , 5◦ , 5.5◦ , 6◦ , 6.5◦ , 7◦ , 7.5◦ , 8◦}. 

ponents of Y (ejωx, ejωt ) inside PNS are given by 

Y (ejωx, ejωt ) {|ωx,ωt|≤π} 
∼= 

G(ejωx , ejωt ) 
Δx ΔIt 

ωx c−1ωt ωt ωx −LI cos(φ0) KIωt + (1 −KI)π 
×AP Z [d0y ,d0z ] , + c −1fIc B0 δ 

2πΔx 2πΔIt 2πΔIt 2πΔx 

jωx jωt )Z(ejωx jωt ).+ G(e , e , e (4.63) 

According to Figure 4.3, the normalized-magnitude of the ûz-component of the active ele­

ment pattern |AT Z(θ, φ, fct)| ≈ 1 in the angular-ranges φp∈(30◦ , 150◦) and θp∈(85◦ , 95◦) 

    for all |cfct| ∈ [fSYSmax −ΩFull, fSYSmax]. Therefore, following (2.70) (see page 54), it can 

ωx c−1ωt AP Z [d0y , +c−1fIc  ≈ 1 inside the region 1234 shown in Fig-be shown that
 ,d0z ] 2πΔx 2πΔIt 

http:G(e,e,e(4.63
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jωt ) −jωtNture 4.4. Also according to (4.59), G(ejωx , e 1 e inside the passband ABCD, 

therefore, (4.63) can be rewritten as 

−jωtNt1 e ωt ωx −LI cos(φ0) KIωt + (1 −KI)πjωx jωt ) ∼Y (e , e = B0 δ{|ωx,ωt|≤π} Δx ΔIt 2πΔIt 2πΔx 

jωx jωt )Z(ejωx jωt ).+ G(e , e , e (4.64) 

The required 1D output sequence ỹ(0, nt) can be evaluated by taking the 2D inverse 

discrete-Fourier-transform (2D-IDFT) integral of (4.63) for nx = 0, which simplifies to +π 

(2π)2 

ỹ(0, nt) ∼ ϑd(nt) + 
1 

= 
2πΔIt 

B0 
ωt 

2πΔIt 
I(ωt) e

jωt(nt−Nt) dωt, (4.65) 

ωt =−π 

where +π +π dϑ(nt) = 
1 

G(e , e , e dωx,
jωx jωt ) Z(ejωx jωt ) ejωtnt (4.66) 

ωx =−π ωt =−π 

and +π 
ωx −LI cos(φ0) KIωt +(1−KI)π ωx

I(ωt) = δ d . (4.67)
2πΔx 2πΔx 

ωx =−π 

However, for the given values |LI| ≤ 1, |KI| ≤ 0.5, φ0 ∈ (30◦ , 150◦) and |ωt| ≤ π, it can 

be shown that LI cos(φ0) KIωt +(1−KI)π ≤ π; hence for (4.67), I(ωt) = 1 for |ωt| ≤ π.  π ωt jωt(nt−Nt) d ωtTherefore, the integral in (4.65) simplifies to B0 e , which 
ωt =−π 2πΔIt 2πΔIt 

can be evaluated following [44] (pp. 99-101) such that +π 

˜ ωt jωt(nt−Nt) d
ωt

b0 ΔIt(nt − Nt) = B0 e , (4.68)
2πΔIt 2πΔIt 

ωt =−π 

where b̃0(ΔIt(nt − Nt)) is the sampled 1D baseband equivalent wavefront function b̃0(t), 

delayed by Nt samples. Now the 1D complex-valued sample sequence of the beamforming 

2D FIR filter can be given by 

ỹ(0, nt) ∼ ΔIt(nt − Nt) + d ∀ nt Z.= b0 ϑ(nt); ∈ (4.69) 

According to (4.69), ỹ(0, nt) is a combination of b̃0(ΔIt(nt − Nt)), which contains the 

modulated-data of 0th-subscriber, and ϑd(nt), which corresponds to a fraction of the con­

taminating receiver noise. 

http:G(e,e,e(4.64
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Figure 4.13: A section of the structure for the beamforming complex-coefficient 2D FIR 
trapezoidal filter G(zx, zt) implemented with parallel connection of complex-coefficient 
1D FIR filters. 

In subsection 4.3.4, it has been mentioned that the ROS of the spectral density 

function Z(ejωx , ejωt ), of the equivalent complex-quadrature sampled receiver noise 

ηnx (ΔItnt) is expected to occupy the entire PNS, where the 2D-DDFT pair of the 2D 

2D-DDFT
auto-correlation function and its spectrum is AutoCorr ηnx (ΔItnt) ←→ Z(ejωx , ejωt ). 

If the spectral density Z(ejωx , ejωt ) = constant inside the PNS, then following [71][158] 

it can be shown that the output noise power E[ϑd(nt)]
2] is proportional to the area of 

ABCD. 

4.5.5	 Implementation of the Beamforming Complex-Coefficient 2D FIR Trapezoidal 

Filters 

In CR systems, the computational complexity of the broadband beamformer, which ac­

counts for significant portion of the base-station hardware and operational costs, is an 

important design parameter [16]. In the following, the computational complexities of 

the beamforming complex-coefficient 2D FIR trapezoidal filter of order (2Nx) × (2Nt) is 

briefly discussed. 
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Following (4.60), ỹ(0, nt) can be evaluated using the 2D convolution-sum 

+Nx 2Nt+ + 
ỹ(0, nt)= x̃(mx, nt − mt) g̃ ∗ (−mx,mt), (4.70) 

mx =−Nx mt=0 

where “∗” denotes complex-conjugation. Hence, the beamforming complex-coefficient 2D 

FIR trapezoidal filter G(nx, nt) of order (2Nx)×(2Nt) can be implemented using an array 

of (2Nx +1) direct-form [66] (pp. 503-504) parallel-connected complex-coefficient 1D FIR 

thfilters of order 2Nt, as shown in Figure 4.13. Note, the unit impulse responses of the mx 

complex-coefficient 1D FIR filter Gmx (zt) is given by g̃ ∗(−mx, nt). Following [51], each 

complex-coefficient 1D FIR filter Gmx (zt) can be implemented with four real-valued 1D 

FIR filters. It follows from (4.70) that 4(2Nx + 1)(2Nt + 1) real-number-multiplications 

and (4(2Nx + 1)(2Nt + 1) − 1) real-number-additions are required per output sample 

ỹ(0, nt). With the proposed parallel-connected structure, the computational complexity 

of the filtering are divided among the 1D FIR filters. By exploiting well established 

1D FIR filter implementation techniques [66] (pp. 502-519), higher throughput may be 

achieved by employing (2Nx + 1) parallel-connected low cost DSP hardware modules 

(e.g. FPGA or ASIC), where each module is dedicated to a 1D FIR filter. With this 

structure, additional 1D FIR filters can be easily incorporated to increase the spatial order 

of the beamformer. Using a folded structure similar to the direct-form structure given in 

Figure 7.2 in [66] (pp. 504), the number of multiplications can be reduced by half without 

increasing the number of additions. However, this requires the complex-coefficient 1D 

FIR filters Gmx (zt) and G−mx (zt) to be implemented in a single DSP hardware module. 

Hence, the conjugate symmetry of g̃(nx, nt) has not been exploited here. 
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4.6 A Brief Comparison of Broadband-Bandpass Beamforming Methods 

In the following, the performance and the design complexity of the proposed complex-

coefficient 2D FIR trapezoidal filter-based beamformer are briefly compared against the 

different beamforming methods outlined in section 4.4, which can be employed in CR sys­

tems for broadband-bandpass beamforming. The considered methods are the digital DFT 

beamformer [138] (see subsection 4.4.2), the digital interpolation delay-and-sum beam-

former [101] (see subsection 4.4.1), the Sekiguchi-method, a different 2D FIR filter-based 

beamformer that claims to be nearly frequency-independent [139] (see subsection 4.4.3). 

The performance of these beamforming methods has been evaluated using 2D test 

sequences x̃(nx, nt) synthesized to simulate space-time sampled EM ST PWs that cor­

respond to signals transmitted by different subscriber modules of the CR system. The 

complex-valued 2D test sequences x̃(nx, nt) are synthesized following the properties dis­

cussed in section 4.3 such that those 2D test sequences are associated with different 

1D baseband equivalent wavefront functions b̃q(t); q = 0, 1, .., Q, different instantaneous 

bandwidth spread factors KI, different instantaneous system utilization factors LI, and 

different DOAs dq. Because of the geographical spread of the subscribers and the limited 

angular coverage of the active element pattern of the 1D-UDAA, only the EM ST PWs ar­

riving from DOAs dq that correspond to the inclination angular range θq ∈ (85◦ , 95◦) and 

the azimuth angular range φq ∈ (30◦ , 150◦) are effectively received by the 1D-UDAA. In 

the given example, x̃(nx, nt), of 41 spatial samples by 256 temporal samples (41×256), en­

compasses five superimposed 2D space-time sampled ST PWs x q(nx, nt); q = 0, 1, 2, 3, 4pw

having KI = 0.1, LI = 0.9 and are associated with azimuth angles φ0 = 700 , φ1 = 1500 , 

φ2 = 950 , φ3 = 1300 and φ4 = 400, respectively. The instantaneous amplitude of the 

interference signals x q = 1, 2, 3, 4 may be 100 times higher than that of the pw (nx, nt); q 

desired signal x x(nx, nt)pw0(nx, nt) where the overall signal to system noise ratio (SNR) of ˜

is 20 dB. In this example, b̃q(t) = sinc(ΩI(t − τqΔIt)); q = 0, 1, 2, 3, 4, is selected as the 
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baseband equivalent wavefront function where the associated delays of the PWs τ0 = 10, 

τ1 = 60, τ2 = 110, τ3 = 160 and τ4 = 210. The equivalent continuous-time signal recov­

ered by temporal-demodulation with no beamforming is shown in Figure 4.14 (a). The 

ROSs of the spectra of the input sequences are shown in Figure 4.14 (b). As explained in 

section 2.7.2 and section 4.3.4, the finite widths of the ROSs are due to spectral spreading. 

Note that, if all b̃q(t); q = 0, 1, 2, 3, 4 had identical delays τq, then the desired b̃0(t) would 

be irrecoverably suppressed by the four co-channel interfering signals b̃q(t); q = 1, 2, 3, 4. 

For this case, the signal-to-interference-ratio (SIR) is -46 dB. 

Given the initial estimation of the DOA angle of the desired ST PW is φ̂0 = 700, the 

beamforming complex-coefficient 2D FIR trapezoidal filter G(zx, zt) of order (40 × 32) 

is designed here to meet the specifications φ̂0 = 680, Δφ = 50 , LI = 0.9 and KI = 0.1 

and implemented using the FIR filter structure shown in Figure 4.13. The output of the 

2D FIR trapezoidal filter beamformer ỹ(0, nt), shown in Figure 4.14 (c), confirms the 

near-perfect recovery of the desired signal b̃0(t). The co-channel interfering signals are 

attenuated by more than 50 dB. 

In DFT based broadband-beamforming, algorithms have been developed [138] to eval­

uate only the required points of the sampled DFT spectrum of the desired ST PWs in 

order to increase the algorithmic efficiency. The output of the direct-DFT based fre­

quency domain broadband-beamformer, proposed in [138](Sec-II.A.1, pp. 1815), is shown 

in Figure 4.14 (d). In this method, a 1D Hamming window function is used to reduce 

the spectral leakage along ωx [43] (pp. 88). However, according to Figures 4.14 (d) 

and 4.14 (c), the signal distortion of the DFT based-beamformer is higher relative to 

that of 2D FIR trapezoidal filter-based beamformer. Even though more computationally 

efficient algorithms are proposed in [138][144], in general DFT based broadband beam-

forming methods have drawbacks such as the requirement of higher data storage and 

higher latency. 
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Figure 4.14: The directly demodulated signal without any beamforming (a), the distribu­
tion of spectral components inside the 2D Nyquist square (b), the output signal of the 2D 
Trapezoidal filter beamformer (c), the output of the DFT beamformer (d), the output of 
the sekiguchi-method, a nearly-frequency invariant beamformer (e) and the output signal 
of the delay and sum beamformer (f) in response to identical test sequences. 
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Both the interpolation delay-and-sum beamformer [101] and the Sekiguchi-method
 

[139] may be implemented with the FIR filter structure shown in Figure 4.13. Hence, 

here, these two beamforming methods are implemented to have the same computational 

complexity of the 2D FIR trapezoidal filter beamformer. As shown in Figure 4.14 (f), 

performance of the interpolation delay-and-sum beamformer is the worst compared to 

other methods. This may be due to the misalignment of the beam-shaped transfer func­

tion corresponding to the interpolation delay-and-sum beamformer because, according 

to subsection 4.4.1, the interpolation delay-and-sum method is only capable of synthe­

sizing a limited number of beams directed at specified azimuth angles φD. As shown in 

Figure 4.14 (e), the performance of the Sekiguchi-method is similar to that of the 2D FIR 

trapezoidal filter beamformer. This result conforms that the beam-pattern achieved by 

the proposed 2D FIR trapezoidal filter beamformer is frequency invariant for more than 

90% of the operational temporal bandwidth as claimed in section 4.5.3. Moreover, the 

design method of the 2D FIR trapezoidal filter is closed-form and therefore allows for 

the instantaneous evaluation of the filter coefficients, which is more time consuming with 

the iterative and complicated design methods proposed for the Sekiguchi-method [139]. 

Hence, considering a CR system where the instantaneous selection of operational band­

width and sampling frequency as well as the real-time tracking of temporally-broadband­

bandpassed ST PWs is required, the proposed 2D FIR trapezoidal filter-based beam-

former achieves the best overall performance considering the factors of low distortion of 

the desired signal, higher attenuation of the interfering signals with a given computational 

complexity. 
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4.7	 An Example of the Application of the Proposed Adaptive Beam-

former in the Receiving Arm of a CR System 

In order to provide an optimal quality of service for various communication/entertainment 

applications and services, the CR system must dynamically allocate the operational fre­

quency bands, the bandwidths and the signal power for the subscribed communication 

devices [13][14][15][16]. Hence, the beamformer should be able to adapt according to the 

changing operational frequency-bands and the beam-directions in order to maintain the 

SIRs of the recovered desired signals above threshold levels [16]. A typical scenario for 

the multi-user subscriber management in CR systems has been introduced in chapter 1, 

where a 1D-UDAA of a CR system that is receiving groups of co-channel RF signals 

transmitted by the mobile communication devices on a high-speed commuter train and 

by both mobile wireless and fixed wireless devices in an apartment building as depicted 

in Figure 1.1. In order to faithfully recover the two groups of co-channel signals trans­

mitted by the subscriber devices in the train and the devices in the building, receiving 

beams have to be formed. Further, the beam pointed at the commuter train has to 

be adapted in real-time in order to track the train as it moves along. In this scenario, 

the performance of the proposed beamforming 2D FIR trapezoidal filter as an adap­

tive broadband-bandpass beamformer in the receiving arm of a CR system is analyzed 

through simulation in the following. Given the reciprocity between the signals in the 

receiving and transmitting arms of the front-end of the SDR [13] (ch. 4), the reciprocated 

application of the proposed adaptive 2D FIR trapezoidal filter-based beamformer may 

also be used in beamforming within the transmitting arm of a CR system. However for 

brevity, the discussion is limited to the receiving arm beamforming process. 

For this example, a section of the setup is illustrated in Figure 4.15, where the signals 

transmitted by the mobile devices on a high-speed commuter train and both mobile­
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Subscriber modules in 
the commuter train

Active element pattern for elemental antennas of the 1D-UDAA

1D-UDAA

Subscriber modules in the building

Figure 4.15: A typical scenario in which the CR system is receiving signals from many 
wireless mobile devices on a high-speed commuter train and many fixed and mobile 
communication devices in apartment buildings. 

wireless and fixed-wireless devices in an apartment-building are received by the 1D­

UDAA of a CR system. In this scenario, initially, the DOA (θT) of the group of signals 

wT(t, φT) that is transmitted from the mobile devices in the train is set at φT = 70◦ 

and the azimuth angle of the DOA (φB) of the group of signals wB(t, φB) transmitted 

from the wireless communication devices in the building is set at φB = 91◦ . Along with 

wT(t, φT) and wB(t, φB), EM signals transmitted from three other buildings located 

in the directions along the azimuth angles 50◦ , 115◦ and 145◦ have been allocated the 

operational-band FB1, corresponding to LI = 1.0 and KI = 0.1, by the CR system. It 

is assumed here that amplitudes of wB(t, φB) and the signals transmitted from other 

buildings are 100 times stronger than the amplitudes of wT(t, φT). In order to minimize 

the interference from other co-channel signals, an adaptive beam should obviously be 
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formed to track and receive wT(t, φT) and a fixed beam should be formed to receive 

wB(t, φB). Therefore in this example, initially, two beamforming 2D FIR trapezoidal 

filters GT(zx, zt) and GB(zx, zt), both of order (40 × 32) have been designed. In order 

to receive wT(t, θT) with minimum distortion, GT(zx, zt) must meet the specifications 

φ̂T = 70◦, Δφ = 4◦ , LI = 1.0 and KI = 0.1 where as, in order to receive wB(t, φB) must 

meet the specifications φ̂B = 91◦, Δφ = 4◦ , LI = 1.0 and KI = 0.1. The output sequences 

of the beamforming 2D FIR filters GT(zx, zt) and GB(zx, zt) are denoted by yT(nt) 

and yB(nt), respectively. The averaged SIRs, SIR [ yT(nt)] and SIR [ yB(nt)], of 

yT(nt) and yB(nt), that correspond to the transmitted signals wT(t, φT) and 

wB(t, φB) , have been evaluated using the Monte Carlo method and are shown in 

Figure 4.16 at Time = 0. 

Given that the train is moving towards the building as time progresses, φT gradually 

decreases and deviates from the initially estimated azimuth angle φ̂T = 70◦ . Therefore, 

the ROS of the spectrum of wT(t, θT) gradually moves towards the edge of the passband 

of GT(zx, zt) causing the gain of the recovered desired signal group yT(nt) at the output 

of GT(zx, zt) to gradually decrease. This leads to a corresponding gradual reduction of 

yT(nt) and yB(nt), which is observed in Figure 4.16 between Time = 1 and Time 

= 3.5. However, for the fixed direction beamformer, the SIR of the recovered signals 

yB(nt) is generally expected to remain approximately constant, which is observed in 

Figure 4.16 between Time = 1 and Time = 3.5. Given that the quality of the recovered 

signal may severely degrade if the SIR of yT(nt) drops below a certain lower-threshold 

(e.g. 8 dB), the tracking beam should be redirected towards the new position of the 

train in order to maintain an adequate SIR such that the communication applications 

performed by the mobile devices in the train can continue without interruptions. In 

order to achieve this, the control unit of the CR systems should regularly evaluate the 

SIRs of all the recovered signals SIR [ yT(nt)] and SIR [ yB(nt)] etc and adapt the 
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beamformers accordingly. Usually, the decision to redirect the beam is taken when the 

observed SIR level reaches a higher threshold (e.g. 11 dB), in order to give enough time to 

design and commission a new beamforming 2D FIR filter GT(zx, zt). In this example, the 

threshold for redirecting the beam for yT(nt) is crossed at Time = 3.0. As illustrated in 

Figure 4.16 between Time = 3.0 and 3.2, it takes a finite time to evaluate the coefficients 

for GT(zx, zt) and apply them to the filter structure. For this example, it is assumed 

that the maximum time available for designing (e.g. 0.125 s) and commissioning the 

redirected GT(zx, zt) is much larger than the time it takes the SIR to degrade from 11 

dB to 8 dB. In order to provide uninterrupted reception, both the “new” and the “old” 

beamformers operate simultaneously for a short period of time until the operation of 

the new beamformer is verified. In this example, the redirection process is repeated at 

Time = 5.5, Time = 8.5 and Time = 11.5 until Time = 14 in order to maintain the 

SIR [ yT(nt)] above 8 dB. 

As the train moves further towards the building, the angular selectivity of the beam-

former may not be sufficient to effectively suppress the co-channel interfering signals. 

Therefore, the CR system should reallocate the frequency-bands of operation to different 

users such that the angular separations of the co-channel signals are sufficiently large. 

For the proposed beamforming 2D FIR trapezoidal filters GT(zx, zt) and GB(zx, zt), of 

order (40 × 32), about 10◦ angular separation is required to achieve 50 dB attenuation 

of the co-channel interfering signals in the frequency-band of operation corresponding to 

LI = 1.0 and KI = 0.1. In this example, such a situation arises at Time = 14. Here, it is 

assumed that at Time = 14, the CR system reallocates the signals wB(t, φB) (where 

φB = 91◦), frequency-band FB2, which corresponds to LI = 0.8 and KI = 0.125, whereas 

the signals wT(t, φT) remain in the frequency band FB1. After the frequency reallo­

cation, wT(t, θT) and the signals transmitted from three other buildings (where the 

corresponding DOAs are 30◦ , 60◦ and 145◦) are accommodated in the frequency-band 
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Figure 4.16: The averaged SIR (in dB) of the recovered signal transmitted from the 
commuter train and the apartment building as time progresses. 

FB1, whereas wB(t, φB) and the signals transmitted from the three other buildings 

(where the corresponding azimuth angles are 45◦ , 105◦ and 125◦) are accommodated in 

frequency-band FB2. In order to recover the desired signals yB(t) after the frequency 

reallocation, the beamforming 2D FIR filter GB(zx, zt) has to be redesigned to meet the 

specifications φ̂0 = 91◦, Δφ = 4◦ , LI = 0.8 and KI = 0.125. Also, the beamforming 

2D FIR filter GB(zx, zt) is required to be redesigned to direct the beam towards the new 

location of the train. As shown in Figure 4.16, between Time = 14.2 and Time = 18, 

the averaged SIR of yB(t) is reduced to 27 dB, which is about 8 dB lower than the 35 

dB that is the average SIR of yB(t) between Time = 0 and Time = 14. This may be 

due to fact that the spectral components of the co-channel interfering signals are more 
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closely distributed in the respective PNS for the frequency band of operation FB2 than
 

the frequency band of operation FB1. 

As the train approaches the building (i.e. the azimuth angle φT → 1◦ of wT(t, φT)), 

instead of forming a tracking beam in FB1 and a fixed beam in FB2, a combined beam 

can be formed to cover the larger frequency-band FB12, corresponding to LI = 1.0 and 

KI = 0.2. In the example, such a scenario arises at Time = 17. Hence, in order to 

recover both yT(t) and yB(t), a beamforming 2D FIR filter GTB(zx, zt) is designed 

to meet the specifications φ̂0 = 88◦, Δφ = 4◦ , LI = 1.0 and KI = 0.2. The variation of 

the respective SIRs of the recovered output sequences yT(t) and yB(t) at the output 

of GTB(zx, zt) is shown in Figure 4.16 between Time = 17.2 and Time = 21. However, 

as the azimuth angle φT goes beyond φ = 91◦, in order to maintain the required SIR 

levels, it is necessary to design two beamforming 2D FIR filters GT(zx, zt) and GB(zx, zt) 

for FB1 and FB2 to track and enhance the signals yT(t) and to enhance the signals 

yB(t), respectively. 

The simulation results shown in section 4.6 and 4.7 indicate that, compared with pre­

viously reported broadband-beamforming methods [101][138][139], the proposed method 

achieves the best overall performance for a CR system with respect to lower distortion 

of the desired signal, higher attenuation of the co-channel interference signals for a given 

level of computational complexity while achieving instantaneous adaptability in terms 

of changing frequency band of operation, bandwidth and the time varying DOA of the 

desired signals. 

4.8 Summary 

In this chapter, a novel discrete-domain beamforming method has been proposed for 

the beamforming of temporally-broadband-bandpassed EM ST PWs using complex-

coefficient 2D FIR trapezoidal filters for a cognitive radio (CR) system having a soft­
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ware defined radio (SDR) based receiver front-end. The significance of CR systems in 

future wireless communications systems and the enabling technologies such as the SDR 

architectures have been briefly discussed in section 4.2. In section 4.3, signal processing 

carried by the SDR front-end of a CR system has been analyzed in detail. As given there, 

the EM ST PWs transmitted by subscriber modules are received by a 1D-UDAA, then 

the antenna signals are pre-filtered, complex-temporal-demodulated and synchronously 

sampled using a SDR implemented complex-quadrature-temporal sampler array. The 

SDR-based complex-quadrature-temporal sampler array achieves the minimum possible 

temporal sampling rate while instantaneously selecting the operational bandwidth. In 

subsection 4.3.4, it has been derived that inside the PNS, the ROS of the spectrum of 

complex-quadrature sampled antenna signals corresponding to EM waves transmitted by 

a subscriber module is given by the straight line segment specified in (4.33). Further, it 

has been derived that the range of the ROSs of the spectra is given by the trapezoidal 

shaped region 1234 shown in Figure 4.4. 

A few of the previously proposed broadband-bandpass beamforming methods, which 

may be applicable for broadband-bandpass beamforming in CR systems, have been briefly 

reviewed in section 4.4. The design of the beamforming complex-coefficient 2D FIR fil­

ter having an asymmetric trapezoidal shaped passband has been explained in detail 

in section 4.5. The shape and orientation of the ideal asymmetric trapezoidal-shaped 

passband ABCD of the proposed beamforming complex-coefficient 2D FIR filter is pro­

posed in subsection 4.5.1. In this subsection, the limitation of the previously proposed 

broadband-beamforming methods have also been discussed. A 2D FIR filter structure 

has been used in subsection 4.5.2 to approximate ideal transfer function that corresponds 

to the ideal 2D asymmetric trapezoidal shaped passband ABCD shown in Figure 4.7. A 

closed-form design method has been proposed in subsection 4.5.2, in order to determine 

the filter coefficients g̃(nx, nt) of the proposed 2D FIR trapezoidal filter G(zx, zt) for dif­
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ferent azimuth angles φ̂q, the beam-width Δφ, the instantaneous bandwidth spread-factor 

KI and the instantaneous system utilization factor LI. Employing this closed-form design 

method, beamforming 2D FIR trapezoidal filters can be easily designed to adapt for the 

instantaneous changes of the operational frequency band and the sampling rate of the CR 

system as well as to track and enhance temporally-broadband-bandpassed ST PWs in 

real time with time varying DOAs. As mentioned in subsection 4.5.4, the complex-valued 

2D sample sequence x̃(nx, nt) is processed by the beamforming complex-coefficient 2D 

FIR trapezoidal filter G(zx, zt), which enhances the spectral components of the desired 

subscriber signal that lie inside the asymmetric 2D trapezoidal shaped passband and 

suppresses the spectral components of the co-channel interfering subscriber signals and 

broadband receiver noise that lie inside the stopband. For the implementation of the 

beamforming 2D FIR trapezoidal filters, the parallel connected 1D FIR structure has 

been proposed in subsection 4.5.5. The proposed structure can exploit the low-cost DSP 

hardware while achieving hight throughputs. Also, with this structure, additional 1D 

FIR filters can be easily incorporated to increase the spatial order of the beamformer. 

