
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-10, August 2019

3487

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number J97360881019/19©BEIESP

DOI: 10.35940/ijitee.J9736.0881019

Abstract: The need for conversion method exists due to the

limitation of manual conversion at design time whenever the

interested party must perform some assessments using an

existing model checker tool. Manual conversion of the related

requirements into the respective specification language is

time-consuming especially when the person has limited

knowledge and need to do the task repetitively with a different set

of Service Level Agreement (SLA) configurations. This paper

aims to address the need to automatically capture

non-functional requirements specified in the SLA, namely,

Service Level Objectives (SLO) and converting them into a

specific probabilistic temporal logic specification. We tackle this

problem by proposing a conversion method that utilizes a

rule-based and template-based approach. The conversion

method automatically extracts the required information in SLA

based on certain rules and uses the extracted information to

replace the elements in the prepared template. We focus on

WS-Agreement language for SLA and probabilistic

alternating-time temporal logic with rewards specification

(rPATL) for the properties specification used in PRISM-games

model checker tool. We then implement an initial proof-of

concept of a conversion method to illustrate the applicability of

translating between targeted specifications.

Keywords: Software Conversion, Service Level Agreement,

Probabilistic Temporal Logic, Quality of Service

I. INTRODUCTION

Service Level Agreement (SLA) has been applied in

various research areas including cloud computing, where

SLA is needed to govern the relationship between the cloud

provider and cloud consumer [1]. The agreed SLA is then

used by the cloud provider as the key policies in managing its

cloud resources. With the notion of autonomic clouds [2],

SLA is crucial to enable self-adaptive of cloud in a

collaborative environment in order to maintain the quality of

service (QoS) level of cloud applications [3]. Assuring QoS

of cloud application defined in SLA at runtime is non-trivial

computational task. In the case of problematic condition, an

appropriate adaptation strategy has to be devised and

executed. One of such strategies is the cloud migration that

Revised Manuscript Received on August 06, 2019.

Nur Diana Madinah Ab Hadi, Faculty of Computer and Mathematical

Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor,

Malaysia.

Azlan Ismail, Faculty of Computer and Mathematical Sciences, Universiti

Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia.

Nur Syazleen Rosli, Faculty of Computer and Mathematical Sciences,

Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia.

Suzana Zambri, Faculty of Computer and Mathematical Sciences,

Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia.

refers to a process of migrating a cloud application from

one host to another host. The migration strategy is crucial

when the currently deployed host is dealing with resource

scarcity and thus requires the application to be migrated to

another collaborative host to prevent from SLA violation. As

there are more than one host to be chosen, a careful decision

has to be made in order to migrate successfully whilst

maintaining the expected QoS level.

The mentioned challenge can be tackled from the design

time as well as runtime. In this paper, we focus on the design

time which concerns of two inter-related aspects. The first

concern is to assess a set of migration strategies in order to

determine the winning strategies for a SLA specification.

Another concern is to find the appropriate SLA configuration

to be offered which has higher winning strategies. The

second concern is important for a cloud provider in

generating a SLA to be offered to the cloud consumers.

Hence, the cloud provider can maximize consumer’s

satisfaction.

One of the potential methods that can be applied to assess

the migration strategies is using software verification and

synthesis for self-adaptive systems [4]. Software verification

is needed to assess the correctness of migration strategy in

recovering from failure, whilst synthesis aims to determine

its satisfaction against QoS requirements. Both processes are

well-studied research area and a few tools, also known as

model checking tools have been developed and used by

others, such as PRISM [5]. However, performing the

assessment using a model checker is not a straight forward

activity due to different language specification. In the case of

the challenges mentioned above, it involves transforming or

converting the cloud migration model and SLA specification

into the specification used by the model checker. As a result,

it is time-consuming activity especially for a novice user of

the tool when dealing with different set of SLA

specifications. Therefore, in this paper, we address the need

to convert the QoS requirements specified in SLA as

properties of a model checking tool. We propose a conversion

method to automatically perform the conversion in order to

support the assessment activity. The approach consists of

extracting non-functional requirements specified in SLA

based on WS-Agreement [6] and transforming them into

multi-objective properties specified using probabilistic

alternating-time temporal logic with rewards specification

(rPATL) [7]. The extraction process is designed with a set of

rules and focuses on the

elements of Service Level

Objectives (SLO) in SLA.

