
Report from Dagstuhl Seminar 18211

Formal Methods and Fault-Tolerant Distributed
Computing: Forging an Alliance
Edited by
Javier Esparza1, Pierre Fraigniaud2, Anca Muscholl3, and
Sergio Rajsbaum4

1 TU München, DE, esparza@in.tum.de
2 University Paris-Diderot and CNRS, FR, pierre.fraigniaud@irif.fr
3 University of Bordeaux, FR, anca@labri.fr
4 National Autonomous University of Mexico, MX, rajsbaum@im.unam.mx

Abstract
The Dagstuhl Seminar “Formal Methods and Fault-Tolerant Distributed Computing: Forging
an Alliance” took place May 22-25, 2018. Its goal was to strengthen the interaction between
researchers from formal methods and from distributed computing, and help the two communities
to better identify common research challenges.

Seminar May 21–25, 2018 – http://www.dagstuhl.de/18211
2012 ACM Subject Classification Theory of computation → Distributed algorithms, Theory of

computation → Verification by model checking
Keywords and phrases distributed computing, distributed systems, formal verification
Digital Object Identifier 10.4230/DagRep.8.5.60
Edited in cooperation with Marie Fortin

1 Executive Summary

Anca Muscholl (University of Bordeaux, FR)
Javier Esparza (TU München, DE)
Pierre Fraigniaud (University Paris-Diderot and CNRS, FR)
Sergio Rajsbaum (National Autonomous University of Mexico, MX)

License Creative Commons BY 3.0 Unported license
© Anca Muscholl, Javier Esparza, Pierre Fraigniaud, and Sergio Rajsbaum

The original motivation of this workshop has to do with the evolution of research in Computer
Science. The first ACM conference on Principles of Distributed Computing (PODC) was
held in 1982. The proceedings of its first editions included papers on distributed algorithms1,
formal methods for distributed systems2, or a combination of the two. However, in 1990
the area of formal methods for distributed computing branched out, and started its own
conference, the International Conference on Concurrency Theory (CONCUR), now in its
27th edition. PODC and CONCUR have become the premier conferences in their respective
fields, and, after over 20 years of almost independent evolution, feel the need to close a gap

1 Algorithms designed to run on computer hardware constructed from interconnected processors.
2 Mathematically based techniques for the specification, development and verification of software and

hardware systems.

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Formal Methods and Fault-Tolerant Distributed Computing: Forging an Alliance, Dagstuhl Reports, Vol. 8,
Issue 05, pp. 60–79
Editors: Javier Esparza, Pierre Fraigniaud, Anca Muscholl, and Sergio Rajsbaum

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/18211
http://dx.doi.org/10.4230/DagRep.8.5.60
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Javier Esparza, Pierre Fraigniaud, Anca Muscholl, and Sergio Rajsbaum 61

that slows down progress, limits the applicability of the results, and causes repetitions and
inconsistencies.

Our seminar aimed at achieving synergy by bringing together the two research areas,
both with deep understanding of distributed computation, but different perspectives. We
had two longer tutorials, one about concurrent data structures by Ph. Woelfel and one about
verification of concurrent programs by A. Bouajjani. In addition, we had several survey
talks, on correctness in concurrent programming (H. Attiya), distributed runtime verification
(B. Bonakdarpour), distributed property testing (K. Censor-Hillel), distributed synthesis
(B. Finkbeiner), and parametrized verification (I. Konnov).

The scientific programme was quite dense, given that we had only 4 days and almost all
participants proposed to give a talk. Exchanges were very lively, and the discussion that
we had with all participants showed that this kind of workshop is a great opportunity to
compare our approaches and find new research directions, inspired by the perspectives of the
other community. We warmly thank Marie Fortin for the editorial work on this report and
the Dagstuhl staff for the excellent conditions provided for our seminar.

18211

62 18211 – Formal Methods and Fault-Tolerant Distributed Comp.: Forging an Alliance

2 Table of Contents

Executive Summary
Anca Muscholl, Javier Esparza, Pierre Fraigniaud, and Sergio Rajsbaum 60

Overview of Talks
On Verifying Robustness of Concurrent Systems
Ahmed Bouajjani . 64

Visual/interactive design of fault-tolerant distributed algorithms
Paul C. Attie . 64

Formal Analysis of Population Protocols
Michael Blondin . 65

Synthesis of Distributed Systems from Logical Specifications
Benedikt Bollig and Marie Fortin . 66

Automated Fine-Tuning of Probabilistic Self-Stabilizing Algorithms
Borzoo Bonakdarpour . 66

Tutorial: Distributed Runtime Verification
Borzoo Bonakdarpour . 67

Distributed Property Testing
Keren Censor-Hillel . 67

Parameterized Verification of Topology-sensitive Distributed Protocols
Giorgio Delzanno . 67