According to the simulation results given in sections 4.6 and 4.7, compared to the 

broadband-beamforming methods [101][138][139] and many other similar methods, the 

proposed method achieves the best overall performance for a CR system considering 

instantaneous adaptability, lower distortion of the desired signal and higher attenuation 

of the co-channel interference signals with given computational complexity. 
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Chapter 5
 

Broadband Beamforming of Focal Plane Array Signals using
 

Real-Time Spatio-Temporal 3D FIR Frustum Digital Filters
 

5.1 Introduction 

The Square Kilometre Array (SKA) will be World’s largest aperture synthesis radio 

telescope when it is completed in 2020 at an estimated cost of $ 2 billion [110][111][160]. 

At the maximum baseline, the SKA is expected to span over 3000 kms and it is expected 

to cover the frequency range 70 MHz to 10 GHz [110][111]. Key science projects of the 

SKA include probing the dark ages, determination of the epoch of re-ionization, studies 

of the evolution of galaxies, dark energy, the origin and evolution of cosmic magnetism, 

search for the cradle of life and strong field tests of gravity to verify the general theory of 

relativity [111][160]. Some of these key science projects are to be achieved by analyzing 

broadband “transient” electromagnetic (EM) celestial signals of interest (SOIs), which are 

typically of less than 5 s duration and as short as 1 ns in the case of pulsars [29][50][161]. 

Full sampling radio frequency focal plane arrays (FPAs) have been proposed as a 

means of increasing the field of view (FoV) of the paraboloidal reflector antenna array 

based aperture synthesis systems [162]. Essentially, a FPA is a 2D-UDPA that is assem­

bled on the focal plane of a paraboloidal reflector as shown in Figure 5.1. For the SKA, 

FPAs are under consideration for deployment in as many as 1,000 - 2,000 paraboloidal 

reflectors of 15 m diameter [110][111][160]. A FPA of 3.24 m2 area associated with a 

15 m diameter paraboloidal reflector dish is capable of covering a 25 deg2 FoV for the so-

called SKA lower mid-band (i.e. the frequency range 0.5 to 1.7 GHz) without significant 

diffraction losses [136]. Over this frequency range, it is expected that the multiple-beam 
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Figure 5.1: A prime-focus paraboloidal reflector having a circular-aperture and a focal 
plane array (FPA) consist of (2Nx + 1) × (2Ny + 1) elements arranged uniformly on a 
plane. Each elemental antenna is connected to a single channel receiver. 

capability of the FPAs, combined with the large collecting area of the complete system 

and the low-noise receiver systems will simultaneously facilitate both the high sensitivi­

ties and the high sky-survey speeds for applications in aperture synthesis imaging for the 

SKA [163][164]. 

A typical arrangement of a FPA on the focal plane of a prime-focus paraboloidal 

reflector and subsequent signal processing systems are illustrated in Figure 5.1. The EM 

waves originated from celestial sources are reflected from the paraboloidal dish onto the 

focal plane where they are received by a rectangular array containing coplanar uniformly-

spaced wideband elemental-antennas, such as Vivaldi antennas [20][165] (see Figure 2.8) 

or patch antennas [166]. Currently, the number of elemental-antennas in an FPA is in 

the range of 100-200 [20][167][166]. The photonic response of each wideband elemental­
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antenna is converted to electronic form and amplified by corresponding elemental low 

noise amplifiers (LNAs) [166]. The outputs of the LNAs are subjected to analog pre­

processing that shifts the desired frequency band (i.e. 0.5 - 1.7 GHz) to the baseband. 

The down-shifted signals are synchronously sampled by array of ADCs that results in a 

complex-valued 3D sample sequence [166]. This complex-quadrature-sampled [51] 3D se­

quence is then processed using a broadband beamformer in order to remove contaminating 

RFI, ground thermal noise and parts of the receiver noise, which is contributed mainly 

by the LNAs. Subsequently, digital signal processing (DSP) algorithms are applied to 

recover the SOIs from the beamformer outputs. It has been proposed to deploys around 

1,000 - 2,000 paraboloidal dishes fixed with FPAS in the SKA [110][111], which alone 

requires between 100,000 to nearly half a million elemental-antennas, LNAs, mixers and 

ADCs just for the front-end processing. 

In this chapter, a real-time spatio-temporal 3D filter is proposed for the potential 

beamforming application of digital pre-processing of the 3D sample sequence correspond­

ing to broadband FPA signals of a circular-aperture prime-focus paraboloidal reflector 

antenna in the SKA. More specifically, here, it is proposed that a single real-time spatio­

temporal (ST) 3D FIR filter shown in Figure 5.2, having a frustum-shaped passband, can 

be employed as a pre-coherent-dedispersion1 broadband beamformer for pulsar timing [30] 

and pulsar profile studies [50] in order to significantly suppress terrestrial RFI, the ground 

thermal noise and a dominant component of the LNA noise that contaminate the FPA 

signals. The proposed method depends on the following facts about the 3D regions of 

support (ROSs) of the spectra of space-time sampled FPA signals. Following chapter 3, 

it is shown in section 5.3.1, that the ROS of the spectrum of far-field dish-reflected di­

rect down-converted and complex-quadrature-sampled FPA signals of interest (SOIs) is 

a frustum-shaped volume, within the Nyquist cube in 3D frequency space. Also, it is 

1The coherent-dedispersion is a signal processing method that reconstructs the sharp pulses emitted 
by celestial objects reversing the dispersion due to the intersteller media (ISM) [168]. 
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Figure 5.2: The beamforming 3D FIR frustum filter H(z), having the 3D unit impulse 
˜response h(n), for real-time pre-processing of FPA sample-sequences x̃(n). 

shown that the dimensions of the cone are primarily determined by the active element 

pattern of the FPA and the diameter (D) and the focal length (F ) of the paraboloidal 

reflector having a circular-aperture. The shape of this ROS of the spectrum is virtually 

independent of the direction of the point celestial source on the sky. Also, it is shown 

in section 5.3.3 that the ROS of the 3D power spectral density (PSD) for the dominant 

component of the spatio-temporally-sampled ground thermal noise occupies the volume 

outside the surface of the frustum that corresponds to the ROS of the spectra of celestial 

SOIs. Similar analysis shows that the ROS of the 3D spectra of off-dish RFI signals also 

occupies the same region as the PSD of the ground noise. Finally, for simplicity, it is 

assumed2 that the ROS of the 3D power spectral density (PSD) of the spatio-temporally­

sampled broadband LNA noise occupies most of the volume of the Nyquist cube in 3D 

frequency space and is almost spectrally-flat over the lower-mid band temporal frequency 

range. Based on the above properties of the ROSs of 3D spectra, the frustum-shaped 

passband of the proposed 3D filter is designed to encompass most of the 3D ROS of 

the focal-plane spectra of far-field dish-reflected celestial signals, and thereby transmit 

most of the energy to the beamformer output. However, the 3D stopband is designed to 

encompass the spectral components of the undesired signals and noise such as terrestrial 

2In practice, the exact shape of the 3D LNA noise power-spectral density function within the Nyquist 
cube is determined by the 1D temporal-power-spectral-density function of the LNA noise and the non-
ideal inter-elemental-antenna mutual-coupling of the noise across the FPA [52][53][54]. 
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RFI, ground thermal noise, and thereby attenuate the major component of off-dish FPA 

signals from the beamformer output. Parts of this work have been published in [55][56]. 

In order to verify the performance of the proposed beamforming 3D FIR frustum filter, 

here, noisy FPA signals (that are contaminated with off-dish RFI signals, ground thermal 

noise, and receiver noise) are synthesized for the FPAs of a number of dish-receivers, all 

of which are pointed at a distant emulated pulsar. For comparative purposes, these FPA 

signals are processed by a proposed 3D FIR frustum filter-based beamformer and also 

by the conventional 2D spatial-only beamformer and finally by the 3D conjugate-field­

matching (CFM) beamformer. These three groups of outputs of each of the beamformers 

are time aligned, averaged and then normalized. The resulting three time sequences, 

corresponding to the three beamforming methods, contain recovered normalized pulses 

and some residual receiver noise. Each of these normalized pulses is compared with the 

normalized ideal dispersed-pulse in order to compute the mean-square-error (MSE). Sim­

ulation results show that the proposed 3D FIR frustum filter-based beamformer achieves 

the lowest MSE. 

This chapter is arranged as follows. The key science projects and the engineering 

specifications of the SKA are briefly introduced in section 5.2. Section 5.3 is dedicated to 

the analysis of FPA signals and contaminating noise. A detailed analysis of the celestial 

SOIs, the off-dish RFI and noise due to ground thermal radiation observed at the outputs 

of FPA elemental antennas and the corresponding spectra, is given in subsections 5.3.1, 

5.3.2 and 5.3.3, respectively. The various noise sources contributing to the outputs of 

the array of LNAs in the FPA receiver are reviewed in subsection 5.3.4. Here, the effects 

of noise coupling and the methods of modeling coupled FPA noise are briefly discussed. 

In subsection 5.3.5, the pre-beamforming signal processing architecture of a typical FPA 

receiver is briefly reviewed. 

Based on the space-time and spectral domain properties of FPA signals and the 
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contaminating noise, the design of beamforming complex-coefficient 3D FIR frustum 

filter for processing broadband pulsar signals is explained in detailed in section 5.4. 

The 3D transfer function for the ideal beamformer is derived in subsection 5.4.1. It is 

proposed that a 3D FIR filter structure be used in approximating this ideal 3D transfer 

function. In subsection 5.4.2, a combined frequency-sampling and 3D window-based 

method for the design of beamforming 3D FIR frustum filters is proposed. A design 

example of a beamforming 3D FIR frustum filter is given in subsection 5.4.3. Here, 

the design is evaluated by comparing ideal and realized 3D frequency transfer functions 

of the beamforming 3D FIR trapezoidal filter. The results of a numerical study that 

is conducted to evaluate the performance of the proposed 3D FIR frustum filter-based 

beamformer in pre-processing broadband pulsar signals are given in section 5.5. Here, the 

proposed method is compared with the conventional 2D spatial-only beamformer and the 

3D conjugate-field-matching (CFM) beamformer based on the means-square-error (MSE) 

estimate between the ideal dispersed pulse and the outputs of each beamformer. 

5.2 The SKA Science Projects and Engineering Specifications; A Review 

5.2.1 The SKA Science Projects 

The effective collection area of the SKA, as implied by the adjective “square kilometre” 

is nearly a million square meters. Such a large effective collection area is unprecedented 

for radio telescopes and therefore is the key aspect that facilitates the potential new 

discoveries in many branches of modern science including fundamental physics, astro­

physics, cosmology and astrobiology [169]. Supported by the modern low noise receiver 

technologies and efficient and flexible signal processing systems, the expected system 

sensitivity for the SKA is about 50 fold higher than the existing aperture synthesis radio 

telescopes (see Figure 5.3) [160]. Such unprecedented system sensitivity allows probing of 

previously unexplored regions of the universe using the SKA [169]. Based on the current 
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Figure 5.3: The relative sensitivities of main radio telescopes in the world and the ex­
pected sensitivity of the SKA. Source [170]. 

understanding of the universe, scientists have identified several key science projects to 

be conducted using the commissioned SKA [111]. These are, 

• Probing the dark ages (i.e. up to 300,000 years after the big bang) 

• Evolution of galaxies, cosmology and dark energy 

• Studies of the origin and evolution of cosmic magnetism 

• Searching the cradle of life 

• Conducting extreme tests of general relativity. 

However, with the observations made using the SKA, the possibility is always there to 

make unexpected discoveries that may lead to paradigm-shifts in modern science. In 

whichever case, the current frontiers of the modern science will be expanded. 
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In most of the above key science projects, the primary observation is the distribution
 

of the spectral density of celestial EM radiation around 1.4 GHz (i.e. at wavelength 

around 21 cm), which is commonly known as HI-line, that corresponds to the strongest 

photonic emission of neutral hydrogen [169]. Hydrogen is believed to be the most common 

element in the universe. In probing the dark ages between the big bang and the epoch 

of reionization, HI densities corresponding to red-shifts higher than 10 are mapped by 

the SKA [169]. Similarly, HI densities corresponding to red-shits up to 10 are observed 

in the studies of galaxy evolution [169]. The same data set may provide information of 

the dark energy distribution in the universe. With its unprecedented system sensitivity, 

the SKA will be able to detect the faint emissions of intergalactic hydrogen clouds with 

no star formation activity and distant dwarf galaxies, which have been hardly detected 

by the existing radio telescopes so far. The “Faraday rotation”, which is the rotation 

of the polarization plane when a polarized radio wave passes through a magnetic field, 

may be used to determine the magnetic field distribution in the universe [169]. With 

the SKA, the Faraday rotation of naturally polarized radio waves emitted by quasars 

will be measured in order to map the distribution of the magnetic fields around the 

intervening celestial structures, such as, the Milky Way, distant spiral galaxies, clusters 

of galaxies, and in intergalactic space [169]. Probing for the cradle of life is an important 

quest for humankind. Such efforts draw attention to the new discipline of astrobiology, a 

combination of radio astronomy and biology, which are distantly related branches of the 

modern science. The SKA’s approach to the searches of cradle of life is multipronged. 

Firstly, the SKA may facilitate searches for thermal radio emission from centimeter-sized 

“pebbles” in protoplanetary systems, which are thought to be the first step in assembling 

Earth-like planets [169]. With the specified sensitivity, the SKA is capable of detecting 

a protoplanet at distances ranging up to 3000 light years. Secondly, the synthesized 

aperture of the SKA facilitates optimal spatial resolutions associated with an adequate 
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signal strength for the detection of emission from the complex organic molecules formed 

in the hot core analogs within regions of low mass star formation [169]. Finally in searches 

for extraterrestrial intelligence (SETI), the sensitivity of the SKA allows the detection of 

unintentional “leakage” emissions (i.e. from TV transmitters, radars) from nearby solar 

systems up to several thousand light years [169]. 

Radio pulsars provide unique experimental observations that can lead to important 

insights about gravity and both the origin and evolution of the Universe [171]. Hence, 

a full sky survey that is intended for detecting new pulsars is one of the first astronom­

ical observations that have been proposed for the SKA [161][50]. Such sky surveys will 

cover the galactic plane, intermediate longitudes, the galactic center, globular clusters 

and galaxies that are closest and furthest from the Earth [161][50]. With the unprece­

dented sensitivity of the SKA, it is expected that between 15,000 to 30,000 new pulsars 

will be detected during these sky surveys [171]. Some of these pulsars may be used as 

precise clocks to test the strong gravitational fields around black holes as predicted by 

Einsteins Theory of General Relativity [168]. In subsequent astronomical experiments, 

pulsar-timing observations and pulse-profile studies will be conducted for these newly 

discovered pulsars [50][168]. Systematic delays and advances in pulsar timing in a partic­

ular direction in the sky are measures of the space-time changes due to the propagation 

of gravitational waves [169]. Pulsar profiles studies may reveal the physics of radio pulse 

emissions and the nature of the ionized interstellar medium (ISM) [172]. The beamform­

ing method proposed in this chapter is intended to be used in the front-end pre-processing 

in pulsar timing observations and pulsar profile studies. 

The high energy radio-bursts originated from pulsars are subjected to (a) dispersion, 

(b) scintillation and (c) scattering while propagating through the ISM [168]. In brief, 

the dispersion causes frequency dependent phase rotation that spreads the intrinsically 

sharp pulse in time, where the scintillation causes frequency selective fluctuation of the 
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pulse and where the scattering causes the pulse to spread in time with a characteristic 

“exponential-tail” [168]. Because of these adverse propagation effects and because the 

pulsars are intrinsically weak radio sources [168], a radio telescope of extremely high 

system sensitivity such as the SKA is required for the detection of distorted EM radiation 

corresponding to the intrinsic sharp pulses. In order to recover the intrinsic sharp pulses 

for pulsar surveys, pulsar timing observations and pulse profile studies, removal of these 

adverse propagation effects is essential. Fortunately, effects of dispersion by the ionized 

ISM can be completely (or to a large extent) removed [168]. However, it is not possible 

to remove the effects of scattering [168]. 

There are two methods for dedispersion (i.e. the removal of the effects of dispersion) 

of the received pulses. The first method, the incoherent dedispersion method, employs 

an analog or a digital filter-bank in order to divide the broadband received signal in 

to a number of channels [168]. The magnitudes of the signals in these channels are 

delayed in time such that the pulses in each channel are aligned so that, when added, 

they constructively superimpose to suppress the noise. The incoherent detection method 

is sufficient for new pulsar surveys [173][174] although the time resolutions may not be 

sufficiently accurate for pulsar timing observations and pulse profile studies [30]. The 

second method, the coherent dedispersion [175] method uses a deconvolution filter that 

operates on the entire broadband signals. The deconvolution filter corrects the phase 

rotation caused by ionized ISM and yields the intrinsic sharp pulse although the effects 

of ISM scattering remains [168]. 

5.2.2 The SKA Engineering Specifications 

The SKA is proposed to be an aperture synthesis radio telescope where the collection 

area (i.e the aperture) is synthesized with a number of smaller antennas spread over a 

larger area [160]. At a given frequency, the angular resolution of an aperture synthesis 

system is determined by the largest baseline between the antennas. According to the Van 



186 

Cittert-Zernike theorem [3], for a quasi-monochromatic temporal frequency-band, the 

sky images are formed by evaluating the 2D Fourier transform of the visibility functions 

(i.e. measures of spatial coherence) over the synthesized aperture of the radio telescope. 

Given that the celestial EM radiation is extremely weak at the observation points on the 

surface of the Earth, the observed signals have to be integrated for a period of time to 

achieve the required signals to noise ratio (SNR) [3]. In practice, the visibility function is 

evaluated using a digital cross-correlator [176][177], that evaluates the cross-correlation 

for each baseline corresponding to all receiver antenna-pairs of the aperture synthesis 

system [176]. 

In case of radio telescopes including the SKA, radio frequency interference (RFI) is 

a major cause of degradation of the expected system sensitivity [21]. Because, RFI is 

due to human activities, sparsely-populated areas are often preferred for antennas sites 

of the radio telescopes. For constructing the “main-core” (see Figure 5.4) of the SKA, 

two candidate sites, (a) in the Karoo region of central South Africa and (b) in the state 

of Western Australia, have been identified after preliminary investigations [111]. In order 

to achieve the required sensitivities to successfully conduct the SKA science experiments 

outlined in subsection 5.2.1, the engineering design of the SKA must fulfill the basic 

specifications given in Table 5.1. In order to meet these stringent design specifications, 

low cost broadband antenna structures and low noise receiver technologies are required in 

receiving the celestial SOIs [160]. Further, low power ADCs and efficient high throughput 

data transfer networks are required to move raw or partially processed data to the main 

processing center at the rate of several hundred Gbps [111]. The data processing require­

ment in the main processing center can be as high as several Exa-FLOPs3 [111]. The 

processed data throughput of the main processing center is expected to be in the range 

of hundreds of Giga-bytes per second [111]. Hence, high density data storage systems 

associated with fast data retrieval technologies are required to store the processed data 

3An Exa-FLOP accounts for 1×1018 floating-point operations per second. 
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Table 5.1: The System Specifications for the SKA - Phase-I [170] 

Parameter Specifications 

Frequency Range 

Sensitivity (see (5.1)) 

Field of View (FoV) 

Survey Speed 

Figure of Merit (see (5.2)) 

Angular Resolution 

Number of Spectral Channels 

Calibrated Polarization Purity 

Dynamic Range for 

the Synthesized Image 

70 MHz - 10 GHz 

5000 m2k−1; for 70 MHz - 300 MHz 

200 deg2; for 70 MHz - 300 MHz 

1 - 200 deg2; for 300 MHz - 1 GHz 

1 deg2; for 1 GHz - 10 GHz 

4×104 - 2×1010 m4/k−2deg2 

(Depending on the receiver 

technology and frequency) 

<0.1 arcseconds 

16,384; per band per baseline 

10,000:1 (i.e. 40 dB) 

>106 

and provide access to the hundreds of online users all around the world. 

For the SKA, non traditional antenna technologies have been investigated for the 

synthesis of nearly one million square meters of collecting area for receiving celestial 

EM radiation [111]. In order to achieve the required sensitivity, the design of antennas 

should supplement the design of receiver systems. For the SKA, the key design factors for 

the antenna systems are the efficiency, frequency coverage, cost and multi-beamforming 

capabilities where the key feature of the receiver design are the low noise capabilities, cost 

and the compactness [111]. Based on the above factors, three key antenna technologies 

have been selected to cover the 70 MHz to 10 GHz frequency range of the SKA. They are, 
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1. The	 sparse aperture arrays; Constructed with non-uniformly distributed dual-

polarized dipole-antennas to cover the frequency band 70 MHz - 300 MHz. 

2. The dense aperture arrays; Constructed with 2D-UDPAs that contains linearly-

arranged wideband Vivaldi elements to cover the frequency band 300 MHz - 500 MHz. 

3. The	 paraboloidal reflector antenna array; Constructed with non-uniformly dis­

tributed paraboloidal reflectors. Two types of receiver element arrangments are 

proposed for reflector arrays. 

•	 FPA Receiver - Each reflector is fixed with a 2D-UDPA on the focal plane. 

Covers the frequency band 500 MHz - 1.7 GHz. 

•	 Single-Pixel Receiver - Each reflector is fixed with a single wideband antenna 

element at the focal point. Covers the frequency band 1.7 GHz - 10 GHz. 

The proposed main-core of the SKA that accounts for 50% of the collection area corre­

sponding to the three circular regions is shown in the center of Figure 5.4 [111]. Each 

of the three circular regions shown in the center of Figure 5.4, which corresponds to a 

diameter of 5 km, will contain a sparse aperture array, a dense aperture array and a array 

of paraboloidal reflector antennas. The rest of the antennas will be arranged along the 

arms of a spiral as shown in the bottom-right corner of Figure 5.4. However, according to 

the latest specifications [178][179], a different arrangement has been proposed. According 

to that only the sparse aperture arrays and the paraboloidal reflector arrays fixed with 

single-pixel recivers are included in the Phase-I implementation of the SKA where the 

dense aperture arrays and the paraboloidal reflector arrays fixed with FPA recivers left 

to the Phase-II implementation of the SKA. 

For most of the key science projects outlined in subsection 5.2.1 that require mapping 

of HI density over the sky, the SKA will be used in the aperture synthesis mode. A typi­

cal architecture of a aperture synthesis imaging system that employs multi-beamformed 
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Figure 5.4: The proposed antenna systems for the SKA. (a) sparse aperture arrays, (b) 
dense aperture arrays and (c) paraboloidal reflector arrays. The arrangement of the 
antenna arrays in the main core and along the arms of a spiral. Source [170]. 

FPA signals [90][135][180] is shown in Figure 5.5. As shown there, first, the FPA signals 

are processed by a filter-bank that divides the broadband signal into a number of nar­

rowband channels and then, the narrowband signals are processed by multiple arrays of 

digital beamformers, synthesizing many simultaneous sky-beams, each pointed at differ­

ent directions in the sky. For a particular sky-beam associated with a single FPA, the 

ability of the beamformer to extract the power associated with the celestial SOIs deter­

mines the effective beam-collecting-area ABeff [181]. Also for a particular sky-beam, the 

ability of the beamformer to suppress the contribution of the receiver system determines 

the equivalent noise temperature for the beam TB [181]. Throughout the mid-frequency 

range, the dominant components of TB are the equivalent ground noise and the equivalent 

receiver noise due to noise contributions from each individual LNA, antenna element and 

feed-line [182]. For the entire aperture synthesis system, the total effective collecting area 
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Figure 5.5: The proposed system architecture for the aperture synthesis imaging with 
multi-beamforming FPA signals for the SKA. Source [170]. 

of the system is denoted by ATeff and the overall frequency-dependent equivalent system 

noise temperature is denoted by TTsys
4 [181]. According to [181], the performance metric 

of an aperture synthesis radio telescope at a particular temporal frequency is given by 

the total sensitivity STSys, that is defined as 

ATeff 
STsys 6 . (5.1)

TTsys 

In the design of aperture synthesis radio telescopes such as the SKA, much effort is 

dedicated to reducing TLNA because its effects are critical for achieving the required STsys 

4Note that here, ’T’ in the subscripts refers to total system-wide parameters. 
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[182][183]. Given that the instantaneous field of view achieved with multi-beamforming 

is FoV, the measure of the sky survey speed of this aperture synthesis system is defined 

as 

Survey Speed Figure-of-Merit 6 S2 (5.2)Tsys × FoV, 

[164]. 

For pulsar searches, pulsar timing studies and pulsar profile studies, the aperture 

synthesis mode of the SKA is not applicable. In case of pulsar searches, the channelized-

narrowband beamforming method may be used because the non-coherent dedispersion 

method employs channelized signals [161]. However, for pulsar timing studies and pulsar 

profile studies, the coherent dedispersion method is employed in order to recover the in­

trinsic sharp pulses. According to [168], the accuracy of the pulsar profiles and therefore 

the pulsar timings are proportional to the instantaneous bandwidth of the signal that is 

subjected to coherent dedispersion. Hence for such studies, an architecture that facili­

tate broadband front-end processing and broadband beamforming (e.g. the architecture 

shown in Figure 5.1) is much suited. 

5.3 FPA Signals and the Corresponding Spectra 

In the following, a detailed mathematical analysis is given on the characteristics of the 

signals and the corresponding spectra at various stages of the signal processing archi­

tecture of a FPA receiver, which is assembled on the focal plane of a circular-aperture 

prime-focus paraboloidal reflector as shown in Figure 5.1. Here it is assumed that the 

composite focal EM field consists of dish-reflected celestial SOIs, off-dish RFI signals and 

contaminating radiation from the thermal sources in the vicinity on the ground that are 

arriving from range of directions as shown in Figure 5.6. The electronic signal observed 

at the output of each elemental-antenna in the FPA in response to the composite focal 

EM field is amplified by a matched LNA [75]. However at the output of each LNA, the 
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Figure 5.6: A typical scenario of focal EM field reception by the FPA. The composite 
focal EM field is consisted of dish-reflected celestial SOIs, RFI from far away terrestrial 
transmitters and ground noise radiation, which are arriving from different directions. 

antenna response is contaminated with receiver noise. Receiver noise mainly consists of 

LNA-noise and thermal noise due to the Ohmic resistance in the elemental-antennas and 

feed-lines [184]. 

