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Abstract
In this brief announcement, we propose a protocol-agnostic approach to improve the design of primary-
backup consensus protocols. At the core of our approach is a novel wait-free design of running several
instances of the underlying consensus protocol in parallel. To yield a high-performance parallelized
design, we present coordination-free techniques to order operations across parallel instances, deal
with instance failures, and assign clients to specific instances. Consequently, the design we present is
able to reduce the load on individual instances and primaries, while also reducing the adverse effects
of any malicious replicas. Our design is fine-tuned such that the instances coordinated by non-faulty
replicas are wait-free: they can continuously make consensus decisions, independent of the behavior
of any other instances.
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1 Introduction

At the core of any blockchain application is a consensus protocol that facilitates replicating
data across a group of servers (or replicas), some of which can fail or act malicious [5].
Commonly, these protocols use the primary-backup model pioneered in the Practical Byzantine
Fault Tolerant consensus protocol [2]. In these bft-style protocols, a single replica is
designated as the primary and is responsible for coordinating the consensus decisions, while
all the other replicas perform the backup role. The primary-backup model simplifies the
development of consensus protocols substantially: when a primary is non-malicious, then
even the simplest broadcast replication protocols suffice. However, the only complication
in these consensus protocols is in the way they deal with malicious primaries: malicious
behavior must be either detected (after which the primary can be replaced) or prevented
altogether. This simplicity of the primary-backup model negatively affects its performance
in three ways [1, 3]:
1. Primary load. The primary not only has to perform the primary tasks, but also the

backup role (as it is itself a replica). Consequently, the primary receives a higher load than
other replicas, and this load at the primary can become a bottleneck in the overall system

© Suyash Gupta, Jelle Hellings, and Mohammad Sadoghi;
licensed under Creative Commons License CC-BY

33rd International Symposium on Distributed Computing (DISC 2019).
Editor: Jukka Suomela; Article No. 44; pp. 44:1–44:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sugupta@ucdavis.edu
mailto:jhellings@ucdavis.edu
mailto:msadoghi@ucdavis.edu
https://doi.org/10.4230/LIPIcs.DISC.2019.44
https://arxiv.org/abs/1908.01458
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


44:2 Wait-Free Parallelization of Consensus Protocols

throughput. This is especially the case in fine-tuned high-performance consensus protocols
that employ complex cryptographic primitive, for example, to reduce communication
overheads or to improve resilience.

2. Primary replacement. A primary-backup consensus protocol works only when the primary
behaves in accordance with the protocol. If the primary acts malicious or is faulty, then
it will be replaced. However, detection of such behaviors requires setting timers. Further,
replacing a faulty primary usually takes a while. During this time the system is unable
to handle requests, which negatively affects its overall throughput.

3. Malicious behavior. Primary-backup consensus protocols are only capable of detecting
catastrophic failures that prevent new consensus decisions altogether, but they fail to
detect or deal with primaries that affect the performance of the system in other ways, for
example, a malicious primary could reduce or throttle the throughput of the system.

To the best of our knowledge, no approach is yet able to address all these limitations of
primary-backup consensus protocols. In this brief announcement, we address these limitations
in a protocol-agnostic manner by exploiting parallelization.1 In our paradigm, we run several
instances of the underlying consensus protocol in parallel and balance the system load among
these parallel instances. This parallelism helps to reduce the load per primary and mitigates
the negative impacts of a single primary on the throughput of the system.

2 Parallelizing consensus

Consider a system with n replicas, of which f are faulty. At the core of our parallelization
paradigm is the coordination of m, f < m ≤ n, instances of an off-the-shelf primary-backup
consensus protocol running in parallel. This implies that a single round of our paradigm
coordinates multiple parallel consensus rounds, each of which is initiated and managed by a
distinct primary Pi for the instance Ii, 1 ≤ i ≤m. Each consensus decision succeeds whenever
Pi is non-faulty. This approach to parallelization raises several important challenges:
1. For optimal throughput, we need to ensure that each instance is making a distinct

consensus decision, that is, each instance is processing a distinct client request.
2. Every non-faulty replica should execute all the accepted client requests in the same order.
3. When several instances fail in a round and want to transfer control to new primaries,

then all the non-faulty replicas need to do so in the same manner.
In our design, we address each of these challenges. Figure 1 sketches a high-level overview
of a parallelized consensus round at replica R. Our paradigm also identifies various ways
in which malicious replicas can prevent it from efficently operation. Next, we highlight the
design decisions taken to addresses these possible attacks.

Deterministic round execution. The correctness of the underlying consensus protocol, used
by instances I1, . . . , Im, can guarantee that each non-faulty replica derives the same set of
client requests in round ρ. Hence, our paradigm behaves correctly whenever all non-faulty
replicas can determine the same order of execution of these client requests. To avoid that
malicious replicas can influence, predict, or reliably exploit the order of execution to their
advantage, we permute the order of execution based on the set of client requests accepted in
round ρ (some of which are proposed by non-faulty replicas).

1 A complementary approach to increase parallelism is via partial replication through sharding [4].
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Figure 1 A high-level overview of a replica R. The replica coordinates a single consensus round
among m instances of some consensus protocol. Each instance yields a consensus decision. The
success decisions S(·) yield a set of client requests, which are executed in a deterministic order. The
failure decisions F are collected and can be used to replace primaries in a unified manner.

Dealing with primary failure. In primary-backup consensus protocols, the primary can
fail or act malicious. Our paradigm supports two ways to deal with such failures. The
straightforward approach is to suspend instances with failed primaries and to try recovering
these failed primaries after some delay. To avoid recovering too often, this delay is doubled
after each failure. We also support replacement of failed primaries by other replicas. To do
so, we provide a unified primary replacement protocol that only requires coordination among
the instances with failed primaries.

Consistent handling of client requests. To ensure that subsequent client requests are
always processed in order, we assign clients to instances in a round-robin manner. We do
this by requiring each instance Ii, 1 ≤ i ≤m, to only deal with client requests of a client c if
i = cmod m. We notice that a client c can be assigned to an instance with a faulty primary
that might ignore its request. To deal with this situation, we allow clients to periodically
issue instance-change requests to reassign them to other instances. To assure balanced load
among the instances, a non-faulty instance only accepts an instance-change request if it has
not been yet assigned dc/(n− f)e clients, where c refers to the total number of clients.

Wait-free parallelization. To ensure the correctness of our parallelization paradigm, we
do not require any non-faulty instance to wait for other instances. In our paradigm, the
execution of client requests in round ρ has no influence on the consensus decisions of future
rounds. Second, the instances arriving at successful consensus decisions do not require any
coordination. The only required coordination is between instances with failed primaries.
Hence, instances that arrived at successful consensus decisions in the current round are free
to make consensus decisions for the future rounds, while the execution of the client requests
of previous rounds occurs in the background. Furthermore, we have coordination-free ways to
detect and sanction malicious behavior of primaries (e.g., throttling performance). Combined,
these approaches guarantee that instances with non-faulty primaries are wait-free: they are
always able to operate at maximum throughput and will always see their client requests
executed within bounded time, this independent of any malicious behavior in other instances.
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