
Report from Dagstuhl Seminar 15161

Advanced Stencil-Code Engineering
Edited by
Christian Lengauer1, Matthias Bolten2, Robert D. Falgout3, and
Olaf Schenk4

1 Universität Passau, DE, christian.lengauer@uni-passau.de
2 Bergische Universität Wuppertal, DE, bolten@math.uni-wuppertal.de
3 Lawrence Livermore National Lab., US, falgout2@llnl.gov
4 University of Lugano, CH, olaf.schenk@usi.ch

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 15161 “Advanced
Stencil-Code Engineering”. The seminar was hosted by the DFG project with the same name
(ExaStencils for short) in the DFG priority programme “Software for Exascale Computing”
(SPPEXA). It brought together experts from mathematics, computer science and applications to
explore the challenges of very high performance and massive parallelism in solving partial differ-
ential equations. Its aim was to lay the basis for a new interdisciplinary research community on
high-performance stencil codes.

Seminar April 12–17, 2015 – http://www.dagstuhl.de/15161
1998 ACM Subject Classification C.4 Performance of Systems, D.1.3 Concurrent Programming,

D.2.6 Programming Environments, D.3.3 Language Constructs and Features, G.1.8 Partial
Differential Equations, G.4 Mathematical Software

Keywords and phrases Code generation, domain-specific languages, exascale computing, high-
performance computing, massive parallelism, multigrid, partial differential equations, pro-
gram optimization, program parallelization, stencil codes

Digital Object Identifier 10.4230/DagRep.5.4.56

1 Executive Summary

Christian Lengauer
Matthias Bolten
Robert D. Falgout
Olaf Schenk

License Creative Commons BY 3.0 Unported license
© Christian Lengauer, Matthias Bolten, Robert D. Falgout, and Olaf Schenk

Stencil Codes
Stencil codes are compute-intensive algorithms, in which data points arranged in a large grid
are being recomputed repeatedly from the values of data points in a predefined neighborhood.
This fixed neighborhood pattern is called a stencil. Stencil codes see wide-spread use in
computing the discrete solutions of partial differential equations and systems composed of
such equations. Connected to the implementation of stencil codes is the use of efficient
solver technology, i.e., iterative solvers that rely on the application of a stencil and that
provide good convergence properties like multigrid methods. Major application areas are
the natural sciences and engineering. Although, in many of these applications, unstructured

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Advanced Stencil-Code Engineering, Dagstuhl Reports, Vol. 5, Issue 4, pp. 56–75
Editors: Christian Lengauer, Matthias Bolten, Robert D. Falgout, and Olaf Schenk

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/15161
http://dx.doi.org/10.4230/DagRep.5.4.56
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de


Christian Lengauer, Matthias Bolten, Robert D. Falgout, and Olaf Schenk 57

adaptive discretizations are employed for an efficient use of exascale supercomputers whose
architectures possibly include accelerators or are of a heterogeneous nature, the use of
structured discretizations and, thus, stencil codes has turned out to be helpful.

Stencil codes come in large varieties: there are many thousands! Deriving each of them
individually, even if by code modification from one another, is not practical. The goal of
the seminar is to raise the level of abstraction for application programmers significantly and
to support this raise with an automated software technology that generates highly efficient
massively parallel implementations which are tuned to the specific problem at hand and the
execution platform used.

Research Challenges
Stencil codes are algorithms with a pleasantly high regularity: the data structures are
higher-dimensional grids and the computations follow a static, locally contained dependence
pattern and are typically arranged in nested loops with linearly affine bounds. This invites
massive parallelism and raises the hope for easily achieved high performance. However,
serious challenges remain:

Because of the large numbers and varieties of stencil code implementations, deriving each
of them individually, even if by code modification from one another, is not practical. Not
even the use of program libraries is practical; instead, a domain-specific metaprogramming
approach is needed.
Reaching petascale to exascale execution speed is a challenge in the frequently used
so-called multigrid algorithms, which work on a hierarchy of increasingly larger grids.
The coarse grids in the upper part of the hierarchy are too small for massive parallelism.
Efficiency, i.e., a high ratio of speedup to the degree of parallelism, is impaired by the
low mathematical density, i.e., the low ratio of computation steps to data transfers of
stencil codes.
An inappropriate use of the execution platform may act as a performance brake.

Stencil-code engineering has received increased attention in the last few years, which
is evidenced by the appearance of a number of stencil-code programming languages and
frameworks. To reach the highest possible execution speed and to conserve hardware
resources and energy, the stencil code must be tuned cleverly to the specific application
problem at hand and the execution platform used. One approach that could be followed has
been demonstrated by the previous U.S. project SPIRAL, whose target was the domain of
linear transforms: domain-specific optimization at several levels of abstraction – from the
mathematical equations over an abstract, domain-specific program and, in further steps, to
the actual target code on the execution platform used. At each level, one makes aggressive
use of knowledge of the problem and platform and employs up-to-date, automated software
technology suitable for that level.

Questions and Issues Addressed
The charter of the seminar was to foster international cooperation in the development of
a radically new, automatic, optimizing software technology for the effective and flexible
exploitation of massively parallel architectures for dedicated, well delineated problem domains.

The central approaches in achieving this technology are:
the aggressive use of domain knowledge for optimization at different levels of abstraction
the exploitation of commonalities and variabilities in application codes via product-line
technology and domain engineering

15161



58 15161 – Advanced Stencil-Code Engineering

the use of powerful models for program optimization, like the polyhedron model for loop
parallelization and feature-orientation for software product lines

The application domain investigated in the seminar was stencil codes. It is envisaged that the
approach can be ported to other well delineated domains – of course, with the substitution
of suitable domain-specific content.

Among the issues discussed were:
What are suitable abstraction, modularization, composition and generation mechanisms
for stencil codes?
What are the appropriate language features of a domain-specific language for stencil
codes?
What are the commonalities and variabilities of stencil codes?
What are the computational performance barriers, especially, of multigrid methods using
stencils and how can they be overcome?
What are the performance barriers caused by data exchanges and how can they be
overcome? How can communication be avoided in multilevel algorithms?
What are the roles of nested loops and divide-and-conquer recursions in stencil codes?
How can other solvers and preconditioners benefit from autotuned stencil codes?
What role should techniques like autotuning and machine learning play in the optimization
of stencil codes?
What options of mapping stencil codes to a heterogeneous execution platform exist and
how can an educated choice be made?
Which techniques can be employed to make clever use of large-scale hybrid architectures,
e.g., by the combination of multigrid with mathematical domain decomposition?