The PHAD [20] by DRAO, the APERTIF by ASTRON [165] and the “checkerboard 

array” by ASKAP [166] are three FPA prototypes that have been employed in proof-of­

concept path-finder projects for the SKA. The checkerboard array employs rectangularly-

distributed wideband patch-antennas [166] where as the PHAD and the APERTIF em­

ploy wideband Vivaldi-elements [20][165]. In the PHAD [20] and in the APERTIF [165], 

two Vivaldi elemental-antennas are fixed perpendicular to each other at each sample­
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point on a square-grid in order to receive the two orthogonal linear polarizations. Also, 

the PHAD contains “matched dummy-elements” around the edge of the rectangular ar­

ray outside of elements that are connected to matched receivers [20]. As explained in 

section 2.4, this results in a pseudo-infinite 2D array, where the active element patterns 

of all elements connected to matched receivers, are almost identical [53]. 

Consider a pseudo-infinite FPA consisted of (2Nx + 1) × (2Ny + 1) linear ûx-polarized 

elemental-antennas5, arranged in a square grid at intervals Δxy, as shown in Figure 5.1, 

where each of the elemental-antennas is connected to a matched LNA as in the case of 

2D-UDPA, which has been analyzed in section 2.4 and section 2.5. As derived there, in 

order to “fully sample” [162] the composite focal EM field while avoiding spatial aliasing, 

the inter-elemental distances Δxy of the FPA should be selected as Δxy ≤ 0.5λmin. Here, 

λmin is the minimum wavelength that is associated with the maximum temporal frequency 

fmax such that λmin = c/fmax, for a particular FPA design that is expected to cover the 

temporal frequency band |cfct| ∈ [fC − 0.5BW, fC +0.5BW ], where fmax = fC +0.5BW . 

For the following analysis, the inter-element distance for the FPA has been selected as 

Δxy = 0.5λmin = 0.5cf−1 . At particular temporal frequency, the directional response of max

each antenna element is determined by the active element pattern [53]. An example of 

the active element pattern of the PHAD is shown in Figure 2.9 (see page 42). In the 

following analysis the DOA of the propagating EM waves are measured with respect to 

the axis system shown in Figure 5.6. In this axis system, the focal plane is assigned as 

the z = 0 plane (i.e. xy-plane), which allows direct comparison with the analysis that 

has been done in section 2.4 and section 2.5 regarding the use of 2D-UDPAs for receiving 

EM BB-BP ST PWs. 

Following Figure 5.6, the composite focal EM field cfp(x, y, z, t) may be expressed in 

5For simplicity, only outputs of the elemental-antennas arranged along the ûx-direction are considered 
for the analysis. Nevertheless, a similar analysis could be conducted for the other group of elemental 
antennas, which are perpendicular to the first group. 
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the form 

cfp(x, y, z, t) = soi(x, y, z, t) + rfi(x, y, z, t) + gη(x, y, z, t), (5.3) 

where soi(x, y, z, t) corresponds to the dish-reflected celestial SOIs, rfi(x, y, z, t) corre­

sponds to the combination of off-dish RFIs and gη(x, y, z, t) corresponds to the com­

ponent of ground-noise radiation picked up by the FPA. According to section 2.4 and 

section 2.5 of chapter 2, the signal a[nx,ny ](t) observed at the output of [nx, ny]
th elemental 

antenna of the FPA, where nx ∈ [−Nx, Nx] and where ny ∈ [−Ny, Ny], in response to 

the composite focal EM field cfp(x, y, z, t) is given by 

a[nx,ny ](t) = 

+∞+++ 
{ai(x, y, z, t)8888 ecfp(x, y, z, t)} δ(x−Δxynx)δ(y−Δxyny)δ(z)dxdydz, 

x,y,z=−∞ 

(5.4) 

where ai(x, y, z, t) is the vector-valued antenna impulse response corresponding to the ele­

mental antennas of the pseudo-infinite FPA and ecfp(x, y, z, t) of is the electric field com­

ponent of cfp(x, y, z, t). Note that 8888 denotes the combined vector dot-product and 

4D convolution operation. The relationships among the vector-valued antenna impulse re­

sponse ai(x, y, z, t), the vector-valued antenna frequency response AF(fx, fy, fz, fct), the 

antenna response pattern ARC(θ, φ, fct) and the active element pattern ATC(θ, φ, fct) 

have been discussed in detail in section 2.4. For simplicity, only the signals observed at 

the outputs of the group of linearly-polarized elemental antennas of the FPA, which are 

arranged along the ûx-direction (see Figure 2.8), are considered in the following analysis. 

Therefore, the corresponding vector-valued the antenna impulse response and the vector-

valued antenna frequency response may be expressed as ai(x, y, z, t) = aix(x, y, z, t)ûx 

4D-CDFT
and AF(fx, fy, fz, fct) = AF X(fx, fy, fz, fct)ûx, respectively, where aix(x, y, z, t) ←→ 

AF X(fx, fy, fz, fct). 
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5.3.1	 Elemental-antenna Response to Dish-Reflected Celestial SOIs and the Corre­

sponding Spectra 

The FFS program, which has been explained in chapter 3, can be used to model the focal 

region electric fields of a given paraboloidal reflector arrangement. For example, a typical 

instantaneous ûx-component soix(x, y, z, t), of the focal electric field of soi(x, y, z, t), that 

is observed on the aperture of the FPA at time t = t0 is shown in Figure 5.7. Here, in 

this arrangement, a FPA of size (1.8 × 1.8) = 3.24 m2 is assembled on the focal-plane 

z = 0, which is centered at the focal-point of a circular-aperture prime-focus paraboloidal 

reflector having the focal length F = 6.75 m and diameter D = 15 m (i.e. F/D = 0.45). 

The focal EM field is generated in response to a strong circular-polarized broadband EM 

wave, which occupies the temporal frequency band |cfct| ∈ [0.5, 1.7] GHz, emanating from 

a celestial point-source in the sky at the angular position θ0 = 2.25◦ and φ0 = 33.5◦ with 

respect to the axis of the paraboloid (see Figure 5.6). Note that all most all the power of 

the BB-BP ST PW that is incident on the paraboloidal reflector is now diffracted onto 

a “focal-spot” [136] on the FPA. If the point-source moves to a new position within a 

small angular range, correspondingly the focal-spot also moves in the opposite direction 

on the focal plane. It has been observed that the displacement of the focal-spot primarily 

depends on the F/D-ratio of the paraboloidal reflector6 . However, as the point-source 

moves further away from the axis of the paraboloid, portions of the signal power may 

now be diffracted away from the finite size FPA, such that parts of focal-spot may fall 

outside of the FPA. This implies that the sensitivity of the FPA received celestial signals 

emanating from point-sources is gradually reduced as those point-sources move away from 

the axis of the paraboloid. Note that for broadband celestial signals, the low frequencies 

are subjected to higher reduction in sensitivity compared to high frequencies. Hence 

6The displacement of the focal-spot with respect to the movement of the celestial point-source is 
important in the design of 3D beamforming frustum filters for receiving pulsar signals arriving from 
off-axis directions. 
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Figure 5.7: A typical instantaneous amplitude distribution of the ûx-component 
soix(x, y, z, t) of the electric field on the focal-plane z = 0, which is observed at time 
t = t0, in response to dish reflected EM BB-BP ST PW emanating from a point source 
at the angular position θ0 = 2.25◦ and φ0 = 33.5◦ . 

for a particular reflector-FPA arrangement, the field of view (FoV) specifies the angular 

range around the paraboloidal-axis, that facilitates a certain sensitivity level at a given 

frequency. The FFS may also be used in determining the FoV for a given reflector-FPA 

arrangement. Assume a circular-aperture prime-focus paraboloidal reflector having the 

focal length F = 6.75 m and the diameter D = 15 m (i.e. F/D = 0.45), a FPA that 

contains elemental-antennas connected to receivers occupying an area of 3.24 m2, and 

where the lowest frequency of interest of the receiver is 0.5 GHz. For this paraboloidal­

reflector-FPA arrangement, the group of circular contour-lines |soix(x, y, z = 0, t = t0)| = 

0.1 of the main lobe of the focal electric field generated by a group of narrowband point-

sources of temporal frequency cfct = 0.5 GHz that are located in the sky at the angular 

positions specified by (θ, φ) = {(0◦ , 0◦), (2.5◦ , 0◦), (2.5◦ , 90◦), (2.5◦ , 180◦), (2.5◦ , 270◦), 
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(5◦ , 0◦), (5◦ , 90◦), (5◦ , 180◦), (5◦ , 270◦)} is shown in Figure 5.8. Hence, a FoV of 25 deg2 

is comfortably achieved with this arrangement at the temporal frequency cfct = 0.5 GHz. 

Following (5.4), the 1D continuous-time signal s[nx,ny ](t), observed at the output of 

[nx, ny]
th elemental-antenna in the FPA in response to the dish-reflected celestial SOIs is 

given by 

s[nx,ny ](t) = 

+∞+++ 
{aix(x, y, z, t)∗ ∗ ∗ ∗ soix(x, y, z, t)} δ(x−Δxynx)δ(y−Δxyny)δ(z)dxdydz, 

x,y,z=−∞ 

(5.5) 

where soix(x, y, z, t) is the ûx-component of the focal region electric field of soi(x, y, z, t) 

that is generated by the dish reflected EM celestial SOIs. As derived in section 3.2.1 

in chapter 3, the electric field esoi(x, y, z, t) observed in the focal region of a circular-

aperture prime-focus paraboloidal reflector in response to the dish-reflected EM waves ar­

riving from celestial sources can be modeled as a collection of infinitesimal 4D EM BB-BP 

ST PWs. Further, it has been shown that the ROS of the spectrum ESOI(fx, fy, fz, fct) 

of the focal region electric field esoi(x, y, z, t) is the composite ROS of the spectra of the 

infinitesimal dish-reflected 4D EM BB-BP ST PWs and is specified by the 4D hyper-

volume HV4CP(fx, fy, fz, fct) for |cfct| ∈ [fC − 0.5BW, fC + 0.5BW ] in the 4D frequency 

space (fx, fy, fz, fct) ∈ R4 . The projections of HV4CP(fx, fy, fz, fct), on to 4D hyper-planes 

fz = 0, fct = 0 and fy = 0 are shown in Figure 3.2 (a), (b) and (c), respectively (see 

page 80). It has been deduced that the ROS of the spectrum of electric-field on the focal-

plane z = 0 (i.e. esoi(x, y, z = 0, t)) is given by the 3D double right-circular frustum 

that is corresponding to a 3D double right-circular cone having the half-cone angle αmax 

as shown in Figure 2.5. According to (3.3) and (3.8), 

−1 8(F/D)
αmax = tan−1(sin(θmax)), where θmax = tan ,

16(F/D)2 − 1 
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Figure 5.8: A group of contour-lines |soix(x, y, z = 0, t = t0)| = 0.1 of the main lobes gen­
erated on the FPA in response to incident narrowband EM waves of temporal frequency 
cfct = 0.5 GHz that are emanating from group of point-sources located at the angular 
positions specified by (θ, φ) = {(0◦ , 0◦), (2.5◦ , 0◦), (2.5◦ , 90◦), (2.5◦ , 180◦), (2.5◦ , 270◦), 
(5◦ , 0◦), (5◦ , 90◦), (5◦ , 180◦), (5◦ , 270◦)}. Area of the FPA (1.8 × 1.8) = 3.24 m2 and the 
circular-aperture prime-focus paraboloidal reflector having the focal length F = 6.75 m 
and the diameter D = 15 m (i.e. F/D = 0.45). 

where F is the focal-length and D is the diameter of the circular-aperture prime-focus 

paraboloidal reflector as shown in Figure 5.1. Note that for paraboloidal reflectors having 

F/D-ratios in the range [0.45, 0.6] the corresponding half-cone angle varies in the range 

[45.24◦ , 58.11◦]. Also, it has been deduced that irrespective of the changes in the DOAs, 

the ROSs of the spectra of focal fields generated by EM ST PWs emanating point-sources 

inside the FoV of the particular reflector-FPA arrangement are given by the identical 3D 

frustum-shaped volume. The above results have been verified through accurate computer 

simulations using the FFS in subsection 3.2.2. 

Let’s consider the ideal infinite extent 3D mixed-domain signal-sequence s(nx, ny, t) 

that corresponds to the 1D-temporal signals s[nx,ny ](t); (nx, ny) ∈ Z2, which are observed 
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at the outputs of elemental antennas in a hypothetical infinite-extent FPA. Following
 

(2.61) in section 2.6, the 3D-MDFT of s(nx, ny, t) may be expressed in the form 

+∞ +∞+ + 
jωx 

1 ωx − 2πmx ωy − 2πmy
S(e , ejωy , fct) = 

Δ2 
ASX , , fct , (5.6) 

xy 2πΔxy 2πΔxymx =−∞ my =−∞ 

where ASX(fx, fy, fct) is expressed as + +∞ 

ASX(fx, fy, fct) = AF X(fx, fy, fz, fct) SOIX(fx, fy, fz, fct) dfz, (5.7) 
fz =−∞ 

where AF X(fx, fy, fz, fct) is the ûx-component of the antenna frequency response and 

SOIX(fx, fy, fz, fct) is the 4D-CDFT of soix(x, y, z, t), which is the ûx-component of the 

focal region electric field of soi(x, y, z, t). According to subsection 2.3.2, the integral in 

(5.7) represent the projection of the integrand AF X(fx, fy, fz, fct)SOIX(fx, fy, fz, fct) 

onto the 4D hyper-plane fz = 0. Hence, the ROS of ASX(fx, fy, fct) in (fx, fy, fct) ∈ 

R3 is given by the projection of the intersection of the ROSs of AF X(fx, fy, fz, fct) and 

SOIX(fx, fy, fz, fct) onto fz = 0 in (fx, fy, fz, fct) ∈ R4 . According to the active element 

pattern example of PHAD shown in Figure 2.9, for the ûx-component of a EM ST 

PW having a DOA corresponding to the range of inclination angles θ ∈ [45.24◦ , 58.11◦] 

the attenuation is just 2 - 4 dBs. This implies that the ROS of SOIX(fx, fy, fz, fct) 

remains inside of the ROS of the antenna response AF X(fx, fy, fz, fct). Therefore, the 

intersection of ROSs of AF X(fx, fy, fz, fct) and SOIX(fx, fy, fz, fct) is given by the 4D 

hyper-volume HV4CP(fx, fy, fz, fct), where its projection onto the fz = 0 is the 3D double 

right-circular frustum that is corresponding to a 3D double right-circular cone having 

the half-cone angle αmax as shown in Figure 3.2 (a). Hence, the ROS of S(ejωx , ejωy , fct), 

3D-MDFT of the ideal infinite extent signals-sequence observed at the output of the FPA 

in response to dish reflected celestial BB-BP SOIs, is given by an infinite array of 3D 

double right-circular frusta distributed at 2D interval (2π, 2π) in (ωx, ωy, fct) ∈ R3 as 

shown in Figure 2.10 (see page 52). Provided the inter element distance Δxy = c f−1 ,max

there is no spectral overlapping in the infinite periodic array of frusta for the temporal 



� �

  � �

  

200 

frequency range |cfct| ∈ [fC −0.5BW, fC +0.5BW ]. Hence, the 3D mixed domain spectra 

of S(ejωx , ejωy , fct) in 3PNR = {|ωx; ωy| π ∪ |fct| c−1fmax} is given by 

1 ωx ωy
S(ejωx , ejωy , fct) = ASX , , fct . (5.8)

[3PNR] Δ2 
xy 2πΔxy 2πΔxy 

5.3.2 Elemental-Antenna Response to the Off-Dish RFI Signals and the Corresponding 

Spectra 

For FPAs, RFI is mainly caused by terrestrial radio sources, such as spurious EM radia­

tion from the electronic systems within the observation stations of the SKA itself, from 

broadcasting and wireless communication transmissions and from satellite broadcasting 

and communication transmissions. In the case of the RFI signals that are transmitted 

by satellites and received by a FPA, the ROS of the corresponding spectra is identical to 

the ROS of the spectra of celestial SOIs. Such interference is extremely difficult to sup­

press without attenuating the weak celestial SOIs that are in the angular vicinity of the 

RFI sources. However, the terrestrial RFI signals that are received directly by the FPA 

without being reflected from the paraboloidal-dish can be considered as ST PWs having 

typical inclination angles θ ≥ θmax in the focal region. Therefore following sections 2.3.1 

and 2.3.2, the EM field due to off-dish RFI signals rfi(x, y, z, t) in the focal region can 

be expressed as a combination of EM 4D ST PWs such that 

+ 
EPol rfi(x, y, z, t) = [θl,φl]

pwθl,φl (x, y, z, t), 
l + 
EPol = [θl,φl]

rl c −1(sin(θl) cos(φl)x + sin(θl) sin(φl)y + cos(θ)z) + t , (5.9) 
l 

where the typical DOA range θ ≥ θmax and φ ∈ [0◦ , 360◦]. 

The 1D continuous-time signal r[nx,ny ](t) observed at the output of [nx, ny]
th elemental­
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antenna in the FPA in response to the off-dish RFI is given by 

r[nx,ny ](t) = 

+∞+++ 
{aix(x, y, z, t)∗ ∗ ∗ ∗ rfix(x, y, z, t)} δ(x−Δxynx)δ(y−Δxyny)δ(z)dxdydz, 

x,y,z=−∞ 

(5.10) 

where rfix(x, y, z, t) is the ûx-component of the focal region electric field of rfi(x, y, z, t) 

that is generated by the off-dish terrestrial RFIs. Following (2.68) in section 2.5, in­

side 3PNR for the temporal frequency range |cfct| ∈ [fC − 0.5BW, fC + 0.5BW ], the 

3D-MDFT R(ejωx , ejωy , fct) of an ideal infinite extent 3D mixed-domain signal-sequence 

r(nx, ny, t), may be expressed as 

1 + ωx ωy
R(ejωx , ejωy , fct) = AF X [dzl] , , fct[3PNR] Δ2 

xy 2πΔxy 2πΔxy
l 

ωx ωy× CRl(cfct)δ dxlfct − δ dylfct − . (5.11)
2πΔxy 2πΔxy 

where AF X [dzl](fx, fy, fct) is defined in (2.64) such that, + +∞ 

AF X [dzl](fx, fy, fct) 6 AF X(fx, fy, fz, fct) δ(dzlfct −fz) dfz, 
fz =−∞ 

and where CRl(cfct)δ (dxlfct −fx) δ (dylfct −fy) represents the spectrum of the lth RFI 

signal observed on the focal-plane z = 0. In section 2.5, it has been shown that inside 

the 3PNR, the ROS of R(ejωx , ejωy , fct) is given by the lines of intersection between 

fx = sin(θl) cos(φl)fct and fy = sin(θl) sin(φl)fct, for all l, where dxl = sin(θl) cos(φl) and 

dzl = sin(θl) sin(φl). Given that θl ≥ θmax, the inclination angles αl between the axis fct 

and the lines of interaction are in the range [αmax, 45◦]. If received by the PHAD, RFI 

EM ST PWs arriving along the ranges of DOAs that correspond to inclination angles 

θ ≥ θmax, where typical θmax ∈ (45◦ , 58◦), are subjected to attenuations of 2.5 - 15 dBs 

as shown in Figure 2.9. Also, note that for RFI EM ST PWs arriving along θ ≥ 90◦ , 

the attenuation can be as high as 30 dB due to the back-plane of the FPA and therefore 
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can be ignored. Hence, it can be shown that inside the 3PNR, the range of ROSs 

of the spectra of signals induced in the array of elemental-antennas in response to off-

dish RFIs R(ejωx , ejωy , fct), is given by the 3D volume between the two surfaces of 3D 

double right-circular frusta that corresponds to half-cone angles αI = αmax and αU = 45◦ , 

respectively. Hence, ideally there is no intersection between the ROSs of R(ejωx , ejωy , fct) 

and S(ejωx , ejωy , fct), which corresponds to the spectrum of FPA signals in response to 

celestial SOIs. 

5.3.3 Elemental-Antenna Response to the Ground Thermal Noise and the Correspond­

ing Spectral-Density 

The ground thermal noise is due to the radiation from distributed thermal sources such as 

rocks, earth, foliage, ect., at the vicinity of the paraboloidal reflector antenna [184][185]. 

Here, distributed ground noise sources are modeled as a collection of independent point 

radiators and the corresponding EM field in the focal region gη(x, y, z, t), is approximated 

by a superposition of EM ST PWs radiated from these point radiators. As shown in 

Figure 5.6, the FPA is only receiving the ground radiation EM ST PWs for inclination 

angles θ > θmax because for θ θmax the thermal radiation PWs are blocked by the 

paraboloidal-dish. Also, ground radiation EM ST PWs for inclination angles θ > 90◦ are 

effectively blocked by the back-plane of the FPA. Here, the thermal noise contribution 

from the reflector is ignored because its brightness-temperature is only a small fraction 

of its actual temperature due to the low emissivity [185]. It has been proposed in [186] 

to cover the “hot-ground” in the vicinity of the paraboloidal reflector with a conducting 

mesh in order to shield the FPA from ground thermal noise radiation. 

The 1D continuous-time signal g[nx,ny ](t) observed at the output of [nx, ny]
th elemental­
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antenna in the FPA in response to the ground noise is given by 

g[nx,ny ](t) = 

+∞+++ 
{aix(x, y, z, t)∗ ∗ ∗ ∗ gηx(x, y, z, t)} δ(x−Δxynx)δ(y−Δxyny)δ(z)dxdydz, 

x,y,z=−∞ 

(5.12) 

where gηx(x, y, z, t) is the ûx-component of the focal region electric field of gη(x, y, z, t) 

that is generated by the ground noise sources. Following the arguments given in sec­

tions 5.3.1 and 5.3.2, it can be shown that the range of ROS of the power spectral 

density (PSD) function G(ejωx , ejωy , fct) inside the 3PNR is given by the volume that is 

identical to the range of ROSs of the spectra of RFIs at the outputs of the FPA elements. 

However, the magnitude of PSD function G(ejωx , ejωy , fct) is a function of the tilt-angle 

of the reflector. 

5.3.4 Signals at the Outputs of LNAs 

The signal a[nx,ny ](t) observed at the [nx, ny]
th elemental-antenna in the FPA in response 

to the composite focal region EM field cfp(x, y, z, t) may be expressed following (5.3), 

(5.4), (5.5), (5.10) and (5.12), such that 

a[nx,ny ](t) = s[nx,ny ](t) + r[nx,ny ](t) + g[nx,ny ](t). (5.13) 

As shown in Figure 5.1, the electric response a[nx,ny ](t) of elemental-antennas in the FPAs 

are amplified by an array of identically matched LNAs. The continuous-time signal-

sequence l[nx,ny ](t); nx ∈ [−Nx, Nx] and ny ∈ [−Ny, Ny], observed at the outputs of the 

array of LNAs may be written in the form 

l[nx,ny ](t) = a[nx,ny ](t) + n[nx,ny ](t), (5.14) 

where the total receiver-noise component n[nx,ny ](t) is specified by 

n[nx,ny ](t) = [nlna(t) + nant(t) + nfeed(t)] (5.15) [nx,ny ] 

http:nfeed(t)](5.15
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where nlna(t) denotes the noise component contributed by the LNA and nant(t) and 

nfeed(t) denote the thermal noise originate from the Ohmic resistances in each elemental-

antenna and each feed line connecting the elemental-antennas and the LNAs, respectively 

[184][185]. Note that the 3D MDFT pair for the 3D auto-correlation function nc[nx,ny ](t) 

3D-CDFT
of tn[nx,ny ](t) and the PSD is given by nc[nx,ny ](t) ←→ NC(ejωx , ejωy , fct). If the indi­

vidual components [nlna(t)] , [nant(t)] and [nfeed(t)] are uncorrelated for [nx,ny ] [nx,ny ] [nx,ny ] 

nx ∈ [−Nx, Nx] and ny ∈ [−Ny, Ny] then the PSD function NC(ejωx , ejωy , fct) is uniform 

inside the entire 3PNR [44]. However, It has been observed by means of numerical sim­

ulations [184] and measurement [92] that there is strong coupling of the noise between 

the antenna elements in an FPA that would lead to a non-uniform distribution of the 

total noise PSD inside the 3PNR. 

The impedance match between the elemental antennas and the input of the LNA 

determines the contributions of nlna(t), nant(t) and nfeed(t) to the LNA output n[nx,ny ](t) 

in (5.14) [187]. Hence, the output impedances of the elemental antennas must be properly 

matched with the input impedances of the LNAs in order to minimized the contamination 

of the weak celestial SOIs in FPAs and to achieve the optimum sensitivity at the outputs 

of the beamformers [188]. However, input matching for optimal sensitivity is complicated 

by noise coupling between elemental antennas [188]. In the literature, there are several 

noise matching techniques for phased arrays; namely, (a) the multi-port decoupling, (b) 

the self impedance noise matching, and (c) the active impedance matching [187]. With 

the active impedance matching, the elemental antennas in the FPA can be matched with 

the LNAs to achieve the minimum noise power for a particular beam direction [189]. 

Given that the active element impedance and the active element pattern of a particular 

phased array are uniquely interrelated [190], the input matching also determines the 

antenna frequency response function AF(fx, fy, fz, fct) defined in subsection 2.4.4. 

Various attempts have been made to model the noise coupling in 1D-UDAAs and 
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2D-UDPAs [54][191][192][193]. According to [191], the active reflection coefficient7 of the 

array elements determines the coupling of noise between elements, which can either be 

measured or calculated using numerical simulations. A more detailed model that may be 

used to evaluate the SNR element-patterns of large-finite and infinite 2D-UDPAs has been 

proposed in [54] and it has been revised in [192] in order to include spatial correlation 

of thermal noise sources in the elemental antennas of a 2D-UDPA. The novel concept of 

SNR element-pattern may be used as a proper objective function in the optimal design 

of 2D-UDPA where a given sensitivity has to be achieved within a broad FoV [54]. In 

this model, the signal-to-noise pattern is evaluated by taking the ratio between the total 

signal power and the total system noise at the output after beamforming, for the beams 

pointed at different directions specified by the angular pairs (θ, φ), where θ ∈ (0◦ , 90◦) 

and φ ∈ (0◦ , 360◦). Here, the proposed model has been verified using the simulation 

results achieved using the method-of-moment (MoM). The large-finite array considered 

in [54] is consisted of 64 tapered-slot antennas8 arranged in a 8 × 8 uniform-square gird. 

