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Abstract

We specify and estimate a time-varying Markov model of COVID-19 cases in

North Carolina. We find that the estimated level of undetected infections spiked

in early March and remained elevated through May. However, since late April

estimated undetected infections have generally declined as a fraction of all cases

though it was not until mid-May that detected cases exceeded the estimated

number of undetected cases. Our results suggest that the substantial increase

in testing capacity over the last few months in North Carolina has identified a

higher percentage of infections. However, these findings also indicate that much

of the increase in the number of positive tests in June and July represents a true

increase in new cases as opposed to an increase resulting from more testing. One

shortcoming of our analysis is that we are not able to condition our estimates on

the age of people infected or hospitalized which may cause us to underestimate

the current number of undetected cases.
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1 Introduction and Summary of Findings

One of the challenges facing policymakers, business leaders, and the general public

in understanding the spread of COVID-19 is the fact that many cases go undetected

because of testing shortages or infected individuals not seeking a test (e.g., asymp-

tomatic individuals may not even consider the need for a test). Having an accurate

estimate of undetected infections can help planners make decisions about testing

policy and economic openness, let business leaders better understand risks to their

workers and customers, and inform economic projections.

The state of North Carolina (NC) provides an interesting case study in infection

modeling because the number of positive tests has grown steadily faster than the

number of hospitalizations. Likewise, hospitalizations in NC have grown more quickly

than deaths attributed to COVID-19. A very simple way to understand the disconnect

between deaths and reported new cases is to estimate the total number of cases

statewide using lagged data on the number of deaths and recent estimates for infection

fatality rates (see Meyerowitz-Katz and Merone (2020)). Figure 1 shows that these

“death-implied” estimates suggest that the number of cases in NC rose rapidly in

March and April and then levelled off. This is obviously at odds with the number

of new positive tests which was quite low in March and April and has only recently

approached the number of death-implied cases.

Of course, much better models have been proposed for estimating the number of

undetected infections. In this analysis, we examine a standard 5-state time-varying

Markov model based on Gourieroux and Jasiak (2020) (and cites therein) and ap-

ply it to data in North Carolina. In our model the population is either susceptible

(S), infected and undetected (IU), infected and detected (ID), hospitalized (H), or

deceased (D). Recovered cases re-enter the susceptible pool. States are mutually

exclusive so we track hospitalized separately from infected and detected. As condi-

tioning variables in our analysis we include both the testing positivity rate and the

intensity of testing (i.e., tests conducted per 100,000) and find that these are impor-

tant factors in the estimation with intuitive relations to infection probabilities. The

model provides estimates of undetected infections that are plausible and the model fits

observed levels of positive cases, hospitalizations and deaths very well. We examine

two different versions of the model and obtain very similar results from each.

We find that the estimated level of IU grew rapidly in early March. Estimated
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Figure 1: New Cases in NC (per 100,000, 7-day moving average).
The red line in the figure shows the death implied new cases, which are calculated using the 7-
day average of new reported deaths in NC lagged by 14 days (to reflect the average time between
contracting COVID-19 and death) divided by the infection fatality rate of 0.68% estimated by
Meyerowitz-Katz and Merone (2020). The confidence band is calculated using the 7-day average of
new reported deaths in NC lagged by 14 days divided by the 95% confidence interval of the estimated
infection fatality rate. The blue line in the figure shows the reported new cases.

IU cases tapered off in mid-March and then grew in early April before peaking again

in mid-April. Since late April, estimated IU has declined substantially but according

to our estimates it was not until mid-May that the number of detected cases exceeded

the number of undetected cases. Our results suggest that the substantial increase in

testing capacity over the last few months in North Carolina has been successful in

identifying a higher percentage of infections. However, it also suggests that much of

the recent increase in the number of positive tests represents a true increase in new

cases as opposed to an increase resulting from more testing. One concern about our

analysis is that we are not able to condition on the age of those with detected cases or

who are hospitalized, and consequently, we may underestimate undetected cases if the

age of those infected is declining on average. Our estimates could also underestimate

cases if the quality of care has improved over time and reduced hospitalization and

death rates in a way the model does not capture.