On the informatics side, one important role of the seminar was to inform the inter-
national stencils community about the techniques used in ExaStencils: software product
lines, polyhedral loop optimization and architectural metaprogramming. Equally important
was for ExaStencils members to learn about the experiences made with other techniques
like divide-and-conquer, multicore optimization in parallel algorithms or autotuning. The
application experts contributed to a realistic grounding of the research questions.

On the mathematics side, the seminar fostered the cooperation of experts in parallel solver
technology with the groups from informatics to enable them to make use of the advanced
techniques available. Further, different strategies for improving the scalability of iterative
methods were discussed and the awareness of the opportunities and complexities of modern
architectures in the numerical mathematics community was advanced.



Christian Lengauer, Matthias Bolten, Robert D. Falgout, and Olaf Schenk 59

2 Table of Contents

Executive Summary
Christian Lengauer, Matthias Bolten, Robert D. Falgout, and Olaf Schenk . . . . . 56

Overview of Talks
From stencils to elliptic PDE solvers
Ulrich Rüde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Maintaining performance in a general-purpose FEM code
Christian Engwer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Optimization opportunities of stencils codes via analytic performance modeling
Georg Hager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

SPPEXA und ExaStencils
Christian Lengauer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Local Fourier analysis for multigrid on semi-structured meshes
Carmen Rodrigo Cardiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Predicting the numerical performance of methods for evolutionary problems
Stephanie Friedhoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

An extension of hypre’s structured and semi-structured matrix classes
Ulrike Meyer-Yang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

The PyOP2 abstraction
Paul H. J. Kelly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

The Pochoir stencil compiler
Bradley Kuszmaul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Formal synthesis of computational kernels
Franz Franchetti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

ExaSlang and the ExaStencils code generator
Christian Schmitt, Stefan Kronawitter, Sebastian Kuckuk . . . . . . . . . . . . . . . 65

Variability management in ExaStencils
Alexander Grebhahn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

From general-purpose to stencil DSL code
Armando Solar-Lezama . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

STELLA: A domain-specific language for stencil computations
Carlos Osuna Escamilla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Designing GridTools
Mauro Bianco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Redesign of preconditioned Krylov methods around stencil compilers
Wim Vanroose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

PolyMage: High-performance compilation for heterogeneous stencils
Uday Bondhugula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

On the characterization of the data movement complexity of algorithms
P. Sadayappan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

15161



60 15161 – Advanced Stencil-Code Engineering

The mathematics of ExaStencils
Hannah Rittich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Stencils for hierarchical bases
Dirk Pflüger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Mapping stencils to FPGAs and synthesizable accelerators
Louis-Noel Pouchet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

The stencil optimization framework MODESTO
Tobias Grosser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Autotuning divide-and-conquer stencil computations
Ekanathan Palamadai Natarajan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Things you can do with stencils
Gabriel Wittum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Optimization of higher-order stencils
P. Sadayappan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

DSL for stencils in non-Newtonian fluids simulation?
Gundolf Haase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Evening Discussion Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



Christian Lengauer, Matthias Bolten, Robert D. Falgout, and Olaf Schenk 61

3 Overview of Talks

40-min talk slots covered the programme until Thursday mid-afternoon. Many talks had
multiple authors; in one, the presentation was shared by all authors. The latter part of the
seminar was devoted to the planning of future collaborations. A list of talks follows in the
order in which they were presented.

3.1 From stencils to elliptic PDE solvers
Ulrich Rüde (Friedrich-Alexander-Universität Erlangen-Nürnberg – Erlangen, DE)

License Creative Commons BY 3.0 Unported license
© Ulrich Rüde

The talk addresses three aspects of stencil codes:
What techniques can we use to speed up stencil codes? These are blocking and tiling
techniques, but also memory layout transformations such as padding and multi-color-splits.
What stencil codes should be considered? Here it is important to notice that the
algorithms more often than not will need to accomplish a global exchange of data and
that any attempt to avoid this will only result in inefficient algorithms. In other words:
there is no way to avoid the complexities as they occur, e.g., in multigrid algorithms –
the question is rather to find ways to implement such algorithmic structures as efficiently
as possible.
Where do we stand? Here the prototype HHG package shows that large systems with in
excess of 1012 (a trillion) unknowns can be solved in a matter of minutes using highly
optimized multigrid algorithms on parallel systems running up to a million parallel
threads.

3.2 Maintaining performance in a general-purpose FEM code
Christian Engwer (Westfälische Wilhelms-Universität – Münster, DE)

License Creative Commons BY 3.0 Unported license
© Christian Engwer

Joint work of P. Bastian, C. Engwer, J. Fahlke, S. Müthing

For solving partial differential equations the finite element method (FEM) is an attractive
powerful tool. In many engineering applications, the FEM on unstructured meshes is used
to account for the complicated geometry.

The text book stencil approaches gain high performance from their very simple predefined
structure. FEM, on the other hand, gets the flexibility from its ability to deal with arbitrary
unstructured meshes. To obtain the good performance of stencils and, at the same time, keep
the flexibility of FEM, we adopt certain concepts from stencils. To achieve this, we introduce
local structure – either by locally structured refinement or by higher-order methods.

A particular challenge arises from the fact that the PDE model is given in terms of user
code and is executed in the inner most loop. We discuss how to restructure the interfaces
to exploit the local structure and obtain a significant portion of peak performance while
keeping the flexibility at the user level.