Converting from Service Level Agreement to

Probabilistic Temporal Logic Specification

Nur Diana Madinah Ab Hadi, Azlan Ismail, Nur Syazleen Rosli, Suzana Zambri

Converting from Service Level Agreement to Probabilistic Temporal Logic Specification

3488

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number J97360881019/19©BEIESP

DOI: 10.35940/ijitee.J9736.0881019

Meanwhile, the transforming process makes use of a

template-based approach, where the respective elements in

the template are replaced with the extracted elements of SLO.

Hence, the outcome of the conversion is the properties which

can be further used for verification and synthesis. For this

reason, the interested user can make use of PRISM-games

model checker [8]. However, the discussion of the

verification and synthesis tasks is beyond the scope of this

paper. This paper is organized as follows. Section 2

elaborates the fundamental areas for this paper. Section 3

describes the motivation and challenge to be tackled in this

work. Section 4 explains the specifications used in this work.

Section 5 presents the proposed approach to address the

challenge. Section 6 presents a proof-of-concept

implementation to illustrate the application of the approach.

Section 7 highlights the related works. Finally, Section 8

provides the conclusion and outlines the future work.

II. BACKGROUND

A. SLA-driven Cloud Computing

Cloud computing is defined as a model for enabling

ubiquitous, convenient, on-demand network access to a

shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services) that

can be rapidly provisioned and released with minimal

management effort or service provider interaction [9]. From

the services perspective, the cloud computing can offer

Software-as-a-Service (SaaS), Platform-as a-Service (PaaS),

Infrastructure-as-a-Service (IaaS) [10].

Service Level Agreement (SLA) has been researched and

applied in a few areas, especially in the Web services

environment. Several specification languages have been

introduced which are based on XML, such as SLAng [11],

WSLA [12] and WS-Agreement [6]. In Web services, SLA is

a contract to govern the relationship between two parties;

Service provider and service consumer. The relationship

between them is established whenever both parties agree on

the agreement. One of the common frameworks to

implement SLA-aware services is SLA@SOI that supports

SLA definition language, negotiation, monitoring, violation

prediction, and detection, etc [13].

In the area of Cloud computing, SLA needs to exist

between two parties as well, namely, between Cloud

providers and consumers. These two parties need to agree on

a set of terms specified in the SLA document, potentially

through a negotiation process [1]. Furthermore, a few

research works have attempted to address SLA issues in

cloud computing, such as SLA management support [14], a

specialized SLA language for the cloud environment,

namely, the Cloud SLA specification [15] which was

constructed by considering the Open Cloud Computing

Interface (OCCI) [16] and the Cloud Computing Reference

Architecture of the National Institute of Standards and

Technology (NIST) [17].

From the Cloud provider perspective, the established SLA

is used as the main requirements to manage its Cloud

infrastructure in ensuring the desired services are

provisioned to the Cloud consumer [18]. For this reason,

existing work [3] proposed a SLA-driven Cloud management

that aims to manage the resource management life-cycle

through the utilization of agreements which include the

establishing of the agreement, feeding the agreement to the

cloud resource manager, monitor the agreement satisfaction,

and performing the necessary actions to main the quality

levels specified in the SLA. The proposed platform has

utilized WS-Agreement specification and extended WSAG4J

framework [19]. In addition, [20] presented a dynamic

resource provisioning, which aims to provision Cloud

resources based on the Cloud users’ demands while

satisfying SLA requirements.

B. Autonomic Computing

Autonomic Cloud Computing is a concept that combines

the autonomic computing with cloud computing [2]. The

autonomic computing refers to the computing model that

brings in the self-managed capability into a software system.

The main framework to realize autonomic computing is

referred to the MAPE-K framework [21]. The framework

contains four key components, namely monitor, analyzer,

planner and executor. In the context of autonomic cloud, this

framework enables self-managed cloud resources, especially

when dealing with varying workload demands. Therefore,

the monitoring is used to monitor the current resource usage

in relation to the workload demands. The analyzer is used to

analyze the impact of the change in the workloads which may

potentially cause SLA violation. The planner is responsible

to decide the appropriate adaptation action to prevent or

minimize the SLA violation. Meanwhile, the executor is

required to enforce the necessary action.

C. Quantitative Verification

Quantitative verification is a mathematically-based

technique for establishing the correctness, performance, and

reliability of systems that exhibit stochastic behavior [22].