Communication-closed asynchronous protocols
Cezara Dragoi . 67

Verification of a Fault-Tolerant Cache-Coherency Protocol
Jo Ebergen . 68

Distributed Monitoring of Controlled Events
Yuval Emek . 68

Specifying and Verifying Concurrent Objects
Constantin Enea . 69

Distributed Synthesis
Bernd Finkbeiner . 69

Faithful Delay Models in Circuits and Distributed Systems
Matthias Függer . 69

Indistinguishability: Friend and Foe in Concurrent Programming
Hagit Attiya . 70

Cutoff Results for Parameterized Verification and Synthesis
Swen Jacobs . 70

What my computer can find about your distributed algorithm
Igor Konnov . 71

Synthesizing Thresholds for Fault-Tolerant Distributed Algorithms
Marijana Lazic . 72

Javier Esparza, Pierre Fraigniaud, Anca Muscholl, and Sergio Rajsbaum 63

Breaking and (Partly) Fixing Pastry
Stephan Merz . 72

Indistinguishability, Duality, and Coordination
Yoram Moses . 73

Interactive Distributed Proofs
Rotem Oshman . 73

Proof-Labeling Schemes: Broadcast, Unicast and In Between
Mor Perry . 74

Pretend Synchrony- some distributed computing approaches
Sergio Rajsbaum . 74

Biased Clocks: A way to Improve Effectiveness of Run Time Monitoring of Distrib-
uted Systems
Sandeep S. Kulkarni . 75

Playing with scheduling policies
Arnaud Sangnier . 75

Linearizability via Order-extension Results
Ana Sokolova . 76

Model checking of incomplete systems
Paola Spoletini . 76

Distributed Encoding of the Integers
Corentin Travers . 77

Towards verification of distributed algorithms in the Heard-of model
Igor Walukiewicz . 78

(Strong) Linearizability – A Tutorial
Philipp Woelfel . 78

Participants . 79

18211

64 18211 – Formal Methods and Fault-Tolerant Distributed Comp.: Forging an Alliance

3 Overview of Talks

3.1 On Verifying Robustness of Concurrent Systems
Ahmed Bouajjani (University Paris-Diderot, FR)

License Creative Commons BY 3.0 Unported license
© Ahmed Bouajjani

Joint work of Ahmed Bouajjani, Mohamed Faouzi Atig, Egor Derevenetc, Michael Emmi, Constantin Enea,
Roland Meyer, Burcu Ozkan, Serdar Tasiran

Concurrent systems are in general used by their clients under strong assumptions on their
visible behaviors. This allows a modular design approach: at the level of the client, these
assumptions allow to reason in an abstract way about the behaviors of the invoked systems.

For instance, the users of a shared memory may assume that the implementation of the
memory is sequentially consistent, which means that it behaves according to the standard
interleaving model where write/read operations are considered to be atomic, and immediately
visible to all parallel users. In an another context, the users of web services may consider
that their requests are handled atomically in a serial way, and in yet another context, the
designers of protocols and distributed algorithms may consider that interactions between
components are happening in a synchronous way, etc.

However, for performance reasons, the implementations of concurrent systems tend to
parallelize operations and to use various optimizations in order to increase the throughput
of the system. This leads in general to relaxations in the semantics guaranteed by these
implementations w.r.t. to strong consistency models. In this talk, we will address the issue
of checking that a given program of the client is robust against this kind of relaxations,
i.e., the observable behaviors of the client are the same under both the strong and relaxed
consistency models. Robustness corresponds to a correctness criterion that ensures the
preservation by the considered relaxations of all properties that can be proved assuming the
strong consistency models.

We show that robustness can be checked efficiently in several cases by linear reductions to
state reachability problems. These cases include robustness against the weak memory model
TSO, and also checking robustness against concurrency and asynchrony in event-driven
programs and message passing programs where we compare the behaviors of a same program
under two different semantics, one being the asynchronous one, and the other one being a
stronger semantics that is synchronous in some sense (that will be defined).

3.2 Visual/interactive design of fault-tolerant distributed algorithms
Paul C. Attie (American University of Beirut, LB)

License Creative Commons BY 3.0 Unported license
© Paul C. Attie

Joint work of Paul Attie, Kinan Dak Al Bab, Mouhammad Sakr
Main reference Paul C. Attie, Kinan Dak-Al-Bab, Mouhammad Sakr: “Model and Program Repair via SAT

Solving”, ACM Trans. Embedded Comput. Syst., Vol. 17(2), pp. 32:1–32:25, 2018.
URL http://dx.doi.org/10.1145/3147426

I advocate the design and verification of fault-tolerant distributed algorithms via the direct
manipulation of the state-transition relation. To deal with state explosion (in the finite state
case), and with combinatoric explosion and infinite states (in the general case), I propose
the following:

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/3147426
http://dx.doi.org/10.1145/3147426
http://dx.doi.org/10.1145/3147426

Javier Esparza, Pierre Fraigniaud, Anca Muscholl, and Sergio Rajsbaum 65

1. Pairwise composition: analyze the interaction of two processes at a time, to verify safety
and liveness properties of process-pairs.