15161

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


62 15161 – Advanced Stencil-Code Engineering

3.3 Optimization opportunities of stencils codes via analytic
performance modeling

Georg Hager (Friedrich-Alexander-Universität Erlangen-Nürnberg – Erlangen, DE)

License Creative Commons BY 3.0 Unported license
© Georg Hager

Much effort has been put into optimized implementations of stencil algorithms. Such activities
are usually not guided by performance models that provide estimates of expected speedup.
Understanding the performance properties and bottlenecks by performance modeling enables a
clear view on promising optimization opportunities. We use the recently developed Execution-
Cache-Memory (ECM) model to quantify the performance bottlenecks of stencil algorithms
on a contemporary Intel processor. Single-core performance and scalability predictions for
typical “corner-case” stencil loop kernels are given. Guided by the ECM model, we accurately
quantify the significance of “layer conditions”, which are required to estimate the data traffic
through the memory hierarchy, and study the impact of typical optimization approaches such
as spatial blocking, strength reduction, and temporal blocking for their expected benefits.
We also compare the ECM model to the widely known Roofline model and pinpoint the
limitations of both. In an outlook, we demonstrate a simple tool that can automatically
construct the Roofline and ECM models for streaming kernels (including stencils).

3.4 SPPEXA und ExaStencils
Christian Lengauer (Universität Passau – Passau, DE)

License Creative Commons BY 3.0 Unported license
© Christian Lengauer

The DFG Priority Programme SPP 1648 “Software for Exascale Computing” (SPPEXA)
is introduced briefly and one of its thirteen projects is sketched: “Advanced Stencil Code
Engineering” (ExaStencils). The goals of the project are stated and justified, and the
structure of the ExaStencils development framework is reviewed. Three further talks in the
seminar provide details.

3.5 Local Fourier analysis for multigrid on semi-structured meshes
Carmen Rodrigo Cardiel (Universidad de Zaragoza – Zaragoza, ES)

License Creative Commons BY 3.0 Unported license
© Carmen Rodrigo Cardiel

Joint work of A. Arrarás, F. J. Gaspar, B. Gmeiner, T. Gradl, F. J. Lisbona, L. Porter, C. Rodrigo Cardiel,
U. Rüde, P. Salinas

To approximate solutions of problems defined on complex domains, it is very common to apply
a regular refinement to an unstructured input grid which fits the geometry of the domain.
In this way, a hierarchy of globally unstructured grids with regular structured patches is
generated. This kind of mesh is suitable for the use with geometric multigrid methods
and allows us to use stencil-based data structures which reduce the memory requirements
drastically.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Christian Lengauer, Matthias Bolten, Robert D. Falgout, and Olaf Schenk 63

In this setting, we are interested in the design of efficient geometric multigrid methods on
such semi-structured triangular grids. To design these algorithms, a local Fourier analysis for
non-orthogonal grids is used. This tool is based on the Fourier transform and provides very
accurate predictions of the asymptotic convergence of geometric multigrid methods. It is a
useful technique for the choice of the suitable components of your algorithm. This analysis is
applied on each structured patch of the grid in order to choose the most efficient components
on each block of the semi-structured grid.

This strategy was initially applied to linear finite-element discretizations of scalar partial
differential equations in two dimensions, and was later extended and generalized to such
discretizations for systems of PDEs, three-dimensional tetrahedral grids, high-order finite
element discretizations, finite-volume cell-centered schemes, and even to time-dependent
non-linear problems by combining the approach with splitting schemes in time.

Note that each of these extensions requires the design of specific smoothers appropriate
for the problems encountered with the different discretizations and, most of the time, it is
also a special approach of the local Fourier analysis is necessary.

3.6 Predicting the numerical performance of methods for evolutionary
problems

Stephanie Friedhoff (University of Leuven – Leuven, BE)

License Creative Commons BY 3.0 Unported license
© Stephanie Friedhoff

Joint work of S. Friedhoff, S. MacLachlan

With current trends in computer architectures leading towards systems with more, but
not faster, processors, faster time to solution must come from greater parallelism. These
trends particularly impact the numerical solution of the linear systems arising from the
discretization of partial differential equations (PDEs) with evolutionary behavior, such as
parabolic problems. The multigrid-reduction-in-time (MGRIT) algorithm is a truly multi-level
approach to parallel-in-time integration, which directly uses an existing time propagator and,
thus, can easily exploit substantially more computational resources than standard sequential
time stepping. Multigrid waveform relaxation is another effective multigrid method on
space-time grids for parabolic problems. However, a large gap exists between the theoretical
analysis of these algorithms and their actual performance.

We present a generalization of the well-known local-mode (often local Fourier) analysis
(LFA) approach. The proposed semi-algebraic mode analysis (SAMA) approach couples
standard LFA with tractable numerical computation that accounts for the non-local character
of operators in the class of evolutionary problems. We demonstrate that SAMA provides an
advantage for parabolic problems, obtaining robust predictivity of performance independent
of the length of the time domain – in sharp contrast to LFA, which only becomes predictive
for extremely long time integration.

15161

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


64 15161 – Advanced Stencil-Code Engineering

3.7 An extension of hypre’s structured and semi-structured matrix
classes

Ulrike Meier Yang (LLNL – Livermore, US)

License Creative Commons BY 3.0 Unported license
© Ulrike Meyer-Yang

Joint work of R. Falgout, U. Meyer-Yang

The hypre software library provides high-performance preconditioners and solvers for the
solution of large sparse linear systems on massively parallel computers. One of its attractive
features is the provision of conceptual interfaces, which include a structured interface, a semi-
structured interface, and a traditional linear-algebra-based interface. The (semi-)structured
interfaces are an alternative to the standard matrix-based interface that describes rows,
columns, and coefficients of a matrix. Here, instead, matrices are described primarily in
terms of stencils and logically structured grids. These interfaces give application users a more
natural means for describing their linear systems, and provide access to methods such as
structured multigrid solvers, which can take advantage of the additional information beyond
just the matrix. Since current architecture trends are favoring regular compute patterns to
achieve high performance, the ability to express structure has become much more important.

We describe a new structured-grid matrix class that supports rectangular matrices and
constant coefficients and a semi-structured-grid matrix class that builds on the new structured-
grid matrix. We anticipate that an efficient implementation of these new classes will lead
to better performance of matrix kernels and algorithms on current and future architectures
than hypre’s current matrix classes.

3.8 The PyOP2 abstraction
Paul H. J. Kelly (Imperial College – London, UK)

License Creative Commons BY 3.0 Unported license
© Paul H. J. Kelly

Joint work of G. Bercea, C. Bertolli, C. Cantwell, M. Giles, G. Gorman, D.A. Ham, P.H. J. Kelly, C. Krieger,
F. Luporini, G.R. Markall, M. Mills Strout, G. Mudalige, C. Olschanowsky, R. Ramanujam,
F. Rathgeber, I. Reguly, G. Rokos, S. Sherwin

PyOP2 is a stencil-like abstraction for parallel loops over unstructured meshes. It is used as
an intermediate representation in Firedrake, an automated system for the portable solution
of partial differential equations using the finite element method. This talk explores some of
the opportunities exposed by PyOP2, for unstructured and extruded meshes and for locality,
parallelisation and vectorisation.