Quantitative verification has been proposed to support

several stages of software adaptation process in self-adaptive

systems [23], such as during analysis and planning of

MAPE-K loop [21].

Model checking techniques are the common techniques to

realize quantitative verification. In this paper, we are paying

a specific attention to PRISM-games model checker [24] [8],

a tool for multi-objective strategy synthesis for stochastic

games. It is important to note that PRISM-games is an

extension PRISM tool [5]. The main activities in performing

model checking using a model checking tool are commonly

referred to; (i) model specification, (ii) property specification,

and (iii) execution of model checking with/without strategy

synthesis. The model specification refers to the activity of

designing and encoding the systems under study by abstractly

representing them using the supported models. In

PRISM-games, the users can specify the systems as

probabilistic models (e.g. discrete-time Markov chains,

Markov decision processes and continuous time Markov

chains) and stochastic games.

Property specification refers to the

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-10, August 2019

3489

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number J97360881019/19©BEIESP

DOI: 10.35940/ijitee.J9736.0881019

activity of designing and encoding one or more objectives to

be fulfilled by the specified model. Meanwhile, the execution

of model checking task to the execution of respective model

checking algorithm to reason and analyze the specified

model against the specified properties which results to the

model checking outcomes (e.g. satisfied or not, optimized

values).

III. MOTIVATION AND CHALLENGE

The work proposed in this paper is motivated by the need

to perform automated quantitative verification with strategy

synthesis for the application migration strategies in

autonomic clouds environment. Thus, we begin by

discussing the application migration problem followed by the

need to have automated quantitative verification and

synthesis for application migration strategies.

A. Application Migration in Autonomic Cloud

Environment

Application migration problem has become of the studied

issue in the autonomic cloud environment, specifically

related to the Science Cloud Platform (SCP) with the

ASCENS project [2]. SCP contains multiple computing

nodes or clouds which each cloud is associated with an

autonomic manager based on the MAPE-K framework. That

means each cloud has to have the ability to adjust its resource

autonomously and proactively. The main role of these clouds

is to collaboratively and voluntarily share their resources in

order to provision cloud application [25]. During runtime,

any cloud may be dealing with resource over utilization or

resource failures which results in SLA violation. Therefore,

the cloud may have to migrate the application under its

responsibility to other cloud collaborators. For this reason, it

has to analyze and decide its migration strategies that satisfy

its migration goals. In this context, a strategy refers to which

cloud collaborator to choose in order to migrate the cloud

application. Existing work has applied a reputation-based

method to choose the right cloud collaborator [26].

B. Assessing Cloud Application Migration Strategies

We are concerned with the need to assess the application

migration strategies at design time. This kind of need may be

the interest of the cloud developer analyst. Specifically, the

interested parties would like to evaluate the following:

 Determine the appropriate migration strategies in relation

to a set of predefined SLA parameters.

 Identify the appropriate threshold values to be included in

SLA.

 Explore the effect and impact of executing migration

strategies within a certain number of cloud

collaborators.

To perform the assessment, one of the approaches is to

utilize the existing model checking tool to perform

verification and synthesis process repetitively. This kind of

tool provides the features and functionalities that ease the

verification and synthesis task. However, the key challenge is

to capture the application migration model and related

non-functional requirements. To capture this information,

the person has to be familiar with the syntax of the

specification.

Therefore, in this work, we focus on capturing the

non-functional requirements which are typically specified in

the SLA. Such requirements can be related to the

performance, cost, reliability, etc. For instance, the response

time to migrate the application and/or the response time to

execute the application on the collaborator’s environment

should be less than a threshold. Another example is the cost

of executing the application on the collaborator’s

environment does not beyond a certain threshold.

To capture the requirements, the conventional approach is

to manually map and encode the requirements as properties

in a model checking tool. However, this approach requires

the knowledge and skill to understand both specifications,

the source specification (e.g. WS-Agreement) and the

destination specification (e.g. probabilistic temporal logic).

Hence, in this paper, we address this limitation by providing

an automatic approach for the mapping and encoding the

requirements via a conversion method. The details are

discussed in the next section.

IV. SPECIFICATION LANGUAGES

In this section, we introduce the specifications used in this

research, in particular, to represent SLA and probabilistic

temporal logic.

A. WS-Agreement

WS-agreement can be defined as a runtime extensible

mark-up based language and protocol that used is to monitor

and communicate between client and server based on the

initial offer [27], [28]. Example of a SLA specification is

shown in Figure 3.