2. Small subsystems: analyze the postcondition of an action (in a small subsystem containing
the action) to verify deadlock freedom.

3. Fault actions: model faults as actions which perturb the global state. Synthesize the
needed recovery transitions.

4. Automatic repair of transition structures: delete states/transitions which violate a
temporal logic specification.

5. Refine atomicity: use knowledge acquired by a process to replace test & set by atomic
read/write.

6. Abstraction: equivalence relation on states specifies abstraction. Manipulate abstraction
and then concretize.

7. Finitely representable infinite-state structure: a node labeled by a recursive predicate
represents a set of states, a transition labeled by a guarded command represents an action.

I have implemented some of these methods, and am currently implementing the remainder,
in the Eshmun tool, available at eshmuntool.blogspot.com. The combination of these methods
enables rapid semantic feedback and interaction for the distributed algorithm designer. The
use of methods to combat complexity is not only for computational reasons, but also for
visualization reasons: it helps the designer visualize the behavior of the algorithm.

3.3 Formal Analysis of Population Protocols
Michael Blondin (TU München, DE)

License Creative Commons BY 3.0 Unported license
© Michael Blondin

Joint work of Michael Blondin, Javier Esparza, Stefan Jaax, Antonín Kučera
Main reference Michael Blondin, Javier Esparza, Stefan Jaax, Antonín Kučera: “Black Ninjas in the Dark: Formal

Analysis of Population Protocols”, in Proc. of the 33rd Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pp. 1–10, ACM, 2018.

URL http://dx.doi.org/10.1145/3209108.3209110

Population protocols are a model of distributed computation by anonymous mobile agents
with little computational power. Such protocols allow for modeling systems such as networks
of passively mobile sensors and chemical reaction networks. Agents of a population protocol
interact by meeting at random. In well-designed protocols, for every initial configuration of
agents and every computation starting from this configuration, all agents eventually agree
on a consensus value.

In this talk, I will give an overview of recent advances on the formal analysis of population
protocols. In particular, I will discuss the problem of automatically determining whether
a protocol is correct, and the problem of computing an asymptotic bound on the expected
time a protocol needs to reach consensus.

18211

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/3209108.3209110
http://dx.doi.org/10.1145/3209108.3209110
http://dx.doi.org/10.1145/3209108.3209110
http://dx.doi.org/10.1145/3209108.3209110

66 18211 – Formal Methods and Fault-Tolerant Distributed Comp.: Forging an Alliance

3.4 Synthesis of Distributed Systems from Logical Specifications
Benedikt Bollig (ENS – Cachan, FR) and Marie Fortin (ENS – Cachan, FR)

License Creative Commons BY 3.0 Unported license
© Benedikt Bollig and Marie Fortin

Joint work of Benedikt Bollig, Marie Fortin, Paul Gastin
Main reference Benedikt Bollig, Marie Fortin, Paul Gastin: “It Is Easy to Be Wise After the Event:

Communicating Finite-State Machines Capture First-Order Logic with ‘Happened Before’ ”,
CoRR, Vol. abs/1804.10076, 2018.

URL http://arxiv.org/abs/1804.10076

We are concerned with formally modeling and specifying distributed systems, with the aim
of ensuring their correctness. As a system model, we consider communicating finite-state
machines (CFMs), in which finite-state processes exchange messages through unbounded
FIFO channels. On the specification side, we focus on the first-order logic of message sequence
charts (MSCs). MSCs, also known as space-time diagrams, arise naturally as executions
of CFMs and feature Lamport’s happened-before relation. First-order logic captures many
interesting properties of distributed systems, and it subsumes various temporal logics. This
presentation consists of two parts:
Part I: Logics over Message Sequence Charts (M. Fortin). In the first part, we
study the expressive power of first-order logic, establish connections with temporal logics
and propositional dynamic logic, and present a normal-form construction. As a corollary, we
establish that first-order logic has the three-variable property.
Part II: From Logic to Communicating Finite-State Machines (B. Bollig). In the
second part, we address the synthesis problem: Relying on the normal-form construction of
Part I and a (nondeterministic) gossip protocol, we show that every first-order specification
can be transformed into a CFM. The latter can then be considered as a system model that
is correct by construction. Moreover, the translation is useful in the automata-theoretic
approach to model checking distributed systems.