3.9 The Pochoir stencil compiler
Bradley Kuszmaul (Massachusetts Institute of Technology – Boston, MA, US)

License Creative Commons BY 3.0 Unported license
© Bradley Kuszmaul

Joint work of R.A. Chowdhury, B. Kuszmaul, C. E. Leiserson, C.-K. Luk, Y. Tang

A stencil computation repeatedly updates each point of a d-dimensional grid as a function of
itself and its near neighbors. Parallel cache-efficient stencil algorithms based on “trapezoidal

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Christian Lengauer, Matthias Bolten, Robert D. Falgout, and Olaf Schenk 65

decompositions” are known, but most programmers find them difficult to write. The Pochoir
stencil compiler allows a programmer to write a simple specification of a stencil in a domain-
specific stencil language embedded in C++ which the Pochoir compiler then translates
into high-performing Cilk code that employs an efficient parallel cache-oblivious algorithm.
Pochoir supports general d-dimensional stencils and handles both periodic and aperiodic
boundary conditions in one unified algorithm. The Pochoir system provides a C++ template
library that allows the user’s stencil specification to be executed directly in C++ without the
Pochoir compiler (albeit more slowly), which simplifies user debugging and greatly simplified
the implementation of the Pochoir compiler itself. A host of stencil benchmarks run on a
modern multicore machine demonstrates that Pochoir outperforms standard parallel-loop
implementations, typically running 2–10 times faster. The algorithm behind Pochoir improves
on prior cache-efficient algorithms on multidimensional grids by making “hyperspace” cuts,
which yield asymptotically more parallelism for the same cache efficiency.

3.10 Formal synthesis of computational kernels
Franz Franchetti (Carnegie Mellon University – Pittsburgh, PA, US)

License Creative Commons BY 3.0 Unported license
© Franz Franchetti

Joint work of research groups SPIRAL and HACMS

We address the question of how to map computational kernels automatically across a wide
range of computing platforms to highly efficient code, and prove the correctness of the
synthesized code. This addresses two fundamental problems that software developers are
faced with: performance portability across the ever-changing landscape of parallel platforms,
and verifiable correctness of sophisticated floating-point code. We have implemented this
approach as part of the SPIRAL system where we have formalized a selection of computational
kernels from the signal and image processing domain, software-defined radio, and robotic
vehicle control.

3.11 ExaSlang and the ExaStencils code generator
Christian Schmitt (Friedrich-Alexander-Universität Erlangen-Nürnberg – Erlangen, DE)
Stefan Kronawitter (Universität Passau – Passau, DE)
Sebastian Kuckuk (Friedrich-Alexander-Universität Erlangen-Nürnberg – Erlangen, DE)

License Creative Commons BY 3.0 Unported license
© Christian Schmitt, Stefan Kronawitter, Sebastian Kuckuk

Joint work of F. Hannig, H. Köstler, S. Kronawitter, S. Kuckuk, C. Lengauer, U. Rüde, C. Schmitt, J. Teich

Many problems in computational science and engineering involve elliptic partial differential
equations and require the numerical solution of large, sparse (non-)linear systems of equations.
Multigrid is known to be one of the most efficient methods for this purpose. However, the
concrete multigrid algorithm and its implementation depend highly on the underlying problem
and hardware.

Project ExaStencils aims at a compiler and underlying code generation framework capable
of generating automatically highly parallel and highly efficient geometric multigrid solvers
from a very abstract description, while selecting the most performant program composition.

15161

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


66 15161 – Advanced Stencil-Code Engineering

In our presentation, we focus on the aspects of code generation, node-level performance
optimization and parallelization. More specifically, we provide an insight into the different
components of our compiler framework and introduce some of the polyhedral as well as the low-
level optimizations which are applied automatically. Furthermore, we introduce our approach
to domain partitioning as well as details on employed communication strategies. Finally, we
present several experimental results, ranging from node-level performance improvements over
a case study of adding generator support for FPGAs to weak-scaling results on JUQUEEN.

3.12 Variability management in ExaStencils
Alexander Grebhahn (Universität Passau – Passau, DE)

License Creative Commons BY 3.0 Unported license
© Alexander Grebhahn

Joint work of S. Apel, A. Grebhahn, N. Siegmund

The automatic generation of multigrid solvers leads to the possibility of creating a high
number of different variants that are optimal for a wide range of different hardware. However,
identifying the optimal variant for a specific hardware is a challenging task due to the inherent
variability of the solvers. To master this challenge, we created a machine-learning approach
for the derivation of a performance-influence model. Such a model describes all relevant
influences of configuration options and their interactions on the performance of all possible
variants. To identify a performance-influence model, we use an iterative approach that relies
on a number of measurements gathered, using several structured sampling heuristics. In a
series of experiments, we demonstrated the feasibility of our approach in terms of accuracy
of the derived models.

3.13 From general-purpose to stencil DSL code
Armando Solar-Lezama (Massachusetts Institute of Technology – Boston, MA, US)

License Creative Commons BY 3.0 Unported license
© Armando Solar-Lezama

The talk describes a new technique to allow high-performance stencil DSLs to be used
to optimize existing legacy code. The key idea is to use synthesis technology to derive a
high-level specification from a block of low-level code implementing a stencil. This high-level
specification can then be mechanically translated into a target DSL.