The Agreement Context and Agreement Term Type are

two main components within WS Agreement where each of

them required performing their own task. The agreement

context will state data which describe the properties and

services involved while the agreement term type is for

specifying the functional and non-functional requirements.

Under Agreement term there are two main substructures

which are named as Service Description Terms (SDTS) and

Guarantee Terms [29]. The specialty of the Guarantee Term

is it can have single or multiple scopes of an operation. Under

the guarantee terms, there are four sub-elements termed as

Obliged, Validity, Expression, and Evaluation Event. Each

of these sub-elements can have their own further

sub-elements. For instance, in the case of Validity, we can

define the start and end time of the guarantee terms.

Meanwhile, for Expression, we can define the Predicate, SLA

parameter, and Value. For more details about the agreement,

readers can refer to [6].

B. Probabilistic Temporal Logic

The properties are formulated as the probabilistic

alternating-time temporal logic with rewards specification

Converting from Service Level Agreement to Probabilistic Temporal Logic Specification

3490

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number J97360881019/19©BEIESP

DOI: 10.35940/ijitee.J9736.0881019

(rPATL) [7]. It is introduced for expressing quantitative

properties for reasoning stochastic multi-player games

(SMGS) model [30] using PRISM-games model checker.

SMGS model is useful to model probabilistic and competitive

behavior. In the context of a single autonomic cloud, the

competitive behavior of two players can be represented as a

controlled and uncontrolled environment [31]. The

controlled aspect refers to the action to be executed by the

autonomic component, whilst the uncontrolled environment

can be referred to the behavior of the network which affects

the performance of the action.

Syntactically, rPATL is a CTL-style branching-time

temporal logic that distinguishes between path formulae and

state formulae. The path formulae consider the composition

of multiple nodes in the model, whilst the state formulae are

associated with specific nodes in the model.

As rPATL is used to support the reasoning multi-player

stochastic games, it enables a specification of a coalition of

players that has a strategy which can ensure the probability of

an event’s occurrence or that an expected reward measure

meets some thresholds, irrespective of the actions of the other

players.

There are two probabilistic operators that can be expressed

to form a property in rpatl, namely, the probabilistic operator

P and the reward operator R. In this work, we only focus on

the reward operator, but we introduce both for providing the

background information.

For both types of operators, we can define a threshold =?

To require the computation of the actual probability of

reward. For instance, as follows:

<< P1,P3 >> Pmax=?[F “end”] (1)

The property expresses the need to find the maximum

probability with which players P1 and P3 can guarantee that

an end-state is reached. In the above example, F is an

example of path formula.

rPATL can also be used to reason about the total reward

[C], mean payoff [S] or a long-run ratio of two rewards. In the

case of total reward, the formulated games model must have

reachable terminal states with zero rewards.

Furthermore, the properties defined as rPATL can be of

two types, single objective, and multi-objective properties.

Conventional rPATL is used to state a single objective

property, whilst multi-objective is a boolean combination of

single objective properties. The multi-objective properties

must be of the same type (i.e. Either all probabilistic or

reward-based) and the threshold must be specified. An

example of multi-objective is as follows:

 <<P >> (R{r1} <X[C]& R{r2} >Y [C])

(2)

This property expresses that the players in coalition P

must ensure a strategy where the accumulated reward r1 is

less than X is guaranteed and the accumulated reward r2 is

greater than Y is guaranteed, independently of the

strategies of other players. More examples of properties

specification can be referred to [32].

V. THE DESIGN

In this section, we explain the proposed conversion

approach and method which aims to address the assessment

activity during design time. The runtime stage is considered

as future work.

A. Conversion Approach

The conversion approach is meant to support the

interested party (e.g. Software developer) to quickly obtain

the properties based on required probabilistic temporal logic

specification. It consists of four main phases, namely:

(1) Importing SLA documents -The approach should

allow the users to import a SLA document (i.e.

WS-Agreement) and display it back to the user.

(2) Converting into properties -The approach should

ease the conversion process by enabling the users to

obtain the required properties automatically.

(3) Exporting properties -The approach should enable

the users to export the properties into .props file

automatically, which is the format that is

compatible with PRISM-games tool.

(4) Supporting validation of the properties -The

approach should support the users to check the

correctness of the generated properties via

PRISM-games tool.

