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A SHORT NOTE ON HOOPS
AND CONTINUOUS t-NORMS

This short note contains no original results per se. It is meant as a
modest contribution to the special issue of Reports on Mathematical Logic
dedicated to the Workshop on Algebra & Substructural Logic held at the
Japan Advanced Institute of Science and Technology (JAIST), November
10-17, 1999. The most relevant references for this note are a paper by
Agliano, Ferreirim and Montagna [3] and a recent monograph by Héjek [15].

1. t-norms

According to the literature on Fuzzy Logic, t-norms are binary con-
nectives which model “data fusion” [21]; they extend classical conjunction
to the real interval [0,1] of truth values for uncertainty and approximate
reasoning.

A continuous t-norm is a continuous map * : [0,1] x [0,1] — [0, 1]
such that ([0, 1], *) is a commutative po-monoid, i.e., for all z,y, z € [0, 1],
ife <ythenzxz<yxz.

There are three fundamental continuous #-norms: the Lukasiewicz
t-norm defined by = *1, y = max(z + y — 1,0); the Godel (or lattice) norm
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defined by = xg y = = A y; and the product norm defined by z xp y = zy.
Indeed it is known (cf. [15], [20]) that every continuous ¢-norm behaves
locally as one of the above. Every continuous t-norm induces a residuation
(or implication) by the rule
r—y=max{z:zxz <y}
The implications associated to the three fundamental norms are:
e x —py=min(y —z+1,1);
1, ifz<y
Yy, otherwise;
1, ifx<y
y/x, otherwise.

va—au-{

.x—)Py:{

The residual — of a continuous ¢-norm on [0, 1] satisfies

r— x =1
r—1=1
1l > x=x

r—y~y —>xr~1 implies z=y.

Hence the variety Vi generated by any class IC of algebras of the form
([0,1], x,—,0), where % is a continuous t-norm and — is its residual, is
ideal-determined [14]. Tt is therefore the equivalent algebraic semantics, in
the sense of [6], of its assertional logic. Historically, this connection was first
considered for the variety generated by ([0, 1],*r,—1r,0,1). The algebras
in this variety are term-equivalent to Wajsberg algebras [13] or CN algebras
[17]. They are also term-equivalent to M V-algebras [10] and therefore the
corresponding propositional calculus is Lukasiewicz infinite-valued logic.

In his recent monograph [15] Héjek presented a detailed study of the
calculi associated to the three t-norms above and their equivalent algebraic
semantics. Algebras in the variety GA generated by ([0, 1], *¢, —¢,0,1)
are G-algebras and Gddel Logic is its corresponding propositional calculus.
Godel Logic is an axiomatic extension of the Intuitionistic Propositional
Calculus via the axiom (p — ¢q)V (¢ — p) (or ((p — ¢) — r) — (((¢ —
p) — 1) — 71); see axiom (A6) below). Its equivalent algebraic semantics is
therefore closely related to relative Stone algebras [16]. Similarly, algebras
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in the variety PA generated by ([0, 1],xp, —p,0,1) are product algebras;
the corresponding propositional calculus is Product Logic [15], [1].

With the aim of introducing a deductive system which would encom-
pass simultaneously the three calculi above, Héjek [15] defined Basic Logic,
BL. If — and & are the logical connectives for implication and fusion, the
axioms of BL are:

(A1) (p—qg—g—r)—=(—T1)),

(A2) (p&q)—p,

(A3) (p&q) — (¢ —p),

(A4 (p&(p—q)— (¢& (¢ —Dp)),

(A5) (p—(g—r)—=((p&q) —r),

(A6) (p—q)—r)—(((g—p) —r)—T1),
(A7) 0 —p.

The only deduction rule of BL is Modus Ponens:
(MP)  p,p—qtq.

