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1 Introduction

The following problem provided the original impetus for the study project
that this author team pursued.

Problem: The three regions of the map in Figure 1(a) can be distinguished
using three colors. These three regions can also be distinguished using the
two colors shown in Figure 1(b). The idea here is that we might be able
to color a region R with two colors (say alternating the colors in stripes) so
that any region adjacent to R is not colored with these two colors. Here we
understand neighboring regions to mean two regions with a boundary line in
common, not simply a single point in common. Thus every map corresponds
to a planar graph.

Figure 1: Two possible colorings
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The idea of what came to be called a stripe-coloring was a natural con-
sequence of the statement of this problem. We began by considering some
potential practical applications.

First, the idea of a stripe-coloring could, perhaps, replace a more conven-
tional coloring. Doing this may have the advantage of saving ink, making
for a more economical situation. Figure 1 demonstrates this ink-saving idea
because in map (a) three colors are used where in map (b), only two colors
are used. Second, if a planar graph is considered to represent countries on a
map, imagine a scenario where two countries are at war over a shared mid-
dle country. For example, in Figure 1(b), countries r and b are in dispute
over country {r, b}. In this case, the stripe-colored country gives information
about the colors of its neighbors.

The ink-saving and countries at war scenarios, along with our emerg-
ing ideas led us to consider several possible definitions and corresponding
consequences.

2 Results

The results section is divided into 3 subsections: Stripe Colorings, 2-tone
Stripe Colorings, and t-tone Colorings. The purpose for this division is to
demonstrate the progression of our mathematical findings that developed
over the course of this study project.

2.1 Stripe Colorings

Definition 1 Let G be a graph of order n and let n = {1, 2, ..., n}. A proper
stripe coloring of G is a function f : V (G)→ P(n) such that f(v) 6= f(u)
if uv ∈ E(G) and if |f(v)| > 1 then f(v) =

⋃
f(u), where uv ∈ E(G). If

|f(v)| > 1 for then v is called a striped vertex and its label f(v) is referred
to as a stripe.

As an example of two proper stripe colorings is given in figure 2.

Definition 2 For a graph G of order n a proper stripe coloring f is called
minimum if |

⋃
f(v)| ≤ |

⋃
g(v)| where g is any stripe coloring of G. The

minimum such cardinality over all proper stripe colorings of G is called the
stripe chromatic number, and will be denoted σ(G).

2



Figure 2: Two proper stripe-colorings of the Alavi graph
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Definition 3 If f is proper stripe coloring of a graph G with t = max{|f(v)| :
v ∈ V (G)}, then f is called an t-tone stripe coloring.

These definitions seemed most consistent with our initial ideas about the
given problem, but quickly lead to a somewhat undesirable result.

Lemma 4 Given a proper stripe coloring f of a graph G, no two adjacent
vertices of G can both be colored with a stripe.

Proof: Let u and v be adjacent vertices of a graph G. Suppose to the
contrary that f(u) and f(v) are both stripes. By definition, f(v) =

⋃
f(w)

for all vertices w adjacent to v in G. So f(u) ⊆ f(v). Likewise, f(u) =
⋃
f(x)

for all vertices x adjacent to u in G so f(v) ⊆ f(u). Now we have f(v) = f(u),
a contradiction. 2

This idea, of not allowing adjacent stripes, seemed far too restrictive. It
actually forced σ(G) to almost always be an extremely trivial linear function
of χ(G). However, for completeness we present some limited results.

Proposition 5 σ(Kn) = n− 1.

Proof: Let G = Kn. If V (G) = {v1, v2, · · · , vn} we shall define a proper
(n− 1)-tone stripe coloring as follows:

f(vi) =

{
i if 1 ≤ i ≤ n− 1

{1, 2, · · · , n− 1} if i = n
.
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Thus σ(G) ≤ n − 1. As no two adjacent vertices can be striped, it follows
that any proper stripe coloring of G has at most one stripe, and thus must
have at least n − 1 different labels of cardinality 1. Thus σ(G) ≥ n − 1, so
the result holds. 2

Proposition 6 χ(G) ≥ σ(G).

Proof: Note that any proper coloring is also a proper stripe coloring. So
σ(G) certainly isn’t larger than χ(G). 2

Note that when G is a bipartite graph, χ(G)=σ(G), thus this bound is
sharp.

Proposition 7 σ(Cn) = 2 for every n ≥ 3.