The approach assumes that the interested party or user has

access to a SLA document. Thus, it begins by importing the

SLA document into the conversion application. The system

will display the contents of SLA. Then, the user initiates the

conversion process that results in properties based on

probabilistic temporal logic specification. It is important to

note that currently, the validation of the converted properties

is supported by allowing the user to export/save them into a

.props file. Then, this file can be opened and checked using

PRISM-games model checking tool.

B. Conversion Method

In this section, we describe the conversion method in terms

of algorithm that converts from SLA to the probabilistic

temporal logic specification as shown in Algorithm 1.

Require: SLA specification

Ensure: rPATL specification

1: Initialize parser and assign path to SLA

file

2: Get the root element of SLA

3: for all element in SLA do

4: Find the SLO section

5: if the SLO section is found then

6: Retrieve the name, predicate, parameter,

and value

7: end if

8: end for

9: Get the template file

10: Replace the elements in the template with

the respective elements from SLO

11: Write and store into a result file Algorithm 1: Conversion Algorithm

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-10, August 2019

3491

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number J97360881019/19©BEIESP

DOI: 10.35940/ijitee.J9736.0881019

Figure 1. Sample Of Properties Template For

Temporal Logic Specification

The algorithm takes SLA specification as the input and

produced rPATL specification as the output. It begins by

extracting the elements of SLA using XML parser that

returns a Document Object Model (DOM) document. Then,

it searches the entire elements in DOM to find the interested

elements specifically those that are defined within Service

Level Objectives (SLO) section. Herein, we are interested in

extracting the name of SLO, its predicate, parameter, and

value. Whenever this information is obtained, the algorithm

then generates a template file. Then, the elements retrieved

from SLO is used to replace the elements in the template.

Finally, the updated template file is written and stored in a

result file. A sample of the template file is shown in Figure 1.

In the template, it specifies two default parameters, MAXRT

to hold the maximum value for the time-related requirement,

and MAXRS to hold the maximum value for the cost related

requirement. Then, it specifies multi-objective properties as a

boolean combination of time and cost related objectives.

Hence, the outcome of the conversion will replace the default

parameters with its values and the condition parameters.

Example of the converted specification is shown in Figure 4.

VI. IMPLEMENTATION

In this section, we present the proof-of-concept

implementation of our conversion approach. We have

developed a conversion program based on Java language.

The interface of the program is shown in Figure 2.

Figure 2. Main interface of the conversion program

The program offers five functionalities and two main

paragraph fields, namely, for displaying/editing the content

of WS-Agreement and for displaying/editing the converted

properties. The first functionality refers to the open button to

enable opening a WS-Agreement file and import the content

in one of the paragraph fields. The second functionality is the

save button to allow saving any changes made to the WS

Agreement file. The third functionality is the clear button to

empty the contents of the field. Then, the convert button that

implements the algorithm introduced in Algorithm 1.

Finally, the save result button that can save the converted

properties into a new file. With this program, the interested

party/user can perform that conversion automatically. The

process begins by importing the respective SLA file into the

program such as shown in Figure 3. Then, the user can

execute the conversion and the converted result is as shown

in Figure 4.

Figure 3. A Sample Of SLA Imported Into The

Conversion Program

Figure 4. Sample Of Converted SLA As Temporal Logic

Specification

After having the converted properties, the user can export

and save it into a specific format. In the case of

PRISM-games tool, the required format for the properties is

.props. Given with the properties file, the respective user can

perform the required verification with or without synthesis

using PRISM-games model checker. Readers can refer to [8]

for further details.

VII. RELATED WORK

The automated conversion that aims to translate between

two different specification languages has been studied by a

few works. The common reason

for enabling this automated

conversion is to support formal

Converting from Service Level Agreement to Probabilistic Temporal Logic Specification

3492

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number J97360881019/19©BEIESP

DOI: 10.35940/ijitee.J9736.0881019

analysis offered by the existing analysis techniques and tools.

In this section, we highlight these works that have focused on

the design time and conclude to the novelty of the work

proposed in this paper.

A few general conversion approaches between two different

specifications have been proposed, specifically as follows.

The work by Baresi et al. [33,34] addressed the need to

analyze Interaction Overview Diagrams. Thus, they

proposed a conversion approach from IOD to TRIO temporal

logic [35] based on the transformation formulae. With this

translation, IOD can be analyzed and verified via Zot

bounded model checker [36].