The equivalent algebraic semantics of Basic Logic is the variety BA of
basic algebras, which is a subvariety of residuated lattices. Indeed BA is
generated by all linearly ordered residuated lattices that satisfy
x ANy =~ xx*(r — y) [15]. It is therefore easy to see that the deductive
system BL lacks the structural rule of contraction, but it has exchange and
weakening. For recent developments in the study of residuated lattices and
their relationship with substructural logics see [19] and [22].

Héjek conjectured that the variety BA of basic algebras is generated
by all algebras of the form ([0, 1], *, —, 0, 1), where * is a continuous ¢-norm
on [0, 1]. This is indeed the case, as it was proved by Cignoli, Esteva, Godo
and Torrens in [11].

It seems that the most relevant algebraic aspect of any continuous
t-norm on [0,1] is the fact that the associated monoid is residuated. In
addition, the usual order on [0,1] is indeed the order induced by the residual
(by the rule z < y iff z — y = 1) and so if * is a continuous ¢-norm then
([0,1], x,—,0,1) is a bounded hoop.
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2. Hoops and implicative subreducts

Hoops originated in a manuscript from the mid seventies by Biichi
and Owens [9]. A thorough algebraic study of the class of hoops (a.k.a.
naturally ordered pocrims) may be found in [5].

A hoop is an algebra A = (A, *, —, 1) such that (A,x*,1) is a commu-
tative monoid and for all z,y,z € A

(1) z—ax=~1,
2) zx(z—y)~yx(y— ),
(8) o= (y— 2) mary— 2
An algebra (A, x,—,0, 1) is a bounded hoop if (A, *, —, 1) is a hoop and
0 is its least element. The variety of hoops is denoted by HO and it is the

equivalent algebraic semantics of the deductive system Syo. The axioms
of Syo are (A1), (A5) and

(A8)  (p—(@—r)—(@——r)),
(A9)  p—(¢—p),

(A10) p—(g— (p&q)),

(A11) ((p—q) &p)— ((¢—p) & q).

and inference rule Modus Ponens (MP).

BL proves all axioms of Sy (see [15, section 2.2], [24] and [5]); hence
Sno is (strictly) weaker then BL.

An important subvariety of hoops, determined by the identity
(T) (z—y)—yrly—z)—=x

is the variety WH of Wajsberg hoops. Blok and Pigozzi [7] showed that
bounded Wajsberg hoops are term-equivalent to Wajsberg algebras. Hence
WH is the algebraic semantics of the positive fragment of Lukasiewicz’s
infinite-valued logic.
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Finite linearly ordered Wajsberg hoops play a central role in the study
of hoops in general. Consider the following

Example 2.1. Let C, denote the Wajsberg hoop whose universe
is Cp, = {1 = a% a,d?, ...,a"} and a* * a™ = g@nktmn) g g, =
amax(n—kz,O)‘

Similarly, let Wa,, denote the (basic) algebra (Cp,A,V,*,—,0,1),
where a¥ A @™ = gmar{km} gk gm = gmintkmt and 0 = o,

We denote simply by 2 the two-element chain (n = 1), regardless of
the fundamental operations considered.

An implicative subreduct of a hoop is always a BCK-algebra; more-
over, if V is any variety of hoops, then the class S7(V), consisting of all
implicative subreducts of algebras in V), is a variety of BCK-algebras. This
result appears in [8]; it may also be derived as a consequence of a more
general theorem appearing in [2] and the fact that the identity

() (z—y) -y —z)mz=(((y—2z)—2) >y —y

holds in the variety of hoops.

The problem of determining an equational basis for the variety HBCK
consisting of all implicative subreducts of hoops was posed by Wronski [25]
and solved by the author [4]. Later Kowalski [18] found a syntactic proof.

