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Abstract: The need for conversion method exists due to the 

limitation of manual conversion at design time whenever the 

interested party must perform some assessments using an 

existing model checker tool. Manual conversion of the related 

requirements into the respective specification language is 

time-consuming especially when the person has limited 

knowledge and need to do the task repetitively with a different set 

of Service Level Agreement (SLA) configurations. This paper 

aims to address the need to automatically capture 

non-functional requirements specified in the SLA, namely, 

Service Level Objectives (SLO) and converting them into a 

specific probabilistic temporal logic specification. We tackle this 

problem by proposing a conversion method that utilizes a 

rule-based and template-based approach. The conversion 

method automatically extracts the required information in SLA 

based on certain rules and uses the extracted information to 

replace the elements in the prepared template. We focus on 

WS-Agreement language for SLA and probabilistic 

alternating-time temporal logic with rewards specification 

(rPATL) for the properties specification used in PRISM-games 

model checker tool. We then implement an initial proof-of 

concept of a conversion method to illustrate the applicability of 

translating between targeted specifications. 

Keywords: Software Conversion, Service Level Agreement, 

Probabilistic Temporal Logic, Quality of Service 

I. INTRODUCTION 

Service Level Agreement (SLA) has been applied in 

various research areas including cloud computing, where 

SLA is needed to govern the relationship between the cloud 

provider and cloud consumer [1]. The agreed SLA is then 

used by the cloud provider as the key policies in managing its 

cloud resources. With the notion of autonomic clouds [2], 

SLA is crucial to enable self-adaptive of cloud in a 

collaborative environment in order to maintain the quality of 

service (QoS) level of cloud applications [3]. Assuring QoS 

of cloud application defined in SLA at runtime is non-trivial 

computational task. In the case of problematic condition, an 

appropriate adaptation strategy has to be devised and 

executed. One of such strategies is the cloud migration that  
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refers to a process of migrating a cloud application from 

one host to another host. The migration strategy is crucial 

when the currently deployed host is dealing with resource 

scarcity and thus requires the application to be migrated to 

another collaborative host to prevent from SLA violation. As 

there are more than one host to be chosen, a careful decision 

has to be made in order to migrate successfully whilst 

maintaining the expected QoS level.  

The mentioned challenge can be tackled from the design 

time as well as runtime. In this paper, we focus on the design 

time which concerns of two inter-related aspects. The first 

concern is to assess a set of migration strategies in order to 

determine the winning strategies for a SLA specification. 

Another concern is to find the appropriate SLA configuration 

to be offered which has higher winning strategies. The 

second concern is important for a cloud provider in 

generating a SLA to be offered to the cloud consumers. 

Hence, the cloud provider can maximize consumer’s 

satisfaction. 

One of the potential methods that can be applied to assess 

the migration strategies is using software verification and 

synthesis for self-adaptive systems [4]. Software verification 

is needed to assess the correctness of migration strategy in 

recovering from failure, whilst synthesis aims to determine 

its satisfaction against QoS requirements. Both processes are 

well-studied research area and a few tools, also known as 

model checking tools have been developed and used by 

others, such as PRISM [5]. However, performing the 

assessment using a model checker is not a straight forward 

activity due to different language specification. In the case of 

the challenges mentioned above, it involves transforming or 

converting the cloud migration model and SLA specification 

into the specification used by the model checker. As a result, 

it is time-consuming activity especially for a novice user of 

the tool when dealing with different set of SLA 

specifications. Therefore, in this paper, we address the need 

to convert the QoS requirements specified in SLA as 

properties of a model checking tool. We propose a conversion 

method to automatically perform the conversion in order to 

support the assessment activity. The approach consists of 

extracting non-functional requirements specified in SLA 

based on WS-Agreement [6] and transforming them into 

multi-objective properties specified using probabilistic 

alternating-time temporal logic with rewards specification 

(rPATL) [7]. The extraction process is designed with a set of 

rules and focuses on the 

elements of Service Level 

Objectives (SLO) in SLA. 
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Meanwhile, the transforming process makes use of a 

template-based approach, where the respective elements in 

the template are replaced with the extracted elements of SLO. 

