
other nodes to fail as well, which may eventually
lead to failure cascades and the breakdown of the
system, denoted as systemic risk. This applies in
particular to financial networks where links
represent standing debts and claims between
connected financial institutions. However, it is
not well understood how the structure of a
financial network affects the probability of a
systemic failure. Although a topical subject, most
theoretical and empirical methods are not suited
to predicting cascading network effects. The
mainstream view assumes that a denser network
allows for a better diversification of the individ-
ual failure risk (26). However, systemic risk has
been shown to increase, depending on the cou-
pling strength between nodes (27). Furthermore,
most stable dynamic network models account
for only the addition or removal of a single agent
to or from the network at each instance of time.
However, the addition or removal of whole groups
of agents to or from the network (e.g., as part of
a systemic failure) may result in a larger, less
predictable, and less stable system.

In summary, we anticipate a challenging re-
search agenda in economic networks, built upon
a methodology that strives to capture the rich pro-
cess resulting from the interplay between agents’
behavior and the dynamic interactions among
them. To be effective, however, empirical studies
providing insights into economic networks from
massive data analysis, theory encompassing the

appropriate description of economic agents and
their interactions, and a systemic perspective be-
stowing a new understanding of global effects as
coming from varying network interactions are
needed. We predict that such studies will create a
more unified field of economic networks that ad-
vances our understanding and leads to further insight.
We are still far from a satisfactory identification
and integration of the many components, but the
recent advances outlined suggest a promising start.
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PERSPECTIVE

Predicting the Behavior of
Techno-Social Systems
Alessandro Vespignani

We live in an increasingly interconnected world of techno-social systems, in which infrastructures
composed of different technological layers are interoperating within the social component that drives their
use and development. Examples are provided by the Internet, the World Wide Web, WiFi communication
technologies, and transportation and mobility infrastructures. The multiscale nature and complexity of
these networks are crucial features in understanding and managing the networks. The accessibility of new
data and the advances in the theory and modeling of complex networks are providing an integrated
framework that brings us closer to achieving true predictive power of the behavior of techno-social systems.

Modern techno-social systems consist of
large-scale physical infrastructures (such
as transportation systems and power

distribution grids) embedded in a dense web of
communication and computing infrastructures
whose dynamics and evolution are defined and

driven by human behavior. To predict the be-
havior of such systems, it is necessary to start
with themathematical description of patterns found
in real-world data. These descriptions form the
basis of models that can be used to anticipate
trends, evaluate risks, and eventually manage fu-
ture events. If fedwith the right data, computational
modeling approaches can provide the requested
level of predictability in very complex settings.
The most successful example is weather forecast-
ing, in which sophisticated supercomputer infra-
structures are used to integrate current data and

huge libraries of historical meteorological patterns
into large-scale computational simulations. Al-
though we often complain about the accuracy of
daily weather forecasts, we must remember that
numerical weather models and predictions allow
us to project the path and intensity of hurricanes,
storms, and other severemeteorological occurrences
and, in many cases, to save thousand of lives by
anticipating and preparing for these events.

Given the success that has been achieved in
weather forecasting for decades, why haven’t we
achieved the same success in the quantitative pre-
diction of the next pandemic spatio-temporal pat-
tern or the effects over the next decade of connecting
billions of people from China and India on Internet
growth and stability? The basic difference is that
forecasting phenomena in techno-social systems
starts with our limited knowledge of society and
human behavior rather than with the physical laws
governing fluid and gas masses. In other words,
though it is possible to produce satellite images of
atmospheric turbulence, we do not yet have large-
scale worldwide, quantitative knowledge of human
mobility, the progression of risk perception in a
population, or the tendency to adopt certain social
behaviors. In recent years, however, tremendous
progress has been made in data gathering, the dev-
elopment of new informatics tools, and increases in
computational power. A huge flow of quantitative
data that combine the demographic and behavioral
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aspects of society with the infrastructural substrate
is becoming available (1–6). Analogously to what
happened in physics, we are finally in the position
to move from the analysis of the “social atom” or
“socialmolecules” (i.e., small social groups) to the
quantitative analysis of social aggregate states, as
envisioned by social scientists at the beginning of
the past century (7). Here, I refer to “social ag-
gregate states” as large-scale social systems
consisting of millions of individuals that can be
characterized in space (geographic and social)
and time. The shift from the study of a small
number of elements to the study of the behavior
of large-scale aggregates is equivalent to the shift
from atomic andmolecular physics to the physics
of matter. The understanding of how the same
elements assembled in large number can give rise,
according to the various forces and elements at
play, to different macroscopic and dynamical
behaviors opens the path to quantitative computa-
tional approaches and forecasting power. Yet at the
same time, the study of social aggregate states
present us with all the challenges already faced in

the physics of matter, from turbulence to multi-
scale behavior.