In addition to deriving the code, the technique also derives the invariants necessary to
prove the equivalence between the code and the extracted specification. The talk presented
some initial results that suggest that the technique can extract a specification from some
non-trivial stencils, including some that have undergone some hand optimization.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Christian Lengauer, Matthias Bolten, Robert D. Falgout, and Olaf Schenk 67

3.14 STELLA: A domain-specific language for stencil computations
Carlos Osuna Escamilla (Eidgenössische Technische Hochschule – Zürich, CH)

License Creative Commons BY 3.0 Unported license
© Carlos Osuna Escamilla

Joint work of M. Bianco, O. Fuhrer, T. Gysi, C. Osuna Escamilla, T.C. Schulthess

The dynamical core of many weather and climate simulation models are implemented as
stencil methods solving partial differential equations (PDEs) on structured grids. STELLA
has been developed as a domain-specific language, based on C++ template metaprogramming,
for stencil codes on structured grids. The library abstracts the loop logic and parallelization
of the stencils as well as other hardware-dependent optimizations like memory layout of
data fields, loop and kernel fusion or software manages cache techniques. We show the
use and performance of different parallelization algorithms within STELLA, like a parallel
tridiagonal solver. These new parallelization modes increase the level of parallelism in GPUs
for the algorithmic motifs used in COSMO, which improves the strong scaling behaviour and
therefore time to solution on real use cases. A full rewrite of the COSMO dynamical core
shows the usefulness of STELLA for production codes, when stencil computations often have
to interoperate with other parts of the model using different programming models and even
programming languages. Using STELLA, we achieved a speedup factor of 1.8x for CPUs
and 5.8x for NVIDIA GPUs for the dynamical core of COSMO.

3.15 Designing GridTools
Mauro Bianco (Eidgenössische Technische Hochschule – Zürich, CH)

License Creative Commons BY 3.0 Unported license
© Mauro Bianco

The complexity and diversity of contemporary computer architectures make the effort of
developing portable and efficient monolithic scientific applications a challenging endeavor.
An application may use different algorithmic motifs, which have different requirements and
optimal solution strategies.

Previous experience, such as STELLA, showed that investing in generalizing high-level
application-specific libraries for portions of an application, provides performance portab-
ility. Thanks to this, the application can exploit new energy-efficient architectures, thus
enabling innovative solutions of scientific problems, like increasing the resolution of numerical
simulations for weather forecast.

GridTools is a set of C++ generic APIs to encapsulate the main algorithmic motifs in
grid applications, such as weather and climate simulations. Specifically, GridTools provides
a DSL for stencils computations, plus other facilities for halo-exchange communications,
boundary conditions treatment, etc. This allows an application to be specified at high level
and, at the same time, take advantage of the diverse architectural features, such as, multiple
address spaces in modern computing nodes.

By means of its clean design and concepts, and being written in a very well established
programming language, the GridTools API set is engineered to be expanded and improved
over time, providing production a quality implementation of its components.

15161

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


68 15161 – Advanced Stencil-Code Engineering

3.16 Redesign of preconditioned Krylov methods around stencil
compilers

Wim Vanroose (University of Antwerp – Antwerp, BE)

License Creative Commons BY 3.0 Unported license
© Wim Vanroose

Joint work of S. Donfack, P. Ghysels, B. Reps, O. Schenk, W. Vanroose

The performance of preconditioned Krylov solvers is severely hampered by the limited
memory bandwidth. Each of the building blocks of a multigrid preconditioned Krylov solver
is an operation of low arithmetic intensity. We discuss how the algorithm can be organized
using stencil compilers such the arithmetic intensity is raised, so we can benefit from SIMD
operations.

3.17 PolyMage: High-performance compilation for heterogeneous
stencils

Uday Bondhugula (Indian Institute of Science – Bangalore, IN)

License Creative Commons BY 3.0 Unported license
© Uday Bondhugula

Joint work of U. Bondhugula, R.T. Mullapudi, V. Vasista

This talk presents the design and implementation of PolyMage, a domain-specific language and
compiler for image processing pipelines. An image processing pipeline can be viewed as a graph
of interconnected stages which process images successively. Each stage typically performs one
of point-wise, stencil, reduction or data-dependent operations on image pixels. Individual
stages in a pipeline typically exhibit abundant data parallelism that can be exploited with
relative ease. However, the stages also require high memory bandwidth preventing effective
utilization of parallelism available on modern architectures. For applications that demand
high performance, the traditional options are to use optimized libraries like OpenCV or
to optimize manually. While using libraries precludes optimization across library routines,
manual optimization accounting for both parallelism and locality is very tedious.

The focus of our system, PolyMage, is on automatically generating high-performance
implementations of image processing pipelines expressed in a high-level declarative language.
Our optimization approach primarily relies on the transformation and code generation
capabilities of the polyhedral compiler framework. To the best of our knowledge, this is
the first model-driven compiler for image processing pipelines that performs complex fusion,
tiling, and storage optimization automatically. Experimental results on a modern multicore
system show that the performance achieved by our automatic approach is up to 1.81x better
than that achieved through manual tuning in Halide, a state-of-the-art language and compiler
for image processing pipelines. For a camera raw image processing pipeline, our performance
is comparable to that of a hand-tuned implementation.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Christian Lengauer, Matthias Bolten, Robert D. Falgout, and Olaf Schenk 69

3.18 On the characterization of the data movement complexity of
algorithms

P. Sadayappan (Ohio State University – Columbus, OH, US)

License Creative Commons BY 3.0 Unported license
© P. Sadayappan

Joint work of V. Elango, L.-N. Pouchet, J. Ramanujam, F. Rastello, P. Sadayappan

Data movement costs represent a significant factor in determining the execution time and
energy expenditure of algorithms on current/emerging computers. Hence, characterizing the
data movement cost is becoming increasingly important. This talk introduces the problem
of finding lower bounds on the data movement complexity of algorithms and summarizes
recent progress along multiple directions: a new approach to lower bounds using graph
min-cut, automated analysis of affine codes for parametric asymptotic characterization of
data movement lower bounds, and algorithm-architecture co-design using lower bounds on
data movement.

3.19 The mathematics of ExaStencils
Hannah Rittich (Bergische Universität Wuppertal – Wuppertal, DE)

License Creative Commons BY 3.0 Unported license
© Hannah Rittich

Joint work of M. Bolten, K. Kahl, H. Rittich

Local Fourier analysis (LFA) is a well known tool for analyzing and predicting the convergence
behavior of multigrid methods. Originally, LFA has been introduced to analyze operators
with constant coefficients. However, for some problems this assumption is too restrictive.
We present a generalization of LFA that allows to analyze more general operators. The
coefficients of these operators may vary in a block structured way. This enables us to analyze
complex operators like operators with jumping coefficients and block smoothers.