3.5 Automated Fine-Tuning of Probabilistic Self-Stabilizing Algorithms
Borzoo Bonakdarpour (McMaster University – Hamilton, CA)

License Creative Commons BY 3.0 Unported license
© Borzoo Bonakdarpour

Although randomized algorithms have widely been used in distributed computing as a means
to tackle impossibility results, it is currently unclear what type of randomization leads to
the best performance in such algorithms. In this talk, I propose automated techniques
to find the probability distribution that achieves minimum average recovery time for an
input randomized distributed self-stabilizing protocol without changing the behavior of the
algorithm. Our first technique is based on solving symbolic linear algebraic equations in
order to identify fastest state reachability in parametric discrete-time Markov chains. The
second approach applies parameter synthesis techniques from probabilistic model checking to
compute the rational function describing the average recovery time and then uses dedicated
solvers to find the optimal parameter valuation. The third approach computes over- and
under-approximations of the result for a given parameter region and iteratively refines the
regions with minimal recovery time up to the desired precision. The latter approach finds
sub-optimal solutions with negligible errors, but it is significantly more scalable in orders of
magnitude as compared to the other approaches.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1804.10076
http://arxiv.org/abs/1804.10076
http://arxiv.org/abs/1804.10076
http://arxiv.org/abs/1804.10076
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Javier Esparza, Pierre Fraigniaud, Anca Muscholl, and Sergio Rajsbaum 67

3.6 Tutorial: Distributed Runtime Verification
Borzoo Bonakdarpour (McMaster University – Hamilton, CA)

License Creative Commons BY 3.0 Unported license
© Borzoo Bonakdarpour

This tutorial surveys the most prominent works on distributed runtime verification.

3.7 Distributed Property Testing
Keren Censor-Hillel (Technion – Haifa, IL)

License Creative Commons BY 3.0 Unported license
© Keren Censor-Hillel

This survey talk will overview the recent achievements in the area of distributed property
testing.

Background will be given on the computational model, the related distributed decision
tasks, and the relaxations that allow overcoming expensive computations in settings of limited
bandwidth, within a small number of local queries.

3.8 Parameterized Verification of Topology-sensitive Distributed
Protocols

Giorgio Delzanno (University of Genova, IT)

License Creative Commons BY 3.0 Unported license
© Giorgio Delzanno

Joint work of Giorgio Delzanno, Sylvain Conchon, Angelo Ferrando
Main reference Sylvain Conchon, Giorgio Delzanno, Angelo Ferrando: “Declarative Parameterized Verification of

Topology-Sensitive Distributed Protocols,” to appear in NETYS 2018.

We show that Cubicle, an SMT-based infinite-state model checker, can be applied as a
verification engine for GLog, a logic-based specification language for topology-sensitive
distributed protocols with asynchronous communication. Existential coverability queries in
GLog can be translated into verification judgements in Cubicle by encoding relational updates
rules as unbounded array transitions. We apply the resulting framework to automatically
verify a distributed version of the Dining Philosopher mutual exclusion protocol formulated
for an arbitrary number of nodes and communication buffers.

3.9 Communication-closed asynchronous protocols
Cezara Dragoi (ENS – Paris, FR)

License Creative Commons BY 3.0 Unported license
© Cezara Dragoi

Joint work of Cezara Dragoi, Josef Widder

Communication closed round-based models are a particular type of synchronous models that
simplify the verification of fault-tolerant distributed systems. We present a sound method to
check that an asynchronous protocol is communication closed. The verification conditions

18211

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
Sylvain Conchon, Giorgio Delzanno, Angelo Ferrando: ``Declarative Parameterized Verification of Topology-Sensitive Distributed Protocols,'' to appear in NETYS 2018.
Sylvain Conchon, Giorgio Delzanno, Angelo Ferrando: ``Declarative Parameterized Verification of Topology-Sensitive Distributed Protocols,'' to appear in NETYS 2018.
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

68 18211 – Formal Methods and Fault-Tolerant Distributed Comp.: Forging an Alliance

implied by this method can be automatically discarded using of the self SMT-solvers or
static analysers. Provided that an asynchronous protocol is communication close we define a
code-to-code translation into the Heard-Of computational model, which is a communication
closed round-based model.

3.10 Verification of a Fault-Tolerant Cache-Coherency Protocol
Jo Ebergen (Oracle Labs – Redwood Shores, US)

License Creative Commons BY 3.0 Unported license
© Jo Ebergen

This short presentation tells some of the lessons we learned while verifying a fault-tolerant
cache-coherency protocol.