Meanwhile, Meziani et al. [37] focused on assisting

software developer to understand the outcome of Colored

Petri Nets (CPN) analysis using CPN model checker [38].

For this reason, they proposed a conversion method from

CPN to Unified Modeling Language (UML) diagrams.

Furthermore, a few works have targeted the conversion

approach to PRISM model checker. The work by Gallotti et

al. [39] aimed to support QoS analysis of service composition

using PRISM model checker [5]. Hence, they proposed a

model based transformation approach called ATOP from

XMI specification (i.e. Activity Diagrams) to PRISM model

(e.g. Markov Decision Process (MDP)). They also mentioned

about non-functional requirements (NFR) presented as

Probabilistic Computation Tree Logic (PCTL) specification

[40]. However, the automated conversion from NFR

specification to PCTL is not discussed.

The work by Krostsiani et al. [41] addressed SLA

validation using PRISM model checker, especially for SLA

monitoring. In this context, it is crucial to check for possible

SLA violation events and related actions. To enable this, a

transformation approach is proposed that converts extended

WS-Agreement into PRISM model (i.e. Continuous-Time

Markov Chain model (CTMC). The extension enables more

details about the actions to be taken upon the violation of

specific guarantee terms. The conversion approach differs

from our work since it focuses on the model aspect while we

focus on the properties aspect.

VIII. CONCLUSION

We have presented a proof-of-concept implementation of

conversion approach from SLA specification (i.e.

WS-Agreement) to rPATL specification. Our motivation for

the proposed approach is based on the need to analyze the

cloud migration process for autonomic cloud environment at

design time. The approach enables the respective user to

import the SLA file, convert it into the rPATL specification,

and export it as .props file. The conversion method utilizes a

rule-based technique and a template-based approach. The

rules are used to extract the required elements from SLA

which is then replaced the elements specified in the template.

The exported .props file can be used as the properties to

analyze a PRISM-games model (i.e. Stochastic Multi-player

Games) using PRISM-games model checker.

As our future work, we plan to consider a complex SLA as

well as different SLA specification language to be converted

into the respective probabilistic temporal logic specification.

We also consider combining this properties-driven

conversion with the model-driven conversion to enhance its

benefit. We also plan to integrate with the syntax checking

module provided in PRISM games model checker to bring

this conversion capability into the runtime environment

ACKNOWLEDGMENT

Azlan Ismail acknowledges the support of the Fundamental

Research Grant Scheme, 600-IRMI/FRGS 5/3 (214/2019),

funded by Ministry of Education Malaysia.

REFERENCES

1. Pichot A, Wieder P, Waldrich O, et al. Dynamic SLA-negotiation based

on WS-Agreement; 2007. Technical Report TR-0082. Available from:

http://www.coregrid.net/mambo/images/stories/TechnicalReports/tr-008

2.pdf.

2. Mayer P, Velasco J, Klarl A, et al. The Autonomic Cloud. In: Wirsing M,

H¨olzl M, Koch N, et al., editors. Software engineering for collective

autonomic systems: The ascens approach. Cham: Springer International

Publishing; 2015. p. 495–512. Available from:

http://dx.doi.org/10.1007/978-3-319-16310-916.

3. Garc´ıa Garc´ıa A, Blanquer Espert I, Hern´andez Garc´ıa V. SLA-driven

dynamic cloud resource management. Future Generation Computer

Systems. 2014;31(1):1–11.

4. Calinescu R, Autili M, C´amara J, et al. Synthesis and Verification of

Self-aware Comput¬ing Systems. In: Self-aware computing systems.

Cham: Springer International Publishing; 2017. p. 337–373. Available

from: http://link.springer.com/10.1007/978-3-319-47474-811.

5. Kwiatkowska M, Norman G, Parker D. PRISM 4.0: Verification of

Probabilistic Real-Time Systems. (Lecture Notes in Computer Science;

Vol. 6806); 1. Springer; 2011. p. 585–591. Available from:

http://dx.doi.org/10.1007/978-3-642-22110-147.

6. Andrieux A, Czajkowski K, Dan A, et al. Web services agreement

specification (WS-Agreement). Vol. 128; 2007. p. 216.

7. Chen T, Forejt V, Kwiatkowska M, et al. Automatic verification of

competitive stochastic systems. Formal Methods in System Design. 2013

8;43(1):61–92. Available from:

http://dx.doi.org/10.1007/978-3-642-28756-522 http :

//dx.doi.org/10.1007/s10703 − 013 − 0183 − 7.