3



2 Model

The latent individual history variable Yi,t, for individual i = 1, ..., N at time t =

1, ..., T , is qualitative polytomous with J alternatives denoted by j = 1, ..., J . As

in Gourieroux and Jasiak (2020), we assume that Yi,t have the same marginal dis-

tribution for all individuals i = 1, ..., N at t fixed, which can be summarized by the

J-dimensional vector p(t). The j-th component of the marginal distribution is

pj(t) = P (Yi,t = j).

In addition, the individual history variable follows a Markov process with time-varying

transition matrix P [p(t− 1); θ], which gives

p(t) = P [p(t− 1); θ]′p(t− 1), t = 2, ..., T,

with θ being a vector of parameters.

The data of individual histories may not be available in practice. With the as-

sumptions of independent individual histories and homogeneous population of risks,

the J-dimensional cross-sectional frequency vector f(t), where fj(t) is the state j fre-

quency of the population, can be seen as the sample counterpart of p(t). However, the

cross-sectional frequencies are only partially observed. A state aggregation matrix A

is used to account for the unobserved states and the observations are Ât = Af(t) for

t = 1, ..., T , where A is a K × J matrix of full rank K. The parameters of interest,

θ and the sequence of the unobserved component of p(t), can then be estimated by

solving the following optimization problem,

(p̂(1), ..., p̂(T ), θ̂) = argmin
T∑
t=2

‖p(t)− P [p(t− 1), θ]′ p(t− 1)‖22 (1)

s.t. Ap(t) = Af(t) = Ât, t = 1, ..., T,

where ‖.‖2 denotes the Euclidean norm.

To model the COVID-19 propagation, we consider a Markov process with 5 states:

1 = S, for susceptible, 2 = IU , for Infected and Undetected, 3 = ID, for Infected

and Detected, 4 = H for Hospitalized, and 5 = D for Deceased. The sum of the
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frequencies across all the five states equals to the size of the population. For simplicity,

we assume no immunity, hence the recovered cases re-enter the susceptible pool. This

assumption lets us avoid having an unobservable recovered state but will have little

impact on estimation for low levels of overall infection.

The transition matrix P [p(t− 1); θ] of the Markov process is defined as

S IU ID H D


S 1− pi pi(1− pd) pipd 0 0

IU p21 (1− p21 − p24)(1− pd) (1− p21 − p24)pd p24 0

ID p31 0 1− p31 − p34 p34 0

H p41 0 0 1− p41 − p45 p45

D 0 0 0 0 1

with

pi = logist (a1 + a2 (p2(t− 1) + p3(t− 1))) + a3xt),

pd = logist (b1 + b2yt) ,

where logist(x) = 1/[1 + exp(−x)] is the logistic function, i.e. the inverse of the logit

function. The probability of infected pi follows a multinomial logit model for the

competing propagation driven by lagged IU and lagged ID, and it also depends on

the testing positivity rate xt. Conditioning on being infected, the probability of being

detected pd is a function of testing intensity yt. Each row of the transition matrix sums

to one by construction. The structure of zeros indicates that one cannot go backward

from ID to IU , patients who died are hospitalized before death, the hospitalized

patients will stay in hospital until they recover or die, and death is considered an

absorbing state.

In addition, we consider two model specifications for the transition probabili-

ties from state IU and ID to state H. The basic specification assumes constant

transition probabilities p24 and p34. In this model, there are 11 parameters in θ =

[a1, a2, a3, b1, b2, p21, p24, p31, p34, p41, p45]
′. The full specification assumes time-varying

transition probabilities driven by the lagged frequency of the corresponding state with

p24 = logist (c1 + c2p2(t− 1)) ,

p34 = logist (d1 + d2p3(t− 1)) ,
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in which θ = [a1, a2, a3, b1, b2, c1, c2, d1, d2, p21, p31, p41, p45]
′ has 13 parameters.

Empirically, IU(t) and ID(t) represent the state of currently infected excluding

those hospitalized. The frequency of ID(t) is observable by assumption, while IU(t)

is the unobserved state of unidentified infections and will be considered as additional

quantities of interest to be estimated jointly. Also, the frequencies of H(t) and D(t)

are both observable. Therefore, we have the state aggregation matrix A expressed as

A =

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 .