References
1 D. J. Sorin, M.D. Hill, and D.A. Wood. A Primer on Memory Consistency and Cache

Coherence. Morgan and Claypool Publishers, 2011.

3.11 Distributed Monitoring of Controlled Events
Yuval Emek (Technion – Haifa, IL)

License Creative Commons BY 3.0 Unported license
© Yuval Emek

Joint work of Yuval Emek, Amos Korman, Shimon Bitton, Shay Kutten

Monitoring is a fundamental task in many distributed systems. In its most basic form,
monitoring is concerned with counting the number of events and detecting when this number
reaches some threshold. A good monitoring protocol should run in the background without
consuming too many network resources. The challenge in this regard is that the events to be
counted may occur in different locations and at unpredicted times.

In this talk, we focus on the task of monitoring controlled events, namely, events that
actually take place (or commit) only after they receive a permit from the monitoring protocol.
We will discuss scenarios involving this kind of events and explore the connections between
the task of monitoring them and the classic distributed controller problem including some
recent advances in the study of this problem.

The talk will be self contained.

References
1 Yuval Emek and Amos Korman. Efficient Threshold Detection in a Distributed Environ-

ment. In Proceedings of the 29th ACM Symposium on Principles of Distributed Computing
(PODC), pages 183–191, 2010.

2 Yuval Emek, Amos Korman. New bounds for the controller problem. Distributed Comput-
ing 24(3-4): 177-186 (2011).

3 Shimon Bitton, Yuval Emek, and Shay Kutten. Efficient Dispatching of Job Batches in
Emerging Clouds. To appear in Proceedings of the IEEE International Conference on Com-
puter Communications (INFOCOM), 2018.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Javier Esparza, Pierre Fraigniaud, Anca Muscholl, and Sergio Rajsbaum 69

3.12 Specifying and Verifying Concurrent Objects
Constantin Enea (University Paris-Diderot, FR)

License Creative Commons BY 3.0 Unported license
© Constantin Enea

Modern software developments kits simplify the programming of concurrent applications by
providing shared state abstractions which encapsulate low-level accesses into higher-level
abstract data types (ADTs). Programming such abstractions is however error prone. To
minimize synchronization overhead between concurrent ADT invocations, implementors
avoid blocking operations like lock acquisition, allowing methods to execute concurrently.
However, concurrency risks unintended inter-operation interference, and risks conformance to
well-established correctness criteria like linearizability. We present several results concerning
the theoretical limits of verifying such concurrent ADTs and testing-based methods for
discovering violations in practical implementations.

3.13 Distributed Synthesis
Bernd Finkbeiner (Universität des Saarlandes, DE)

License Creative Commons BY 3.0 Unported license
© Bernd Finkbeiner

Joint work of Bernd Finkbeiner, Christopher Hahn, Philip Lukert, Marvin Stenger, Leander Tentrup
Main reference Bernd Finkbeiner, Christopher Hahn, Philip Lukert, Marvin Stenger, Leander Tentrup:

“Synthesizing Reactive Systems from Hyperproperties”, in Proc. of the Computer Aided
Verification – 30th International Conference, CAV 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I, Lecture Notes in
Computer Science, Vol. 10981, pp. 289–306, Springer, 2018.

URL http://dx.doi.org/10.1007/978-3-319-96145-3_16

Distributed synthesis automates the construction of distributed systems. Instead of program-
ming an implementation, the developer writes a formal specification of the desired system
properties, for example in a temporal logic. The check whether the specified properties are
realizable and the construction of the actual implementation is taken care of by the synthesis
algorithm. In this talk, I give an overview on decidability results and algorithms for the
two prominent models for distributed synthesis, the Pnueli/Rosner model and the Causal
Memory model. The talk concludes with an outlook on the synthesis problem for HyperLTL,
a temporal logic for hyperproperties. HyperLTL makes it possible to synthesize distributed
systems that additionally satisfy conditions such as symmetric responses, secrecy, and fault
tolerance.

3.14 Faithful Delay Models in Circuits and Distributed Systems
Matthias Függer (ENS – Cachan, FR)

License Creative Commons BY 3.0 Unported license
© Matthias Függer

Joint work of Matthias Függer, Stephan Friedrichs, Christoph Lenzen, Jürgen Maier, Robert Najvirt, Thomas
Nowak, Ulrich Schmid

It is well known that the communication delay model assumed for a distributed system has
large impact on the solvability of problems within it. The same is true for signal propagation

18211

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-96145-3_16
http://dx.doi.org/10.1007/978-3-319-96145-3_16
http://dx.doi.org/10.1007/978-3-319-96145-3_16
http://dx.doi.org/10.1007/978-3-319-96145-3_16
http://dx.doi.org/10.1007/978-3-319-96145-3_16
http://dx.doi.org/10.1007/978-3-319-96145-3_16
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

70 18211 – Formal Methods and Fault-Tolerant Distributed Comp.: Forging an Alliance

delay models in circuits. In the talk we discuss solvability issues for several circuit delay
models, and draw the relation to distributed computing models and verification of such
systems.

