

Some new¹ tricks for better
performance in MIPS-Linux

David Daney
(Cavium Networks)

1: And some slightly older.

Topics
● User space optimizations

– MIPS overview

– Trick 1: Function Prolog optimization

– Trick 2: Direct call with -mno-shared

– Trick 3: Non-PIC executables

– Benchmark results

● Kernel optimizations
– Kernel ABI

– Trick 4: Compilation with -msym32

– Trick 5: Mapped Kernel

● Trick 6: GDB hardware watchpoints

16-bit immediate data

● Property of most RISC architectures
● Multiple instructions are needed to generate

constants wider than 16 bits.
● No direct addressing is available. All memory

addresses must be loaded into registers to be
used.

00000000 <foo>:
 0: 3c026655 lui v0,0x6655
 4: 34424433 ori v0,v0,0x4433
 8: 03e00008 jr ra
 c: 8c420000 lw v0,0(v0)

int foo()
{
 return *(int *)0x66554433;
}

Standard Linux user-space ABIs
● Application Binary Interface (ABI): The rules

governing function calls and linking together
independent modules.

– For MIPS there are three (o32, n32, n64)

● Standard ABIs are position independent.
– Needed for shared libraries.

● Use Global Offset Table (GOT).
– Function prolog must initialize GOT pointer.

– Fewer instructions needed to load addresses.

– Faster runtime linking of shared libraries.

– Indirect function call.

Function prolog (PIC)

00000000 <bam>:
 0: 3c1c0000 lui gp,0x0

0: R_MIPS_HI16 _gp_disp
 4: 279c0000 addiu gp,gp,0

4: R_MIPS_LO16 _gp_disp
 8: 0399e021 addu gp,gp,t9
 c: 27bdffe0 addiu sp,sp,-32
 10: afbf001c sw ra,28(sp)
 14: afbc0010 sw gp,16(sp)
 18: 8f990000 lw t9,0(gp)

18: R_MIPS_CALL16 bar
 1c: 0320f809 jalr t9
 20: 00000000 nop
 24: 8fbf001c lw ra,28(sp)
 28: 8fbc0010 lw gp,16(sp)
 2c: 24420003 addiu v0,v0,3
 30: 03e00008 jr ra
 34: 27bd0020 addiu sp,sp,32

int bar();

int bam()
{
 return bar() + 3;
}

_gp_disp = &GOT - &bam

Register t9 = &bam

GOT

&bar

Trick 1: Prolog optimization (non-PIC)

00000000 <bam>:
 0: 3c1c0000 lui gp,0x0

0: R_MIPS_HI16 __gnu_local_gp
 4: 27bdffe0 addiu sp,sp,-32
 8: 279c0000 addiu gp,gp,0

8: R_MIPS_LO16 __gnu_local_gp
 c: afbf001c sw ra,28(sp)
 10: afbc0010 sw gp,16(sp)
 14: 8f990000 lw t9,0(gp)

14: R_MIPS_CALL16 bar
 18: 0320f809 jalr t9
 1c: 00000000 nop
 20: 8fbf001c lw ra,28(sp)
 24: 8fbc0010 lw gp,16(sp)
 28: 24420003 addiu v0,v0,3
 2c: 03e00008 jr ra
 30: 27bd0020 addiu sp,sp,32

GOT

&bar

__gnu_local_gp = &GOT

Prolog is now only two instructions. Better instruction scheduling. GNU
extension to the standard ABI.

-mno-shared GCC/gas switch

● GNU Binutils 2.16 or newer required for __gnu_local_gp support in ld
(linker).

● GCC-4.2: Use -mno-shared for prolog optimization in non-PIC code.

● GCC-4.3: -mno-shared becomes the default for non-PIC code.

● GCC-4.1 and older: Use -Wa,-mno-shared to pass the option to gas.

Indirect function calls
00000000 <foo>:
 0: 3c1c0000 lui gp,0x0

0: R_MIPS_HI16 _gp_disp
 4: 279c0000 addiu gp,gp,0

4: R_MIPS_LO16 _gp_disp
 8: 0399e021 addu gp,gp,t9
 c: 27bdffe0 addiu sp,sp,-32
 10: afbf001c sw ra,28(sp)
 14: afbc0010 sw gp,16(sp)
 18: 8f990000 lw t9,0(gp)

18: R_MIPS_GOT16 .text.bar
 1c: 27390000 addiu t9,t9,0

1c: R_MIPS_LO16 .text.bar
 20: 0320f809 jalr t9
 24: 00000000 nop
 28: 8fbf001c lw ra,28(sp)
 2c: 24030035 li v1,53
 30: 70431002 mul v0,v0,v1
 34: 03e00008 jr ra
 38: 27bd0020 addiu sp,sp,32

GOT

&bar

static int bar(int a, int b)
{
 return a - b;
}

int foo(int a, int b)
{
 return bar(a, b) * 53;
}

Extra instruction(s) plus memory read
required to load function address into
register.