Proof: For n even, Cn is bipartite. For n odd, χ(Cn) = 3, and can be colored
such that one color class, C, has cardinality 1. Replacing the color used for
C with a stripe yields a proper 2-tone stripe coloring, thus σ(Cn) = 2. 2

2.2 2-tone Stripe Colorings

As it quickly became apparent that our initial definition was undesirable,
a less restrictive definition was suggested by Chartrand and Zhang. This
definition too turned out to be somewhat undesirable.

Definition 8 Let G be a graph of order n and let n = {1, 2, ..., n}. A 2-tone
stripe coloring of G is a function f : V (G)→ P(n) such that 1 ≤ |f(v)| ≤
2 and f(u) 6= f(v) if uv ∈ E(G). Denote the minimum 2-tone chromatic
number of G by σ2(G).

Observe that σ2 ≤ χ(G). To illustrate this idea, consider the following
example that shows strict inequality for this observation.

Example G = K4. As illustrated by the colorings in Figure 3, σ2(G) = 3
and χ(G) = 4.

This second definition was actually far too close to the standard idea of
coloring to be very interesting. Once again, we were able to obtain a result
which expressed σ2(G) as a function of χ(G).
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Figure 3: A 1-tone stripe-coloring of K4 and a 2-tone stripe-coloring of K4
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Theorem 9 For every graph G with χ(G) = k, σ2(G) =
⌈√

8k+1−1
2

⌉
.

Proof: Let G be a graph with χ(G) = k. Let σ2(G) = s. Then we have
that s is the smallest positive integer such that

(
s+1
2

)
≥ k. This inequality

is logically equivalent to the quadratic inequality s2 + s − 2k ≥ 0. From
the quadratic formula, we see that the non-negative root of the governing
quadratic is √

8k + 1− 1

2
.

By the minimality of the integer s = σ2(G), we obtain the desired result. 2

To illustrate the preceding result, consider the following example:

Example Let G = K5. Since χ(G) = 5, we conclude that s = 3 is the
minimal integer such that

(
s+1
2

)
≥ 5. Thus σ2(K5) = 3.

2.3 t-tone Colorings

After two undesirable definitions, a third and final definition was consid-
ered, this time yielding quite interesting consequences. This definition was
originally suggested by Chartrand.

Definition 10 Let G be a graph, and let k = {1, 2, · · · , k}, where k is a
positive integer. A function f : V (G) → P(k) is called a proper t-tone
k-coloring of G if

1. |f(v)| = t for each vertex v of G
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2. if d(u, v) = i then |f(u) ∩ f(v)| ≤ i− 1 for 1 ≤ i ≤ Diam(G)

The t-tone chromatic number of G, denoted by τt(G), is the smallest
positive integer k for which G has a proper t-tone k-coloring.

First, we present a helpful, but unsurprising result.

Theorem 11 If H is a subgraph of G, then τt(H) ≤ τt(G).

Proof: Let f be a proper t-tone τt(G)-coloring of G. The restriction of f to
H must then be a proper t-tone coloring of H. Thus τt(H) is no more than
τt(G). 2

Much of the work to be discussed is for the special case t = 2, that is, a
2-tone k-coloring.

Theorem 12 Let G = Ka1,a2,··· ,ak
denote the complete k-partite graph, with

partite sets of orders a1, a2, · · · ak. Then

τ2(G) =
k∑

i=1

⌈
1 +
√

8ai + 1

2

⌉
.

Proof: Let G = Ka1,...,ak
and let χ(G) = k. Let C1, ..., Ck denote the color

classes of G. Let |Ci| = ai, for 1 ≤ i ≤ k. Now let f be a proper 2-tone τ2(G)-
coloring of G. Notice that for any pair of distinct vertices u, v ∈ Ci, We have
d(u, v) = 2. Hence |f(v) ∩ f(u)| ≤ 1. So the number of colors required for
the ith partite set is si such that

(
si

2

)
≥ ai. By algebraic computations similar

in nature to those demonstrated in proof of Theorem 9, and the fact that si

is positive, we get that si =
⌈√

8ai+1+1
2

⌉
. Furthermore, since every element

in Ci is adjacent to every element in Cj for all i 6= j with 1 ≤ i, j ≤ k, they
cannot have any colors in common. Therefore the 2-tone chromatic number
of G is the sum of all such si, as desired. 2

Corollary 13 Let G = Kk(a) be the complete multi-partite graph with k
partite sets, each of order a. Then

τ2(G) = k

⌈√
8a+ 1 + 1

2

⌉
.
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Proof: This follows easily from the previous theorem by setting ai = a for
each relevant i. 2

This theorem and its corollary can be used to give an upper bound on
τ2(G).