The infinite arrays simulation has considered the same type of element with no truncation 

at the boundaries of the antenna-cell. For loss-less elemental antennas, the variation of 

noise contribution for the temporal band at 635 MHz form each amplifier for both large-

finite and infinite arrays with the elevation angle θ is shown by Figure 9 in [54]. As 

shown there, for the infinite array, the amplifier noise contribution steeply rises to the 

maximum as θ → 90◦ . Further, with the inclusion of spatially correlated thermal noise 

from the lossy elemental antennas [192], the revised model clearly predicts higher system 

noise temperatures for θ ≈ 90◦ as shown in Figure 3 in [192]. One of the main drawbacks 

of this model is that it indirectly specifies the noise spectral density only for a circular 

sub-region inside the boundary ωx 
2 + ωy 

2 = LIfct 
9, where the noise spectral density in 

7Also referred as the scanning reflection coefficient. 
8Tapered-slot antennas is the term used in referring to a more generalized group of linear-polarized 

wideband elemental antennas that includes Vivaldi elements [194] 
9Note that the parameter LI is depend on the inter-element distance Δxy of the FPA. 
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the rest of the signal-space |(ωx, ωy)| ≤ π is left unspecified. 

A simple analytical model for the inter-element broadband noise coupling that is based 

on MD wave-propagation concept has been proposed in [193]. In this model, it is assumed 

that a part of the noise generated at the antennas, feed lines and the input terminal of 

the LNA are radiated by the associated elemental antenna and picked up by the adjacent 

elemental antennas. Here, the radiation of the EM noise wave has been modeled as 

a spatially decaying circular wave that is propagating along the length/surface of the 

1D-UDAA/2D-UDPA. Experimental justification of this model has been attempted in 

[193] with the s-parameters transmission coefficient measurements made with the PHAD 

[92]. One of the most interesting observations made in [193] is the estimation of noise 

PSD of a 2D-UDPA with respect to the damping-factor associated with the decaying 

circular wave. According to simulation results, for strongly coupled noise waves (i.e. 

lower damping factors), the noise PSD is high in the region just outside the surface of 

a 3D right-circular frustum corresponding to half-cone angle of 45◦ . However, as the 

damping factor increases the inter element noise coupling becomes weaker and the noise 

spectral density tends to be uniform inside the 3PNR. 

5.3.5 The Pre-Beamforming Signal Processing and Temporal Sampling of the LNA Out­

puts of FPAs 

The continuous-time signal from each LNA output is subjected to analog pre-processing 

prior to sampling and subsequent digital beamforming. First, the LNA output signals 

l[nx,ny ](t); nx ∈ [−Nx, Nx] and ny ∈ [−Ny, Ny], are amplified by an array of second-stage 

amplifiers. The outputs of the second stage amplifiers are bandpass filtered in order to 

isolate the desired frequency band of interest |cfct| ∈ [fC − 0.5BW, fC + 0.5BW ], by 

suppressing the out of band signals. Next, bandpass-filtered signals are frequency down 

converted to baseband. For this analysis, complex-quadrature frequency-downconversion 

[51] is assumed, where only the positive temporal frequencies of l[nx,ny ](t) is retained. Ide­
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ally the outputs d̃[nx,ny ](t) of the complex-quadrature-downconversion process may be ex­

pressed with the corresponding analytic functions [51] of SOIs s + (t), RFIs r + (t),[nx,ny ] [nx,ny ]

ground noise g + (t) and receiver noise n + (t) such that [nx,ny ] [nx,ny ]

+ + + + −j2πfCtd̃[nx,ny ](t) = s (t) + r (t) + g (t) + n (t) e , (5.16)[nx,ny ] [nx,ny ] [nx,ny ] [nx,ny ]

where fC is the center frequency (e.g. = 1.1 GHz) of the bandwidth of interest |cfct| ∈ 

[fC − 0.5BW, fC + 0.5BW ] (e.g. [0.5, 1.7] GHz). According to [66] (pp. 738 - 742), the 

analytic function a + (t) of any bandpassed signal a[nx,ny ](t) is defined as [nx,ny ] + ∞j a[nx,ny ](τ ) a + (t) 6 a[nx,ny ](t) + dτ. (5.17)[nx,ny ] π t − ττ =−∞ 

The corresponding transformation of the ROS of the spectrum of the SOIs due to direct 

down-conversion is shown in Figure 2.18 (left) (see page 70). 

Each down-converted LNA output d̃[nx,ny ](t) is subjected to synchronous sampling at 

the rate of FS (e.g 1.2 GHz). Ideally the sampling process transfers the 3D-cube 

V = {|ωx; ωy| π ∪ fct ∈ (−0.5FS, 0.5FS)} , 

which is centered at the origin of the 3PNR, into principle Nyquist cube, PNC = 

{|ωx; ωy; ωt| π}, without distortion. Hence, the 3D frustum-shaped volume shown in 

Figure 3.3 (see page 83), which is inside of the volume V, is transfered into the PNC 

without distortion. The complex-valued 3D spatio-temporal sample-sequence from a FPA 

x̃(n), n ≡ (nx, ny, nt) such that nx ∈ [−Nx, Nx] and ny ∈ [−Ny, Ny] and nt ∈ Z, may be 

written as 

xd(n) = s̃(n) + r̃(n) + g̃(n) + nd(n), (5.18) 

where the complex-valued sequence s̃(n) corresponds to the space-time sampled SOIs, 

rd(n) corresponds to the space-time sampled off-dish RFI, dg(n) corresponds to the space-

time sampled ground noise radiation and nd(n) corresponds to the sampled receiver noise 

that include receiver noise and quantization noise. 
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5.4	 Broadband Beamforming of Space-Time Sampled FPA Sequences us­

ing a Single 3D FIR Frustum Filter 

A beamforming complex-coefficient 3D FIR filter having a non-separable frustum shaped 

passband is proposed here in order to selectively enhance the broadband celestial SOIs 

s̃(n) contained in the 3D complex-valued sequence xd(n) that is contaminated by RFI 

rd(n), ground noise dg(n) and receiver noise nd(n). In particular, this filter is proposed for 

the pre-processing of dish-reflected broadband pulsar signals, for the subsequent pulsar-

timing and pulsar-profile studies. The design parameters of this beamforming complex-

coefficient 3D FIR frustum filter of spatial orders (2Nx, 2Ny) and temporal order Nt 

include the half-cone angle αmax of the associated cone, the temporal bandwidth BW , 

and the center frequency fC that in turn specify the shape of the frustum inside the 

PNC. However, first, a criteria that determines the ideal 3D transfer function HI(e
jω); 

ejω ≡ (ejωx , ejωy , ejωt ), of the beamformer is given in the following. 

5.4.1	 A Criteria for Determining the Ideal Transfer Function for the Beamforming 3D 

Filter 

In subsection 5.3.1, it has been derived that the 3D ROS of the spectrum of the digitized 

dish-reflected broadband celestial SOIs is a 3D frustum, as shown by the shaded volume 

in Figure 5.9. Also in subsection 5.3.2 and subsection 5.3.3, it has been derived that 

the 3D ROSs of the spectra of the interfering RFI signals and ground noise signals are 

given by the 3D volume in between the outer 3D frustum, shown by the dashed-lines, and 

the inner 3D frustum, shown by the shaded region volume in Figure 5.9. Furthermore, 

according to the FPA noise analyses reviewed in subsection 5.3.4, it is expected that the 

spectral density of 3D broadband receiver noise is higher outside the shaded 3D frustum, 

which corresponds to the ROS of spectra of dish-reflected SOIs. Therefore, the proposed 

ideal transfer function HI(e
jω) of the ideal beamformer HI(z); z = (zx, zy, zt), is designed 
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Figure 5.9: The ROSs of the spectra of the SOIs, RFIs and ground-thermal noise con­
tained in the space-time sampled FPA signals. 

such that the frustum-shaped passband closely encompasses, and therefore transmits, 

most of the spectral components of the dish-reflected celestial broadband SOIs to the 

output, where as the 3D stopband covers the 3D ROSs of the spectra of the RFI signals, 

of the ground noise signals and, to a large extent, of the receiver noise and therefore 

suppresses the off-dish undesired signals. 

In order to facilitate observations for pulsar-profile studies and pulsar-timing stud­

ies that involve inherently broadband detection algorithms, the principal objective of 

the broadband beamformer is to recover the broadband pulse while minimizing the dis­

tortion of it’s shape. Ideally, this requires that the magnitude response |HI(e
jω)| of the 

ideal beamformer to be unity inside the shaded 3D frustum shown in Figure 5.9, while 

|HI(e
jω)| = 0 everywhere else in the PNC in order to suppress the spectral components 

of RFI, ground-thermal noise and part of the receiver noise. Finally, the ideal phase 

response ∠HI(e
jω) of HI(z) should be selected such that the corresponding spatial-beam 

is directed at the pulsar of interest10 . 

10Note that this particular pulsar should be within the FoV of the FPA. 
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The focal-spot that corresponds to a point-source at the angular position θ = 0◦; 

φ = 0◦ 11, is at the “focal-point” of the paraboloid. In subsection 5.3.1, it has been 

shown that as this point-source moves inside the FoV, away to a new angular position 

θ = θN; φ = φN, the focal-spot moves from the focal-point towards the opposite direction 

of the movement of the point-source. Also with FFS simulations, it has been observed 

that the phase of the electric-field on the focal-plane in response to an off-axis point 

source is not exactly the linearly-shifted version of the phase of the focal-field in response 

to the same point-source, it is on the angular position θ = 0◦; φ = 0◦ . Hence, in order 

to direct the spatial-beam of the beamformer towards a desired point within the FoV, 

the ideal magnitude response, |HI(e
jω)| must be modulated across the spatial-frequency 

space (ωx; ωy) [44] (pp. 25), so that the phase-center 12 of the transfer function HI(e
jω) 

coincides with the phase-center of the sampled focal field ã[θN,φN](n) (see Figure 5.7) that 

resulted from a EM BB-BP ST PW emanating from a point-source at the angular position 

θ = θN, φ = φN. Given the 1D temporal spectrum of the point-source is AC(cfct) = 1 

in the temporal frequency band |cfct| ∈ [fC − 0.5BW, fC + 0.5BW ] and AC(cfct) = 0 

everywhere else in cfct ∈ R, the ideal phase-response of HI(z), inside the shaded 3D 

frustum shaped volume shown in Figure 5.9, is defined as 

∠HI(e
jω) 6 −∠A[θN,φN](e

jω), (5.19) 

3D-DDFT
where ã[θN,φN](n) ←→ A[θN,φN](e

jω). Note that ã[θN,φN](n) act as a calibrating field 

and can be determined either with measurements or through numerical simulations (e.g. 

FFS, GRASP9, ect.). 

Let’s assume that a pulsar at angular position (θ, φ) is emanating a broadband 

temporal signal having an arbitrary temporal spectrum SC(cfct) such that SC(cfct) = 0; ∀ 

|cfct| ∈/ [fC −0.5BW, fC +0.5BW ], where the corresponding space-time sampled sequence 

11Measured with respect to the axis of the paraboloid. 
12The phase-center is the point on the FPA that appears to be the origin of a spherical wave that 

spreads out to form the far-field beam pattern [96](pp. 14-6). 
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of the focal electric field is denoted by s̃[θ,φ](n). Hence, S[θ,φ](e
jω), the spectrum of s̃[θ,φ](n) 

may be expressed in terms of A[θ,φ](e
jω), the spectrum of the calibrating field ã[θ,φ](n) in 

the direction (θ, φ) such that 

S[θ,φ](e
jω) = SD(e

jω) A[θ,φ](e
jω), (5.20) 

where SD(e
jω) is the equivalent sampled temporal spectrum corresponding to the original 

continuous-domain spectrum SC(cfct). Given the ideal space-time sampled FPA signal 

sequence s̃[θ,φ](n) is processed by the ideal beamformer HI(z), which is specified by the 

transfer function HI(e
jω), it can be shown13 that the 1D temporal-spectrum of the 1D 

output sequence yI(nt) may be expressed as ++ 
YI(e

jωt ) = 
1 

S[θ,φ](e
jω) HI(e

jω) dωx dωy. (5.21)
(2π)2 

[(ωx,ωy )∈[−π,π]] 

Because |HI(e
jω)| = 1 inside the ROS of S(ejω), following (5.20) and (5.19), (5.21) can 

be rewritten as ++ jωt )
YI(e

jωt ) = 
SD(e |A[θ,φ](e

jω)| ej∠A[θ,φ](e
jω ) 1 e −j∠A(ejω ) dωx dωy,

(4π)2 

[(ωx,ωy )∈[−π,π]] ++ jωt )SD(e
= |A[θ,φ](e

jω)| dωx dωy. (5.22)
(4π)2 

[(ωx,ωx)≤π] 

With different focal field patterns generated using the FFS (see chapter 3), it has been 

verified within the numerical limits that ++ 
|A[θ,φ](e

jω)| dωx dωy ≈ Constant, (5.23) 

[(ωx,ωy)∈[−π,π]] 

therefore, according to (5.22), the ideal beamformer HI(z) recovers the desired signal 

without any distortion. 

13The expression in (5.21) is derived in subsection 5.4.4. 
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5.4.2 A Combined Frequency-Sampling and 3D Window-Based Design Method for Beam-

forming 3D FIR Frustum Filters 

For real-time processing of FPA sample-sequences, the beamforming 3D frustum filters 

must be implemented in high-speed digital hardware. Hence, the ideal transfer function 

of the beamforming 3D Frustum filter HI(e
jω) must be approximated with a realizable 

transfer function [158]. Even with the advancement of modern MD-filter design tech­

niques such as [195][196][197][198][199], approximating the 3D non-separable magnitude 

and phase responses of HI(e
jω) with an efficient 3D filter-structure for practical im­

plementation is a non-trivial task. In this section, a combined frequency sampling and 

window-based design method is used in approximating HI(e
jω), such that resultant trans­

fer function can be implemented on a direct-form 3D FIR filter structure. Further, it 

is recognized that fine refinements of the filter-coefficients that corresponds to the 3D 

FIR filter structure may be necessary in order to achieve the optimum performance in 

practical situations. 

The design of a 3D FIR frustum filter H(z), for the beamforming of space-time 

sampled signal-sequences from a FPA that consists of (2Nx + 1) × (2Ny + 1) elemental 

antennas is explained in the following. In the prototype FPAs, (e.g. the PHAD [20] 

and the APERTIF [165]), at each sampled point, two elemental antennas are arranged 

perpendicular to each other in order to receive both the ûx- and ûy- polarized components 

of celestial SOIs in the operational frequency band (e.g. 0.5 - 1.7 GHz). However, for 

simplicity, only one polarization is considered in the proposed design method for the 

3D FIR frustum filter-based FPA beamformer. The design of the beamforming 3D FIR 

frustum filter is done in two stages. In the first stage, a prototype 3D FIR filter HF(z), 

having a frustum-shaped passband of unity gain and zero-phase is designed using the 3D 

window method. This prototype filter approximates the ideal transfer function HI(e
jω) 

of the FPA beamformer directed towards a pulsar at the angular position θ = 0◦; φ = 0◦ , 
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with respect to the axis of the paraboloid. In order to direct the spatial-beam towards a 

pulsar located at a general angular position (θ, φ) in the FoV, in the second stage of the 

design process, the transfer function of the prototype 3D filter HF(z) is modulated by 

the phase e−j∠A[θ,φ](e
jω ), which has been defined in (5.19) in subsection 5.4.1. Note that 

A[θ,φ](e
jω) is the spectrum of the calibrating focal-field ã[θN,φN](n), which can be either 

measured or simulated. 

The Design of the Prototype 3D FIR Frustum Filter 

A 3D window-based method is used in the design of the prototype 3D FIR frustum filter 

HF(z) is explained in the following. According to the specifications of the ideal beam-

former transfer function HI(e
jω) given in subsection 5.4.1, the ideal magnitude response 

of the 3D frustum filter HFI(z) is HFI(e
jω) = 1 inside the frustum-shaped passband, 

which is shown by the shaded volume in Figure 5.9 that corresponds to a 3D right-circular 

cone having the half-angle αmax. Also, HFI(e
jω) = 0 elsewhere in PNC. Here, the ideal 

phase response of the prototype 3D FIR frustum filter HF(z), is ∠HFI(e
jω) = 0 in PNC. 

The ideal 3D unit impulse response h̃FI(n); n ∈ Z3 of HFI(z) can be evaluated by taking 

the 3D inverse discrete-domain Fourier transform (IDDFT) [44] of the transfer function 

HFI(e
jω). Thereby, h̃FI(n) is evaluated by solving the triple-integral ++π ++π ++π 

1 jωxnx jωy nyh̃FI(n) = 
8π3 

HFI(e
jω) e e ejωtnt dωxdωydωt, (5.24) 

ωx =−π ωy =−π ωt =−π 

where
 

HFI(e
jω) = 

⎧ ⎪⎨ ⎪⎩
 

1; ωx 
2 + ωy 

2 K tan(αmax)(ωt + ωC), 

0; otherwise,
 

where where K is the so-called bandwidth spread-factor defined as 

FS
K 6 , (5.25)

2fmax 

and where ωC = 2πfC/FS . The resultant ideal infinite extent 3D unit impulse response 

h̃FI(n) is subsequently used in determining the coefficients of the proposed beamforming 
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3D FIR frustum filter H(z). 

Let’s define the 1D spectral-response function corresponding to (nx, ny)
th-element 

such that ++π ++π 

˜ jωt ) 6 
1 jω)ejωxnx jωy ny dωxdFI[nx, ny](e HFI(e e dωy, (5.26)
4π2 

ωx =−π ωy =−π 

for ωt ∈ [−π, π]. Now (5.24) can be rewritten as 

++π 
1 jωt ) e˜ ˜ jωtnt dωt.hFI(n) = dFI[nx, ny](e (5.27) 
2π 

ωt =−π 

Substituting ωx = ωxy cos(β) and ωy = ωxy cos(β) such that ωxy ∈ [0, ωK(ωt)], where 

ωK(ωt) = K tan(αmax)(ωt + ωC), and where β ∈ [0, 2π], into (5.26) yields 

ωK(ωt) +2π+ 
˜ jωxy (nx cos(β)+ny sin(β))dωxydFI[nx, ny](e

jωt ) = 
1 

ωxy e dβ, (5.28)
4π2 

ωxy =0 β=0 

Following [158] (pp. 147 - 148) and [42] (pp. 30 - 31), (5.28) can be evaluated as 

ωK(ωt)+ 
˜ jωt )

1 
n2dFI[nx, ny](e = ωxy J0 ωxy x + n2 

y dωxy,
2π 

ωxy =0 

ωK(ωt) J1 ωK(ωt) nx 
2 + ny 

2 

= , (5.29)
2π nx 

2 + ny 
2 

where J0(·) and J1(·) are the 0th- and 1st- order Bessel functions of the first kind, respec­

tively [115] (pp. 218 - 220). Now (5.27) can be rewritten as 

++π
 
K tan(αmax)
˜ 2 2 jωtnt dωt,hFI(n) = (ωt + ωC)J1 nx + ny tan(α)K(ωt + ωC) e

4π2 nx 

2 + ny 
2
 

ωt =−π
 

(5.30) 

where closed form trigonometric expressions of h̃FI(n) are only available for few trivial 

combinations in n ≡ (nx, ny, nt) ∈ Z3, such as 

)K2 3ω2 
˜ π tan2(αmax ChI(0, 0, 0) = +1 (5.31)

12 π2 

http:dFI[nx,ny](e(5.27


  
 

� � �

215 

and
 

˜ (-1)nt tan2(αmax)K
2 1 jωC

hI(0, 0, nt) = 
2 − , (5.32)

2π nt nt 

for nt = 0. A numerical integration method [200] can be used to evaluate 5.30 for the 

rest of the combinations of n ∈ Z3 . 

In order to determine the temporally-causal 3D unit impulse response h̃C(n) of the 

beamforming 3D FIR frustum filter HC(z) of spatial-orders 2Nx and 2Ny and temporal-

order Nt, in this design example, the ideal unit impulse response h̃I(n) is windowed by 

the causal cubic-window function wC(n) such that 

h̃C(nx, ny, nt) = wC(nx, ny, nt) h̃I(nx, ny, nt + 0.5Nt) (5.33) 

where wC(n) = 1; for |nx| Nx, |ny| Ny and |nt| 0.5Nt and wC(n) = 0 otherwise. 

Phase Modulation for Directing the Beam towards a Desired Direction 

The required phase response for the transfer function H(ejω) of the 3D FIR frustum filter 

based-beamformer to direct its receiving beam towards a point source at the angular 

position θN and φN is specified in (5.19) in subsection 5.4.1. In order to achieve the 

specified phase response inside the 3D frustum-shaped passband of HC(z), first, the 

3D-DDFT of h̃C(n) is evaluated on a 3D uniform grid wk ≡ (wxk, wyk, wzk) inside the 

PNC, such that wxk ∈ {−π, .., −2π/2M, 0, 2π/2M, .., π}, where M > 2Nx. Second, the 

ideal phase response ∠A[θN,φN](e
jω) is evaluated with the calibrating focal field sequence 

ã[θN,φN](n) at each of the grid points wk. As mentioned in subsection 5.4.1, ã[θN,φN](n) 

may be either measured with a strong artificial point source such as a satellite-downlink 

or calculated using a focal field synthesis program (e.g. FFA, GRASP9, ect.). Next, the 

sampled frequency response of the 3D FIR frustum filter-based beamformer having the 

beam directed at the desired angular position θN and φN is evaluated such that 

jwk ) e ∠−jA[θN,φN](e
jwk )H(ejwk ) = HC(e ; ∀ wk. (5.34) 
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Finally, the 3D IDDFT of H(ejω) is evaluated for all n ≡ (nx, ny, nt) such that |nx| Nx, 

|ny| Ny and |nt| 0.5Nt, that yields the filter coefficients h̃(n) of the beamforming 

3D FIR frustum filter of spatial-orders 2Nx and 2Ny and temporal-order Nt. 

5.4.3 A Numerical Design Example of the Beamforming 3D FIR Frustum Filter 

A design example of a beamforming 3D FIR frustum filter HD(z) of order Nx = 16, 

Ny = 16 and Nt = 10, which is to be used for the front-end broadband beamforming 

of pulsar-timing observations and pulsar-profile studies, is considered here. The spatial-

order for the frustum filter has been selected by assuming an FPA that contains 289 

individual (i.e. 17 × 17) elemental-antennas arranged in a square array as shown in 

Figure 5.1. The design parameters considered in this design are specified in Table 5.2. 

First, the coefficients h̃D(n) of the beamforming 3D FIR filter HD(z) are evaluated using 

the expressions given in (5.30), (5.31), (5.32), (5.33) and (5.34). Here, MATLAB R®’s 

“quad” function [201] is used in evaluating (5.30) for non trivial combinations of n ∈ Z3 . 

Also, the calibration focal field ã[θN,φN](n) is determined using the FFS, which has been 

explained in chapter 3. 
√ 

The iso-surface HD(e
jω) = 1/ 2, which corresponds to the -3 dB level of the 

magnitude-response of the passband inside the PNC, is shown in Figure 5.10. It is 

observed, as expected, that the iso-surface shown in Figure 5.10 closely approximates the 

predicted ideal frustum-shaped passband as required for the beamforming frustum filter 

for ωt ∈ [−0.95π, 0.95π]. 

Further analysis of the frequency-response has been conducted and the resulted cross 

sectional magnitude and phase responses HD(e
jω) are shown in Figure 5.11. The -3 dB 

and -20 dB contour plots for the squared magnitude response HD(e
jω) 

2 
on the cross 

sectional plane ωt = 0.75π are shown with solid lines in Figure 5.11 (top-left) where the 

dashed lines indicate the edge of the ideal passband of HI(e
jω) on ωt = 0.75π. Note 

that the -3 dB contour line of HD(e
jω) 

2 
coincides closely with the edge of the ideal 
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Table 5.2: The Design Parameters of the Beamforming 3D FIR Frustum Filter.
 

Design Parameter Value 

Center Frequency of the Temporal Band - FC 

Bandwidth of the Temporal Band - BW 

Maximum Operational Frequency - fmax 

Minimum Operational Frequency - fmin 

Half-Cone Angle - αmax 

Bandwidth Spread Factor (5.25) - K 

Normalized Center Frequency in the PNC - ωC 

1.1 GHz 

1.2 GHz 

1.7 GHz 

0.5 GHz 

30◦ 

0.353 

5.76 

passband. The magnitude and phase responses along the line of penetration, which 

is illustrated by the dot-and-dashed straight-line in Figure 5.11 (top-left), are shown 

in Figure 5.11 (middle-left) and Figure 5.11 (bottom-left), respectively. According to 

Figure 5.11 (middle-left), the average stopband attenuation is around 20 dB. It is ob­

served that the phase response ∠HD(e
jω) follows (5.19), as expected. The -3 dB and 

2 
-20 dB contour plots of HD(e

jω) on the cross sectional plane ωy = 0 are shown in Fig­

ure 5.11 (top-right) along with the edges of the ideal passband on the same cross sectional 

plane. Similarly, the edge of the ideal passband coincides closely with the -3 dB contour 

line for HD(e
jω) 

2 
. The magnitude and phase (wrapped) responses along the axis of 

the frustum-shaped passband, which is illustrated by the dot-and-dashed straight-lines 

in Figure 5.11 (top-right), are shown by the solid lines in Figure 5.11 (middle-right) and 

Figure 5.11 (bottom-right), respectively. According to Figure 5.11 (middle-right), along 

the axis of the frustum-shaped passband the gain is approximately 0 dB for frequen­



    

218 

√ 
Figure 5.10: The iso-surface HD(e

jω) = 1/ 2 of the magnitude response of the 3D 
frustum filter HD(z) inside the PNC. 

cies ωt ∈ [−π, π]. Further according to Figure 5.11 (bottom-right), the phase (wrapped) 

response along the axis of the frustum-shaped passband of HD(z) is ideally linear as 

expected. The above example of a typical frequency response of 3D FIR frustum filter 

confirms that the proposed design method in section 5.4.2 is capable of designing the 

beamforming 3D FIR filters that satisfy the specifications given in section 5.4.2 for near 

optimal FPA beamforming of broadband celestial signals. 