Reality Mining and Proxy Networks
The level of information flow regarding techno-
social systems is not just due to advances in
number crunching power of modern computer
processors. Insights into the nature of the inter-
links between people and technology and the dis-
solution of boundaries between the cyberworld
and our real-world social activities are changing
our accessibility to data, leading to “reality-mining,”
which has been defined as the collection of
machine-sensed environmental data that are re-
lated to human social behavior (2). A prime ex-
ample of the people/technology interlinkage can
be found in the analysis of humanmobility. In the
past, approaches to human interactions and mo-
bility have mostly relied on census and survey
data, which were often incomplete and/or limited
to a specific context. Despite advances in the study
of human transport (8, 9), this lack of data has
hindered the construction of a general framework

of humanmobility based on dynamical principles
at the individual level with the ability to bridge spa-
tial scales, from small communities to large urban
areas and countries, in a bottom-up perspective.
However, in pioneering work, Brockmann et al.
(4) showed that popular Web sites for currency
tracking (such as http://en.eurobilltracker.com
and www.wheresgeorge.com) collect a massive
number of records onmoney dispersal that can be
used as a proxy for human mobility. This work
opened the path to the general exploitation of
proxy data for human interaction and mobility
(10). Analogously, modern mobile phones and
personal digital assistants combine sophisticated
technologies such as Bluetooth, Global Positioning
System, and WiFi, constantly producing detailed
traces on our daily activities (2, 11). For instance,
in a recent study, Gonzalez et al. (6) used mobile
phone data to track the movements of 100,000
people over a 6-month time span. Furthermore, it
is now possible to use sensors and tags that
produce data at the microscale of one-to-one
interactions (1, 2).
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Fig. 1. Multiscale properties of mobility networks. On the left, we report the
probability distribution P(s) for the traffic, measured as the number of traveling
individuals, on any given connection, of three different networks: (A) the con-
tinental U.S. airlinenetwork, (B) the continentalU.S. county commutingnetwork, and
(C) the mobility among telephone tower cells in a major urban area. In all cases, the
distributions are highly skewed and span from three to seven orders of magnitude.

On the right, we show the illustration of the continental U.S. airline network (D) and
the commuting network (E) among major census areas. The color scale from yellow
to dark red identifies the traffic flow magnitude in logarithmic scale. The airline
network is made mostly by long-range connections as compared with a gridlike
ordering of the commuting network. The daily average flow of the commuting
network is one order of magnitude larger than that of the airline network.
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Through confronting us with serious ethical
and privacy questions, these kinds of data and the
reduced cost of producing, accessing, and com-
municating information on techno-social systems
are changing our understanding of a wide range
of phenomena (12–17). The spatial dynamics of
human infectious diseases are determined by the
mobility of individuals who carry a disease into
previously uninfected populations. Analogously,
human migration and mobility mediate a large
number of bioinvasions, defined as the introduc-
tion of previously unknown organisms in eco-
systems. The evolution of languages and dialects
is also driven by themixing of populations and the
merging and/or isolation of communities. Finally,
the daily mobility of humans in Internet space de-
fines our exploitation and foraging of information.