Corollary 14 Let G be a connected graph with χ(G) = k. Let f be a tradi-
tional k-coloring of G, with color classes C1, · · · , Ck. Set

a = max
f
{|Ci|}.

That is, a is the largest size of any color class over all proper k-colorings of
G. Then

τ2(G) ≤ k

⌈√
8a+ 1 + 1

2

⌉
.

Proof: It is easily seen that G is a subgraph of Kk(a) and so the result
follows from the previous corollary. 2

Even though the chromatic number is often difficult to calculate, many
upper bounds are well known. As such, we present the following upper
bound. While the bound is generally worse than that given above, it is
easier to calculate the bound, and so may occasionally be of use.

Corollary 15 If G is a graph, then

τ2(G) ≤
⌊
n+ ω(G)

2

⌋⌈√
8α(G) + 1 + 1

2

⌉
.

Corollary 16 If G is a star, K1,a, then

τ2(G) =

⌈√
8a+ 1 + 5

2

⌉
.

Notice that the above corollary shows that even for planar graphs, τ2(G)
can become arbitrarily large. It also gives us a somewhat useful lower bound
on τ2(G), which can be stated in terms of the maximum degree of G, denoted
∆(G).
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Theorem 17 Let G be a graph and let ∆(G) = d. Then

τ2(G) ≥
⌈√

8d+ 1 + 5

2

⌉
.

Proof: If ∆(G) = d then G has a K1,d subgraph. Any proper 2-tone coloring
of G must also be a proper 2-tone coloring of this star subgraph, and so the
bound is obtained. 2

This bound is sharp, as the specified value is obtained when G is a tree.

Theorem 18 If G is a tree with ∆(G) = d then

τ2(G) =

⌈√
8d+ 1 + 5

2

⌉
.

Proof: We shall first prove the result for trees T with degree set D = {1, d},
where d ≥ 2 is a positive integer such that

√
8d+1+5

2
is an integer. Such integers

d clearly exist, and can be shown to always be triangular numbers. Let F be
the family of all such trees. We shall proceed by induction on l, the number
of vertices of degree d in T . If l = 1 then T = K1,d and so the result holds by
corollary 16. Then, assume the result holds for all trees with degree set D
and l < k, where k ≥ 2. Let T be a tree with l = k and degree set D. By the
fundamental theorem of graph theory, there exists a vertex v ∈ V (T ) with
deg(v) = d and which is adjacent to d−1 end vertices. Let S be the set of end
vertices which are adjacent to v. Then the tree T − S satisfies the inductive
hypothesis, and so there exists a proper 2-tone coloring of T − S which uses
C =

√
8d+1+5

2
colors. Now, the vertices of S must all receive different labels,

and each pair of labels may share at most one color. Furthermore, none of
the vertices of S can be colored with either of the colors used for v, nor can
they be the same label as the neighbor of v in T − S. Thus, to color S we
need

(
C−2

2

)
− 1 different labels. But, we have that(

C − 2

2

)
− 1 =

(
1

2

)(
1 +
√

8d+ 1

2

)(
−1 +

√
8d+ 1

2

)
− 1

=
(8d+ 1)− 1

8
− 1

= d− 1
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and so we can color every vertex of S with a label using the C colors used to
color T −S. Thus we find that the result hods for trees with degree sequence
D, for all such integers d.

Finally, note that any tree can be found as a subgraph of a tree in F ,
by simply adding end vertices as needed. Thus the result holds for trees in
general as well. 2

The bound in theorem 17 can be generalized to t-tone colorings as well.
For t ≥ 2, let ∆t(G) denote the maximum number of vertices in G which
are a positive distance of at most b t

2
c away from any particular vertex of G.

∆t(G) can be viewed as a sort of generalization of the maximum degree, so
for completeness we set ∆1(G) = ∆(G). The proof of the following theorem
is similar in idea to that of theorem 17.

Theorem 19 For a graph G, τt(G) must be large enough to ensure that(
τt(G)

n

)
≥ ∆t(G).

A similar lower bound can be established if the diameter of G is known.

Theorem 20 Let G be a graph with diameter d and order n. Then(
τd(G)

t

)
≥ n.