Trick 2: Direct call with -mno-shared
00000000 <foo>:
 0: 27bdffe0 addiu sp,sp,-32
 4: afbf001c sw ra,28(sp)
 8: 0c000000 jal 0 <foo>

8: R_MIPS_26 .text.bar
 c: 00000000 nop
 10: 8fbf001c lw ra,28(sp)
 14: 24030035 li v1,53
 18: 70431002 mul v0,v0,v1
 1c: 03e00008 jr ra
 20: 27bd0020 addiu sp,sp,32

Single instruction call. No GOT read. In fact the GOT is not referenced at all so
there is no need to initialize gp.

No need to initialize t9 with target function address as it is known to use two
instruction optimized prolog sequence.

Cannot be used to call functions outside of the compilation unit as it is not known if
they are close enough, or use the optimized prolog sequence.

Trick 3: -mplt (non-pic executables)
● Not quite available yet

– New in GCC-4.4, Binutils 2.19, glibc 2.9

● Uses -mno-shared like code for all calls
● Not used in shared libraries.
● Not used with n64 ABI.
● Linker generates shim code (PLT stub) for

shared library calls.
● 5% faster on common benchmarks.
● Can be slower in some cases

– Programs that only call library functions.

CSiBE benchmark results

.text % of 3.4.3 .text + .data +.bss % of 3.4.3

GCC-3.4.3 -Os 4528676 100.00% 5406444 100.00%

GCC-4.4 -Os -mshared 4291772 94.77% 5182092 95.85%

GCC-4.4 -Os -mno-shared 4190908 92.54% 5081220 93.98%

GCC-4.4 -Os -mplt 3714144 82.01% 4596124 85.01%

Compiled code size of 893 open-source C files

64-bit Kernel addresses

● Linux kernel ABI does not use a GOT
– 2 instructions to load a pointer or access global

data in 32-bit kernel

– 6 instructions to load a pointer or access global
data in 64-bit kernel, unless...

– -msym32 gives the same code size in 64-bit
kernel as the 32-bit case.

extern int c;
int get_c(void)
{
 return c;
}

-msym32 is only usable if it is known at compile time that the
address is in the range 0xffffffff80000000 – 0xffffffffffffffff as
in this range the lower 32 bits are always properly sign
extended. Actually it works for the range 0 – 0x7fffffff too,
but that range is not used by the kernel.

0000000000000000 <get_c>:
 0: 3c030000 lui v1,0x0

0: R_MIPS_HI16 c
 4: 03e00008 jr ra
 8: 8c620000 lw v0,0(v1)

8: R_MIPS_LO16 c

-mabi=64 -mno-abicalls -fno-pic

-msym32

0000000000000000 <get_c>:
 0: 3c030000 lui v1,0x0

0: R_MIPS_HIGHEST c
 4: 3c020000 lui v0,0x0

4: R_MIPS_HI16 c
 8: 64630000 daddiu v1,v1,0

8: R_MIPS_HIGHER c
 c: 0003183c dsll32 v1,v1,0x0
 10: 0062182d daddu v1,v1,v0
 14: 03e00008 jr ra
 18: 8c620000 lw v0,0(v1)

18: R_MIPS_LO16 c

Trick 4: Kernel ABI compilation
(-msym32)

-msym32 Switch

● First available in GCC-4.0.
● Previous to GCC-4.0 kernel had 'hacks' to

achieve similar code, but they don't work with
4.0.

256MB range direct jumps
– Linux kernel ABI does not use a GOT.

● Function calls are direct.
– Single instruction.

● The kernel typically resides in KSEG0
– 0x8000000 (32-bit) or 0xffffffff80000000 (64-bit)

– Kernel modules loaded 'far' from kernel.
● Modules are typically loaded in SSEG

– 0xc0000000 (32-bit) or 0xffffffffc0000000 (64-bit)

– Function calls in modules must be indirect to
reach kernel.

● 3 instructions in 32-bit kernel
● 3 instructions in 64-bit kernel with -msym32
● 7 instructions in 64-bit kernel without -msym32

Kernel function calls

0000000000000000 <do_call>:
 0: 67bdfff0 daddiu sp,sp,-16
 4: 3c020000 lui v0,0x0

4: R_MIPS_HI16 f
 8: ffbf0008 sd ra,8(sp)
 c: 64420000 daddiu v0,v0,0

c: R_MIPS_LO16 f
 10: 0040f809 jalr v0
 14: 00000000 nop
 18: dfbf0008 ld ra,8(sp)
 1c: 0000102d move v0,zero
 20: 03e00008 jr ra
 24: 67bd0010 daddiu sp,sp,16

0000000000000000 <do_call>:
 0: 67bdfff0 daddiu sp,sp,-16
 4: ffbf0008 sd ra,8(sp)
 8: 0c000000 jal 0 <do_call>

8: R_MIPS_26 f
 c: 00000000 nop
 10: 0000102d move v0,zero
 14: dfbf0008 ld ra,8(sp)
 18: 03e00008 jr ra
 1c: 67bd0010 daddiu sp,sp,16

In kernel modules
(32-bit or -msym32 and -mlong-calls)

Core kernel

extern void f(void);
int do_call(void)
{
 f();
 return 0;
}

Trick 5: Mapped Kernel

● Move the kernel to sseg
● “Close” to modules

– Single instruction direct function call.