References
1 Matthias Függer, Thomas Nowak, and Ulrich Schmid. Unfaithful glitch propagation in

existing binary circuit models. ASYNC’13 & IEEE Trans. on Computers’16
2 Matthias Függer, Robert Najvirt, Thomas Nowak, and Ulrich Schmid. Towards binary

circuit models that faithfully capture physical solvability. DATE’15
3 Robert Najvirt, Matthias Függer, Thomas Nowak, Ulrich Schmid, Michael Hofbauer, and

Kurt Schweiger. Experimental validation of a faithful binary circuit model. GLSVLSI’15
4 Matthias Függer, Jürgen Maier, Robert Najvirt, Thomas Nowak, and Ulrich Schmid. A

faithful binary circuit model with adversarial noise. DATE’18
5 Stephan Friedrichs, Matthias Függer, and Christoph Lenzen. Metastability-Containing Cir-

cuits. IEEE Trans. on Computers’18

3.15 Indistinguishability: Friend and Foe in Concurrent Programming
Hagit Attiya (Technion – Haifa, IL)

License Creative Commons BY 3.0 Unported license
© Hagit Attiya

Joint work of Hagit Attiya, Ramalingam, Noam Rinetzky, Rachid Guerraoui, Danny Hendler, Peter Kuznetsov,
Maged Michael, Martin Vechev, Sandeep Hans, Alexey Gotsman

Uncertainty about the global state is a major obstacle for achieving synchronization in
concurrent systems. Formally, uncertainly is captured by showing that a process cannot
distinguish two different global states. Indistiguishability arguments play a key role in many
lower bounds for concurrent data structures, one of them, on the need for memory barriers,
will be presented in this talk. Surprisingly, however, indistiguishability can also help in
the verification of concurrent data structures, as demonstrated by a reduction theorem
we will describe, or in understanding their specification, as we will show in the context of
transactional memory.

(Overview talk.)

3.16 Cutoff Results for Parameterized Verification and Synthesis
Swen Jacobs (Universität des Saarlandes, DE)

License Creative Commons BY 3.0 Unported license
© Swen Jacobs

Joint work of Simon Außerlechner, Swen Jacobs, Ayrat Khalimov, Mouhammad Sakr
Main reference Swen Jacobs, Mouhammad Sakr: “Analyzing Guarded Protocols: Better Cutoffs, More Systems,

More Expressivity”, in Proc. of the Verification, Model Checking, and Abstract Interpretation –
19th International Conference, VMCAI 2018, Los Angeles, CA, USA, January 7-9, 2018,
Proceedings, Lecture Notes in Computer Science, Vol. 10747, pp. 247–268, Springer, 2018.

URL http://dx.doi.org/10.1007/978-3-319-73721-8_12

In this talk, I highlight some of the principles and challenges of the cutoff-based approach
to the verification and synthesis of systems of parametric size. I give an overview of some
of our recent results that tackle these challenges, specifically in the framework of guarded
protocols. Finally, I talk about our ongoing work on extensions of these techniques.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-73721-8_12
http://dx.doi.org/10.1007/978-3-319-73721-8_12
http://dx.doi.org/10.1007/978-3-319-73721-8_12
http://dx.doi.org/10.1007/978-3-319-73721-8_12
http://dx.doi.org/10.1007/978-3-319-73721-8_12

Javier Esparza, Pierre Fraigniaud, Anca Muscholl, and Sergio Rajsbaum 71

References
1 E. Allen Emerson and Vineet Kahlon. Reducing Model Checking of the Many to the Few.

CADE 2000.
2 Swen Jacobs and Roderick Bloem. Parameterized Synthesis. Logical Methods in Computer

Science 10(1), 2014.
3 Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Helmut Veith,

Josef Widder. Decidability of Parameterized Verification. Synthesis Lectures on Distributed
Computing Theory, Morgan & Claypool Publishers, 2015.

4 Simon Außerlechner, Swen Jacobs and Ayrat Khalimov. Tight Cutoffs for Guarded Proto-
cols with Fairness. VMCAI 2016.

5 Swen Jacobs and Mouhammad Sakr. Analyzing Guarded Protocols: Better Cutoffs, More
Systems, More Expressivity. VMCAI 2018.