5.4.4 The 1D Output Sequence of the Beamforming 3D FIR Frustum Filter 

As shown in Figure 5.2 and Figure 5.12, the input to the beamforming complex-coefficient 

3D FIR frustum filter H(z) is x̃(n), the complex-valued 3D spatio-temporal sample-

sequence from the FPA pre-processors. The composition of x̃(n) has been discussed 

in subsection 5.3.5. The 1D output sequence of the proposed beamformer is given by 

ỹ(nt) = ỹ3D(nx = 0, ny = 0, nt), where 

ỹ3D(nx, ny, nt) = x̃(nx, ny, nt)∗ ∗ ∗ h̃(nx, ny, nt), (5.35) 

and where h̃(nx, ny, nt) is the 3D impulse response of the beamforming complex-coefficient 

3D FIR frustum filter H(z) of order [2Nx, 2Ny, Nt]. (Note that ∗ ∗ ∗ denotes 2D convolu­
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Figure 5.11: The -3 dB and -20 dB contour plots (solid) evaluated across and along the 
passband of the 3D frustum filter HD(z) corresponding to HD(z) of order [16,16,10] along 
with the edge of the ideal passband (dashed) are shown in the top-row. The magnitude 
and phase (wrapped) responses evaluated on the line of penetration through the passband 
are shown in middle and bottom rows, respectively. 
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tion.) Taking the 3D discrete-domain Fourier transform (DDFT) of both sides of (5.35)
 

yields, 

Y3D(e
jω) = X(ejω) H(ejω), (5.36) 

where ejω ≡ (ejωx , ejωy , ejωt ). According to (5.18), the spectrum of the 3D input sampled 

sequence x̃(n), is given by 

X(ejω) = S(ejω) + R(ejω) + G(ejω) + N(ejω), (5.37) 

where the 3D-DDFT pairs are denoted as 

3D-DDFT 3D-DDFT 3D-DDFT
x̃(n) ←→ X(ejω), s̃(n) ←→ S(ejω) and r̃(n) ←→ R(ejω). 

Also in (5.37), the 3D DDFT pairs of the 3D noise autocorrelation functions and the 

corresponding power spectral density functions are given by 

3D-DDFT 3D-DDFTjω)xnc(n) ←→ N(e and gc(n) ←→ G(ed jω), 

where x gc(n) are the 3D autocorrelation functions of receiver noise ˜nc(n) and d n(n) and 

FPA ground thermal noise contribution g̃(n), respectively. Following [42][44], the 1D 

1D-DDFT
temporal-spectrum Y (ejωt ) of the output ỹ(nt), where y(nt) ←→ Y (ejωt ), is given by ++ ++ 

jωt )
1 1 

Y (e = Y3D(e
jω) dωx dωy = X(ejω) H(ejω) dωx dωy,

(4π)2 (4π)2 

[(ωx,ωy )∈[π,π]] [(ωx,ωy )∈[π,π]] 
(5.38) 

3D-DDFT
where dh(n) ←→ H(ejω). Let the 1D temporal-spectrum of the recovered SOI corre­

sponding to a narrow pulse is given by ++ 
jωt )

1 
OS(e = S(ejω) H(ejω) dωxdωy, (5.39)

(4π)2 

[(ωx,ωy )∈[−π,π]] 

and following (5.20), (5.22) and (5.34), (5.39) can be rewritten as
 ++ jωt )SD(e
OS(ejωt ) = |A[θ,φ](e

jω)| |H(ejω)| dωxdωy. (5.40)
(4π)2 

[(ωx,ωy )∈[−π,π]] 
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As verified in subsection 5.4.3 |H(ejω)| ≈ 1 inside the 3D frustum-shaped passband, thus, 

jωt )e −jωtNtOS(ejωt ) ≈ Const · SD(e (5.41) 

because ++ 
|A[θ,φ](e

jω)| dωx dωy ≈ Constant, 

[(ωx,ωy )∈[−π,π]] 

−jωtNtaccording to (5.23) and because a phase shift e is added due to the causal cubic-

window function wC(n) in (5.33). 

The 1D spectral density function of residual attenuated receiver noise, ground thermal 

noise and interference is given by ++ 
jωt )

1 
NR(e = N(ejω) + G(ejω) + R(ejω) H(ejω) dωxdωy. (5.42)

(2π)2
 

[(ωx,ωy )∈[−π,π]]
 

Hence according to (5.41) and (5.42), the spectrum of the 3D FIR frustum filter-based 

beamformer is given by 

jωt ) jωt )e −jωtNt jωt ).Y (e = Const · SD(e + NR(e (5.43) 

5.4.5 Implementation of the Beamforming Complex-Coefficient 3D FIR Frustum Filters 

The 1D output sequence ỹ(nt), corresponding to the 3D FIR frustum filter based beam-

former may be expressed as a discrete-domain convolution sum such that 

Lx Ly Nt+ + + 
ỹ(nt) = x̃(mx,my, nt − mt) h̃

∗ (−mx, −my,mt), (5.44) 
mx =−Lx my =−Ly mt=0 

where “∗” denotes complex-conjugation. Note that Li = Ni; for i = x, y, and the FPA 

contains (2Nx + 1) × (2Ny + 1) elements so that the order of H(z) is [2Nx, 2Ny, Nt]. 

Following [66], H(z) of order [2Nx, 2Ny, Nt] can be implemented using a 2D array of 

(2Nx + 1) × (2Ny + 1) parallel-connected complex-coefficient 1D FIR filters of order Nt, 

as shown in Figure 5.12. Following [51], each complex-coefficient 1D FIR filter can be 

http:NR(e(5.43
http:SD(e(5.41
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Figure 5.12: The section of the structure for the beamforming complex-coefficient 3D FIR 
frustum filter H(z) implemented with parallel connected array of complex-coefficient 1D 
FIR filters. 

implemented with four real-valued 1D FIR filters. It follows from (5.44) that 4(2Nx + 

1)(2Ny + 1)(Nt + 1) real-number-multiplications and (4(2Nx + 1)(2Ny + 1)(Nt + 1) − 1) 

real-number-additions are required per output sample ỹ(nt). With the proposed parallel-

connected structure, the computational complexity of the filtering are divided among 

the 1D FIR filters. As in the case of complex-coefficient 2D FIR trapezoidal filters, by 

exploiting well established 1D FIR filter implementation techniques [66] (pp. 502-519), 

higher throughput may be achieved by employing (2Nx + 1)(2Ny + 1) parallel-connected 

low cost DSP hardware modules (e.g. FPGA or ASIC), where each module is dedicated 

to a 1D FIR filter. 
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5.5 A Comparative Study of the Broadband Signal Recovery in the Pres­

ence of Off-Dish RFI, Ground Thermal Noise and Receiver Noise 

Here, the performance of the proposed real-time beamforming 3D FIR frustum filter is 

compared against the conventional 2D spatial-only beamformer and 3D conjugate-field­

matching (CFM) beamformer that is based on a 3D FIR filter structure of the same 

order as the proposed 3D FIR frustum filter. The performance evaluation is based on 

the recovery of a dispersed pulse that is contaminated with strong off-dish RFI, thermal 

ground noise and receiver noise. Given that pulsars are typically weak radio sources, 

a group of (e.g. 100 - 1,000) 15 m FPA paraboloidal-dish receivers are needed in order 

to achieve the required SNR for pulsar-profile studies. For such studies, sub groups 

of the 1,000 - 2,000 FPA paraboloidal-dish receivers in the main-core of the SKA (see 

Figure 5.4) are expected to be used. Thus, for this example it is assume that 1,000 

FPA paraboloidal-dish receivers of diameter (D =) 15 m, and focal-length (F =) 6.75 m, 

are directed at a distant emulated pulsar having an intrinsic twin-peak profile as shown 

in Figure 5.13 (center-left). It is assumed that the intrinsic profile is dispersed while 

propagating through the ISM where the hypothetical “Dispersion Measure” (DM) is 

0.025 [168]. The corresponding normalized original and dispersed pulses are shown in 

Figure 5.13 (top). The quadratic-phase of the dispersed pulse is shown in Figure 5.13 

(center-right). The spectrogram of the dispersed pulse is shown in Figure 5.13 (bottom). 

For the FPAs considered in this particular example the bandwidth of operations is 0.5 

- 1.7 GHz. Each FPA contains (17×17) elemental antennas arranged in a square-gird with 

the inter-element distance Δxy = 8.817 cm as shown in Figure 5.1. The photonic responses 

of the FPAs are contaminated with receiver noise, ground noise and off-dish RFI spanning 

the bandwidth [0.74, 1.7] GHz. For this simulation, the noisy and RFI contaminated test 

sequences x̃k(n); k = 1, .., 1000 are synthesized according to the properties outlined in 

section 5.3 using the FFS, the focal field synthesis program introduced in chapter 3 and 
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Figure 5.13: Dispersion of sharp-pulses while propagating through ISM. The normalized 
original pulse and the dispersed pulse (top). The expanded original pulse (center-left) 
and the expanded phase angle of the dispersed pulse (center-right) and the spectrogram 
of the dispersed pulse (bottom). 

MD Fourier techniques [44][42]. Each of the 1,000 test sequences x̃k(n); k = 1, .., 1000 of 

size (17 × 17 × 216) contains a dispersed-pulse contaminated with noise and RFI, which 

is sampled at the rate of 1.2 GHz. Note, each of the 289 time records of x̃k(n) spans 

a duration of approximately 0.853 microseconds. For each x̃k(n), the signal to receiver 

noise ratio (SRNR) was chosen as -10 dB, the signal to ground noise ratio (SGNR) as 

-20 dB and the signal to interference ratio (SIR) as -30 dB. 

For the purpose of comparison, each x̃k(n) is processed by the proposed 3D FIR 

frustum filter-based beamformer, which corresponds to a cone having half-cone angle 

αmax, of order [16, 16, 10], the 2D spatial-only beamformer of order [16, 16] and the 3D 
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Figure 5.14: Examples of the normalized magnitudes of the recovered dispersed-pulses 
|ŷ̃CFM(nt)| (dot-dashed), |ŷ̃Frust(nt)| for αmax = 30◦ (solid), and |ŷ̃2DSP(nt)| (dashed) along 
with the magnitude of the ideal-dispersed pulse (dotted). 

CFM beamformer of order [16, 16, 10]. Hence, in order to evaluate one output sample 

ỹFrust(nt) or ỹCFM(nt) of the proposed 3D FIR frustum filter-based beamformer of order 

[16, 16, 10], or the 3D CFM beamformer of order [16, 16, 10], it requires 3179=((17×17× 

11) complex-arithmetic-multiply-add (CAMA) operations. However, in order to evaluate 

a single output sample of ỹ2DSP(nt), the 2D spatial-only beamformer of order [16, 16] 

requires only 289=(17 × 17) CAMA operations. 

The three groups of beamformed outputs are time aligned, averaged and normalized. 

The resulting three time sequences ŷ̃CFM(nt), ŷ̃Frust(nt) and ỹ̂2DSP(nt) corresponding to 

the three beamforming methods, contain the normalized recovered dispersed-pulses. Fig­

ure 5.14 shows the examples of such normalized dispersed-pulse |ŷ̃Frust(nt)| (solid), that 

has been recovered with the proposed 3D FIR frustum filter-based beamformer of order 

[16, 16, 10] where αmax = 30◦ , |ỹ̂CFM(nt)| (dot-dashed), that has been recovered with the 
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3D CFM beamformer of order [16, 16, 10] and |ŷ̃2DSP(nt)| (dashed), that has been recov­

ˆ̃ered with the 2D spatial-only beamformer. The ideal-dispersed pulse |d(nt)| (dotted), is 

also shown in Figure 5.14. 

ˆ̃The mean square error (MSE) between each of the normalized-pulses and |d(nt)| is 

evaluated by  
2ˆ̃ ˆMSE[CFM/Frust/2DSP] = dI(nt) − ỹ[CFM/Frust/2DSP](nt) . (5.45) 

Note that the MSE[CFM/Frust/2DSP] specify the distortion caused by the front-end beam-

forming methods. Table 5.3 contains the numerically evaluated MSE for the 3D CFM 

beamformer, the 2D Spatial-only beamformer and a group of 3D FIR Frustum filter-

based beamformers corresponding to αmax = 25◦ , 30◦, and 35◦, respectively. According 

to Table 5.3 the 3D FIR frustum filter-based beamformer corresponding to αmax = 30◦ 

achieves the minimum MSE. The high MSE value indicates that the beamforming 3D 

FIR frustum filter corresponding to αmax = 25◦ has a smaller passband, which does not 

encompass the dominant spectral components of the SOI in the respective noise and 

RFI environments encountered in this test. On the other hand, the high MSE value 

indicates that the beamforming 3D FIR frustum filter corresponding to αmax = 35◦ does 

not effectively suppress the dominant spectral components of the RFI and noise in the 

respective noise and RFI environment encountered in this test. Also, as expected, the 2D 

spatial-only beamformer performs the worst, where the MSE is more than 10 times that 

of the proposed 3D FIR frustum filter-based beamformer. For sensitive pulsar timing ob­

servations and pulsar profile studies the improvement of the MSE justifies the additional 

computational complexity of the proposed beamforming method over the 2D spatial-only 

beamforming. However with the same computational complexity, the MSE is 3.9 times 

higher for the 3D CFM beamformer compared to the proposed 3D FIR frustum filter-

based beamformer. These results show that the proposed 3D FIR frustum filter based 

beamformer achieves lower distortion of the recovered broadband signals compared to 
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Table 5.3: The MSE between the Recovered Pulses and the Ideal Dispersed Pulse for the 
Different Beamforming Methods. 

Beamforming Method MSE 

3D Conjugate Field Matching (CFM) Beamformer 

2D Spatial-Only Beamformer 

3D FIR Frustum Filter: αmax = 25◦ 

3D FIR Frustum Filter: αmax = 30◦ 

3D FIR Frustum Filter: αmax = 35◦ 

0.09883 

0.26184 

0.03120 

0.02534 

0.09571 

the 3D CFM beamformer and 2D spatial-only beamformer. 

5.6 Summary 

In this chapter, a 3D FIR frustum filter-based beamformer has been proposed for the 

real-time pre-processing of FPA signals for broadband detection applications of the SKA 

such as pulsar timing observations and pulsar profile studies using coherent de-dispersion. 

The SKA will be World’s largest aperture synthesis telescope upon its completion in 

2020 and it is expected that the unprecedented systems sensitivity of the SKA may 

lead to many potential new discoveries in various branches of modern science including 

fundamental physics, astrophysics, cosmology and astrobiology. A description of key 

science projects that is expected to be conducted with the SKA observations has been 

given in subsection 5.2.1. Further, the specifications of the engineering design of the SKA 

has been outlined in subsection 5.2.2. Employing non traditional antenna technologies 

such as dense aperture arrays (DAAs) and focal plane arrays (FPAs) in order to increase 

the FoV of the aperture syntheses system is one of the key features of the SKA engineering 
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design. 

In section 5.3, the signals received by the FPAs and the corresponding spectra have 

been analyzed in detail. In subsection 5.3.1, it has been shown that the power of an 

incident EM BB-BP ST PW emanating from a celestial point-source is concentrated to 

a finite size focal-spot after being reflected on the inner-surface of a circular-aperture 

prime-focus paraboloid. Also, it has been shown that the ROSs of the spectra of the 

space-time sampled FPA elemental antenna signals induced in response to dish-reflected 

EM waves are given by a 3D frustum inside the PNC. As shown there the shape of the 

3D frustum is determined by the focal-length F , diameter D, of the reflector and the 

temporal bandwidth of the incident EM wave. As derived in subsections 5.3.2 and 5.3.3, 

the ROSs of the spectra of space-time sampled FPA signals that correspond to non-dish­

reflected (i.e. off-dish) RFIs and ground thermal radiation are given by the 3D volume 

between two frusta shown in Figure 5.9. A brief review of the different noise sources 

in the FPA receiver system has been given in subsection 5.3.4. As given there, due to 

the noise coupling between elements of the FPA, the corresponding noise spectral density 

function is non-uniform inside the PNC. In subsection 5.3.5, the pre-beamforming signal 

processing model for the front-end of the FPA receiver has been briefly reviewed. 

The design of the beamforming 3D FIR frustum filter has been explained in details 

in section 5.4. First, in subsection 5.4.1, the criteria for the determination of the ideal 

transfer function of broadband beamformer has been introduced. Here, the stopband 

and the passband characteristics of the 3D frustum filter have been determined such that 

the dominant spectral components of the receiver noise, off-dish RFI and the thermal 

ground noise are suppressed in the stopband while the dominant spectral components of 

the SOIs are enhanced in the passband. This leads to a non-separable transfer function 

having a non-trivial phase response. A combined frequency-sampling and 3D window-

based design method has been proposed in subsection 5.4.2 in order to approximate the 
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required non-separable 3D transfer function of the beamforming 3D FIR frustum filter. 

In subsection 5.4.3, it has been verified that the proposed design method is capable of 

meeting the specification of the beamformer. The spectrum of the beamformer output 

has been briefly analyzed in subsection 5.4.4. 

The numerical analysis presented in section 5.5, has confirmed that the proposed 3D 

FIR frustum filter-based beamformer achieves lower distortion compared to the conven­

tional 2D spatial-only beamformer and the 3D CFM beamformer. The 2D spatial-only 

beamformer resulted in the highest distortion because its passband is designed consider­

ing the properties of only the center frequency of the SOIs. On the other hand for the 

3D CFM beamformer, the spatio-temporal characteristics of SOIs for the entire opera­

tional bandwidth have been considered in its design however, it does not consider the 

spatio-temporal characteristics of off-dish RFI and ground noise. 
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Chapter 6
 

Finite-Word-Length Effects of Beamforming MD FIR Filters 

and an Example of FPGA Implementation of a Beamforming 

2D FIR Filter 

6.1 Introduction 

The required throughputs for modern real-time array processing applications in wire­

less communications [32][34][202] and in radio astronomy [18][74][203] are in the range 

of several hundred mega-samples per-second (MSPS) to several Giga-samples per-second 

(GSPS). Such high throughputs necessitate the beamforming MD FIR filters proposed in 

chapter 4 and chapter 5, including those proposed in [47][55][56][59], to be implemented 

using finite-word-length [66][65] DSP hardware in high speed VLSI circuits [60][204][205] 

[206][207]. Finite-word-length DSP implementation of beamforming MD FIR filters 

leads to the so called “quantization-noise” generation, transfer function distortion and in 

some instances cause errors due to adder-overflows and therefore, degrade the maximum 

achievable SNDR at the output of these beamforming MD FIR filters of particular or­

der. Hence, the careful assignments of register-lengths (i.e. word-lengths) for input-data, 

filter-coefficients and the outputs of digital-multipliers and digital-adders are required in 

order to minimize the degradation of the SNDR and avoid errors in the output while 

minimizing the hardware complexity of the proposed beamforming MD FIR filters of the 

particular order. 

According to chapters 4 and 5, beamforming MD FIR filters can be implemented 

with parallel connected arrays of real-valued 1D FIR filter structures. The efficient im­

plementation of real-valued 1D FIR filters using VLSI finite-precision digital arithmetic 
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processors has been studied in detail in the literature [60][65][66][204][205][206][207]. For 

beamforming 2D FIR asymmetric-trapezoidal filters that have been proposed in chap­

ter 4 for applications in wireless communications, the implementations must support 

real-time adaptation of filter coefficients. Nevertheless, for beamforming polyphase 2D 

FIR double-trapezoidal filters that have been proposed in [59], and for beamforming 3D 

FIR frustum filters that have been proposed in chapter 5 for applications in radio astron­

omy, the implementations must facilitate non-real time adaptation of filter coefficients. 

Hence, reconfigurability is the key aspect of the VLSI implementation of both real-time 

and non-real-time adaptive MD FIR filter-baaed beamforming methods proposed here 

and in [59] for applications in wireless communications and radio astronomy. In order to 

facilitate reconfigurability while minimizing transfer function distortion and quantization 

noise, here, the parallel-connected direct-form 1D FIR filter structures are selected for 

the implementation of the beamforming MD FIR filters using finite-word-length DSP 

hardware in VLSI circuits. 

In this chapter, the distortions in the transfer functions due to finite-word-length 

representation of filter-coefficients of beamforming MD FIR filters are analyzed in terms 

of the changes in the stop-band attenuation and the passband-ripple of the correspond­

ing transfer functions. Three examples of MD FIR filters, (a) a beamforming polyphase 

2D FIR double-trapezoidal filter [59], (b) a beamforming complex-coefficient 2D FIR 

asymmetric-trapezoidal filter (see chapter 4) and (c) a beamforming complex-coefficient 

3D FIR frustum filter (see chapter 5), are considered in this analysis. Also in this chap­

ter, a theoretical model is developed for estimating the degradation of SNDR at the 

output of the beamforming MD FIR filters implemented with a parallel connected 1D 

FIR direct-form structures for different DSP configurations1 . In order to verify the pro­

posed theoretical model, the estimated SNDRs with the proposed model are compared 

against the averaged SNDRs calculated with empirical data obtained through Monte 

1The assigned of word-lengths for input-data, filter-coefficients, multiplier-products and partial-sums. 
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Carlo simulations for the identical sets DSP configurations in implementing the beam-

forming polyphase 2D FIR double-trapezoidal filter [59] using the MATLAB Fixed-Point 

Toolbox. Finally, an example of a FPGA implementation of a beamforming MD FIR filter 

having a specific DSP configuration is briefly discussed here. With collaboration of Ar­

juna Madanayake, a then colleague of the MDSP Group, the beamforming polyphase 2D 

FIR double-trapezoidal filter is partially implemented in a Xilinx Virtex-4 Sx35 ff668-10 

FPGA chip [67] using the “Xilinx System Generator” [208] and associated “Xilinx Block 

Set” for Simulink in MATLAB. Parts of the above work have been published in [68]. 

This chapter is arranged as follows. In section 6.2, a brief theoretical analysis is 

given on the sources of quantization noise and errors due to finite-word-length repre­

sentation of input-data and the outputs of digital-multipliers and -adders and transfer 

function distortions due to finite-word-length representation of filter coefficients of MD 

FIR filters. The distortions of the transfer functions due to finite-word-length representa­

tion of filter-coefficients of the beamforming polyphase 2D FIR double-trapezoidal filter2 

[59], the beamforming complex-coefficient 2D FIR asymmetric-trapezoidal filter and the 

beamforming complex-coefficient 3D FIR frustum filter are studied with examples in 

subsections 6.3.1, 6.3.2 and 6.3.3, respectively. 

In subsection 6.4.1, a theoretical model is developed for the estimation of the SNDR at 

the output of a beamforming MD FIR filters with the example of the polyphase 2D FIR 

double-trapezoidal filter-based beamformer [59] implemented with a parallel connected 

array of direct form 1D FIR filters. According to the proposed theoretical model, the 

estimates of the SNDRs are evaluated in subsection 6.4.2 for the beamforming polyphase 

2D FIR double-trapezoidal filters implemented with different DSP configurations. For 

different DSP configurations, the average SNDRs of the beamforming polyphase 2D FIR 

double-trapezoidal filters evaluated with Monte Carlo simulations are given in subsec­

2A brief review of the polyphase 2D FIR double-trapezoidal filter-based beamformer and the proposed 
polyphase building block is given in subsection 6.3.1. 
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tion 6.4.3.
 

An example of the FPGA implementation of the polyphase 2D FIR double-trapezoidal 

filter-based beamformer with a given DSP configuration is outlined in section 6.5. An 

estimate of the FPGA resources required for the full implementation of this beamformer 

for a set of different DSP configurations is given in Table 6.2. A comparison between the 

outputs of the beamforming polyphase 2D FIR double-trapezoidal filter in response to a 

severely contaminated input 2D sample-sequence that are evaluated with floating point 

digital arithmetics in MATALB and with finite-world-length implementation, which is 

simulated with “bit-true cycle-accurate” on-chip stepped hardware co-simulation feature 

of the Xilinx Block Set for Simulink, is shown in Figure 6.17. 

6.2	 Finite-Word-Length Effects of MD FIR Filters implemented with an 

Array of 1D FIR Filters; A Review 

In the implementation of MD FIR filters for real time applications in wireless commu­

nications and radio astronomy, filter-coefficients, input-data, products from multipliers 

and partial-sums from adders are stored in finite-length registers of finite-precision digital 

arithmetic processors [204]. Filter-coefficients and input-data are quantized and coded 

[62] prior to be stored in finite-length registers. At the outputs of digital-multipliers, the 

products are quantized because, in general the number of bits of the product between a 

coefficient and an input-data sample exceeds the assigned fixed register-length for that 

product in the filter structure. The coefficient-quantization causes transfer function dis­

tortion where as data and product quantization cause quantization noise [65](ch. 14). 

Both transfer function distortions and quantization noise degrade the SNDR of the out­

put of the beamforming MD FIR filter. Further, possible overflows at the outputs of the 

digital-adders may cause significant errors in the output of the beamforming MD filter. 

In this section, a brief theoretical analysis is given regarding the quantization noise, 
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the transfer function distortion and errors in MD FIR filters implemented with parallel 

connected arrays of real-valued 1D FIR filters due to finite-word-length representation of 

input-data, filter-coefficients and the outputs of digital-multipliers and -adders. Two’s 

complement binary coding [62] and rounding-quantization [61] are assumed in the fol­

lowing analysis. 

6.2.1 Input-Data Quantization 

At the analog-to-digital converter (ADC), the continuous-time continuous-range input 

signal xC(t) is sampled at regular time intervals t = nT ; n ∈ Z and the values of 

these samples xC(nT ) are converted into a set of W -bit code-words {[b0, b1, .., bW−1]}; 

bk = [0, 1] for k = 0, 1, .., W −1. In two’s complement binary coding, the value xD(n), of 

the W -bit code word [b0, b1, .., bW−1] is given by 
W−1+ 

xD(n) = α −b0 + bk2
−k , (6.1) 

k=1 

where α is a positive scaling factor [62]. The input-data quantization-error is defines as 

ei(n) 6 xC(nT ) − xD(n), (6.2) 

[66](pp. 750-753). In practice, the input signal xC(t) can be scaled in the analog pre­

processing stage such that the probability of {|xC(nT )| ≥ 1 − 2−W } is arbitrary small. 

Under rounding-quantization process [61](pp. 93-99), the maximum absolute input-data 

quantization error for a scaled sample sequence {xC(nT )} is given by 

max[|ei(n)|] = 2−W · α. (6.3) 

With out the loss of generality from this point onwards it is assumed that α = 1. In the 

following analysis, the input-data quantization-error ei(n) is modeled as an additive-noise 

component that contaminates the sample xC(nT ) (see Figure 6.1 (top)). 

If the dynamic range of the ADC is set to 2 (i.e. range of the ADC input is [-1, 1]), 

the word-length W ≥ 8 -bits for the input-samples and at least few least-significant-bits3 

3i.e. the right-most bits of the code-word 
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change for every input-sample then the following conditions hold for ei(n) [66](pp. 752­

753). 

1.	 ei(n) is uniformly distributed in the range [−2−W , 2−W ]. 

2.	 ei(n) and ei(m) are uncorrelated for n = m. In other words, ei(n) is a stationary 

white noise sequence. 