Proof: If the diameter of G is d, then any proper d-tone coloring must
assign a different label to every vertex of G. Thus, we must at least have
at least n different labels, as each vertex is within distance d of each other
vertex. 2

Just as with traditional coloring, complete graphs are easily dealt with.

Proposition 21 If G = Kn then τt(G) = tn.

Proof: Notice that if G = Kn we have that every pair of vertices of G are
adjacent. Thus every vertex must have a different t-element label, and none
of these labels may share an element. Hence we need a minimum of 2t total
elements for a proper 2-tone coloring of G. If V (G) = {v1, v2, · · · , vn} then
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f(vi) = {ti− (t−1), ti− (t−2), · · · , ti} is a proper t-tone coloring of G using
tn colors, and thus the result follows. 2

As with regular chromatic numbers, complete graphs are extremal cases,
providing A reasonably good lower bound, as well as a worst case upper
bound.

Theorem 22 Let G be a graph of order n. Then

tω(G) ≤ τt(G) ≤ tn.

These bounds are sharp when G = Kn.

Proof: Clearly, G is a subgraph of Kn, and thus τt(G) ≤ τt(Kn) = tn.
Similarly, if the largest complete subgraph G contains has order ω(G), then
tω(G) = τt(Kω(G)) ≤ τt(G). These bounds are easily seen to be sharp for
completes graphs. 2

Some insight into t-tone colorings in general can be obtained by looking
at specific families of graphs.

Proposition 23

τ2(Cn) =

{
6 if n = 3, 4, 7

5 otherwise

An illustration of cycle colorings can be seen in figure 4, while illustrations
of proposition 23 can be seen in figures 5, 6, and 7.

Figure 4: A 2-tone 6-coloring of C4, a 2-tone 5-coloring of C5, and a 2-tone
5-coloring of C6
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Proposition 24 Let G = Cn ×K2, n ≥ 3. Then τ2(G) = 6.
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Figure 5: A 2-tone 5-coloring of K2 × C5
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Figure 6: 2-tone colorings for K2 × C3t and K2 × C4t
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Recall that the kth power of a graph G, denoted Gk, is the graph with
V (Gk) = V (G) and uv ∈ E(Gk) if and only if dG(u, v) ≤ k. It would
seem as though χ(G2) is in some way related to τ2(G). This relationship is
somewhat mysterious. For example, for some graphs, χ(G2) is a lower bound
on τ2(G), while for other graphs, such as the Petersen graph P , we have that
χ(P 2) ≥ τ2(P ), owning to the fact that P has diameter 2. However, we were
able to find one clear relationship.
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Figure 7: A 2-tone coloring for K2 × C7, built from smaller cycles
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Theorem 25 Let G be a graph. Then

τ2(G) ≤ χ(G) + χ(G2).

Proof: Let f1 be a chromatic coloring of G using the colors 1, 2, · · · , χ(G),
and f2 a chromatic coloring of G2 using the colors χ(G)+1, · · · , χ(G)+χ(G2).
Then we define a 2-tone coloring f of G by setting f(v) = {f1(v), f2(v)}.
Then if u, v are adjacent in G we have that f1(v), f2(v), f1(u) and f2(u) are
four different colors. Similarly, if d(u, v) = 2 for vertices u and v of G, then
f2(u) 6= f2(v) and so the labels on u and v assigned by f are not the same.
Thus f is a proper 2-tone coloring of G using χ(G) + χ(G2) colors. 2
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A similar result holds for t-tone colorings: than an upper bound on τt(G)
is

τt(G) ≤
t∑

i=1

χ(Gi).

The proof of this is nearly identical to that of theorem 25, and as such
has been omitted. A similar, and generally better bound can be obtained
recursively.

Theorem 26 Let G be a graph and t > 1 integer. Then τt(G) ≤ τt−1(G) +
χ(Gt).

Proof: Let f be a minimum proper (t−1)-tone coloring of G using the colors
1, 2, · · · , τt−1(G) and let g be a chromatic coloring of Gt, using the colors
τt−1(G) + 1, · · · τt−1(G) + χ(Gt). Then we form a proper t-tone coloring, c of
G by setting c(v) = f(v)∪{g(v)}. A similar argument to the one employed in
theorem 25 shows this to be a proper t-tone coloring of G, using τt−1 +χ(Gt)
colors. Thus the result holds. 2

It should be noted that finding the chromatic number of the tth power of
a graph is in general much harder than finding χ(G). However, the two pre-
vious results can give a nice lower bound on χ(Gt) by first calculating τt(G)
and either χ(Gi) for all 1 ≤ i < t or τt−1(G). This could be potentially useful
when dealing with certain classes of graphs, such as bipartite graphs. How-
ever, even for bipartite graphs, such as paths, the t-tone chromatic number
is difficult to determine.