3.20 Stencils for hierarchical bases
Dirk Pflüger (Universitẗ Stuttgart – Stuttgart, DE)

License Creative Commons BY 3.0 Unported license
© Dirk Pflüger

The discretization and solution of higher-dimensional PDEs suffers the curse of dimensionality.
In these settings, hierarchical approaches such as sparse grids can help to push the limit of the
dimensionality that can be dealt with. Sparse grids are based on hierarchical basis functions
with local support and a truncation of the resulting expansion into higher-dimensional
increment spaces. However, a FEM approach leads to matrices that are no longer sparse
and to bilinear forms that result in “hierarchical stencils”. Thus, solution techniques and
data structures that are optimized for sparse linear systems cannot be applied any more.
But algorithms for the matrix-vector multiplication in optimal (linear) complexity do exist,
even though an explicit assembly of the corresponding matrix would lead to more non-zero
entries. In this talk, we present the challenges that arise when employing hierarchical bases
and discuss the current state of the art with respect to the solution of PDEs. Novel ideas
from other fields are more than welcome.

15161

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


70 15161 – Advanced Stencil-Code Engineering

3.21 Mapping stencils to FPGAs and synthesizable accelerators
Louis-Noel Pouchet (Ohio State University – Columbus, OH, US)

License Creative Commons BY 3.0 Unported license
© Louis-Noel Pouchet

Stencils are recurring patterns in numerous application domains, ranging from image pro-
cessing to PDE solving. The medical imaging domain leverages numerous algorithms using
stencils, and achieving portable high performance for these codes requires an integrated
approach, from application modeling to low-level compiler optimization and hardware design.

In this talk, I present an overview of the research at the Center for Domain-Specific
Computing, which aims at accelerating medical imaging applications by combining domain-
specific modeling of applications, domain- and pattern-specific optimizing compilers, and
a customizable heterogeneous computing platform. Focus will be made on the high-level
modeling of the application using macro-dataflow concepts, and domain-specific optimization
for stencils on CPUs and FPGAs.

3.22 The stencil optimization framework MODESTO
Tobias Grosser (Eidgenössische Technische Hochschule – Zürich, CH)

License Creative Commons BY 3.0 Unported license
© Tobias Grosser

Joint work of Tobias Grosser, Tobias Gysi, Torsten Hoefler

Code transformations, such as loop tiling and loop fusion, are of key importance for the
efficient implementation of stencil computations. However, their direct application to a large
code base is costly and severely impacts program maintainability. While recently introduced
domain-specific languages facilitate the application of such transformations, they typically
still require manual tuning or auto-tuning techniques to select the transformations that
yield optimal performance. We introduce MODESTO, a model-driven stencil optimization
framework, that for a stencil program suggests program transformations optimized for a
given target architecture. Initially, we review and categorize data locality transformations for
stencil programs and introduce a stencil algebra that allows the expression and enumeration
of different stencil program implementation variants. Combining this algebra with a compile-
time performance model, we show how to automatically tune stencil programs. We use
our framework to model the STELLA library and optimize kernels used by the COSMO
atmospheric model on multi-core and hybrid CPU-GPU architectures. Compared to naive
and expert-tuned variants, the automatically tuned kernels attain a 2.0–3.1x and a 1.0–1.8x
speedup, respectively.

3.23 Autotuning divide-and-conquer stencil computations
Ekanathan Palamadai Natarajan (Massachusetts Institute of Technology – Boston, MA, US)

License Creative Commons BY 3.0 Unported license
© Ekanathan Palamadai Natarajan

Joint work of C.E. Leiserson, E. Palamadai Natarajan

Ztune is an application-specific autotuner for optimizing serial divide-and-conquer stencil
computations modeled on the trapezoidal-decomposition algorithm due to Frigo and Strumpen.
Each recursive step of the algorithm divides a space-time hypertrapezoidal region, called a

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Christian Lengauer, Matthias Bolten, Robert D. Falgout, and Olaf Schenk 71

“zoid”, into subzoids, or if the size of the zoid falls beneath a given threshold, executes a
base case that loops across the space-time dimensions to compute the stencil at each point
in the zoid. Ztune defines a search domain that generalizes this algorithm, where at each
zoid in the recursion tree, a parameter is created that chooses whether to divide or perform
the base case and, if divide, chooses the space-time dimension to be divided. Ztune searches
this domain of possible choices to find the fastest plan for executing the stencil computation.
Although Ztune, in principle, performs an exhaustive search of the search domain, it uses
three properties – space-time equivalence, divide subsumption, and favored dimension – to
prune the search domain. These three properties reduce the autotuning time by orders of
magnitude without significantly sacrificing runtime.

We implemented Ztune to autotune the Trap algorithm used in the open-source Pochoir
stencil compiler (disabling parallelism). We then compared the performance of the Ztuned
code with that of Pochoir’s default code on nine application benchmarks across two machines
with different hardware configurations. On these benchmarks, the Ztuned code ran 5%–8%
faster (geometric mean) than Pochoir’s hand-optimized code.

We also compared Ztune with state-of-the-art heuristic autotuning. The sheer number of
choice parameters in Ztune’s search domain, however, renders naive heuristic autotuning
infeasible. Consequently, we used the open-source OpenTuner framework to implement a
heuristic autotuner called Otune that optimizes only the size of the base case along each
dimension. Whereas the time for Ztune to autotune each of the benchmarks could be
measured in minutes, to achieve comparable results, the autotuning time for Otune was
typically measured in hours or days. Surprisingly, for some benchmarks, Ztune actually
autotuned faster than the time it takes to perform the stencil computation once.

3.24 Things you can do with stencils
Gabriel Wittum (Goethe-Universität – Frankfurt, DE)

License Creative Commons BY 3.0 Unported license
© Gabriel Wittum

Numerical simulation with supercomputers has become one of the major topics in computa-
tional science. To promote modelling and simulation of complex problems, new strategies
are needed allowing for the solution of large, complex model systems. Crucial issues for such
strategies are reliability, efficiency, robustness, scalability, usability, and versatility.

After introducing some basic notions of stencil notation and calculus, we discuss what is
necessary for computing with a fixed or almost fixed stencil. To demonstrate this, we discuss
the computation of seiches of Lake Constance using a domain adapted but structured grid,
which still yields an operator with almost fixed pattern.