3.17 What my computer can find about your distributed algorithm
Igor Konnov (INRIA Nancy – Grand Est, FR)

License Creative Commons BY 3.0 Unported license
© Igor Konnov

Joint work of Igor Konnov, Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Marijan Lazic, Sasha Rubin, Helmut
Veith, Josef Widder

Main reference Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Helmut Veith, Josef
Widder: “Decidability of Parameterized Verification”, Morgan & Claypool Publishers, 2015.

URL http://dx.doi.org/10.2200/S00658ED1V01Y201508DCT013

Parameterized model checking is an active research field that addresses automated verification
of distributed or concurrent systems, for all numbers of participating processes. The system
models that are studied in this field are inspired by those from distributed computing. In
this talk, I summarize the prominent techniques for parameterized model checking. Starting
with the first undecidability results. Continuing with techniques such as cut-off proofs and
abstraction. Finishing with our recent results on verification of threshold-guarded distributed
algorithms.

Based on joint work with Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Marijana Lazic,
Sasha Rubin, Helmut Veith, and Josef Widder.

References
1 Igor Konnov, Marijana Lazić, Helmut Veith, Josef Widder. A short counterexample prop-

erty for safety and liveness verification of fault-tolerant distributed algorithms. In: POPL.
pp. 719–734 (2017).

18211

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.2200/S00658ED1V01Y201508DCT013
http://dx.doi.org/10.2200/S00658ED1V01Y201508DCT013
http://dx.doi.org/10.2200/S00658ED1V01Y201508DCT013

72 18211 – Formal Methods and Fault-Tolerant Distributed Comp.: Forging an Alliance

3.18 Synthesizing Thresholds for Fault-Tolerant Distributed Algorithms
Marijana Lazic (TU Wien, AT)

License Creative Commons BY 3.0 Unported license
© Marijana Lazic

Joint work of Marijana Lazic, Igor Konnov, Josef Widder, Roderick Bloem
Main reference Marijana Lazic, Igor Konnov, Josef Widder, Roderick Bloem: “Synthesis of Distributed Algorithms

with Parameterized Threshold Guards”, in Proc. of the 21st International Conference on Principles
of Distributed Systems, OPODIS 2017, Lisbon, Portugal, December 18-20, 2017, LIPIcs, Vol. 95,
pp. 32:1–32:20, Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2017.

URL http://dx.doi.org/10.4230/LIPIcs.OPODIS.2017.32

We focus on threshold-based distributed algorithms, where a process has to wait until the
number of messages it receives reaches a certain threshold, in order to perform an action.
Examples of such distributed algorithms include fault-tolerant broadcast, non-blocking
atomic commitment, and consensus. I present an automated method for synthesizing these
thresholds, given a sketch of a distributed algorithm and specifications. In this way we
synthesize distributed algorithms that are correct for every number n of processes and every
number t of faults, provided some resilience condition holds, e.g. n > 3t.

3.19 Breaking and (Partly) Fixing Pastry
Stephan Merz (INRIA Nancy – Grand Est, FR)

License Creative Commons BY 3.0 Unported license
© Stephan Merz

Joint work of Stephan Merz, Noran Azmy, Tianxiang Lu, Christoph Weidenbach
Main reference Noran Azmy, Stephan Merz, Christoph Weidenbach: “A machine-checked correctness proof for

Pastry”, Sci. Comput. Program., Vol. 158, pp. 64–80, 2018.
URL http://dx.doi.org/10.1016/j.scico.2017.08.003

Pastry [1] is a well-known algorithm for maintaining a distributed hash table over a peer-to-
peer overlay network. A key correctness requirement is that the algorithm must ensure a
sufficiently consistent view among the participating nodes of which nodes are live members of
the network, in the absence of centralized control. In particular, this is necessary for requests
to be routed to the intended destination. This property represents an interesting target for
formal verification.

We analyzed formal models of Pastry using the TLA+ model checker and identified
problems in the different published versions of the algorithm that can lead to unrepairable
loss of connectivity among the nodes in the Pastry ring, even in the absence of spontaneous
node departures. Identifying the root cause of the problem, we suggest a variant of the
algorithm and formally prove, using the TLA+ proof system, that it ensures that requests
are routed correctly, assuming that nodes do not fail [2]. We do not know to what extent
our Pastry variant is robust to spontaneous node departures.

References
1 Antony I. T. Rowstron, Peter Druschel. Pastry: Scalable, Decentralized Object Location,

and Routing for Large-Scale Peer-to-Peer Systems. Middleware 2001, pp. 329-350 (2001).
2 Noran Azmy, Stephan Merz, Christoph Weidenbach. A Machine-Checked Correctness Proof

for Pastry. Sci. Comput. Program. 158, pp. 64-80 (2018).