● Kernel uses a TLB entry
– Could increase TLB pressure.

Patch: http://www.linux-mips.org/archives/linux-mips/2009-01/msg00010.html

Normal and mapped layouts

80000000

A0000000

C0000000

E0000000

80000000

A0000000

C0000000

E0000000

KernelModules

Kernel

Modules

Normal kernel. Modules too
far from kernel for direct
calls.

Mapped kernel. Modules
close to kernel, direct calls
are possible.

Physical and Virtual addresses differ

● Modify vmlinux.lds to specify separate load
address.

● Change kernel address in Makefile
● Bootloader must support loading kernel to

proper physical address when it differs from
virtual address.

● Modify __pa_symbol() macro.

Kernel now far from exception vectors

● Modify exception vectors to reach the kernel
with indirect jump for dedicated interrupt vector.

● All other TLB and exception handlers
unchanged.

– TLB refill never calls the kernel.

– Exception handlers are via a jump table.

Move module space up.

● Kernel now occupies lowest part of sseg.
● Module memory allocation must be moved

above kernel mapping.

Set kernel TLB entry.

● A single TLB entry is used
– Index 0.

● “Large” pages to cover kernel with single TLB
entry

● Communicate end of kernel mapping to module
 allocator.

● Don't clobber wired value in tlb_init()
● Prototype implementation limitations

– Arbitrary page size

– 64-bit kernel

Mapped kernel benchmark
Ethernet device driver (cavium-ethernet) and ipv6 modules

'Normal' kernel Mapped kernel Change

Forwarding IPv6 656000 pkt/s 688000 pkt/s 4.8% better

Ipv6 Module size 282948 bytes 261592 bytes 7.5% smaller

Trick 6: Hardware watch register
support for user-space debugging

● GDB can find “memory clobbers” in real time.
– Software watch points use single stepping and

are rarely usable.
● Extremely slow.
● Gets stuck looping forever in synchronization

primitives.

● Kernel support present in 2.6.28, bug fixes in
2.6.29.

● GDB patchs necessary:

http://sourceware.org/ml/gdb-patches/2009-04/msg00103.html

http://sourceware.org/ml/gdb-patches/2009-04/msg00102.html

New ptrace methods.

● GDB queries kernel for number and size of
watch registers.

● GDB sets watch register values.
● When target program traps, GDB queries status

of watch registers to find out what happened.

Extensible ptrace interface
enum pt_watch_style {

pt_watch_style_mips32,
pt_watch_style_mips64

};
struct mips32_watch_regs {

unsigned int watchlo[8];
/* Lower 16 bits of watchhi. */
unsigned short watchhi[8];
/* Valid mask and I R W bits.
 * bit 0 -- 1 if W bit is usable.
 * bit 1 -- 1 if R bit is usable.
 * bit 2 -- 1 if I bit is usable.
 * bits 3 - 11 -- Valid watchhi mask bits.
 */
unsigned short watch_masks[8];
unsigned int num_valid;

} __attribute__((aligned(8)));

struct pt_watch_regs {
enum pt_watch_style style;
union {

struct mips32_watch_regs mips32;
struct mips64_watch_regs mips64;

};
};
#define PTRACE_GET_WATCH_REGS 0xd0
#define PTRACE_SET_WATCH_REGS 0xd1

struct mips64_watch_regs {
unsigned long long watchlo[8];
unsigned short watchhi[8];
unsigned short watch_masks[8];
unsigned int num_valid;

} __attribute__((aligned(8)));

Kernel overhead for watchpoints

● Very low overhead for non-traced tasks.
– 3 instructions on task switch.

● Watch registers are loaded from thread_struct
on task switch.

● No need to clear watch registers when
switching away from traced task.

– Spurious watch traps are ignored.

GDB example session
./gdb ./watchtest
GNU gdb (GDB) 6.8.50.20090404-cvs
Copyright (C) 2009 Free Software Foundation, Inc.
[...]
(gdb) attach 751
Attaching to program: /junk/watchtest, process 751
[...]
0x2e62d678 in read () from /lib/libc.so.6
0x2e62d678 <read+36>: bnez a3,0x2e62d620
(gdb) watch fa[37].b
Hardware watchpoint 1: fa[37].b
(gdb) c
Continuing.
[New Thread 0x2b2cc4d0 (LWP 757)]
[Switching to Thread 0x2b2cc4d0 (LWP 757)]
Hardware watchpoint 1: fa[37].b

Old value = 0
New value = 40
0x00400840 in worker_thread (arg=0x0) at watchtest.c:30
30 fa[i].b = i + 3;
(gdb) c
Continuing.
[Thread 0x2b2cc4d0 (LWP 757) exited]

Program exited normally.