Network Thinking
The Internet and virtual worlds are networks
that we navigate and explore every day (17–19).
Human-interaction models are based on social
networks inwhich nodes represent individual inter-
acting agents and the links are potential interactions
(20). Mobility, ecological, and epidemiological
models rely on metapopulation networks that
consist of entire populations interlinked by virtue
of the exchanges between groups of individu-
als (21). A large body of work has shown that
most real-world networks exhibit dynamic self-
organization (that is, they become more compli-
cated over time without the intervention of outside
forces) and are statistically very heterogeneous;
these characteristics are typical hallmarks of com-
plex systems (22–24). The various statistical dis-
tributions characterizing these networks (including

the probabilities of node connection and the inten-
sities of the connecting links) are generally heavy
tailed and skewed, and they vary over several
orders ofmagnitude (25). The foremost challenge
offered by complex networks therefore resides in
their interconnectedness (networks of networks)
and multiscale nature. Figure 1 depicts three net-
works that exemplify human mobility at different
scales, ranging from cross-continental airline travel
to within-city mobility among mobile phone cell
towers. Ideally, to make predictions about the
processes driven by human mobility, we need to
integrate this data, with its wide-ranging granular-
ities (from a fewhundredmeters and a few hours to
thousands of kilometers and several days), into a
huge multiscale network.

Thus, the complexity of techno-social systems
calls for a “network”mindset. A simple example is
provided by the large-scale description of epidemic
spreading. The spread of the plague epidemic in
the 14th century (theBlackDeath) (26) wasmainly
a spatial diffusion phenomenon. Historical studies
have established that the disease propagation fol-
lowed a simple pattern that can be adequately de-
scribed mathematically within the framework of
continuous differential equations with terms that
describe diffusion. As anticipated in 1933 (27), the
large-scale and geographical impact of infectious
diseases [such as the SARS epidemic (28) or the
current swine flu epidemic] on populations in the
modern world is mainly due to commercial air
travel. An epidemic that starts in Southeast Asia
will rapidly reach North America and Europe (Fig.
2). This picture, therefore, cannot be simply de-
scribed in terms of diffusive phenomena; rather, it
must incorporate the spatial structure of modern

transportation networks. For instance, it is the
heavy-tailed nature of the airline traffic network
that explains why travel restrictions alone are in-
effective in containing a global epidemic unless
the global mobility rate is reduced at least by one
order of magnitude (29–31).

Another crucial aspect of modern network
thinking is the dynamical self-organization that
gives rise to large-scale infrastructure patterns in-
dependent of human planning and engineering of
the system. The prime example of a dynamical
self-organizing system may be the Internet, but
most communication infrastructures, road and trans-
portation systems, supply networks, and power
distribution grids are also dynamically growing
networks. Road construction, for instance, is ob-
viously planned, and it is not surprising that con-
siderations of optimization of cost, efficiency, and
utility inform the planning effort. As a consequence,
one could generally expect road networks to exhibit
a high degree of regularity. Yet everyday experience
suggests that this is not the case, especially in towns
that have grown over a long period of time. For
this reason, researchers have formulated simple
road-formationmodels (32) that try to capture the
tension between the notion of optimality that
inspires planners and the limited time and spatial
horizons that inform their decisions.

However, the biggest challenge in providing a
holistic description of multiscale networks is the
necessity of simultaneously dealing withmultiple
time and length scales. The final system’s dy-
namical behavior at any scale is the product of
the events taking place on all scales. The single
agent spreading a disease or single node of the
Internet that fails are apparently not affected by

Fig. 2. Epidemic invasion tree obtained from the simulations of a pandemic
originating in Hanoi, Vietnam. The nodes identify 3200 populations worldwide,
and the directed links indicate the path along which the epidemic has moved

from one population to the other. The color map from dark red to dark blue is
according to the time ordering of the epidemic invasion. Simulations obtained
with the worldwide epidemic and mobility model from (38).
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the multiscale nature of the network, just as sin-
gle molecules do not care about the multiscale
nature of turbulent fluids. However, the collective
dynamical behavior and our ability to conduct
mathematical and/or computational analyses of
techno-social systems are constrained by the mul-
tiscale characteristic of the system. In the context
of networks and techno-social systems, the multi-
scale challenge is making its appearance now be-
cause of the availability of large-scale data sets.
Thus, we have to develop appropriate formalisms
and techniques, as researchers studying multi-
scale physical systems (fluids, solids, distribution
of masses in the universe, etc.) have done in the
past (33). To achieve analytical understanding of
techno-social systems and approach them com-
putationally, we must find different strategies to
deal with dynamical behavior and/or equations
that work at very different characteristic scales
but still influence each other. Such methods will
finally allow the definition of layered computational
approaches in which different modeling assump-
tions and granularities can be used consistently in
the context of a general multiscale framework.