Theorem 2.2. The class HBCK is the variety of BCK-algebras satis-
fying identities (J) and

(H) (z—y) = @—2)~y—2)—(Y—2)
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3. Basic hoops and basic algebras

The underlying order in a hoop is always a semilattice order, where
x Ay =z *(xr — y); however it is not in general a lattice order. Observe,
nevertheless, that in any totally ordered hoop the join of any two elements
always exists. Also, one can define in any hoop a pseudo-join via the binary
term xVy := ((z = y) = y) A((y — x) — x.

This binary operation is almost a join operation, in the sense that it
is idempotent, commutative and xVy is an upper bound of x and y. We
have

Proposition 3.1. [9], [3] In a hoop A the following are equivalent:
the pseudo-join is associative,

x <y implies zVz < yVz,

2V (y A z) < (zVy) A (zVz),

the pseudo-join is the join operation.

o=

Thus we may conclude that the class of hoops generated by totally or-
dered ones, for which the pseudo-join in indeed the join, is a variety whose
subdirectly irreducible members are totally ordered. Proposition 3.1 pro-
vides an equational basis for this variety. This axiomatization involves both
meet and implication and thus it is not suitable to characterize implicative
subreducts. Here, the theory of basic algebras is very useful:

Theorem 3.2. [3] The variety BA of basic algebras is term-equivalent
to the variety of bounded hoops satisfying

(B) (z—=y) =2<((y—2)—2) =2

Accordingly we say that a hoop satisfying (B) is a basic hoop and
denote by BH the variety of basic hoops.

By using a technical lemma concerning basic hoops and the essential
fact that hoops are 1-regular and their congruences are in 1-1 correspon-
dence with filters, Agliano and Montagna have shown (see also [23]):
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Theorem 3.3. [3] The variety BH consists of hoops that are subdirect
products of totally ordered hoops. Hence B'H is the variety of hoops for
which the pseudo-join is associative.

Note that identity (B) corresponds to the logical axiom (A6). Hence
we may conclude

Corollary 3.4. Basic Logic is an axiomatic extension of Syo via the
axiom (AG).

Ordinal sums of hoops, as defined in [5], constitute an important tool
in characterizing subdirectly irreducible hoops and will be used here to
describe precisely the connection between basic hoops and basic algebras.
As a matter of fact, one can derive from the structure of (finite) hoops the
following

Corollary 3.5. [3] A is a finite subdirectly irreducible basic hoop if
and only if
A=C,, 8C,d...6C,,

for some k,ny,...,ni € N.

If A is a basic hoop, then 2 & A is a basic algebra of which A is a
hoop subreduct. Since any hoop subreduct of a basic algebra is a basic
hoop, the variety BH coincides with the class of hoop subreducts of basic
algebras. Moreover, given a variety V of basic algebras, the class S"(V) of
hoop subreducts of V is always a variety of basic hoops [3]. Thus we obtain

Corollary 3.6. [3] A finite basic algebra A is subdirectly irreducible
if and only if there are k,nq,...,n; € N such that

A =Wa, ©Wa,, ©... > Wa,,.

4. Generation by finite algebras

Given a class K of algebras, A € K has the finite embedding property
with respect to K (FEP) if for any finite partial subalgebra A’ of A there
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exists a finite algebra B € K such that A’ is embeddable in B. K has the
FEP if each of its members has the FEP with respect to K.

It is known that a variety V has the FEP if and only if it is generated
as a quasivariety by its finite algebras, i.e. V = SPP,(Vy;,). Moreover,
if V is a finitely axiomatizable variety and has the FEP, then the quasi-
equational theory of V is decidable. These results are due essentially to
Evans [12], [5].

In [5] a method of constructing varieties of hoops with FEP was devel-
oped, having as a primary tool a Mal’cev product of varieties. With the
variety WH of Wajsberg hoops as a starting point, this method generated
a large family of varieties of hoops which have the FEP. In particular, the
variety HO of all hoops has the FEP. Also, it follows from the structure of
finite subdirectly irreducible basic hoops and algebras that

Proposition 4.1. [3] The varieties BH and B.A are generated as qua-
sivarieties by their finite members. In particular

BH =SPP,(C,, ®...®C,, : k,ni,...,n; €N)
BA = SPP,(Wa,, &...%Wa,, :k,n,...,n; €N)

Therefore the quasi-equational theories of BH and BA are decidable.