Hence, the outcome of the conversion is the properties which 

can be further used for verification and synthesis. For this 

reason, the interested user can make use of PRISM-games 

model checker [8]. However, the discussion of the 

verification and synthesis tasks is beyond the scope of this 

paper. This paper is organized as follows. Section 2 

elaborates the fundamental areas for this paper. Section 3 

describes the motivation and challenge to be tackled in this 

work. Section 4 explains the specifications used in this work. 

Section 5 presents the proposed approach to address the 

challenge. Section 6 presents a proof-of-concept 

implementation to illustrate the application of the approach. 

Section 7 highlights the related works. Finally, Section 8 

provides the conclusion and outlines the future work. 

II.  BACKGROUND 

A. SLA-driven Cloud Computing  

Cloud computing is defined as a model for enabling 

ubiquitous, convenient, on-demand network access to a 

shared pool of configurable computing resources (e.g., 

networks, servers, storage, applications, and services) that 

can be rapidly provisioned and released with minimal 

management effort or service provider interaction [9]. From 

the services perspective, the cloud computing can offer 

Software-as-a-Service (SaaS), Platform-as a-Service (PaaS), 

Infrastructure-as-a-Service (IaaS) [10].  

Service Level Agreement (SLA) has been researched and 

applied in a few areas, especially in the Web services 

environment. Several specification languages have been 

introduced which are based on XML, such as SLAng [11], 

WSLA [12] and WS-Agreement [6]. In Web services, SLA is 

a contract to govern the relationship between two parties; 

Service provider and service consumer. The relationship 

between them is established whenever both parties agree on 

the agreement. One of the common frameworks to 

implement SLA-aware services is SLA@SOI that supports 

SLA definition language, negotiation, monitoring, violation 

prediction, and detection, etc [13].  

In the area of Cloud computing, SLA needs to exist 

between two parties as well, namely, between Cloud 

providers and consumers. These two parties need to agree on 

a set of terms specified in the SLA document, potentially 

through a negotiation process [1]. Furthermore, a few 

research works have attempted to address SLA issues in 

cloud computing, such as SLA management support [14], a 

specialized SLA language for the cloud environment, 

namely, the Cloud SLA specification [15] which was 

constructed by considering the Open Cloud Computing 

Interface (OCCI) [16] and the Cloud Computing Reference 

Architecture of the National Institute of Standards and 

Technology (NIST) [17].  

From the Cloud provider perspective, the established SLA 

is used as the main requirements to manage its Cloud 

infrastructure in ensuring the desired services are 

provisioned to the Cloud consumer [18]. For this reason, 

existing work [3] proposed a SLA-driven Cloud management 

that aims to manage the resource management life-cycle 

through the utilization of agreements which include the 

establishing of the agreement, feeding the agreement to the 

cloud resource manager, monitor the agreement satisfaction, 

and performing the necessary actions to main the quality 

levels specified in the SLA. The proposed platform has 

utilized WS-Agreement specification and extended WSAG4J 

framework [19]. In addition, [20] presented a dynamic 

resource provisioning, which aims to provision Cloud 

resources based on the Cloud users’ demands while 

satisfying SLA requirements.  

B. Autonomic Computing  

Autonomic Cloud Computing is a concept that combines 

the autonomic computing with cloud computing [2]. The 

autonomic computing refers to the computing model that 

brings in the self-managed capability into a software system. 

The main framework to realize autonomic computing is 

referred to the MAPE-K framework [21]. The framework 

contains four key components, namely monitor, analyzer, 

planner and executor. In the context of autonomic cloud, this 

framework enables self-managed cloud resources, especially 

when dealing with varying workload demands. Therefore, 

the monitoring is used to monitor the current resource usage 

in relation to the workload demands. The analyzer is used to 

analyze the impact of the change in the workloads which may 

potentially cause SLA violation. The planner is responsible 

to decide the appropriate adaptation action to prevent or 

minimize the SLA violation. Meanwhile, the executor is 

required to enforce the necessary action. 