Taking Advantage of Multiscale Networks
Knowledge of network characteristics opens the
path to the discovery and understanding of new
statistical and dynamical laws governing large
infrastructural systems coupled to social systems.
Furthermore, the massive interconnectivity of spa-
tially distributed populations and the complexity
and strong heterogeneity of multiscale networks
are the keys to the construction of ab-initio com-
putational models, in which the behavior of the
system can be understood in a bottom-up per-
spective, as opposed to the traditional mean-field
or top-down strategies. This happens in a wide
array of contexts ranging from urban planning
(34) to epidemic modeling (35–38). Notable ex-
amples are the TRANSIM and EPISIMS projects
(35), in which agent-based models, including mil-
lions of individuals, are used to simulate the dy-
namics and traffic of entire cities and the spread
of biological agents, respectively.

In some cases, the understanding of complex
networks provides counterintuitive and surprising
approaches to the engineering andmanagement of
complex techno-social systems. For example, in
power grids and other flow-carrying networks, the
failure of a single node or line can trigger a domino
effect (“cascading failure”), in which the overload
induced by the flow redistribution may generate a
global failure of the network. By taking advantage
of the heterogeneity of the flow carried on the links
of multiscale networks, A. E. Motter (39) has pro-
posed an adaptive defense mechanism that is ac-
tually based on the removal of a certain number of
nodes to induce intentional failures. Although this
mechanismmight appear counterintuitive, the inten-
tional failure of appropriately chosen nodes does not
amplify the cascade process and, on the contrary, is
able tomitigate the final damage. In otherwords,we

now can provide a rationale for understanding the
emerging tipping points and nonlinear properties
that often underpin the most interesting character-
istics of a techno-social system’s behavior.

The Toughest Challenge
Although many basic conceptual questions re-
main unresolved, the major roadblock in defining
the fundamental predictability limits for techno-
social systems is their sensitivity and dependence
on social adaptive behavior. In the absence of a
stress on the system, a stationary state is reached
in which the feedback between the social behav-
ior and the physical infrastructure determines the
details of how the network behavior and the dy-
namical process of interest play out. We can imag-
ine using steady-state data to forecast system
behavior under such “normal” conditions. How-
ever, in the case of catastrophic events (for instance,
the disruption of social order during emergencies
such as pandemics or major natural disasters), the
behavior of techno-social networks is driven out
of equilibrium into unknown territory.

An interesting and ethically challenging as-
pect of predicting and managing the unfolding of
catastrophic events in techno-social networks is
the system’s adaptation to predictions when they
are made publicly available. Social behaviors react
and adapt to knowledge of predictions. Contrary
to what happens in physical systems, the predic-
tions themselves are part of the system dynamic.
In addition, predictions may point to unethical
control and anticipation strategies favoring spe-
cific demographic sectors of the society. Finally, the
risk of erroneous predictions may lead to costly
or unethical social control mechanisms with no
actual benefits. Whereas some of the above issues
may find a partial solution through improvements
in the accuracy and reliability of models, it is clear
that social adaptation to predictions presents us
with new methodological and ethical problems.

Addressing these problems involves tackling
three major scientific challenges. The first is the
gathering of large-scale data on information spread
and social reactions that occur during periods of
crisis. This is not presently out of reach, via large-
scale mobile communication databases (such as
mobile telephones, Twitter logs, and social Web
tools) operating at themoment of specific disaster
or crisis events. The second challenge is the for-
mulation of formal models that make it possible to
quantify the effect of risk perception and aware-
ness phenomena of individuals on the techno-
social network structure and dynamics. The third
challenge concerns the deployment of monitor-
ing infrastructures capable of informing compu-
tational models in real time. Complex systems
and networks theory, mathematical biology, sta-
tistics, nonequilibrium statistical physics, and com-
puter science all play a key role in the effort to
meet these challenges. Although such an inte-
grated approach might still be in its infancy, it
now seems possible to imagine the creation of

computational forecasting infrastructures that will
help us design better energy-distribution systems,
plan for traffic-free cities, anticipate the demands
of Internet connectivity, or manage the deploy-
ment of resources during health emergencies.
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