3. The error sequence ei(n) is uncorrelated with the signal sequence xC(nT ). 

According to above conditions, the variance of the input quantization noise ei(n) can be 

calculated to be σi 
2 = 2−2W /3 [66] (pp. 753-756). Hence, it can be shown that at the 

output of the ADC, the signal-to-input-quantization-noise ratio (SIQNR) of a temporal 

sample sequence xD(n) coded into W -bits two’s-complement format, is given by 

SIQNRdB = 6.02W + 4.77 + 20 log10(σx),	 (6.4) 

where σx 
2 is the variance of {xC(nT )}, which is bounded such that |xC(nT )| ≥ 1 [66] 

(pp. 753-754). Therefore, in order to achieve the tolerable SIQNR for the beamforming 

application, W should be selected by considering the statistical properties (i.e. σx) of 

the ensemble of scaled input signals xC(t). According to [209], the state of the art 

ADCs support different combinations of sampling rates and sample word-lengths and are 

available at various price ranges. 

6.2.2 Multiplier-Product Quantization 

In two’s complement coding, (Wc + W − 1)-bits are typically required to represent the 

exact product (hk · xD(n)) of two two’s-complement numbers hk and xD(n) of length W ­

and Wc-bits, respectively [62]. Given such product is to be stored in a register of Wm ­

bits, a product-quantization error may occurs if Wm < (Wc + W − 1) [66] (pp. 564-568). 

Under rounding-quantization process [66](pp. 564-568), the maximum absolute product­
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Figure 6.1: The input-data quantization-noise model (top) and the multiplier-product 
quantization-noise model (bottom). 

2−Wmquantization error is max[|ep(n)|] = . In the following analysis, the multiplier-

product quantization error ep(n) is also modeled as an additive noise component con­

taminating the exact multiplier-product ρk(n) (see Figure 6.1 (bottom)). Assuming the 

product quantization-noise {ep(n)} is uniformly distributed in the range [−2−Wm , 2−Wm ], 

is spectrally white and is uncorrelated with the product ρk(n), the variance of {ep(n)} 

can be calculated to be σp 
2 = 2−2Wm /3 [66] (pp. 564-568 and 753-756). 

The product quantization error caused by each multiplier in the MD filter structure 

contributes to quantization noise of the final output. However, the scale of the noise 

contribution at a particular multiplier is determined by the transfer function between that 

multiplier output and the final output of the MD filter [65](pp. 638-640). In other words, 

the filter structure determines the contribution of product quantization-noise in the MD 

filter output. Given that the proposed beamforming MD FIR filters can be implemented 
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as parallel connected array of 1D FIR filters, the structure of the 1D FIR filters determines
 

the quantization noise contribution at the final output of the beamformer. 

6.2.3 Filter Coefficient Quantization 

Coefficient-quantization leads to deterministic distortions in the frequency transfer func­

tion of the beamforming MD FIR filters and in general reduces the stopband attenuation 

and increases the passband ripple [66](pp. 578-582). However for linear-phased FIR filters, 

the linear-phase property is not affected by the rounding-quantization of filter coefficient 

[66](pp. 579-580). At the output of beamforming MD FIR filters, the reduction in stop-

band attenuation increases the power of the interfering signals where as the increase in 

the passband ripple increases the distortion of the desired signal. As in the case of prod­

uct quantization-noise, the 1D FIR filter structure used in the parallel connected arrays 

of beamforming MD FIR filters determines the effect of coefficient-quantization at the 

final output of the beamformer. Examples of transfer function distortion due to filter 

coefficient quantization are given in section 6.3. 

6.2.4 1D Filter Structures and Their Significance in the Product Quantization Noise 

and the Effects of Coefficient Quantization at the Output 

The three main filter structures used in the implementation of 1D FIR filters are shown 

in Figure 6.2. They are; (a) the direct-form (including the transposed form), (b) the 

cascade-form and (c) the lattice-form. The direct-form and the cascade-form structures 

for 1D FIR filters have essentially the same computational complexity in terms of the 

number of multiplications and additions per output sample is concerned [66](pp. 503-505). 

However, direct-form structures in general, yield lower product quantization noise com­

pared to equivalent cascade-form structures [210][211]. On the other hand, cascade-form 

structures can be designed to have lower distortions of the frequency transfer function due 

to coefficient quantization compared to the equivalent direct-form structure [212][213]. 
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Figure 6.2: The most common structures employed in the implementation of 1D FIR 
filters; (a) the direct-form, (b) the cascade-form and (c) the lattice-form. 

In order to minimize the product quantization noise in cascade-form structures, an ex­

haustive search method has been proposed in [214] that finds the optimum “sequence” 

of the cascading sections. However, the cascade-form structure optimization and se­

quencing algorithms are too time consuming to be used in most broadband beamforming 

applications, which requires instant adaptation [47]. 

Nevertheless, the lattice-form structure is mainly used in adaptive filter implementa­

tion [215] and according to Figure 6.2 (c), it requires twice as much as multiplications and 

additions to evaluate one output sample compared to the direct-form and the cascade-

form structures. Due to the increase of computational complexity, the lattice-structure is 
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not considered in the implementation of parallel connected 1D FIR filters in beamform­

ing MD FIR filters for computationally-intensive broadband-beamforming applications. 

Hence, the direct-form implementation is considered in the implementation of parallel 

connected 1D FIR filters in beamforming MD FIR filters for computationally-intensive 

broadband-beamforming applications for the remainder of this chapter. 

6.2.5 Adder-Overflow Errors 

The effect of adder overflow-errors on the output of the beamformer is significant because 

such errors are associated with the most-significant-bits4 of the partial-sums. Hence, 

the chance of occurring an adder overflow-error must be avoided by assigning sufficient 

number of bits for the registers that retain partial-sums. 

The partial-sum yP(n) of a parallel connected direct-form 1D FIR filter, which is 

shown in Figure 6.2 (a), may be given by 
N+ 

yP(n) = hk xD(n − k), (6.5) 
k=0 

where hk; k = 0, 1, .., N are the filter-coefficients of the 1D FIR filter of order (N) and 

{xD(n)} is the input data-sequence. Assuming both hk and xD(n) are normalized; i.e. 

|hk| 1 for ∀ k and |xD(n)| 1 for ∀ n, it can be shown that the magnitude of each 

yP(n) is bounded such that 
N+ 

|yP(n)| ≤ L = |hk|. (6.6) 
k=0 

Given the products from multipliers are bounded |hk · xD(n − k)| 1 and stored in 

Wm-bit registers, adding ilog2(L)l-bits5 left of the binary-point annihilates any chance 

of overflow at the outputs of the adder-trees. Therefore,the outputs of the adder-trees 

should be assigned with 

Wa = Wm + ilog2(L)l − bits, (6.7) 

long registers in order to avoid adder-overflow errors. 
4i.e the left-most bits of the code-word.
 
5The operation of rounding-up to the nearest integer is denoted by i·l.
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6.3 The Distortions of the Transfer Functions of Beamforming MD FIR
 

Filters due to Coefficient Quantization 

6.3.1	 Examples of Transfer Function Distortions in Beamforming Polyphase 2D FIR 

Double-Trapezoidal Filters 

Given the beamforming polyphase 2D FIR double-trapezoidal filter has not been pre­

sented in the previous chapters, a brief review of it is given in the following. A reader 

can find more detailed treatment of the design of the beamforming polyphase 2D FIR 

double-trapezoidal filter in [59][63]6 . 

The Beamforming Polyphase 2D FIR Double-Trapezoidal Filters: A Review 

The polyphase 2D FIR double-trapezoidal filter enables the selective enhancement (i.e. 

beamforming) of double sideband modulated (DSM) temporally-broadband-bandpassed 

(BB-BP) spatio-temporal (ST) plane-waves (PWs)7 based on their directions of arrivals 

(DOAs) [59]. This design achieves significant enhancement of the signal associated with 

the PW arriving from the desired direction compared to co-channel interfering signals 

arriving from different directions. Numerical simulations conducted in MATLAB with 

floating-point number representation show that the signal-to-interference ratio (SIR) of 

the desired signal at the output of the beamformer is typically improved by more than 

55 dB [59]. 

In order to selectively enhance a desired space-time sampled PW, the ideal double­

trapezoidal-shaped passband IHTR−D(e
jωx , ejωt ) (Figure 6.3 - ABCD ∪ A ' B ' C ' D ' ) of the 

beamforming 2D FIR filter is arranged to closely enclose the region-of-support (ROS) of 

the spectrum PWIF−DR (e
jωx , ejωt ) of the desired sampled PW. Spatial sampling of the 

propagating PWs is achieved using a 1D uniformly distributed sensor array (1D-UDSA) 

6Note that in case a reader wishes to follow the original publication [59], labels used in [59] are used 
in the following review. 

7For brevity, for the reminder of this chapter, DSM BB-BP ST-PWs are referred simply as PWs. 
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Figure 6.3: The ROS of the ideal passband of the 2D double-trapezoidal filter that closely 
enclose the ROS of the spectrum of the space-time sampled ST PW of interest. 

consisting of 2Nx + 1; Nx ∈ Z, sensors. Prior to temporal sampling, the sensor signals 

are pre-filtered and frequency translated to an IF band employing the real IF tri-stage 

temporal sampler array [59]. If the bandwidth of the temporal DSM signal associated 

with the PW of interest is BW, then the synchronous temporal sampling rate of the 

real IF tri-stage temporal sampler array is fS = 2BW. However, according to Shannon’s 

sampling theory [66] (pp. 738-746), in order to avoid temporal aliasing in sampling a DSM 

signal of bandwidth BW, the minimum required sampling rate is fS 
' = BW. Note that 

the over-sampling of sensor signals by a factor of 2 at the real IF tri-stage temporal 

sampler array leads to 50% reduction in the complexity of the pre-processing hardware 

compared to comple-quadrate sampling [59]. 

Given that the impulse response of the 2D FIR double-trapezoidal filter is denote by 

hTR−D(nx, nt) and the 2D space-time sampled sequence of PWs is denoted by x(nx, nt), 

the 1D output sequence y(0, nt) of the 2D FIR double-trapezoidal filter is given by 

y(0, nt) = y(nx, nt){nx=0} = [x(nx, nt) ∗ ∗hTR−D(nx, nt)]{nx=0} , (6.8) 

where ∗∗ denotes the 2D discrete domain convolution operation. According to [142], over­
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sampling of the sensor signals can be compensated by down-sampling the 1D output 

sequence y(0, nt) by a factor of 2. However, down-sampled signal is required to be 

modulated with (−1)nt to correct the spectral orientation of the recovered signal [59]. 

Hence, the output sequence of the beamformer yB(nt) is given by 

yB(nt) = (−1)nt [[y(0, nt)] ↓ 2] ,	 (6.9) 

where ↓ 2 denotes the temporal-down-sampling by a factor of two. 

In order to increase computational efficiency [59], the beamforming 2D FIR double-

trapezoidal filter is implemented using a polyphase structure, where the down-sampling 

is done prior to filtering [142]. For a beamforming polyphase 2D FIR double-trapezoidal 

filter HTR−D(zx, zt) of spatial order 2Nx and temporal order 8Npp; Npp ∈ Z, the difference-

equations for the polyphase implementation is given by, 

+Nx 4Npp+ + 
[y(0, nt)] ↓ 2 = x−mx,0(mt) gmx,0(nt − mt) 

mx =−Nx mt=0 

+Nx 4Npp−1+ + 
+	 x−mx,1(mt) gmx,1(nt − mt), (6.10) 
mx =−Nx mt=0 

where the filter coefficients for each phase are defined according to [142], as 

gmx,0(mt) 6 hTR-D(mx, 2mt); for 0 mt 4Npp	 (6.11a) 

gmx,1(mt) 6 hTR-D(mx, 2mt +1); for 0 mt 4Npp −1, (6.11b) 

for mx = −Nx, . . . , 0, . . . , Nx. Also, according to [142], the down-sampled polyphase 

signals from each sensor mx are given by 

xmx,0(mt) = [x(mx, mt)] ↓ 2, Input Phase 0	 (6.12a) 

xmx,1(mt) = z −1 {x(mx,mt)} ↓ 2, Input Phase 1 (6.12b)t 

where the operator z −1 {·} denotes a single temporal delay. t 
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The Proposed Polyphase 1D FIR Building Block 

A filter structure having (2Nx + 1) parallel-connected polyphase 1D FIR building blocks 

(see Fig. 9 of [59]) has been proposed for real-time implementation of the beamform­

ing polyphase 2D FIR double-trapezoidal filter [59]. The proposed polyphase 1D FIR 

thbuilding block that realizes the mx -branch of the difference-equation, which is given by 

4Npp 4Npp−1+ + 
ymx (nt) = x−mx,0(mt) gmx,0(nt − mt) + x−mx,1(mt) gmx,1(nt − mt), (6.13) 

mt=0 mt=0 

is shown in Figure 6.4. As shown there, the two polyphase components xmx,0(mt) and 

xmx,1(mt) from each sensor mx ∈ [−Nx, Nx] are filtered using two congruent 1D FIR 

polyphase filters, labeled as Phase 0 and Phase 1. The polyphase 1D FIR building block 

is implemented using two conventional direct-form (or transposed direct-form) 1D FIR 

filter structures for Phase 0 and Phase 1. The structure for Phase 0 consists of (4Npp +1) 

parallel multipliers and a (4Npp)-input adder-tree where as the structure for Phase 1 

consists of (4Npp) parallel multipliers and a (4Npp − 1)-input adder-tree. Note that each 

product {x−mx,0/1(mt) · gmx,0/1(nt − mt)} is quantized into a Wm-bit word at the output 

of each multiplier. 

Distortions in the Magnitude Transfer Functions of Beamforming Polyphase 

2D FIR Double-Trapezoidal Filters 

As mentioned in subsection 6.2.3, the coefficient quantization leads to deterministic dis­

tortions of the frequency transfer function of beamforming polyphase 2D FIR double-

trapezoidal filters HTR−D(zx, zt). However, the linear phase property of HTR−D(zx, zt) 

is preserved under rounding-quantization because, rotational symmetry [41] (ch. 5), 

of corresponding filter coefficients hTR−D(nx, nt), remains unchanged after quantization. 

Hence, in the following the analysis is limited to the distortions in the magnitude re­

sponse of beamforming polyphase 2D FIR double-trapezoidal filters due to coefficient 

quantization. 
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Figure 6.4: The proposed hardware architecture of a polyphase 1D FIR building block 
of the beamforming polyphase 2D FIR double-trapezoidal filter. 

¯Let’s consider the polyphase 2D FIR double-trapezoidal filter HTR−D(zx, zt), of order 

(32×32) that is designed to selectively enhance the wavefront signals associated with PWs 

of bandwidth spread-factor8 K = 0.1, arriving in the general direction φ̄ = 55◦, within the 

¯angular range φ ∈ [50◦ , 60◦], with respect to the 1D-UDSA [59]. For this particular 2D 

¯FIR filter HTR−D(zx, zt), the corresponding filter coefficients h̄TR−D(nx, nt), are evaluated 

according to (24) of [59], where the expressions for IhTR−D(nx, nt) are given in Appendix 

III of [59]. 

In order to effectively utilize the available dynamic range [−1, 1 − 2−Wc+1] of Wc ­

bit two’s complement representation, coefficients hTR−D(nx, nt) are scaled before being 

8Bandwidth spread factor (K) is the ratio between the temporal bandwidth BW , and twice the 
maximum temporal frequency 2fmax as defined in [59] and in chapter 4. 
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quantized. The scaling-factor β > 0 is defined as 

β 6
 

⎧ ⎪⎨ ⎪⎩
 

(1−2−Wc ) ; if max[h̄TR-D(nx, nt)] � min[h̄TR-D(nx, nt)] ,max[h̄TR-D(nx,nt)] (6.14)
 
−1 ; if min[h̄TR-D(nx, nt)] � max[h̄TR-D(nx, nt)] .min[h̄TR-D(nx,nt)] 

The scaled coefficients are given by 

ĥTR-D(nx, nt) = β · h̄TR-D(nx, nt). (6.15) 

Here, the scaled coefficients ĥTR-D(nx, nt) are subjected to rounding quantization and rep­

resented with Wc= 8, 10, 12, 14, 16 and 18-bit two’s complement format. The MATLAB 

Fixed-Point Toolbox has been employed in evaluating Wc-bit two’s complement filter co­

efficients. Note that for floating point represented scaled filter coefficients ĥTR−D(nx, nt), 

the corresponding frequency transfer function is denoted by H̄TR−D[FP](e
jωx , ejωt ). Also 

note that the Wc-bit quantized coefficient set is denoted by ĥTR−D[Wc](nx, nt) and the 

corresponding set of transfer functions is denoted by H̄TR−D[Wc](e
jωx , ejωt ). 

In this example, the cross-sectional magnitude responses taken across and along the 

¯passbands (see Figure 6.3) of the transfer function HTR−D[FP](e
jωx , ejωt ) corresponding to 

¯floating-point coefficients and the transfer functions HTR−D[Wc](e
jωx , ejωt ) corresponding 

to two’s complement coefficients of word-length Wc = 8, 10, 12, 14, 16 and 18-bits, are 

shown in Figure 6.5, Figure 6.6 and Figure 6.7. According to Figure 6.5 and Figure 6.7, 

where the cross-sectional magnitude responses are evaluated on the line ωt = 0.5π for ωx ∈ 

(−0.4π, −0.2π), the effective stopband attenuation of H̄TR−D[Wc](e
jωx , ejωt ) for Wc = 8 is 

¯much lower than that of HTR−D[FP](e
jωx , ejωt ), where the effective stopband attenuation of 

H̄TR−D[Wc](e
jωx , ejωt ) for Wc = 10 is moderately lower than that of H̄TR−D[FP](e

jωx , ejωt ). 

However, the effective stopband attenuations of H̄TR−D[Wc](e
jωx , ejωt ) for Wc = 12 and 

¯Wc = 14 closely approximate that of HTR−D[FP](e
jωx , ejωt ) where as the effective stopband 

¯attenuations of HTR−D[Wc](e
jωx , ejωt ) for Wc = 16 and Wc = 18 are almost identical to 

that of H̄TR−D[FP](e
jωx , ejωt ). 
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Figure 6.5: The cross-sectional magnitude responses evaluated on ωt = 0.5π across 
¯the passbands of HTR−D[Wc](e

jωx , ejωt ) for Wc = 8, 10, 12, 14, 16 and 18-bits and 
¯ jωt ).HTR−D[FP](e

jωx , e

¯For the transfer function HTR−D[FP](e
jωx , ejωt ) corresponding to floating point filter 

¯coefficients and the transfer functions HTR−D[Wc](e
jωx , ejωt ) corresponding to two’s com­

plement filter coefficients of word-lengths Wc = 8, 10, 12, 14, 16 and 18-bits, the nor­

malized effective passband gains PB/mean[PB], which are evaluated for 85% spectral 

occupancy in ωt, are shown in Figure 6.6. Here, PB is evaluated by averaging the magni­

tude frequency response along the line ωx = (2K(ωt − π) + π) cos( φ̄) for ωt ∈ (0, 0.85π) 

for the positive frequency band and the magnitude frequency response along the line 

ωx = (2K(ωt + π) − π) cos( φ̄) for ωt ∈ (−0.85π, 0) for the negative frequency band 



247 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0.992

0.994

0.996

0.998

1

1.002

1.004

1.006

1.008

Frequency - ω
t
/π

M
ag

ni
tu

de

Cross-Sectional Magnitude Responses for Floating-Point and Fixed-Point Filter Coefficients

 

 

WC = 8-bits

WC = 10-bits

WC = 12-bits

WC = 14-bits

WC = 16-bits

WC = 18-bits

Floating Point

Figure 6.6: The normalized effective passband gains PB/mean[PB], evaluated by av­
eraging the magnitude responses on the lines ωx = (2K(ωt − π) + π) cos( φ̄) and 
ωx = (2K(ωt + π) − π) cos( φ̄) along the positive and negative frequency bands of 
H̄TR−D[Wc](e

jωx , ejωt ) for Wc = 8, 10, 12, 14, 16 and 18-bits and H̄TR−D[FP](e
jωx , ejωt ). 

¯	 ¯ jωt )where φ = 55◦ . According to Figure 6.6, the passband ripple of HTR−D[Wc](e
jωx , e

¯for Wc = 8 is higher than that of HTR−D[FP](e
jωx , ejωt ) where as the passband ripple 

of H̄TR−D[Wc](e
jωx , ejωt ) for Wc = 10 closely approximates that of H̄TR−D[FP](e

jωx , ejωt ). 

¯Note that the passband ripple of HTR−D[Wc](e
jωx , ejωt ) for Wc = 12, Wc = 14, Wc = 16 

and Wc = 18 are almost identical to that of H̄TR−D[FP](e
jωx , ejωt ). 

6.3.2	 Examples of Transfer Function Distortions in Beamforming Complex-Coefficient 

2D FIR Asymmetric-Trapezoidal Filters 

In chapter 4, the complex-coefficient 2D FIR asymmetric-trapezoidal filters have been 

proposed for the real-time adaptive broadband beamforming in CR systems. The design 

of beamforming complex-coefficient 2D FIR asymmetric-trapezoidal filters are explained 
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Figure 6.7: The expanded cross-sectional magnitude responses evaluated on ωt = 0.5π 
¯for ωx ∈ (−0.4π, −0.2π) across the passbands of HTR−D[Wc](e

jωx , ejωt ) for Wc = 8, 10, 
12, 14, 16 and 18-bits and H̄TR−D[FP](e

jωx , ejωt ). 

in detail in section 4.5 of chapter 4. The distortions of the magnitude frequency response 

of beamforming complex-coefficient 2D FIR asymmetric-trapezoidal filters G(zx, zt), due 

to coefficient quantization are studied in the following. Note that the linear phase 

property of G(zx, zt) is also preserved under rounding quantization because, rotational 

conjugate-symmetry [41] (ch. 5), of corresponding filter coefficients g̃(nx, nt), remains 

unchanged after quantization. 

Let’s consider the beamforming complex-coefficient 2D FIR asymmetric-trapezoidal 

¯ ˆ̄filter G(zx, zt), of order (32 × 40) that is designed to meet the specifications φ0 = 70◦ , 

¯Δφ̄ = 3.5◦ , KI = 0.125 and LI = 1. Following chapter 4, G(zx, zt) may be employed in 

order to selectively enhance the wavefront signals associated with propagating EM BB­

¯BP ST PWs that are arriving in the general direction φ = 70◦, within the angular range 

¯ ¯φ ∈ [66.5◦ , 73.5◦], with respect to the 1D-UDAA. For G(zx, zt), the corresponding filter 
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coefficients ḡ(nx, ny), are determined by the closed-form design expressions specified in 

(1.57(a)) - (1.57(f)) and (4.58) in chapter 4. Following (6.14) and (6.15), the filter coef­

ficients ḡ(nx, ny) are scaled before being quantized. The scaled coefficients ĝ(nx, nt) are 

subjected to rounding quantization and represented with Wc= 8, 10, 12, 14, 16 and 18-bit 

two’s complement format. Note that for floating point represented scaled filter coefficients 

ĝ(nx, nt), the corresponding frequency transfer function is denoted by Ḡ[FP](e
jωx , ejωt ). 

Also note that the Wc-bit quantized coefficient set is denoted by ĝ[Wc](nx, nt) and the 

corresponding set of transfer functions is denoted by Ḡ[Wc](e
jωx , ejωt ). 

In this example, the cross-sectional magnitude responses taken across and along the 

¯trapezoidal-shaped passbands (see Figure 4.7, page 151) of the filters G[Wc](zx, zt) cor­

responding to two’s complement coefficients of word-length Wc = 8, 10, 12, 14, 16 

and 18-bits and the filter Ḡ[FP](zx, zt) corresponding to floating-point coefficients, are 

shown in Figure 6.8 and Figure 6.9, respectively. According to Figure 6.8, where the 

cross-sectional magnitude responses are evaluated on the line ωt = 0 for ωx ∈ (−π, π), 

¯the effective stopband attenuations of G[Wc](e
jωx , ejωt ) for Wc = 8 and Wc = 10 are 

much lower than that of ḠTR−D[FP](e
jωx , ejωt ). However, the effective stopband attenu­

¯ations of HTR−D[Wc](e
jωx , ejωt ) for Wc = 12 and Wc = 14 closely approximate that of 

ḠTR−D[FP](e
jωx , ejωt ) where as the effective stopband attenuations of ḠTR−D[Wc](e

jωx , ejωt ) 

¯for Wc = 16 and Wc = 18 are almost identical to that of GTR−D[FP](e
jωx , ejωt ). 

For floating point filter coefficients ĝ(nx, nt), and two’s complement filter coefficients 

ĝ[Wc](nx, nt), of word-lengths Wc = 8, 10, 12, 14, 16 and 18-bits, the normalized effective 

passband gains PG, which are evaluated for 90% spectral occupancy in ωt, are shown 

in Figure 6.9. Here, PG represent the average of Avg(ωt), the magnitude frequency 

response along the line ωx = LI(KI(ωt − π)+ π) cos( φ̄) for ωt ∈ (−0.9, 0.9π) and the first 

¯order polynomial of ωt approximating [Avg(ωt)]
−1, for φ = 70◦ . According to Figure 6.9, 

the passband ripple of Ḡ[Wc](e
jωx , ejωt ) for Wc = 8 is higher than that of Ḡ[FP](e

jωx , ejωt ) 
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Figure 6.8: The cross-sectional magnitude responses evaluated on ωt = 0.5π across the 
passbands of Ḡ[Wc](e

jωx , ejωt ) for Wc = 8, 10, 12, 14, 16 and 18-bits and Ḡ[FP](e
jωx , ejωt ). 

¯where as the passband ripple of G[Wc](e
jωx , ejωt ) for Wc = 10 closely approximates that of 

¯ ¯G[FP](e
jωx , ejωt ). Note that the passband ripple of G[Wc](e

jωx , ejωt ) for Wc = 12, Wc = 14, 

Wc = 16 and Wc = 18 are almost identical to that of Ḡ[FP](e
jωx , ejωt ). 

6.3.3	 Examples of Transfer Function Distortions in Beamforming Complex-Coefficient 

3D FIR Frustum Filters 

In chapter 5, the complex-coefficient 3D FIR frustum filters have been proposed for the 

broadband beamforming of FPA signals for applications in pulsar timing and profile stud­

ies. The design of beamforming complex-coefficient 3D FIR frustum filters is explained 

in detail in section 5.4 of chapter 5. The distortions of the magnitude frequency response 
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Figure 6.9: The normalized effective passband gains PB/mean[PB], evaluated on the line 
¯ωx = LI(KI(ωt − π) + π) cos(70◦) along the passband of G[Wc](e

jωx , ejωt ) for Wc = 8, 10, 
¯12, 14, 16 and 18-bits and G[FP](e

jωx , ejωt ), for ωt ∈ (−0.9, 0.9π). 

of beamforming complex-coefficient 2D FIR asymmetric-trapezoidal filters H(zx, zy, zt), 

due to coefficient quantization are studies in the following. Note that the linear phase 

property of H(zx, zy, zt) is also preserved under rounding quantization because, rotational 

conjugate-symmetry [41] (ch. 5), of corresponding filter coefficients h̃(nx, ny, nt), remains 

unchanged after quantization. 