We discuss advantages and disadvantages and show that a numerical approach combining
adaptivity, parallelism and multigrid methods allows for extreme parallel scalability while
still maintaining flexibility to adapt numerical methods to the problem is more general and
allows to gain acceleration by factors of up to 106 using sensible adaptive numerics. These
strategies are combined in the novel simulation system UG 4 (“Unstructured Grids”).

15161

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


72 15161 – Advanced Stencil-Code Engineering

3.25 Optimization of higher-order stencils
P. Sadayappan (Ohio State University – Columbus, OH, US)

License Creative Commons BY 3.0 Unported license
© P. Sadayappan

Joint work of M. Kong, L.-N. Pouchet, J. Ramanujam, F. Rastello, P. Sadayappan, K. Stock

It is well known that the associativity of operations like addition and multiplication offer
opportunities for reordering of operations to enable better parallelization. We discuss a
complementary use of associativity of operations: to improve data locality. We consider
the optimization of high-order (or long-range) stencil computations. High-order stencil
computations exhibit a much higher operational intensity (ratio of arithmetic operations
to data moved from/to main-memory) than simple nearest-neighbor stencil operations.
Although high-order stencil computations are not memory-bandwidth-bound due to high
operational intensity, they nevertheless do not achieve much higher performance than
low-order stencils. This is because of severe register pressure. We discuss an associative
reordering strategy that interleaves computations targeting multiple neighboring grid sites and
thereby significantly reduces register pressure. Experimental results demonstrate significant
performance improvement through use of the associative reordering.

3.26 DSL for stencils in non-Newtonian fluids simulation?
Gundolf Haase (Karl-Franzens-Universität – Graz, AT)

License Creative Commons BY 3.0 Unported license
© Gundolf Haase

Joint work of D. Vasco

The talk introduces the formulation of non-Newtonian fluids as a coupled system of non-linear
PDEs. The included Navier-Stokes equations contain an additional non-Newtonian term
originating from the non-linear shear-stress tensor. The non-linear system of equations in
each time step is solved by the SIMPLE algorithm and the discretization is the 7-point stencil
taking into account the staggered grid for the pressure and the temperature.

Several issues for DSLs in this context are discussed including the automatic generation
of a geometric multigrid for the coupled equations of the linearized system of equations. The
final goal would be a full approximation scheme (FAS) automatically generated for multicore
CPUs/GPUs/Xeon Phi and MPI.

4 Evening Discussion Sessions

Stencil Codes: Walls, Challenges, Goals
The initial goal of the discussion was to pinpoint the problems which stand in the way of the
scalability of stencil codes and the productivity of their engineering. Ulrich Rüde pointed
out that when solving linear systems where the system matrix is described by a stencil using
direct methods is not feasible as the inverse of such a matrix is usually almost dense. Using
separators does not solve this problem either: because the Schur complement is usually
dense, an iterative solution results in too many iterations, thus multigrid approaches are
needed. While asymptotically multigrid is the fastest solver in many cases, in practice they

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Christian Lengauer, Matthias Bolten, Robert D. Falgout, and Olaf Schenk 73

are sometimes not the best choice as the constants involved depend on the problem at hand
and not only the algorithm determines complexity.

In many cases Krylov subspace methods are used, but Saday Sadayappan mentioned that
Krylov subspace methods are inefficient with respect to data movement. Another issue is
the missing algorithmic scalability, i.e., the dependence of the number of iterations on the
problem size. This could be overcome by multigrid preconditioning but essentially this puts
the hierarchy necessary to tackle the problem in the preconditioner.

Paul Kelly and Gabriel Wittum further explained that the performance of the method
heavily depends on the problem, e.g., in compressible or incompressible flows or when dealing
with parabolic or hyperbolic PDEs. Christian Engwer noted that the building blocks are the
same, although as countered by Saday Sadayappan the applications are different.

Harald Köstler added that people from both the compiler community and applied math-
ematics are needed to solve a problem. Further, at the interface of both worlds, experts
are needed. Saday Sadayappan replied that the computer science people only need to know
about the loops. It was argued that the algorithmic choice heavily influences the time to
solution but this could be handled by optimizing all different algorithmic options.

According to Franz Franchetti one should start with a short compact way to describe
the algorithm and optimize from there. Harald Köstler added that actually a top-down
approach starting from the model is the right approach. According to Christian Engwer the
optimal way would be if mathematicians provide a bilinear form plus information about the
mesh and that computer scientists optimize starting from this. Therefore a rich language
is needed that stated by Armando Solar-Lezama should be high-level enough. Sven Apel
added that a domain scoping is necessary and that abstraction hides complexity. In Franz
Franchetti’s opinion several layers of DSLs are needed. In the following discussion it was
noted that designing a DSL targeting HPC is difficult as some concepts are not scalable or
optimizable. Further, it was added that currently hand-written and generated codes are
compared. Understanding the domain makes creating optimized implementations easier,
resulting in a huge increase of productivity. The necessary domain-specific optimization needs
semantic knowledge or should at least benefits from it stated Paul Kelly. Franz Franchetti
closed the discussion by pointing out that one has to be able to express what is known.

Suitable Representations of Stencil Codes
One issue at the seminar was multi-layered domain-specific optimization. Three approaches
were presented: FireDrake, SPIRAL and ExaStencils. Each one offers at the most abstract,
a language of mathematical expressions in the considered domain and at the more concrete
levels executable representations that include successively aspects of the computation and
architecture.

Starting point of the discussion was a slide (slide 20) of Franz Franchetti’s talk showing
the SPIRAL languages at different levels of abstraction for the three domains that SPIRAL
has handled in the past (linear transforms, linear algebra, . . . ). In his talk, Franchetti had
left open whether such representations could be developed for multigrid solving.

The second-most abstract and first executable level in SPIRAL has a representation in
point-free combinator style. This means that the equations are in the space of the functions
themselves and not in the range of the functions. Syntactically it is distinguished by the
absence of function arguments in the expressions. It was explored whether and how this could
be achieved for multigrid. The issue of matrix-freedom was also discussed. Matrix-freedom

15161



74 15161 – Advanced Stencil-Code Engineering

gets rid of the need to store intermediate matrices in a computation. The conclusion was
that multigrid solving seems to lend itself well to the SPIRAL style of software engineering.
This will be explored in further collaborations.