Conjecture 27 Let Pn be the path on n vertices, and assume that n ≥ t+1.
Then

τt(Pn) =
(j + 2)(6t− j(j + 1))

6

where j = max{l s.t. 1 + ...+ l ≤ n}

The conjecture has been verified for the cases of t = 1, 2, 3 and 4. How-
ever, a proof of this has not yet been obtained.
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3 2-tone Colorings for Hypercubes

Recall the n-cube graph, which can be defined recursively:

Q1 = K2, Qn = Qn−1 ×K2 for n ≥ 2.

While τ2(Qn) is known for various cases, in general it is not. It is known, for
example, that τ2(Q1) = 2, τ2(Q2) = τ2(Q3) = 6 and that 7 ≤ τ2(Q4) ≤ 8.
However, by using the language of binary codes, we were able to establish an
upper bound.

Proposition 28 Let G = Qn. Then τ2(G) ≤ 2n−1 + 2.

Proof: Describe the vertices of Qn as binary code words of length n, where
the distance between vertices can be tracked by the hamming distance be-
tween their corresponding code words. We shall assign a label to each vertex
by utilizing the digit sum. We must assign 2 colors to each code word. If the
code word has even digit sum, let the first of these colors be 1, and 2 other-
wise. For the second color, list the first 2n−1 code words according to their
standard total ordering. If a code word falls in position j of this ordering,
assign it the color j+2, For the remaining code words, assign them the same
second color as the word of maximum hamming distance away. This will
yield a proper 2-tone (2n−1 + 2)-coloring of Qn, as distance 1 vertices must
have different first colors and different second colors. Similarly, distance 2
vertices may share the same first color, but do not share the same second
color. There are 2 possible choices for the first color and 2n−1 possible choices
for the second color, thus we have used a total of 2n−1 + 2 colors. 2

The upper bound above may not be particularly close to the actual value
of τ2(Qn). In fact, we conjecture the following:

Conjecture 29

τ2(Qn) ≤

⌈√
8n+ 1 + 5

2

⌉
+

⌈(
n
2

)
n

⌉
.

This would provide a better upper bound then above, but is still not
likely to be the best possible. We have found that Q6 can be colored using 8
colors, whereas the conjectured upper bound yields a value of 9. The pair of
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numbers in the parentheses is the 2-tone coloring of that vertex, the number
outside of the vertex is a count of how many times that specific number pair
occurs, except in the case of Q4, where the numbers are included to show a
possible relation between the coloring of Q4 and Q5.

For any given vertex in the hypercube, the number of vertices at a given
distance compose various rows of Pascal’s triangle. Additionally, the lan-
guage of binary codes reveals a great deal of information about the structure
of the hyper-cubes. However, as yet, this remains an open question. The t-
tone chromatic number of Qn seems to be closely related to χ(Qt

p), which has

been studied by various people, including Österg̊ard, Ngo, Du and Graham.
Patric Österg̊ard, for example, has shown that as n tends to infinity, χ(Q2

n)
asymptotically approaches n and χ(Q3

n) asymptotically approaches 2n. This
would seem to be a rich, but difficult area of further research.

Figures 8-10 show proper 2-tone colorings of the first several hypercubes.
These were obtained by considering the two tone color of each vertex as a
pair, then constructing permutations on the pairs to get from one hypercube
to the next larger hypercube. These permutations must all be products of
disjoint 2-cycles, with the conditions that if a pair of colors is used on a
vertex, that pair can not be part of any 2-cycle. Also, for any two adjacent
vertices, the four colors used to color them can not be contained in two 2-
cycles; for example, if two adjacent vertices are colored (1,2) and (3,4), then
the 2-cycles (1 3) and (2 4) can not both be in the same permutation, and
neither can (1 4) and (2 3). This method may work in general, but we have
yet to verify this.
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Figure 8: A 2-tone coloring of Q4
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Figure 9: A 2-tone coloring of Q5
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Figure 10: A 2-tone coloring of Q6
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