¯Let’s consider the beamforming complex-coefficient 3D FIR frustum filter H(zx, zy, zt), 

of order [16, 16, 10] that is designed to selectively enhance the broadband pulsar signals 

received by the FPA from a pulsar at the angular position (θ = 0◦, φ = 0◦) (i.e. directly 

along the axis of the paraboloidal reflector). In order to suppress RFI and ground thermal 



252 

¯noise, the beamforming 3D FIR frustum filter H(zx, zy, zt) is designed to meet the spec­

ifications FC = 1.1 GHz, BW = 1.2 GHz, which leads to K = 0.353, and half-cone angle 

αmax = 30◦ . The corresponding the filter coefficients h̄(nx, ny, nt) are determined follow­

ing the combined 3D window-based and frequency sampling filter design method specified 

in subsection 5.4.2. Following (6.14) and (6.15), the filter coefficients h̄(nx, ny, nt) are 

scaled before being quantized. The scaled coefficients ĥ(nx, ny, nt) are subjected to round­

ing quantization and represented with Wc = 6, 8, 10, 12, 14 and 16-bit two’s complement 

format. Note that for floating point represented scaled filter coefficients ĥ(nx, ny, nt), 

the corresponding frequency transfer function is denoted by H̄[FP](e
jωx , ejωy , ejωt ). Also 

note that the Wc-bit quantized coefficient set is denoted by ĥ[Wc](nx, ny, nt) and the 

corresponding set of transfer functions is denoted by H̄[Wc](e
jωx , ejωy , ejωt ). 

In this example, the cross-sectional magnitude response taken along the line of in­

tersection of two planes ωt = −0.5π and ωy = 0, in 3D frequency-space, of the transfer 

¯function H[Wc](e
jωx , ejωy , ejωt ) corresponding to two’s complement coefficients of word­

¯ jωt )length Wc = 6, 8, 10, 12, 14 and 16-bit and the transfer function H[FP](e
jωx , ejωy , e

corresponding to floating-point coefficients, are shown in Figure 6.10. Following a series 

of cross-sectional magnitude response evaluated along different lines in the PNC, it is 

¯observed that the effective stopband attenuations of H[Wc](e
jωx , ejωy , ejωt ) for Wc = 6 is 

¯much lower than that of H[FP](e
jωx , ejωy , ejωt ). However, the effective stopband attenua­

tions of H̄[Wc](e
jωx , ejωy , ejωt ) for Wc = 8 closely approximate that of H̄[FP](e

jωx , ejωt ) 

¯where as the effective stopband attenuations of H[Wc](e
jωx , ejωy , ejωt ) for Wc = 10, 

Wc = 12,Wc = 14 and Wc = 16 are almost identical to that of ḠTR−D[FP](e
jωx , ejωt ). 
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Figure 6.10: The cross-sectional magnitude responses evaluated on the line of intersection 
¯between the plane ωt = −0.5π and ωy = across the passbands of H[Wc](e

jωx , ejωy , ejωt ) for 
Wc = 6, 8, 10, 12, 14 and 16-bits and H̄[FP](e

jωx , ejωy , ejωt ). 

6.4	 The Degradation of the SNDR of Beamforming MD FIR Filters due 

to Finite-Word-Length Digital Arithmetics 

In section 6.3, the examples of the cross sectional magnitude frequency responses taken 

across and along the passbands of beamforming MD FIR filters, where the coefficients 

are represented with floating-point and Wc-bits two’s complement formats, indicate that 

with proper assignment of register length for filter coefficients, distortions of the transfer 

functions can be minimized. As mentioned in section 6.2, in addition to the trans­

fer function distortions the quantization noise generated at the outputs of ADCs and 

the outputs of multipliers contaminate the beamformer output lowering the maximum 

achievable SNDR. 

In the following, a typical procedure taken for estimating the finite-word-length effects 
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of the SNDR at the output of beamforming MD FIR filters is outlined considering the 

example of the beamforming polyphase 2D FIR double-trapezoidal filter. First, a theo­

retical model is developed for estimating SNDRs of the beamformer output for different 

DSP configurations, i.e. the word-lengths for input-data, filter-coefficients, multiplier-

products and partial-sums. Next, Monte Carlo simulations have been conducted using 

the MATLAB Fixed-Point Toolbox in determining the averaged SNDRs under the same 

DSP configurations. The empirically evaluated SNDRs are compared with the estimated 

SNDRs in order to verify the theoretical model. The combined theoretical and empirical 

process has been used to configure the DSP hardware architecture for the beamforming 

polyphase 2D FIR double-trapezoidal filter. This hardware architecture is used in imple­

menting the beamforming polyphase 2D FIR double-trapezoidal filter of order (32 × 32) 

on Xilinx Virtex-4 Sx35 ff668-10 FPGA chips. An example of the partial FPGA imple­

mentation of this 2D filter is given in section 6.5. 

6.4.1 A Theoretical Model for the SNDR at the Output of the Beamformer 

Following (4.69) in subsection 4.5.4 and (5.43) in subsection 5.4.4, the signal to noise 

plus distortion ratio (SNDR) at the output of the beamformer is defined as 

σ2 

SNDRdB 6 10 · log10 
S , (6.16)

σ2 + σ2 
N D 

where σ2 and σ2 are the variances of the recovered signal yB(nt) and the contaminating S N 

noise η(nt) at the output of the beamformer, respectively. Also, σ2 is the variance of the D 

signal distortion 

yD(nt) = x0(nt) − yB(nt), (6.17) 

of yB(nt) with respect to the desired-signal x0(nt). Therefore, the variance of the signal 

distortion yD(nt) can be given by σ2 = γ · σ2, where γ is the normalized mean-square D S

passband-ripple of the beamforming 2D double-trapezoidal filter HTR−D(zx, zt). Here, γ 
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is given by
 
2PB 

γ = mean 1 − , (6.18)
mean[PB] 

where PB is the effective passband gain that is evaluated by averaging the magnitude 

responses on the axis of the positive frequency band and on the axis of the negative 

frequency band (see Figure 6.3) of the passband of HTR−D(zx, zt) of order (2Nx × 8Npp). 

The contaminating noise η(nt) at the beamformer output is consisted of the accumu­

lated product quantization noise, the residual co-channel interference and the residual 

input quantization noise. Hence, the variance σ2 of η(nt) may be given by N 

σ2 = σ2 
N Ap + σ2 

Ri , (6.19)RInt + σ2 

where σ2 
RInt and σ2 are the variances of the accumulated product quantization noise, Ap, σ
2 

Ri 

the residual co-channel interfering signals and the residual input quantization noise at 

the beamformer output, respectively. 

In the direct-form structure shown in Figure 6.2 (a), the product quantization noise 

components generated at the outputs of multiplier are directly accumulated in the filter 

output. Given the product quantization noise components are uncorrelated, the variance 

of the accumulated product quantization noise at the output of the direct-form polyphase 

1D FIR building block shown in Figure 6.11 is MMx σp 
2 . Here, MMx is the actual num­

ber of quantizations occurred in the polyphase 1D FIR building block in evaluating one 

output sample and σp 
2 is the variance of the product quantization noise at the output 

of each multiplier as defined in the subsection 6.2.2 [210]. Considering the parallel con­

nected array of (2Nx + 1) polyphase 1D FIR building blocks, the variance of product 

quantization noise at the output of the beamformer is σ2 = Mσ2, where M is the total Ap p 

number of quantizations occur in evaluating one output sample of HTR−D(zx, zt). Here, 

M is approximated with the number of non-zero coefficients of HTR−D(zx, zt). In general 

M ≤ (2Nx + 1) × (8NPP + 1) for HTR−D(zx, zt), because some coefficients are inherently 

zero where as some coefficients are approximated to zero by the coefficient quantization 
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Figure 6.11: The noise-model for the polyphase 1D FIR building block of the beamform­
ing polyphase 2D FIR double-trapezoidal filter. 

process. 

Assuming the co-channel interfering signal are at the stopband of HTR−D(zx, zt), the 

variance σ2 of the residual co-channel interference signals at the output of the beam-Int 

former is σ2 = a · σ2 , where σ2 is the variance of the co-channel interference at the RInt Int Int 

input and where a is given by ++ 
2jωx jωt )a = HTR - D(e , e dωxdωt. (6.20) 

(ωx,ωt) ∈ Stopband 

Note in (6.20), HTR - D(e
jωx , ejωt ) is the frequency transfer function of the beamforming 

polyphase 2D FIR double-trapezoidal filter HTR−D(zx, zt) of order (2Nx × 8Npp) and its 

“stopband” corresponds to the area (122 ' 1 ' ) − (ABCD ∪ A ' B ' C ' D ' ) in Figure 6.3. 

Given that the input quantization noise {ei(nt)} at the outputs of (2Nx + 1) ADCs 

are uncorrelated both temporally and spatially, the power spectral density of the input 

quantization noise is uniform and equals to (2Nx +1)σi 
2/4π2 inside the principle Nyquist-

square (i.e. the square denoted by 122 ' 1 ' in Figure 6.3 such that [ωx, ωt] π [44]) where 

σi 
2 is the variance of the input quantization noise at each ADC output as defined in the 

subsection 6.2.1. Therefore, the variance σ2 of the residual input quantization noise at Ri 
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the beamformer output is σ2 = κ · σi 
2, where κ is given by Ri ++
 

κ = 
(2Nx + 1) 

4π2 
HTR-D(e

jωx , ejωt ) 
2 
dωxdωt . (6.21) 

[ωx,ωt] π 

Hence, the theoretical estimate of the SNDR at the output of the beamforming 2D 

double-trapezoidal filter HTR−D(zx, zt) is given by 

σ2 

[SNDRdB] = 10 · log10 
S . (6.22)Estimate M · σ2 + a · σ2 + κ · σ2 + γ · σ2 

p Int i S 

6.4.2 Estimation of the SNDR at the Output of a Particular Beamformer 

In order to estimate the SNDR of a particular beamformer following (6.22), first, the 

parameters a, M , κ, γ, σS
2 , σ2 , σi 

2 and σ2 should be evaluated. In case of beam-p Int 

forming polyphase 2D FIR double-trapezoidal filters HTR−D(zx, zt), the parameters a, 

M , κ and γ of (6.22) depend on the order (2Nx + 1) × (8Npp + 1) of a particular 

¯2D FIR double-trapezoidal HTR−D(zx, zt), which is specified by the bandwidth spread 

¯factor K, beam direction φ and the angular range Δφ [59], and on the assigned word-

lengths (Wc) for the filter coefficients. For estimating the parameters a, M , κ and γ 

of a typical beamforming polyphase 2D FIR double-trapezoidal filter, let’s reconsider 

¯ ¯HTR−D(zx, zt), which has been introduced in subsection 6.3.1. Recall that HTR−D(zx, zt), 

of order (32 × 32) has been designed to meet the specifications K = 0.1, φ̄ = 55◦ and 

Δφ = 5◦ . As mentioned in subsection 6.3.1, the scaled filter coefficients ĥTR−D(nx, nt), 

¯of HTR−D(zx, zt) are represented in floating point format and in two’s complement for­

mat having coefficient word-lengths Wc = 8, 10, 12, 14, 16 and 18-bits. The parameters 

γ, a and κ evaluated for H̄TR−D[Wc](e
jωx , ejωt ) where Wc = 8, 10, 12, 14, 16 and 18 

¯and for HTR−D[FP](e
jωx , ejωt ), following (6.18), (6.20) and (6.21), are listed in Table 6.1. 

As mentioned earlier, M is estimated with the number of non-zero filter coefficients of 

¯ ¯HTR−D[Wc](zx, zt) and HTR−D[FP](zx, zt). 
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¯Table 6.1: Estimated γ, a, κ and M of HTR−D[Wc](zx, zt) for Wc = 8, 10, 12, 14, 16 and 
¯18 and HTR−D[FP](zx, zt). 

Parameters Wc=8 Wc=10 Wc=12 Wc=14 Wc=16 Wc=18 Floating Point 

γ - dB -45.1 -45.6 -45.7 -45.7 -45.7 -45.6 -45.6 

a - dB -26.6 -34.3 -40.3 -41.6 -41.7 -41.7 -41.7 

κ 299 303 304 304 304 304 304 

M 401 639 833 959 1031 1049 1073 

Assume that the DSP configuration for the particular beamforming polyphase 2D 

¯FIR double-trapezoidal filter HTR−D[Wc](zx, zt) is selected as follows, 

• Word-length of filter-coefficients Wc = 12-bits 

• Word-length of input-data W = 12-bits 

• Word-length of multiplier-output Wm = 14-bits 

• Word-length of adder-output Wa = 19-bits (following (6.7)). 

¯Now the SNDR at the output of HTR−D[Wc](zx, zt), can be estimated with (6.22) by 

substituting the parameters a, M , κ and γ that correspond to Wc = 12-bits where the 

variance of input-data quantization noise σi 
2 = 2−2W /3 (see subsection 6.2.1) and the 

variance of the product quantization noise σp 
2 = 2−2Wm /3 (see subsection 6.2.2). Note 

that the input signal power σ2/β29 and input co-channel interference signal power σ2 
S Int 

are specified by the input signal-to-interference-ratio (ISIR) that is defined as 

σ2 

[ISIRdB] = 10 log10 
S , (6.23)

β2 σ2 
Int 

where β is the coefficient scaling factor that is defined in (6.14). Here, it is assumed that 

the front-end automatic-gain-control (AGC) systems of the receiver keep the total signal 

and interference power at a constant level at the input of the ADCs such that σS
2/β2 + 

9Due to the scaling of the filter coefficients by β, the output signal power σS
2 is β2 higher than the 

signal power at the input. 
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σ2 
Int = 1/9. Hence according to [61], the probability of sampled unquantized sequence 

{xC(ntT ) | xC(ntT ) ∈ [−1, 1]} is 0.997 and the probability of saturation of ADCs, which 

are having the input range [−1, 1], is 0.003. With the selected DSP configuration and 

an input sequence of ISIR = -40 dB, according to (6.22) the estimated SNDR for this 

¯particular beamforming polyphase 2D FIR double-trapezoidal filter HTR−D[Wc](zx, zt) is 

18.05 dB. 

Estimating the SNDR at the Outputs of a Series of Beamforming Polyphase 

2D FIR Double-Trapezoidal Filters 

Now let’s consider a series of beamforming polyphase 2D FIR double-trapezoidal filters 

HTR−D(zx, zt), of order (32 × 32) that are designed to meet the specifications K = 0.1, 

φ ∈ [30◦ , 150◦] and Δφ = 5◦, which enables the selectively enhancement of the desired 

signals arriving in the angular-range [φ − 5◦, φ + 5◦] for φ ∈ [30◦ , 150◦]. For the series 

of HTR−D(zx, zt), the computed values for the parameters a, γ, κ and M are presented 

in Figure 6.12, Figure 6.13, Figure 6.14 and Figure 6.15, respectively. Hence, in order 

to estimate the SNDR at the output of any particular beamforming 2D FIR double-

trapezoidal filter of order (32 × 32), which is designed to selectively enhance the desired 

signals arriving in the angular-range [φ − 5◦, φ + 5◦] for φ ∈ [30◦ , 150◦], the parameters 

a, γ, κ and M corresponding to the beamformer associated with the particular φ are 

substituted into (6.22) along with other parameters σi 
2 , σ2 , σ2 and σ2 In the following p S Int. 

subsection, the estimated SNDRs for different DSP configurations of the beamforming 2D 

FIR double-trapezoidal filter of order (32 × 32), which is designed to selectively enhance 

the signals arriving from the angular range [30◦ , 40◦], are compared with the calculated 

SNDRs using Monte Carlo simulations. 
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Figure 6.12: The parameter “a” evaluated for different beamformers directed at φ for 
φ ∈ [30◦ , 150◦] where the corresponding filter coefficients are represented with two’s 
complement format with Wc= 8, 10, 12, 14, 16 and 18-bits and the floating point format. 

6.4.3	 Comparison Between Estimated SNDRs and Calculated SNDRs with the Monte 

Carlo Simulations 

Consider the following scenario where the desired signal, which is arriving along the 

¯direction specified by φ = 55◦ from the broadside of the 1D-UDSA, is contaminated by 

four co-channel interfering signals, which are arriving along the directions specified by 

φ = 15◦ , φ = 80◦ , φ = 105◦ and φ = 160◦, respectively. For all 5 signals, the bandwidth 

spread factor (K) is 0.1 with 85% spectral-occupancy. Note that with respect to the 

¯desired signal arriving along φ = 55◦ the SIR is as low as -40 dB. The beamforming 

polyphase 2D FIR double-trapezoidal filter [59] of order (32 × 32) has been designed to 

selectively enhance the signals arriving in the angular range [50◦ , 60◦] for the recovery of 

the desired signal. In this case, the SNDR at the beamformer output yB (nt) required to 
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Figure 6.13: The parameter “γ” evaluated for different beamformers directed at φ for 
φ ∈ [30◦ , 150◦] where the corresponding filter coefficients are represented with two’s 
complement format with Wc= 8, 10, 12, 14, 16 and 18-bits and the floating point format. 

be better than 20 dB. 

In order to to evaluate the SNDR of yB (nt) for the above scenario, a series of Monte 

Carlo simulations have been carried out using MATLAB Fixed-Point Toolbox for differ­

ent DSP configurations in implementing of the beamforming polyphase 2D FIR double­

¯trapezoidal filter HTR−D[Wc](zx, zt). Here, filter coefficients of Wc = 12-bits are selected 

because according to Table 6.1, it is the smallest word-length that closely approximate 

the effective stopband attenuation and the effective passband ripple of a transfer function 

of the floating-point represented filter coefficients. In these Monte Carlo simulations, the 

register-lengths of the outputs of multipliers are varied such that Wm = 10, 11, ..., 16. 

Hence, according to (6.7), the outputs of adders should be assigned with Wa = Wm + 5­  
bit registers to avoid adder-overflow errors because log2( |h̄TR−DI[Wc](zx, zt)|) = 5, 

for Wc = 12-bit filter-coefficients. The complex tri-stage sampled test sequences of size 

(33 × 1000) that correspond to different SIR levels are synthesized using Equation (17) of 
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Figure 6.14: The parameter “κ” evaluated for different beamformers directed at φ for 
φ ∈ [30◦ , 150◦] where the corresponding filter coefficients are represented with two’s 
complement format with Wc= 8, 10, 12, 14, 16 and 18-bits and the floating point format. 

[59] and represented with W = 12-bit two’s complement format. For different input SIR 

levels, the calculated SNDRs of yB (nt) with the Monte Carlo simulations are plotted in 

Figure 6.16 along with the SNDRs estimated with (6.22). 

The estimated SNDR (dashed-line) and calculated average SNDR (circles-◦) with 

Monte Carlo simulations for the floating-point represented beamforming filter are shown 

in Figure 6.16 (a). As shown there, the close agreement between the estimated SNDR and 

calculated averaged SNDR for the floating-point represented beamforming filter confirms 

the validity of the theoretical model. The estimated SNDRs (solid) and the calculated 

average SNDRs (◦) with Monte Carlo simulations for fixed-point implemented beamform­

ing filter with Wm = 10, 11, 12, 13, 14, 15 and 16-bits are shown in Figure 6.16 (b) - (h), 

respectively. Note that the estimated SNDR (dashed-line) for floating-point represented 

beamforming filter is also plotted in filter Figure 6.16 (b) - (h), which is considered as 
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Figure 6.15: The parameter “M” evaluated for different beamformers directed at φ for 
φ ∈ [30◦ , 150◦] where the corresponding filter coefficients are represented with two’s 
complement format with Wc= 8, 10, 12, 14, 16 and 18-bits and the floating point format. 

the upper limit for the SNDRs achieved with fixed-point representation. As expected 

the SNDR for Wm = 10 is the worst among the tested cases because of the accumu­

lated product quantization noise at the output. According to Figure 6.16 (f), (g) and (h), 

for Wm = 14, 15 and 16, the maximum degradations of both the estimated and calcu­

lated SNDRs compared to the floating-point implemented filter are -3 dB, -0.5 dB and 

-0.2 dB, respectively. Therefore, the polyphase 2D FIR double-trapezoidal filter-based 

beamformer implemented with the DSP configuration of W = 12-bit input-data sam­

ples, Wc = 12-bit filter-coefficients, Wm = 14-bit multiplier=products and Wa = 19-bit 

partial-sums, is capable of achieving the SNDR within 3 dBs of the maximum achievable 

value with floating point representation. 
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Figure 6.16: The comparison between the estimated SNDRs and the calculated SNDRs 
for Wm= 10, 11, 12, 13, 14, 15 and 16-bits and floating point represented filters for differ­
ent input SIR levels. The estimated SNDRs (dashed) for the floating-point implemented 
beamforming filter are shown in Figures (a) - (h). The estimated SNDRs (solid) for fixed 
point implemented beamforming filter with Wm = 10, 11, 12, 13, 14, 15 and 16-bits are 
shown in Figures (b) - (h). The calculated SNDRs (◦) with Monte Carlo simulations for 
floating point and fixed point (with Wm= 10, 11, 12, 13, 14, 15 and 16-bits) implemented 
beamforming filters are shown in Figures (a) - (h), respectively. 
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6.5	 An Example of FPGA Implementation of Beamforming Polyphase 

2D FIR Double-Trapezoidal Filter 

The proposed FPGA architecture for the real-time implementation of the beamforming 

polyphase 2D FIR double-trapezoidal filter [68] maintains the hardware complexity at a 

tolerable level while limiting the reduction of SNDR that is within 3 dB of the ideal case 

with the floating-point representation. It is estimated that the full implementation of 

the beamforming 2D FIR filter of order (32 × 32) with W =12 -bit input-data, Wc =12 ­

bit filter-coefficients, Wm = 14 -bit multiplier-products and Wa = 19 -bit partial-sums 

requires seven Xilinx Virtex-4 Sx35 ff668-10 FPGAs. However, the proposed filter is only 

partially10 prototyped in a single Xilinx Virtex-4 Sx35 ff668-10 FPGA using XtremeDSP 

Kit-4 system. The full-filter responses for the test sequences are generated using on-chip 

“hardware-in-the-loop” testing that is associated with the hardware co-simulation feature 

of the Xilinx System Generator. 

6.5.1	 The FPGA Implementation of the Polyphase 1D FIR Building Block 

The polyphase 1D FIR building block shown in Figure 6.4 (see page 244) is implemented 

using two reusable IP cores, which consist of two conventional direct-form (or transposed 

direct-form) 1D FIR filter structures for phase 0 and phase 1. The structure for phase 

0 consists of 17 parallel multipliers and a 16-input pipelined adder-tree where as the 

structure for phase 1 consists of 16 parallel multipliers and a 15-input pipelined adder-

tree. 
10Due to the limited availability of FPGAs. 
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6.5.2 Throughput and Computational Complexity of the Polyphase 1D FIR Building
 

Block 

Given that fS is the sampling rate of the analog-to-digital converter (A/D), a single 

polyphase 1D FIR building block, operating at the clock frequency of fCLK = fS /2, 

has a real-time throughput of CM = 33 · fCLK parallel multiplications per second, and 

CA/S = 32 · fCLK parallel additions per second. The total computational throughput of 

the beamforming polyphase 2D FIR double-trapezoidal filter, for 33 sensors, is 33 · CM 

multiplications per second, and 33 · (CA/S + 1) − 1 additions per second. 

6.5.3 Estimated FPGA Resources for Filter Designs for Different Wm 

Five FPGA designs has been considered for the beamforming polyphase 2D FIR double-

trapezoidal filter of order (32×32) using bit-true cycle-accurate Xilinx System Generator 

and MATLAB/SIMULINK design and simulation tools. In these designs the register 

lengths for input-data and filter-coefficients were set to W = 12 -bits and Wc = 12 ­

bits, respectively while the register lengths for multiplier-products and partial-sums are 

changed such that Wm = 11, 12, 13, 14and15-bits and Wa = Wm + 5-bits, respectively. 

The FPGA resources that are required for the full implementation of the beamforming 

polyphase 2D FIR trapezoidal filter for above 5 designs are estimated using the Xilinx 

System Generator tool “Resource Estimator”. A summary of the required recourses is 

given in Table 6.2. 

6.5.4 Design Partitioning and a Multiple-FPGA Physical Implementation 

According to the estimates of the FPGA recourses required for the full implementation of 

the beamforming polyphase 2D FIR double-trapezoidal filter given in the previous sub­

section, the selected designs are too resource intensive for the currently available single-

FPGA. However, the implementation may be partitioned across several high-capacity 

FPGAs such as Xilinx LX200 or Xilinx SX55. Here, the Xilinx Sx35 ff668-10 FPGA-chip 
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Table 6.2: Estimated FPGA Resources For the Beamforming Polyphase 2D FIR Dou­
ble-Trapezoidal Filters with Different Word-Lengths Combinations. 

Wm Slices (FFs) (LUTs) IOBs Embedded Mults 

11 90156 97680 129558 1336 1089 

12 92466 99762 134914 1402 1089 

13 97680 101904 141371 1468 1089 

14 99990 104016 147840 1534 1089 

15 104082 106128 153186 1600 1089 

16 106392 108240 158614 1666 1089 

was selected11 and 5 polyphase 1D FIR building blocks (see Figure 6.4) of the beamform­

ing polyphase 2D FIR double-trapezoidal filter have been physically implemented on the 

FPGA. In this physical-implementation, the register lengths are selected as W = 12, 

Wc = 12, Wm = 14 and Wa = 19-bits for input-data, filter-coefficients and the output of 

the multipliers and adder-trees, respectively. 

The 5-block physical-implementation on Xilinx Sx35 ff668-10 FPGA-chip consumed 

10809 slices (out of 15360), 11911 flip-flops (FFs) (out of 30720), 15201 4-input look up 

tables (LUTs) (out of 30720), 110 bonded input-output blocks (IOBs) (out of 448), and 

165 embedded DSP48 type 18 × 18 multipliers (out of 192). The post place-and-route 

timing analysis yielded critical timing corresponding to 9.7 ns, implying a maximum real-

time clock frequency of 103 MHz. The critical path delays are estimated by the xflow 

tool in the Xylinx ISE suite and are given by the parameters sysgen clk and dsp clki in 

the xflow.results file were 0.599 ns and 0.415 ns, with maximum delays of 3.144 ns, and 

2.959 ns, respectively. 