C. Quantitative Verification  

Quantitative verification is a mathematically-based 

technique for establishing the correctness, performance, and 

reliability of systems that exhibit stochastic behavior [22]. 

Quantitative verification has been proposed to support 

several stages of software adaptation process in self-adaptive 

systems [23], such as during analysis and planning of 

MAPE-K loop [21].  

Model checking techniques are the common techniques to 

realize quantitative verification. In this paper, we are paying 

a specific attention to PRISM-games model checker [24] [8], 

a tool for multi-objective strategy synthesis for stochastic 

games. It is important to note that PRISM-games is an 

extension PRISM tool [5]. The main activities in performing 

model checking using a model checking tool are commonly 

referred to; (i) model specification, (ii) property specification, 

and (iii) execution of model checking with/without strategy 

synthesis. The model specification refers to the activity of 

designing and encoding the systems under study by abstractly 

representing them using the supported models. In 

PRISM-games, the users can specify the systems as 

probabilistic models (e.g. discrete-time Markov chains, 

Markov decision processes and continuous time Markov 

chains) and stochastic games. 

Property specification refers to the 
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activity of designing and encoding one or more objectives to 

be fulfilled by the specified model. Meanwhile, the execution 

of model checking task to the execution of respective model 

checking algorithm to reason and analyze the specified 

model against the specified properties which results to the 

model checking outcomes (e.g. satisfied or not, optimized 

values).  

III. MOTIVATION AND CHALLENGE 

The work proposed in this paper is motivated by the need 

to perform automated quantitative verification with strategy 

synthesis for the application migration strategies in 

autonomic clouds environment. Thus, we begin by 

discussing the application migration problem followed by the 

need to have automated quantitative verification and 

synthesis for application migration strategies.  

A. Application Migration in Autonomic Cloud 

Environment  

Application migration problem has become of the studied 

issue in the autonomic cloud environment, specifically 

related to the Science Cloud Platform (SCP) with the 

ASCENS project [2]. SCP contains multiple computing 

nodes or clouds which each cloud is associated with an 

autonomic manager based on the MAPE-K framework. That 

means each cloud has to have the ability to adjust its resource 

autonomously and proactively. The main role of these clouds 

is to collaboratively and voluntarily share their resources in 

order to provision cloud application [25]. During runtime, 

any cloud may be dealing with resource over utilization or 

resource failures which results in SLA violation. Therefore, 

the cloud may have to migrate the application under its 

responsibility to other cloud collaborators. For this reason, it 

has to analyze and decide its migration strategies that satisfy 

its migration goals. In this context, a strategy refers to which 

cloud collaborator to choose in order to migrate the cloud 

application. Existing work has applied a reputation-based 

method to choose the right cloud collaborator [26].  

B. Assessing Cloud Application Migration Strategies  

We are concerned with the need to assess the application 

migration strategies at design time. This kind of need may be 

the interest of the cloud developer analyst. Specifically, the 

interested parties would like to evaluate the following:  

 Determine the appropriate migration strategies in relation 

to a set of predefined SLA parameters.  

 Identify the appropriate threshold values to be included in 

SLA.  

 Explore the effect and impact of executing migration 

strategies within a certain number of cloud 

collaborators.  

To perform the assessment, one of the approaches is to 

utilize the existing model checking tool to perform 

verification and synthesis process repetitively. This kind of 

tool provides the features and functionalities that ease the 

verification and synthesis task. However, the key challenge is 

to capture the application migration model and related 

non-functional requirements. To capture this information, 

the person has to be familiar with the syntax of the 

specification.  

Therefore, in this work, we focus on capturing the 

non-functional requirements which are typically specified in 

the SLA. Such requirements can be related to the 

performance, cost, reliability, etc. For instance, the response 

time to migrate the application and/or the response time to 

execute the application on the collaborator’s environment 

should be less than a threshold. Another example is the cost 

of executing the application on the collaborator’s 

environment does not beyond a certain threshold.  