3 Data, Estimation and Results

We estimate the two specifications of the time-varying Markov model on Covid-19

propagation data from North Carolina over the period of 133 days between March 4

to August 7, 2020. We use the daily data reported by The Covid Tracking Project.

The frequency of ID(t) is measured by the rolling 2-week sum of the new positive

tests in NC, which assumes that a person with positive test will either be hospitalized

or recover within 14 days. The frequency of H(t) is the actual number of hospitalized

in NC on any given date and the frequency of the absorbing state D(t) is measured by

the cumulative deaths caused by COVID-19 in NC. In constructing the cross-sectional

frequency vector f(t), we do everything in per 100, 000 population to facilitate inter-

pretation as well as comparison to estimated infection rates from other geographies.

The daily evolutions of the observed components of f(t) are displayed in Figure 2.

For the two conditioning variables, the test positivity rate xt is measured by the

weekly moving average of the testing positivity rate (i.e., out of all tests) and the

test intensity yt is measured by the rolling 7-day average of tests per day per 100, 000

population as of date t. Figure 3 shows the plots of these two conditioning variables.

The initial frequency is set equal to 100, 000 for state S(0) and 0 for all other states.

The model parameters θ and the series of frequencies of the unobserved state IU(t)

are then estimated by solving the optimization problem in Equation (1) numerically

using the fminsearch function in Matlab. The estimates of the parameters for the

basic model are provided in Table 1. Table 2 shows the estimates of the full model.
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The mean fitted values are within 7.40% of observed values for the basic model and

within 7.21% of observed values for the full model. The comparisons of fitted and

observed frequencies for state ID, state H and state D are shown in Figure 5 and 6

in an appendix. We see that the estimated frequencies track the observations closely

for both the basic model and the full model.

Figure 2: The Frequencies of the Observed States in NC (per 100,000).
The top panel shows the time series data for the frequency of state ID(t), which are measured by
the rolling 2-week sum of the new positive tests in NC. The middle panel shows the time series data
for the frequencies of state H(t), which is measured by the actual number of hospitalized in NC
at date t. The bottom panel shows the time series data for the frequencies of state D(t), which is
measured by the sum of deaths caused by COVID-19 in NC up until date t.

In Table 1, p21 = 0.1516, which corresponds to an average recovery time of 1 week

for state IU , and p31 = 0.0672, which represents an average recovery time around 2

weeks for state ID. Thus the model estimates that it takes longer for a patient in the

detected state to recover which is reasonable considering it is more likely that patients
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Figure 3: The Conditioning Variables (xt and yt).
The top panel shows the time series data of the test positivity rates xt, which is measured by the
weekly moving average of the rates of positivity in testing (i.e., out of all tests). The bottom panel
shows the time series data of test intensity yt, which is measured by the rolling 7-day average of
tests per day per 100, 000 population as of date t.

with severe cases will get tested (and be detected) thus the overall health condition of

state ID is worse than state IU . This is also consistent with the estimated transition

probabilities to state H. The probability of transition to state H is 0.0035 from state

ID, which is higher than the probability of 0.0002 from state IU . The estimates of

p33 is 0.9293, which means that people stay in the state ID for an average around

15 days and are then either hospitalized or recover. This is roughly consistent with

how we construct the variable representing state ID (i.e. rolling 2-week sum of the

positive tests). The mortality rate conditional on being hospitalized is 2.02%, which

is higher than the estimated value of 0.68% for the overall infection-fatality rate of

COVID-19 in Meyerowitz-Katz and Merone (2020). This is not surprising considering

that the severity of the illness is higher for the hospitalized patients than the average

severity of all cases. We have positive estimates for both a2 and a3 meaning that

the probability of being infected, pi, is increasing with a higher (lagged) frequency

of infections and a higher positivity rate of tests. The estimate of b2 is also positive,

which means that if a person is infected, the probability of being detected, pd, is
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increasing with the intensity of testing.

a1 a2 a3 b1 b2
−10.1303 0.0023 14.1249 −4.2599 0.0239

1 = S 2 = IU 3 = ID 4 = H 5 = D
2 = IU 0.1516 Time-varying Time-varying 0.0002 0
3 = ID 0.0672 0 0.9293 0.0035 0
4 = H 0.0448 0 0 0.9350 0.0202
5 = D 0 0 0 0 1