A discussion as to the sensibility of restricted domains ensued. The criticism voiced
was that a domain-specific approach has little relevance because much – maybe, most –
application software will not be covered by it. It was countered by two arguments: (1) it is
unlikely that a general-purpose software technology can be as powerful as a domain-specific
one and (2) if the domain has a wide enough market, there is no reason to penalize its
customers with a software technology that is less effective than it could be, just because
others will not be able to benefit from it.

Future Collaborations
One major goal of the seminar was to encourage participants of the different research
communities to collaborate on stencil research in the future. Paper titles for a potential
postproceedings volume were negotiated and collected in a discussion session on Thursday
evening. Until its appearance, details remain confidential.

5 Conclusions

With 46 particpants, the seminar was fully booked. A good spread of contemporary projects
on stencil codes and high-performance DSLs was represented:

from SPPEXA: ExaStencils, EXA-DUNE, TERRA-NEO, and ESSEX
from elsewhere: Pochoir, PATUS, SPIRAL, STELLA, PolyMage, PyOP2, Polly

The main challenge was to reach an understanding between the members of the mutual
needs of the diverse research communities – math, CS, applications. The culmination of
the seminar’s success would consist of the appearance of a postproceedings and of sustained
future collaborations.



Christian Lengauer, Matthias Bolten, Robert D. Falgout, and Olaf Schenk 75

Participants

Sven Apel
Universität Passau, DE

Mauro Bianco
CSCS – Lugano, CH

Matthias Bolten
Bergische Univ. Wuppertal, DE

Uday Bondhugula
Indian Institute of Science –
Bangalore, IN

Rezaul Chowdhury
Stony Brook University, US

Simplice Donfack
University of Lugano, CH

Christian Engwer
Universität Münster, DE

Robert D. Falgout
LLNL – Livermore, US

Franz Franchetti
Carnegie Mellon University –
Pittsburgh, US

Michael Freitag
Universität Passau, DE

Stephanie Friedhoff
KU Leuven, BE

Francisco Jose Gaspar
University of Zaragoza, ES

Björn Gmeiner
Univ. Erlangen-Nürnberg, DE

Alexander Grebhahn
Universität Passau, DE

Armin Größlinger
Universität Passau, DE

Tobias Grosser
ETH Zürich, CH

Gundolf Haase
Universität Graz, AT

Georg Hager
Univ. Erlangen-Nürnberg, DE

Frank Hannig
Univ. Erlangen-Nürnberg, DE

Juraj Kardos
Brno Univ. of Technology, CZ

Paul H. J. Kelly
Imperial College London, GB

Hans-Peter Kersken
DLR – Köln, DE

Harald Köstler
Univ. Erlangen-Nürnberg, DE

Stefan Kronawitter
Universität Passau, DE

Sebastian Kuckuk
Univ. Erlangen-Nürnberg, DE

Bradley C. Kuszmaul
MIT – Cambridge, US

Christian Lengauer
Universität Passau, DE

Dmitry Mikushin
University of Lugano, CH

Marcus Mohr
LMU München, DE

Carlos Osuna Escamilla
ETH Zürich, CH

Ekanathan Palamadai
Natarajan
MIT – Cambridge, US

Dirk Pflüger
Universität Stuttgart, DE

Louis-Noël Pouchet
Ohio State University –
Columbus, US

Hannah Rittich
Bergische Univ. Wuppertal, DE

Carmen Rodrigo Cardiel
University of Zaragoza, ES

Ulrich Rüde
Univ. Erlangen-Nürnberg, DE

P. Saday Sadayappan
Ohio State University –
Columbus, US

Olaf Schenk
University of Lugano, CH

Christian Schmitt
Univ. Erlangen-Nürnberg, DE

Armando Solar-Lezama
MIT – Cambridge, US

Jürgen Teich
Univ. Erlangen-Nürnberg, DE

Wim Vanroose
University of Antwerp, BE

Christian Waluga
TU München, DE

Gabriel Wittum
Universität Frankfurt, DE

Barbara Wohlmuth
TU München, DE

Ulrike Meier Yang
LLNL – Livermore, US

15161


	Executive Summary Christian Lengauer, Matthias Bolten, Robert D. Falgout, and Olaf Schenk
	Table of Contents
	Overview of Talks
	From stencils to elliptic PDE solvers Ulrich Rüde
	Maintaining performance in a general-purpose FEM code Christian Engwer
	Optimization opportunities of stencils codes via analytic performance modeling Georg Hager
	SPPEXA und ExaStencils Christian Lengauer
	Local Fourier analysis for multigrid on semi-structured meshes Carmen Rodrigo Cardiel
	Predicting the numerical performance of methods for evolutionary problems Stephanie Friedhoff
	An extension of hypre's structured and semi-structured matrix classes Ulrike Meyer-Yang
	The PyOP2 abstraction Paul H.J. Kelly
	The Pochoir stencil compiler Bradley Kuszmaul
	Formal synthesis of computational kernels Franz Franchetti
	ExaSlang and the ExaStencils code generator Christian Schmitt, Stefan Kronawitter, Sebastian Kuckuk
	Variability management in ExaStencils Alexander Grebhahn
	From general-purpose to stencil DSL code Armando Solar-Lezama
	STELLA: A domain-specific language for stencil computations Carlos Osuna Escamilla
	Designing GridTools Mauro Bianco
	Redesign of preconditioned Krylov methods around stencil compilers Wim Vanroose
	PolyMage: High-performance compilation for heterogeneous stencils Uday Bondhugula
	On the characterization of the data movement complexity of algorithms P. Sadayappan
	The mathematics of ExaStencils Hannah Rittich
	Stencils for hierarchical bases Dirk Pflüger
	Mapping stencils to FPGAs and synthesizable accelerators Louis-Noel Pouchet
	The stencil optimization framework MODESTO Tobias Grosser
	Autotuning divide-and-conquer stencil computations Ekanathan Palamadai Natarajan
	Things you can do with stencils Gabriel Wittum
	Optimization of higher-order stencils P. Sadayappan
	DSL for stencils in non-Newtonian fluids simulation? Gundolf Haase

	Evening Discussion Sessions
	Conclusions
	Participants