8. Kwiatkowska M, Parker D, Wiltsche C. PRISM-games 2.0: A Tool for

Multi-Objective Strategy Synthesis for Stochastic Games. In: TACAS;

2016. Available from:

http://www.prismmodelchecker.org/papers/tacas16pg2.pdf.

9. Mell P, Grance T. The NIST Definition of Cloud Computing. National

Institute of Standards and Technology; 2009. Available from:

https://citadel-information.com/wp¬content/uploads/2012/08/NIST-SP8

00-145-definition-of-cloud-computing.pdf.

10. H¨ofer C, Karagiannis G. Cloud computing services: taxonomy and

comparison. Journal of Internet Services and Applications.

2011;:1–14Available from:

http://dx.doi.org/10.1007/s13174-011-0027-x.

11. Lamanna DD, Skene J, Emmerich W. SLAng: a language for defining

service level agreements. In: Distributed Computing Systems, 2003.

FTDCS 2003. Proceedings. The Ninth IEEE Workshop on Future Trends

of; 2003. p. 100–106.

12. Keller A, Ludwig H. The WSLA Framework: Specifying and Monitoring

Service Level Agreements for Web Services. Journal of Network and

Systems Management. 2003; 11(1):57–81. Available from:

http://link.springer.com/10.1023/A:1022445108617.

13. Theilmann W, Yahyapour R. SLA@SOI -SLAs Empowering a

Dependable Service Economy; 2010. Available from:

https://ercim-news.ercim.eu/en83/special/slasoi-slas¬empowering-a-dep

endable-service-economy.

14. Patel P, Ranabahu A, Sheth A. Service Level Agreement in Cloud

Computing; 2009.

15. Serrano D, Bouchenak S, Kouki Y, et al. SLA guarantees for cloud

services. Future Generation Computer Systems. 2016;54:233–246.

Available from:

http://www.sciencedirect.com/science/article/pii/S0167739X15000801.

16. Metsch T, Edmonds A. Open cloud computing interface-infrastructure;

2011. Available from:

http://dx.doi.org/10.1007/978-3-642-28756-522

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-10, August 2019

3493

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number J97360881019/19©BEIESP

DOI: 10.35940/ijitee.J9736.0881019

https://redmine.ogf.org/attachments/220/infrastructure.pdf.

17. Bohn RB, Messina J, Liu F, et al. NIST Cloud Computing Reference

Architecture. In: 2011 IEEE World Congress on Services; 7. IEEE; 2011.

p. 594–596. Available from:

http://ieeexplore.ieee.org/document/6012797/.

18. Buyya R, Calheiros R, Li X. Autonomic cloud computing: Open

challenges and architectural elements. Emerging Applications of. 2012;

Available from: http://ieeexplore.ieee.org/xpls/absall.jsp?arnumber =

6407847.

19. WSAG4J -WS-Agreement for Java; ???? Available from:

http://wsag4j.sourceforge.net/site/index.html.

20. Jamshidi P, Pahl C, Mendonca NC. Managing Uncertainty in Autonomic

Cloud Elasticity Controllers. IEEE Cloud Computing. 2016

5;3(3):50–60. Available from:

http://ieeexplore.ieee.org/document/7503491/.

21. Kephart JO, Chess DM. The vision of autonomic computing. Computer.

2003;36(1):41– 50.

22. Kwiatkowska M. Quantitative verification: models techniques and tools.

In: Proceedings of the the 6th joint meeting of the European software

engineering conference and the ACM SIGSOFT symposium on the

foundations of software engineering -ESEC¬FSE ’07; 9; New York, New

York, USA. ACM Press; 2007. p. 449. Available from:

http://dl.acm.org/citation.cfm?id=1287624.1287688.

23. Calinescu R, Ghezzi C, Kwiatkowska M, et al. Self-adaptive software

needs quantitative verification at runtime. Communications of the ACM.

2012;55(9):69–77.

24. Chen T, Forejt V, Kwiatkowska M, et al. PRISM-games: A model

checker for stochastic multi-player games. Springer; 2013. p. 185–191.