Now we can return to ([0,1],*1,—r,1), where %, is the Lukasiewicz
t-norm. It is not hard to see that

1. For every a < b € R, it is possible to define x and — on [a, ] in such
a way that <[CL, b]v *, b> = <[Oa 1]7 *L, L, 1>
2. C,, is embeddable in ([0, 1], *1, —, 1), for all n.

These remarks as well as the structure of finite subdirectly irreducible
basic hoops allow us to we reconfirm Héjek’s conjecture that Basic Logic is
the logic of continuous t-norms. Our result may be seen as a strengthening
of [11, thm 4.2].

Theorem 4.2. [3] The variety of basic hoops is generated as a quasi-
variety by all algebras of the form ([0, 1],*, —, 1), where * is a continuous
t-norm on [0, 1] and — is its residual.
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Moreover the identity (B), which characterizes the variety BH, also
provides the equational basis for the variety of their implicative subreducts.
Indeed if BBCK denotes the variety of BCK-algebras determined by (B),
then

Theorem 4.3. [3] The variety BBCK consists exactly of the implica-
tive subreducts of basic hoops.

5. Product hoops and product algebras

Recall from section 1 that Product Logic is the deductive system asso-
ciated with the product norm *p. Because of its novelty, Product Logic has
drawn considerable attention in recent publications [15], [1]. If one defines
negation by —p = p — 0, Product Logic is an axiomatic extension [15] of
Basic Logic via the axioms

(P1) ——r—=(p&kr—q&r)—(p—q),
(P2) (pA-p)—0.

A close look at the definition and properties of the algebraic coun-
terpart of this deductive system brings to mind strong connections with
abelian ¢-groups [15] and cancellative hoops [4]. Hence it is natural to
investigate the class of hoop subreducts of product algebras. A major dif-
ficulty to overcome is to replace axioms (P1) and (P2) with negation-free
axioms, because the deductive system Sy associated with hoops does
not have negation. Since in bounded hoops on may define negation (by
-z := x — 0), a first approach consists in establishing a link between
product algebras and bounded hoops. This topic has been discussed by
Adillon and Verdu [1], who showed that product algebras are indeed the
equivalent algebraic semantics of Product Logic and that they are term-
equivalent to a variety of bounded hoops.

It is easy to observe that if A is a product algebra then A\ {0} is
the universe of a cancellative hoop, i.e., the underlying monoid is cancella-
tive [1], [3]. It is known that cancellative hoops form a variety, given by the
identity y — (x *y) ~ z. Let PH denote the variety of hoop subreducts of
product algebras.
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Proposition 5.1. [3] The subdirectly irreducible members of PH
are the two-element chain 2, the subdirectly irreducible cancellative hoops
and all hoops of the form 2 & C, where C is any subdirectly irreducible
cancellative hoop.

One may sharpen the characterization of hoop subreducts of product
algebras, henceforth called product hoops, by introducing an appropriate
weakening of the cancellative law. We say that a hoop is quasi-cancellative
if it satisfies

Vzyz ((Jw < z) implies ((x % 2) — (y*2)) — (z — y) = 1).

We have

Proposition 5.2. [3] A subdirectly irreducible hoop is quasi-cancel-
lative if and only if it belongs to PH.

An implicative subreduct of a product hoop will be called a product
BCK-algebra; we denote by PBCIC the variety of product BCK-algebras.

Theorem 5.3. [3] The variety PH (respectively PBCK) consists of
basic hoops (respectively BCK-algebras) satisfying the identity

(PB) (z—=y)=y<(y—2)—(y—2)=2) =y —2z) =)
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