To capture the requirements, the conventional approach is 

to manually map and encode the requirements as properties 

in a model checking tool. However, this approach requires 

the knowledge and skill to understand both specifications, 

the source specification (e.g. WS-Agreement) and the 

destination specification (e.g. probabilistic temporal logic). 

Hence, in this paper, we address this limitation by providing 

an automatic approach for the mapping and encoding the 

requirements via a conversion method. The details are 

discussed in the next section.  

IV. SPECIFICATION LANGUAGES  

In this section, we introduce the specifications used in this 

research, in particular, to represent SLA and probabilistic 

temporal logic.  

A. WS-Agreement  

WS-agreement can be defined as a runtime extensible 

mark-up based language and protocol that used is to monitor 

and communicate between client and server based on the 

initial offer [27], [28]. Example of a SLA specification is 

shown in Figure 3.  

The Agreement Context and Agreement Term Type are 

two main components within WS Agreement where each of 

them required performing their own task. The agreement 

context will state data which describe the properties and 

services involved while the agreement term type is for 

specifying the functional and non-functional requirements. 

Under Agreement term there are two main substructures 

which are named as Service Description Terms (SDTS) and 

Guarantee Terms [29]. The specialty of the Guarantee Term 

is it can have single or multiple scopes of an operation. Under 

the guarantee terms, there are four sub-elements termed as 

Obliged, Validity, Expression, and Evaluation Event. Each 

of these sub-elements can have their own further 

sub-elements. For instance, in the case of Validity, we can 

define the start and end time of the guarantee terms. 

Meanwhile, for Expression, we can define the Predicate, SLA 

parameter, and Value. For more details about the agreement, 

readers can refer to [6].  

B. Probabilistic Temporal Logic  

The properties are formulated as the probabilistic 

alternating-time temporal logic with rewards specification  
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(rPATL) [7]. It is introduced for expressing quantitative 

properties for reasoning stochastic multi-player games 

(SMGS) model [30] using PRISM-games model checker. 

SMGS model is useful to model probabilistic and competitive 

behavior. In the context of a single autonomic cloud, the 

competitive behavior of two players can be represented as a 

controlled and uncontrolled environment [31]. The 

controlled aspect refers to the action to be executed by the 

autonomic component, whilst the uncontrolled environment 

can be referred to the behavior of the network which affects 

the performance of the action.  

Syntactically, rPATL is a CTL-style branching-time 

temporal logic that distinguishes between path formulae and 

state formulae. The path formulae consider the composition 

of multiple nodes in the model, whilst the state formulae are 

associated with specific nodes in the model.  

As rPATL is used to support the reasoning multi-player 

stochastic games, it enables a specification of a coalition of 

players that has a strategy which can ensure the probability of 

an event’s occurrence or that an expected reward measure 

meets some thresholds, irrespective of the actions of the other 

players.  

There are two probabilistic operators that can be expressed 

to form a property in rpatl, namely, the probabilistic operator 

P and the reward operator R. In this work, we only focus on 

the reward operator, but we introduce both for providing the 

background information.  

For both types of operators, we can define a threshold =? 

To require the computation of the actual probability of 

reward. For instance, as follows:  

<< P1,P3 >> Pmax=?[F “end”]        (1) 

The property expresses the need to find the maximum 

probability with which players P1 and P3 can guarantee that 

an end-state is reached. In the above example, F is an 

example of path formula.  

rPATL can also be used to reason about the total reward 

[C], mean payoff [S] or a long-run ratio of two rewards. In the 

case of total reward, the formulated games model must have 

reachable terminal states with zero rewards.  

Furthermore, the properties defined as rPATL can be of 

two types, single objective, and multi-objective properties. 

Conventional rPATL is used to state a single objective 

property, whilst multi-objective is a boolean combination of 

single objective properties. The multi-objective properties 

must be of the same type (i.e. Either all probabilistic or 

reward-based) and the threshold must be specified. An 

example of multi-objective is as follows:  

  <<P >> (R{r1} <X[C]& R{r2} >Y [C])         

(2) 

This property expresses that the players in coalition P 

must ensure a strategy where the accumulated reward r1 is 

less than X is guaranteed and the accumulated reward r2 is 

greater than Y is guaranteed, independently of the 

strategies of other players. More examples of properties 

specification can be referred to [32].  