Table 1: Parameter Estimates of the Basic Model

The estimates of the constant transition probabilities for the full model in Table 2

are very similar to the estimated parameters of the basic model except for a slightly

lower rate of recovery given hospitalization. The constant components of p24 is very

close to zero and it is increasing with the lagged frequency of state IU . The coeffi-

cients of the time-varying component of p34 is very close to zero, while the constant

components are equal to 0.0034, which are similar to the estimates of the p34 in the

basic model.The estimate of d2 is negative, meaning that the rate of hospitalization

given state ID is decreasing with the lagged frequency of state ID. Considering the

increasing frequency of state ID likely contributes to the increasing test intensity and

the higher rate of detection, it is reasonable that more cases with light symptoms are

detected, thus the hospitalization rate of state ID decreases because of the decreasing

proportion of severe cases among all detected cases.

a1 a2 a3 b1 b2
−10.1097 0.0018 14.5785 −4.3008 0.0236
c1 c2 d1 d2
−35.2790 0.0027 −5.6830 −0.0007

1 = S 2 = IU 3 = ID 4 = H 5 = D
2 = IU 0.1526 Time-varying Time-varying Time-varying 0
3 = ID 0.0625 0 1− p31 − p34 Time-varying 0
4 = H 0.0328 0 0 0.9474 0.0198
5 = D 0 0 0 0 1

Table 2: Parameter Estimates of the Full Model

The time series of the frequencies of state IU(t) are the quantities of primary

interest. Figure 4 shows the estimated frequencies of the state using both the basic
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Figure 4: The Estimated Frequencies of State IU .
The figure shows the estimated frequencies of state IU for both the basic model (top panel) and the
full model (middle panel). In the top two panels, the dashed red line is the observed frequencies of
state ID and the solid blue line is the estimated frequencies of state IU . The bottom panel shows
the comparison of the estimated frequencies of state IU for the basic model vs. the full model.
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model (top panel) and the full model (middle panel). The figure also includes the

comparison between the estimates from the two models (bottom panel). We can

see that the two lines of estimates are close to each other with the estimates from

the full model being slightly higher. From Figure 4, we find that the estimated IU

grew rapidly in early March. Estimated IU dipped some in mid-March and then

grew slowly until peaking again in mid-April. Since late April, estimated IU has

declined substantially but according to our estimates it was not until early-May that

the number of detected cases exceeded the number of undetected cases. Our results

suggest that the substantial increase in testing capacity over the last few months has

been successful in identifying a much higher percentage of infections. However, it also

suggests that much of the recent increase in the number of positive tests is in fact an

increase in new cases as opposed to an increase related to a higher number of tests.

4 Conclusion

We estimate a model of COVID-19 infections, hospitalizations, recoveries, and deaths.

The results of the estimation are intuitive and indicate a high percentage of undetected

cases early in our sample period followed by a decline to a much lower percentage

of undetected cases by July. Taken at face value, our results suggest that reported

cases in North Carolina increasingly reflect the true number of infections in the state.

Nonetheless, our model is fairly simple and estimated on aggregate data for just one

state. Future work may estimate the model using data from other states (or countries)

to obtain better estimates of model parameters. Likewise, it may be possible to

estimate this model by region in North Carolina. Given anecdotal evidence that age

of detected cases is changing through time, the estimation is also likely to benefit

by conditioning estimates on other variables such as the average age of hospitalized

patients or the average age of those testing positive.
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Appendix

Figure 5: The Observed and Estimated Frequencies (Basic Model).
The figure compares the observed frequencies with the estimated frequencies of the basic model for
state ID (top panel), state H (middle panel) and state D (bottom panel). The dashed red line is
the observed frequencies and the solid blue line is the estimated frequencies.
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Figure 6: The Observed and Estimated Frequencies (Full Model).
The figure compares the observed frequencies with the estimated frequencies of the full model for
state ID (top panel), state H (middle panel) and state D (bottom panel). The dashed red line is
the observed frequencies and the solid blue line is the estimated frequencies.
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