25. Mayer P, Klarl A, Hennicker R, et al. The Autonomic Cloud: A Vision of

Voluntary, Peer-2-Peer Cloud Computing. In: 2013 IEEE 7th

International Conference on Self-Adaptation and Self-Organizing

Systems Workshops; 9. IEEE; 2013. p. 89–94. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=68032

64.

26. Celestini A, Lluch Lafuente A, Mayer P, et al. Reputation-Based

Cooperation in the Clouds. In: Zhou J, Gal-Oz N, Zhang J, et al., editors.

Trust management viii: 8th ifip wg 11.11 international conference, ifiptm

2014, singapore, july 7-10, 2014. proceedings. Berlin, Heidelberg:

Springer Berlin Heidelberg; 2014. p. 213–220. Available from:

http://dx.doi.org/10.1007/978-3-662-43813-815.

27. Ludwig H. Web Service Level Agreement (WSLA) Language

Specification Foundations of SLA Management for services and utility

computing View project Zenith View project; 2003.

28. Frankova G, Malfatti D, Aiello M. Semantics and Extensions of

WS-Agreement. Journal of Software. 2006 7;1(1).

29. Dan AA, Ludwig H, Rofrano J. WS-Agreement Structure.

2004;(January).

30. Chen T, Forejt V, Kwiatkowska M, et al. On Stochastic Games with

Multi¬ple Objectives. Springer, Berlin, Heidelberg; 2013. p. 266–277.

Available from:

http://link.springer.com/10.1007/978-3-642-40313-225.

31. Ismail A, Kwiatkowska M. Synthesizing Pareto Optimal Decision for

Autonomic Clouds Using Stochastic Games Model Checking. In: 2017

24th Asia-Pacific Software Engineering Conference (APSEC); 12. IEEE;

2017. p. 436–445. Available from:

http://ieeexplore.ieee.org/document/8305966/.

32. PRISM-games -Property Specification; Available from:

https://www.prismmodelchecker.org/games/properties.php.

33. Baresi L, Morzenti A, Motta A, et al. From Interaction Overview

Diagrams to Temporal Logic. Springer, Berlin, Heidelberg; 2011. p.

90–104. Available from:

http://link.springer.com/10.1007/978-3-642-21210-99.

34. Baresi L, Morzenti A, Motta A, et al. A logic-based semantics for the

verification of multi-diagram UML models. ACM SIGSOFT Software

Engineering Notes. 2012 7;37(4):1. Available from:

http://dl.acm.org/citation.cfm?doid=2237796.2237811.

35. Ciapessoni E, Mirandola P, Coen-Porisini A, et al. From formal models to

formally based methods: an industrial experience. ACM Transactions on

Software Engineering and Methodology. 1999 1;8(1):79–113. Available

from: http://portal.acm.org/citation.cfm?doid=295558.295566.

36. Pradella M, Morzenti A, San Pietro P. The symmetry of the past and of the

future. In: Proceedings of the the 6th joint meeting of the European

software engineering conference and the ACM SIGSOFT symposium on

the foundations of software engineering ¬ESEC-FSE ’07; New York,

New York, USA. ACM Press; 2007. p. 312. Available from:

http://portal.acm.org/citation.cfm?doid=1287624.1287669.

37. Meziani L, Bouabana-Tebibel T, Bouzar-Benlabiod L. From Petri Nets to

UML Model: A New Transformation Approach. In: 2018 IEEE

International Conference on Information Reuse and Integration (IRI); 7.

IEEE; 2018. p. 503–510. Available from:

https://ieeexplore.ieee.org/document/8424751/.

38. Westergaard M. CPN Tools 4: Multi-formalism and Extensibility.

Springer, Berlin, Heidelberg; 2013. p. 400–409. Available from:

http://link.springer.com/10.1007/978-3-642¬38697-822.

39. Gallotti S, Ghezzi C, Mirandola R, et al. Quality prediction of service

compositions through probabilistic model checking. Springer; 2008. p.

119–134.

40. Baier C, Katoen J, Larsen K. Principles of model checking. ; 2008.

Available from:

https://books.google.com.my/books?hl=enlr=id=5dvxCwAAQBAJoi=fn

dpg=PR13dq=+Principles+of+model+c

41. Krotsiani M, Spanoudakis CK, George. Validation of Service Level

Agreements Using Probabilistic Model Checking. In: 2017 IEEE

International Conference on Services Computing (SCC); 6. IEEE; 2017.

p. 148–155. Available from:

http://ieeexplore.ieee.org/document/8034979/.