 

V. THE DESIGN  

In this section, we explain the proposed conversion 

approach and method which aims to address the assessment 

activity during design time. The runtime stage is considered 

as future work.  

A. Conversion Approach  

The conversion approach is meant to support the 

interested party (e.g. Software developer) to quickly obtain 

the properties based on required probabilistic temporal logic 

specification. It consists of four main phases, namely:  

(1) Importing SLA documents -The approach should 

allow the users to import a SLA document (i.e. 

WS-Agreement) and display it back to the user.  

(2) Converting into properties -The approach should 

ease the conversion process by enabling the users to 

obtain the required properties automatically.  

(3) Exporting properties -The approach should enable 

the users to export the properties into .props file 

automatically, which is the format that is 

compatible with PRISM-games tool.  

(4) Supporting validation of the properties -The 

approach should support the users to check the 

correctness of the generated properties via 

PRISM-games tool.  

The approach assumes that the interested party or user has 

access to a SLA document. Thus, it begins by importing the 

SLA document into the conversion application. The system 

will display the contents of SLA. Then, the user initiates the 

conversion process that results in properties based on 

probabilistic temporal logic specification. It is important to 

note that currently, the validation of the converted properties 

is supported by allowing the user to export/save them into a 

.props file. Then, this file can be opened and checked using 

PRISM-games model checking tool.  

B. Conversion Method  

In this section, we describe the conversion method in terms 

of algorithm that converts from SLA to the probabilistic 

temporal logic specification as shown in Algorithm 1.  

  

Require: SLA specification 

Ensure: rPATL specification 

1: Initialize parser and assign path to SLA 

file 

2: Get the root element of SLA 

3: for all element in SLA do 

4: Find the SLO section 

5: if the SLO section is found then 

6: Retrieve the name, predicate, parameter, 

and value 

7: end if 

8: end for 

9: Get the template file 

10: Replace the elements in the template with 

the respective elements from SLO 

11: Write and store into a result file Algorithm 1: Conversion Algorithm 
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Figure 1. Sample Of Properties Template For 

Temporal Logic Specification 

The algorithm takes SLA specification as the input and 

produced rPATL specification as the output. It begins by 

extracting the elements of SLA using XML parser that 

returns a Document Object Model (DOM) document. Then, 

it searches the entire elements in DOM to find the interested 

elements specifically those that are defined within Service 

Level Objectives (SLO) section. Herein, we are interested in 

extracting the name of SLO, its predicate, parameter, and 

value. Whenever this information is obtained, the algorithm 

then generates a template file. Then, the elements retrieved 

from SLO is used to replace the elements in the template. 

Finally, the updated template file is written and stored in a 

result file. A sample of the template file is shown in Figure 1. 

In the template, it specifies two default parameters, MAXRT 

to hold the maximum value for the time-related requirement, 

and MAXRS to hold the maximum value for the cost related 

requirement. Then, it specifies multi-objective properties as a 

boolean combination of time and cost related objectives. 

Hence, the outcome of the conversion will replace the default 

parameters with its values and the condition parameters. 

Example of the converted specification is shown in Figure 4. 

VI. IMPLEMENTATION  

In this section, we present the proof-of-concept 

implementation of our conversion approach. We have 

developed a conversion program based on Java language. 

The interface of the program is shown in Figure 2.  

 

 
Figure 2. Main interface of the conversion program 

The program offers five functionalities and two main 

paragraph fields, namely, for displaying/editing the content 

of WS-Agreement and for displaying/editing the converted 

properties. The first functionality refers to the open button to 

enable opening a WS-Agreement file and import the content 

in one of the paragraph fields. The second functionality is the 

save button to allow saving any changes made to the WS 

Agreement file. The third functionality is the clear button to 

empty the contents of the field. Then, the convert button that 

implements the algorithm introduced in Algorithm 1. 