11The FPGA chip that was available for the MDSP Group. 
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6.5.5 Some Results of the On-chip Stepped Hardware Co-Simulations of the Modeled 

FPGA Implementation 

The FPGA physical-implementation proposed in the previous subsection has been tested 

and verified using the “hardware-in-the-loop” feature of the hardware co-simulation test­

ing of the Xilinx System Generator. In the following example, the beamforming polyphase 

2D FIR double-trapezoidal filter of order (32 × 32), which is designed to selectively en­

hance the signals of bandwidth spread factor (K) [59] = 0.1 arriving in the angular range 

[50◦ , 60◦], has been modeled in Xilinx System Generator with the register lengths se­

lected as W = 12, Wc = 12, Wm = 14 and Wa = 19-bits for input-data, filter-coefficients 

and the output of the multipliers and adder-trees, respectively. This beamformer model 

has been employed in recovering the desired signal contaminated by four co-channel in­

terfering signals each having 20 dB higher power level compared to the desired signal. In 

this example, the desired signal is arriving from 55◦ from the broadside of the 1D-UDSA 

where the four interfering signals are arriving from 15◦, 70◦, 95◦ and 155◦ from the broad­

side of the 1D-UDSA, respectively. Here, the 5 test signals are selected to be sinc pulses 

of 85% spectral occumpany, where each pulse is having a different initiation-delay. 

A typical comparison of the outputs of the modeled beamformer in response to the 

above test signal is shown in Figure 6.17. According to Figure 6.17 (top), which shows 

the signals recovered without beamforming, the desired signal is irrecoverably suppressed 

if either of these interfering signals overlaps in time with the desired signal. The out­

put yB[FP](nt) of the floating-point implementation of the polyphase 2D FIR double-

trapezoidal filter-based beamformer is shown in Figure 6.17 (middle). The SNDR of 

yB[FP](nt) is 40.78 dB. However, the output yB[Wc](nt) of the modeled beamformer with 

the proposed fixed-point implementation, which is shown in Figure 6.17 (bottom), is 

37.86 dB. This illustrate the effective recovery of the desired signal with the proposed 

fixed-point implementation. The bit-true cycle-accurate simulations showed that the 
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Figure 6.17: The demodulated signal without beamforming (top), output of the beam-
former with ideal floating point implementation (middle) and the output of the beam-
former with proposed fixed point implementation (bottom). 

achieved SNDR of yB(nt) is 37.86 dB, which is only 2.92 dB less than the SNDR achieved 

with the floating point implementation. Such degradation is acceptable for most applica­

tions including for wireless smart antennas, radar, sonar and ultrasound imaging [23][45]. 

6.6 Summary 

In this chapter, an analysis of the finite-word-length effects of beamforming MD FIR 

filters has been given. Here, it is assumed that the beamforming MD FIR filters are 

implemented with a parallel connected 1D/2D arrays of 1D direct-form FIR filters. The 

main contribution of this chapter is the proposed theoretical model that estimates the 
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SNDR of the output of MD FIR filter-based beamformers having a specific DSP con­

figuration. Also, an example of an FPGA implementation of a typical beamforming 

polyphase 2D FIR double-trapezoidal filter has been outlined in this chapter. 

A review of the quantization noise generation in the ADCs and the outputs of digital 

multipliers, transfer function distortion due to coefficient quantization, adder overflow 

errors and different 1D FIR filter structures have been given in section 6.2. Assuming 

the MD FIR filter-based beamformers are implemented with parallel connected 1D/2D 

arrays of direct-form (or transposed direct-form) 1D FIR filter structures, a theoretical 

model has been derived in section 6.4 in order to estimate the SNDR at the output of 

the beamformer. In subsection 6.4.2, the derivation of parameters for a particular beam-

former is demonstrated by taking the example of a polyphase 2D FIR double-trapezoidal 

filter-based beamformer. A series of Monte Carlo simulations has been conducted for 

different DSP configurations of the same polyphase 2D FIR double-trapezoidal filter-

based beamformer. It has been observed that the calculated SNDRs from the Monte 

Carlo simulations closely agree with the estimated SNDRs from the theoretical model. 

Based on these results, an FPGA implementation of the beamforming polyphase 2D 

FIR double-trapezoidal filter is proposed in section 6.5. Here, the objective is to mini­

mize the hardware complexity while keeping the signal degradation at the output of the 

beamformer, due to noise and distortion, at an acceptable level (e.g. within 3 dB of 

the ideal, in this case). The bit-true cycle-accurate simulation results also confirm that 

the fixed-point hardware implementation of the polyphase 2D FIR double-trapezoidal 

filter-based beamformers are capable of achieving SNDR levels at the output within 3 dB 

of the SNDR levels achieved using the floating point implementation for SIR levels at 

least up to -40 dB. 
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Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

Two MD FIR filter-based beamforming methods have been proposed for propagating 

temporally-broadband-bandpassed signals received by 1D/2D uniformly distributed an­

tenna arrays. In the first method, a real-time adaptive filter design method has been 

proposed for the beamforming complex-coefficient 2D FIR asymmetric-trapezoidal filter 

for the front-end broadband-bandpass beamforming in CR systems having SDR front-

ends. The performance of the proposed beamformer has been compared with other 

broadband beamforming methods such as the digital DFT beamformer [138], the digital 

interpolation delay-and-sum beamformer [101] and the Sekiguchi-method [139], which can 

be employed for broadband beamforming in CR systems. According to the simulation 

results given in sections 4.6 and 4.7, compared to the broadband-beamforming meth­

ods [101][138][139] and many other similar methods, the proposed 2D FIR trapezoidal 

filter-based method achieves the best overall performance for a CR system considering 

instantaneous adaptability, lower distortion of the desired signal and higher attenuation 

of the co-channel interference signals with given computational complexity. 

In the second method, a 3D FIR frustum filter-based beamformer has been proposed 

for the real-time pre-processing of FPA signals for broadband detection applications of 

the SKA such as pulsar timing observations and pulsar profile studies using coherent 

de-dispersion [175]. Here, a combined frequency-sampling and 3D window-based design 

method has been proposed in order to approximate the ideal 3D frustum-shaped trans­

fer function such that the dominant spectral components of receiver noise, off-dish RFI 
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and ground thermal noise are suppressed in the stopband while the dominant spectral 

components of the SOIs are enhanced in the passband. The numerical analysis presented 

in section 5.5, has confirmed that the proposed 3D FIR frustum filter-based beamformer 

achieves lower distortion compared to the conventional 2D spatial-only beamformer and 

the 3D CFM beamformer. The 2D spatial-only beamformer resulted in the highest dis­

tortion because its passband is designed considering the properties of only the center fre­

quency of the SOIs. On the other hand for the 3D CFM beamformer, the spatio-temporal 

characteristics of SOIs for the entire operational bandwidth have been considered in its 

design however, it does not consider the spatio-temporal characteristics of off-dish RFI 

and ground thermal noise. 

The Focal Field Synthesizer (FFS), a GPU accelerated computer program, has been 

proposed to evaluate the electric field in the focal region of a paraboloidal reflector. The 

accuracy of the electric fields evaluated with the FFS has been verified using the GRASP9 

[58], which is a widely used EM field evaluation software for analyzing reflector antennas. 

According to the Huygens’ Principle Approximation, it has been deduced in chapter 3, 

that the ROS the spectra of focal-plane electric-fields is given by a 3D frustum. In subsec­

tion 3.2.2, this has been verified using the focal-plane electric-fields evaluated using the 

FFS. Also in the design of complex-coefficient 3D FIR frustum filters in subsection 5.4.2 

of chapter 5, FFS has been used in generating the ideal 3D phase-response of the focal 

field for the design of 3D FIR frustum filters. Further in section 5.5, the FFS has been 

employed in generating the test sequences for evaluating the performance of the FPA 

beamforming methods. 

A combined theoretical and empirical process has been used in section 6.4, in order 

to study the degradation of SNDR at the outputs of beamforming MD FIR filters due to 

finite-word-length-effects. Using the example of beamforming polyphase 2D FIR double-

trapezoidal filter that has been implemented with an array of direct-form 1D FIR filters, 
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a theoretical model has been proposed to estimate the SNDR at the output for a given 

DSP configuration. Monte Carlo simulations have been conducted to evaluate the average 

SNDRs at the output of the same beamforming polyphase 2D FIR double-trapezoidal 

filter implemented with the identical FIR structure for the given DSP configuration, 

which has been used in the estimation. It has been shown in Figure 6.16, that the 

calculated SNDRs from the Monte Carlo simulations closely agree with the estimated 

SNDRs from the theoretical model. Following the estimated and calculated SNDRs 

achieved with a particular DSP configuration of a particular beamforming polyphase 2D 

FIR double-trapezoidal filter, an FPGA implementation of the parallel connected direct-

form 1D FIR filter structure has been proposed in section 6.5. The results achieved with 

bit-true cycle-accurate on-chip stepped hardware co-simulations imply that by proper 

assignment of register-lengths for input-data, filter-coefficients, multiplier-outputs and 

adder-tree-outputs, the degradation of the SNDR at the output of the beamformer can 

be minimized. 

7.2 Future Work 

It has been mentioned in chapter 5 that full sampling focal plane arrays (FPAs) have been 

proposed for the lower-mid frequency-band (i.e. 0.5 - 1.7 GHz) of the SKA, as a means 

of increasing the field-of-view (FoV) of the paraboloidal reflector based receiver system 

[19][110][111]. Regarding the narrowband beamforming required in aperture synthesis 

imaging, significant progress has been achieved recently in understanding the signal char­

acteristics in FPAs [216] and in designing optimum narrowband beamformers for FPAs 

[217]. However, still engineers are not satisfied with the sensitivity achieved with the 

FPAs for applications in radio astronomy. Therefore, the FPA receivers are not included 

in the Phase-I of the SKA engineering implementation that is scheduled to commence 

in year 2016 [178][179]. Nevertheless, full-sampling FPAs may have other applications in 
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microwave-imaging, remote-sensing, space-science, deep-space communications, satellite 

broadcasting and satellite communications [104][105][106][107][108][109]. With proper 

understanding of the noise spectral density of the FPA signals, the proposed broadband 

3D FIR frustum filter-based beamforming method can be optimized to achieve the best 

sensitivity for pulse type broadband signals. An accurate estimate of the noise spectral 

density in the PNC can be achieved with simulations by extending the concept of “SNR 

element-patterns”, which has been proposed in [54][192]. It would be worth to use the 

models of wideband elemental antennas given in [218] in order to simulate the noise cou­

pling and to estimate the noise spectral density in the PNC that in turn leads to the 

optimal design of beamforming 3D FIR frustum filters. 

Also according to chapter 5, it is expected that most of the time the SKA will be 

operating in the aperture synthesis mode observing the spectral densities corresponding 

to the red-shifted HI-line. The typical architecture for the front-end signal processing 

stages that have been proposed to be used in the aperture synthesis mode is shown 

in Figure 5.5 (see page 190). As shown there, prior to beamforming, the broadband 

signals at the outputs of the LNAs are divided in to large number of channels (e.g. 512, 

1024) using a polyphase analysis filter-bank (e.g. maximally-decimated polyphase-DFT 

filter-bank) [142]. Then, narrowband beamforming methods [180][186][217], are applied 

to sub-groups of FPA signals for each individual channel in order to form narrowband 

sky-beams spanning the FoV. Note that different sets of beamforming coefficients are 

required to form channel-specific sky-beams for each sub-group of FPA signals. It has 

been proposed that by exploiting perfect-reconstruction techniques [142], the beamformed 

narrowband channel signals can be recombined such that the original broadband signal 

corresponding to the celestial source is reconstructed with minimum distortion. With 

this approach to broadband beamforming, the front-end signal processing architecture 

of the SKA receivers can be kept unchanged for both narrowband (e.g. HI surveys) 
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and broadband (e.g. pulsar timing- and profile- studies) observations. Hence, such an 

architecture can facilitate a number of simultaneous astronomical surveys that include 

both narrowband and broadband observations. However, it is believed that in the VLSI 

implementation of the analysis- and synthesis- polyphase filter-banks may require longer 

register-lengths for multiplier-outputs in order to maintain the SNDR at a tolerable level 

compared to direct implementation. Hence, it would be an interesting future project to 

compare the computational complexity required by the VLSI implementations of the 3D 

FIR frustum filter-based beamformer and the perfect-reconstruction analysis-synthesis 

filter-bank-based beamformer in order to achieve a specified SNDR at the output. 
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Appendix A
 

The Evaluation of MD Continuous-Domain Fourier Transform 

(CDFT) of a MD BB-BP ST PW 

A.1 The Evaluation of 4D CDFT of a 4D BB-BP ST PW 

The novel approach taken in this thesis to evaluate the 4D-CDFT of the 4D BB-BP ST 

PW is given in the following. According to (2.11), the 4D CDFT of a 4D BB-BP ST PW 

pw4C(x, y, z, t), is given by 

PW4CP(fx, fy, fz, ft) = ++++ +∞ 

wCP t+c −1(dxx+dyy+dzz) e −j2π(fxx+fy y+fz z+ftt) dx dy dz dt, (A.1) 
x,y,z,t=−∞ 

where wCP(τ); ∀ τ = t + c−1(dxx + dyy + dzz) ∈ R is the 1D BB-BP temporal primary 

function. Matrix notation can be used to achieve more compact expression for (A.1). 

TLet the 4-element column vectors x4, ν4 and f4 are defined such that x4 6 [t x y z], 

νT 
4 6 [1 c−1dx c

−1dy c
−1dz 4 fx fz] and fT 6 [ft fy ], (2.11) can be rewritten as ++++ 

−j2π(fT 
4, fy, fz, ft) = νT · x4 e ·x4) dx4. (A.2)PW4CP(fx wCP 4 

x4∈R4 

Consider the following linear-transformation of the original space-time variables x4 

into ψ4, 

ψ4 = Γ4 x4, (A.3) 
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where ψT 
4 6 [λ µ κ γ] and where ⎤ ⎥⎥⎥⎥⎥⎥⎥⎦ 

. 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎣
 

1 c−1dx c−1dy c−1dz 

c−1dx −(1 + c−2(dy 
2 + d2 

z)) c−2dxdy c−2dxdz 

c−1dy c−2dxdy −(1 + c−2(d2 
x + d2 

z)) c−2dydz 

c−1dz c−2dxdz c−2dydz −(1 + c−2(d2 
x + d2 

y)) 

Δ
Γ4 =
 

(A.4) 

Note that the first row-vector of Γ4 is νT 
4 in (A.2) and therefore with this linear-transform 

t + c −1(dxx + dyy + dzz) = λ. (A.5) 

Also note that Γ4 is a symmetric matrix and the first column-vector (or row-vector) is 

orthogonal to the second, third, and fourth column-vectors (or row-vectors). The inverse 

of Γ4 is given by ⎤ ⎥⎥⎥⎥⎥⎥⎥⎦ 

⎡ 

, 

1 c−1dx c−1dy c−1dz 

−1dx −1 0 0 

⎢⎢⎢⎢⎢⎢⎢⎣
 

1
 c

Γ−1 
4 =
 (A.6)


(1 + c−2) 
c−1dy 0 −1 0 

c−1dz 0 0 −1 

which is also a symmetric matrix where the first column-vector (or row-vector) is or­

thogonal to the second, third, and fourth column-vectors (or row-vectors). Further, the 

first column-vector (or row-vector) of Γ−
4
1 is a scaled version of ν4 (or νT 

4 ) (i.e. the first 

column-vector (or row-vector) of Γ4). According to [41](ch. 06), 

dψ4dx4 = det(Γ−
4
1) dψ4 = . (A.7)

(1 + c−2)3 

Substituting (A.5), (A.6) and (A.7) into (A.2) results, ++++ 
−j2π(fTΓ−1ψ ) dψ44 4 4PW4CP(fx, fy, fz, ft) = wCP (λ) e . (A.8) 

∈R4 (1 + c−2)3ψ4
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Given that ⎤⎡⎤⎡ 
1 c−1dx c−1dy c−1dz λ
 

[ft fx fy fz] 
(1 + c−2) 

⎢⎢⎢⎢⎢⎢⎢⎣
 

⎟⎟⎟⎟⎟⎟⎟⎠ 

, 

⎥⎥⎥⎥⎥⎥⎥⎦ 
c−1dz 0 0 −1 γ 

(ft + c−1dxfx + c−1dyfy + c−1dzfz)λ 

, 

⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎦ 

−1dx −1 0 0c
 µ
 
fTΓ−1 = 4 4 ψ4 

−1dy 0 −1 0 κ
c


⎞⎛ ⎜⎜⎜⎜⎜⎜⎜⎝
 

+ (c−1dxft−fx)µ1
 
(1 + c−2) 

(A.9)
=
 
+ (c−1dyft−fy)κ 

+ (c−1dzft−fz)γ 

(A.8) can be expressed as a product of four 1D integrals of respective variables λ, µ, κ 

and γ, such that +
+


+∞ ft+c −1dxfx+c −1dy fy +c −1dz fz−j2π −2 λ
1+cPW4CP(fx, fy, fz, ft) = wCP(λ)e dλ
 

λ=−∞ 
+∞ 

µ−j2π c−1dxft−fx dµ
−2×
 1+ce
 −21 + cµ=−∞ 

+∞ 
κ−j2π c−1dy ft−fy dκ 
−21+c

+
+
×
 e
 −21 + cκ=−∞ 

+∞ 
γ−j2π c−1dz ft−fz dγ 

1+c−2 . (A.10)−2 
×
 e
 

1 + cγ=−∞ 

According to [44](pp.10), +
 +∞ 
−j2π ft t1 · e dt = δ ft , (A.11) 

t=−∞ 

where δ(ft) is the 1D continuous-domain unit impulse function. Also WCP(ft), the 1D­

CDFT of wCP(t) with respect to the variable t, is defined by +
 +∞ 
−j2π ft tWCP(ft) 6 wCP(t)e dt. (A.12)
 

t=−∞ 
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Following (A.11) and (A.12), (A.10) can be evaluated such that 

PW4CP(fx, fy, fz, ft) = 

ft +c−1dxfx +c−1dyfy +c−1dzfz
WCP ·δ(c −1dxft − fx)·δ(c −1dyft −fy)·δ(c −1dzft −fz). 

1 + c−2 

(A.13) 

Because PW4CP(fx, fy, fz, ft) = 0 if (c−1dxft − fx = 0) and (c−1dyft − fy = 0) and 

(c−1dzft − fz = 0); ∀ (fx, fy, fz, ft) ∈ R4, substituting fx = c−1dxft and fy = c−1dyft 

ft+c−1dxfx+c−1dy fy+c−1dz fzand fz = c−1dzft into the WCP term of (A.13) yields a more 
1+c−2 

simplified version 

PW4CP(fx, fy, fz, ft) = WCP ft ·δ(c −1dxft − fx)·δ(c −1dyft −fy)·δ(c −1dzft −fz). (A.14) 

A.2 The Evaluation of 3D CDFT of a 3D BB-BP ST PW 

According to (2.21), the 3D CDFT of a 3D BB-BP ST PW pw3C(x, y, t), is given by +++ +∞ 
−j2πfxx −j2πfy yPW3CP(fx, fy, fct) = wCP(t+c −1(dxx+dyy)) e e e −j2πcfctt dx dy dt. 

x,y,t=−∞ 

(A.15) 

Using the compact matrix-notation, (A.15) can be rewritten as +++ 
−j2π(fT 

PW3CP(fx, fy, fct) = wCP ν3 
T · x3 e 3 ·x3) dx3, (A.16) 

x3∈R3 

Twhere the 3-element column vectors x3, ν3 and f3 are defined such that x3 6 [t x y], 

νT 
3 6 [1 c−1dx c

−1dy 3 fx] and fT 6 [cfct fy]. 

Consider the following linear-transformation of the original space-time variables x3 

into ψ3, 

ψ3 = Γ3 x3, (A.17) 
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where ψT 
3 6 [λ µ κ] and where ⎤⎡ 

1 c−1dx c−1dy 

. 

c−1dy c−2dxdy −(1 + c−2dx
2 ) 

⎥⎥⎥⎥⎦ 

Note that the first row-vector of Γ3 is νT 
3 in (A.15) and therefore with this linear-

transform 

t + c −1(dxx + dyy) = λ. (A.19) 

The inverse of Γ3 is given by 

⎢⎢⎢⎢⎣
 

Δ −1dx −(1 + c−2dy
2) c−2dxΓ3 (A.18)
dy =
 c


⎤⎡ 
1 c−1dx c−1dy ⎥⎥⎥⎥⎦ 

. 

c−1dy 0 −1 

Note that Γ3 and Γ−
3
1 are symmetric matrices where the first column-vectors (or row-

vectors) are orthogonal to respective the second and third column-vectors (or row-

vectors). According to [41](ch. 06), 

dψ3dx3 = det(Γ−1) dψ3 = . (A.21)3 (1 + c−2(d2 
x + d2 

y))
2
 

Substituting (A.19), (A.20) and (A.21) into (A.15) results,
 +++ 
−j2π(fT 

3 Γ
−1ψ ) dψ33 3PW3CP(fx, fy, fct) = wCP(λ) e . (A.22) 

ψ ∈R3 (1 + c−2(dx 
2 + dy2))2 

3

Given that 

⎢⎢⎢⎢⎣
 

1 
Γ−1 = 3 

−1dx (A.20)
−1 0
c

(1 + c−2(d2 

x + d2 
y)) 

⎤⎡⎤⎡ 
1 c−1dx c−1dy λ
⎢⎢⎢⎢⎣
 

⎥⎥⎥⎥⎦ 
, 

c−1dy 0 −1 κ 

(cfct + c−1dxfx + c−1dyfy)λ 

⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎦ 

[cfct fx fy]
fT 
3 Γ

−
3
1ψ3 = 

(1 + c−2(dx 
2 + d2 

y)) 
−1dx −1 0
c
 µ
 

⎞ ⎟⎟⎟⎟⎠ 

⎛ 

, 

⎜⎜⎜⎜⎝
 

1
 
=
 + (dxfct−fx)µ (A.23)


(1 + c−2(dx 
2 + d2 

y)) 

+ (dyfct−fy)κ 
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(A.22) can be expressed as a product of three 1D integrals of respective variables λ, µ
 

and κ, such that + +∞ cfct+c −1dxfx+c −1dyfy−j2π λ−2(d2 
x+d2 

yPW3CP(fx, fy, fct) = wCP(λ)e 1+c ) dλ
 
λ=−∞
 + +∞ µ−j2π dxfct−fx dµ

1+c−2(d2 
x+d2 

y )× e 
µ=−∞ 1 + c−2(dx 

2 + dy2) 
κ 

+ +∞ −j2π dy fct−fy dκ 
1+c−2(d2 

x+d2 
y )× e . (A.24) 

κ=−∞ 1 + c−2(dx 
2 + dy2) 

Following (A.11) and (A.12), (A.24) can be evaluated such that 

cfct +c−1dxfx +c−1dyfy
PW3CP(fx, fy, fct) = WCP ·δ(dxfct − fx)·δ(dyfct −fy). (A.25)

1 + c−2(d2 
x + d2 

y) 

Because PW3CP(fx, fy, fct) = 0 if (dxfct− fx = 0) and (dyfct− fy = 0); ∀(fx, fy, fct) ∈ R3 , 

cfct+c−1dxfx+c−1dy fysubstituting fx = dxfct and fy = dyfct into the WCP term of (A.25) 
1+c−2(d2 +d2 )x y 

yields a more simplified version 

PW3CP(fx, fy, fct) = WCP cfct ·δ(dxfct − fx)·δ(dyfct −fy). (A.26) 

A.3 The Evaluation of 2D CDFT of a 2D BB-BP ST PW 

According to (2.31), the 2D CDFT of a 2D BB-BP ST PW pw2C(x, t), is given by ++ +∞ 
−j2πfxx −j2πcfcttPW2CP(fx, fy, fct) = wCP(t + c −1dxx) e e dx dt. (A.27) 

x,t=−∞ 

Using the compact matrix-notation, (A.27) can be rewritten as ++ 
−j2π(fT 

2PW2CP(fx, fct) = wCP ν
T 
2 · x2 e ·x2) dx2, (A.28) 

x2∈R2 

where the 2-element column vectors x2, ν2 and f2 are defined such that x2 
T 6 [t x], 

ν2 
T 6 [1 c−1dx] and f2 

T 6 [cfct fx]. 

Consider the linear-transformation of the original space-time variables x2 into ψ2, 

ψ2 = Γ2 x2, (A.29) 



  
  

308 

where ψT 
2 6 [λ µ] and where ⎤⎡ 

1 c−1dx 
. 

c−1dx −1 

Note that the first row-vector of Γ2 is νT 
2 in (A.28) and therefore with this linear-

transform 

t + c −1dxx = λ. (A.31) 

⎥⎦

The inverse of Γ is given by 2 

⎢⎣
 
Δ

Γ2 (A.30)
=
 

⎤ ⎥⎦. 
⎡ 

1 c−1dx1
 ⎢⎣
Γ−1 
2 =
 (A.32)
−2d2(1 + c x) c
−1dx −1 

Note that Γ2 and Γ−
2
1 are symmetric matrices where the first column-vectors (or row-

vectors) are orthogonal to respective the second column-vectors (or row-vectors). Ac­

cording to [41](ch. 06), 

dψ2dx2 = det(Γ−
2
1) dψ2 = −2d2 

. (A.33)
(1 + c x)
 

Substituting (A.31), (A.32) and (A.33) into (A.28) results,
 ++ 
−j2π(fT 

2 Γ
−1ψ ) dψ22 2PW2CP(fx, fct) = wCP(λ) e . (A.34)−2d2(1 + c x)ψ2∈R2 

Given that ⎤ ⎥⎦
⎡⎤⎡ 

, 
1 c−1dx λ
[cfct fx] 

−2d2(1 + c x) 
⎢⎣
 

⎢⎣ 
⎥⎦fT 

2 Γ
−
2
1ψ3 = 

c
−1dx −1 µ
 ⎞ ⎟⎠
⎛ 

, 
(cfct + c−1dxfx)λ1
 

−2d2(1 + c x) 
⎜⎝
 (A.35)
=
 

+ (dxfct−fx)µ 

(A.34) can be expressed as a product of two 1D integrals of respective variables λ and µ, 

such that +
+


+∞ −1dxfxcfct+c−j2π λ−2d21+c xPW2CP(fx, fct) = wCP(λ)e dλ
 
λ=−∞ 
+∞ µ−j2π dxfct−fx dµ

1+c−2(dx
2+d2 

y )e . (A.36)×
 −2d21 + c xµ=−∞ 
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Following (A.11) and (A.12), (A.36) can be evaluated such that 

cfct +c−1dxfx
PW2CP(fx, fct) = WCP ·δ(dxfct − fx). (A.37)

1 + c−2d2 
x 

Because PW2CP(fx, fct) = 0 if (dxfct − fx = 0); ∀ (fx, fct) ∈ R2, substituting fx = dxfct 

cfct+c−1dxfxinto the WCP 1+c−2d2 term of (A.37) yields a more simplified version 
x 

PW2CP(fx, fct) = WCP cfct ·δ(dxfct − fx). (A.38) 
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