Finally, the save result button that can save the converted 

properties into a new file. With this program, the interested 

party/user can perform that conversion automatically. The 

process begins by importing the respective SLA file into the 

program such as shown in Figure 3. Then, the user can 

execute the conversion and the converted result is as shown 

in Figure 4.  

 
Figure 3. A Sample Of SLA Imported Into The 

Conversion Program 

 
Figure 4. Sample Of Converted SLA As Temporal Logic 

Specification 

After having the converted properties, the user can export 

and save it into a specific format. In the case of 

PRISM-games tool, the required format for the properties is 

.props. Given with the properties file, the respective user can 

perform the required verification with or without synthesis 

using PRISM-games model checker. Readers can refer to [8] 

for further details. 

VII. RELATED WORK 

The automated conversion that aims to translate between 

two different specification languages has been studied by a 

few works. The common reason 

for enabling this automated 

conversion is to support formal 
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analysis offered by the existing analysis techniques and tools. 

In this section, we highlight these works that have focused on 

the design time and conclude to the novelty of the work 

proposed in this paper.  

A few general conversion approaches between two different 

specifications have been proposed, specifically as follows. 

The work by Baresi et al. [33,34] addressed the need to 

analyze Interaction Overview Diagrams. Thus, they 

proposed a conversion approach from IOD to TRIO temporal 

logic [35] based on the transformation formulae. With this 

translation, IOD can be analyzed and verified via Zot 

bounded model checker [36].  

Meanwhile, Meziani et al. [37] focused on assisting 

software developer to understand the outcome of Colored 

Petri Nets (CPN) analysis using CPN model checker [38]. 

For this reason, they proposed a conversion method from 

CPN to Unified Modeling Language (UML) diagrams. 

Furthermore, a few works have targeted the conversion 

approach to PRISM model checker. The work by Gallotti et 

al. [39] aimed to support QoS analysis of service composition 

using PRISM model checker [5]. Hence, they proposed a 

model based transformation approach called ATOP from 

XMI specification (i.e. Activity Diagrams) to PRISM model 

(e.g. Markov Decision Process (MDP)). They also mentioned 

about non-functional requirements (NFR) presented as 

Probabilistic Computation Tree Logic (PCTL) specification 

[40]. However, the automated conversion from NFR 

specification to PCTL is not discussed.  

The work by Krostsiani et al. [41] addressed SLA 

validation using PRISM model checker, especially for SLA 

monitoring. In this context, it is crucial to check for possible 

SLA violation events and related actions. To enable this, a 

transformation approach is proposed that converts extended 

WS-Agreement into PRISM model (i.e. Continuous-Time 

Markov Chain model (CTMC). The extension enables more 

details about the actions to be taken upon the violation of 

specific guarantee terms. The conversion approach differs 

from our work since it focuses on the model aspect while we 

focus on the properties aspect.  

VIII. CONCLUSION 

We have presented a proof-of-concept implementation of 

conversion approach from SLA specification (i.e. 

WS-Agreement) to rPATL specification. Our motivation for 

the proposed approach is based on the need to analyze the 

cloud migration process for autonomic cloud environment at 

design time. The approach enables the respective user to 

import the SLA file, convert it into the rPATL specification, 

and export it as .props file. The conversion method utilizes a 

rule-based technique and a template-based approach. The 

rules are used to extract the required elements from SLA 

which is then replaced the elements specified in the template. 

The exported .props file can be used as the properties to 

analyze a PRISM-games model (i.e. Stochastic Multi-player 

Games) using PRISM-games model checker.  

As our future work, we plan to consider a complex SLA as 

well as different SLA specification language to be converted 

into the respective probabilistic temporal logic specification. 

We also consider combining this properties-driven 

conversion with the model-driven conversion to enhance its 

benefit. We also plan to integrate with the syntax checking 

module provided in PRISM games model checker to bring 

this conversion capability into the runtime environment  
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