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2017.32
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2017.32
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2017.32
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2017.32
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2017.32
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.scico.2017.08.003
http://dx.doi.org/10.1016/j.scico.2017.08.003
http://dx.doi.org/10.1016/j.scico.2017.08.003

Javier Esparza, Pierre Fraigniaud, Anca Muscholl, and Sergio Rajsbaum 73

3.20 Indistinguishability, Duality, and Coordination
Yoram Moses (Technion – Haifa, IL)

License Creative Commons BY 3.0 Unported license
© Yoram Moses

Indistinguishability is a fundamental notion in distributed systems. It serves as the central
tool in impossibility proofs and lower bounds. Indeed, indistinguishability can be used to
determine when actions are disallowed. Its dual, which corresponds to the knowledge that
a process has, plays the opposite role, and determines when actions are allowed. This talk
will discuss the relation between knowledge and action in distributed systems, and present
several theorems that apply across all models of distributed computation. The connections
drawn also relate a semantic approach, which can be viewed in terms a modal logic, and
algorithmic issues.

References
1 Yoram Moses. Relating knowledge and coordinated action: The knowledge of preconditions

principle. Proc. of TARK 2015, arXiv preprint arXiv:1606.07525, 2016 – arxiv.org.
2 Armando Castañeda, Yannai A. Gonczarowski, Yoram Moses. Unbeatable consensus. Proc.

of DISC 2014.

3.21 Interactive Distributed Proofs
Rotem Oshman (Tel Aviv University, IL)

License Creative Commons BY 3.0 Unported license
© Rotem Oshman

Interactive proof systems allow a resource-bounded verifier to decide an intractable language
(or compute a hard function) by communicating with a powerful but untrusted prover. Such
systems guarantee that the prover can only convince the verifier of true statements. In the
context of centralized computation, a celebrated result shows that interactive proofs are
extremely powerful, allowing polynomial-time verifiers to decide any language in PSPACE.

In this work we initiate the study of distributed interactive proofs: a network of nodes
interacts with a single untrusted prover, who sees the entire network graph, to decide whether
the graph satisfies some property. We focus on the communication cost of the protocol —
the number of bits the nodes must exchange with the prover and each other. Our model
can also be viewed as a generalization of the various models of “distributed NP” (proof
labeling schemes, etc.) which received significant attention recently: while these models only
allow the prover to present each network node with a string of advice, our model allows
for back-and-forth interaction. We prove both upper and lower bounds for the new model.
We show that for some problems, interaction can exponentially decrease the communication
cost compared to a non-interactive prover, but on the other hand, some problems retain
non-trivial cost even with interaction.

18211

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

74 18211 – Formal Methods and Fault-Tolerant Distributed Comp.: Forging an Alliance

3.22 Proof-Labeling Schemes: Broadcast, Unicast and In Between
Mor Perry (Tel Aviv University, IL)

License Creative Commons BY 3.0 Unported license
© Mor Perry

Joint work of Mor Perry, Boaz Patt-Shamir
Main reference Boaz Patt-Shamir, Mor Perry: “Proof-Labeling Schemes: Broadcast, Unicast and in Between”, in

Proc. of the Stabilization, Safety, and Security of Distributed Systems – 19th International
Symposium, SSS 2017, Boston, MA, USA, November 5-8, 2017, Proceedings, Lecture Notes in
Computer Science, Vol. 10616, pp. 1–17, Springer, 2017.

URL http://dx.doi.org/10.1007/978-3-319-69084-1_1

We study the effect of limiting the number of different messages a node can transmit
simultaneously on the verification complexity of proof-labeling schemes (PLS). In a PLS,
each node is given a label, and the goal is to verify, by exchanging messages over each link in
each direction, that a certain global predicate is satisfied by the system configuration. We
consider a single parameter r that bounds the number of distinct messages that can be sent
concurrently by any node: in the case r = 1, each node may only send the same message to
all its neighbors (the broadcast model), in the case r is at least ∆, where ∆ is the largest
node degree in the system, each neighbor may be sent a distinct message (the unicast model),
and in general, for r between 1 and ∆, each of the r messages is destined to a subset of the
neighbors.

We show that message compression linear in r is possible for verifying fundamental
problems such as the agreement between edge endpoints on the edge state. Some problems,
including verification of maximal matching, exhibit a large gap in complexity between r = 1
and r > 1. For some other important predicates, the verification complexity is insensitive to
r, e.g., the question whether a subset of edges constitutes a spanning-tree. We also consider
the congested clique model. We show that the crossing technique for proving lower bounds
on the verification complexity can be applied in the case of congested clique only if r = 1.
Together with a new upper bound, this allows us to determine the verification complexity of
MST in the broadcast clique.

3.23 Pretend Synchrony- some distributed computing approaches
Sergio Rajsbaum (National Autonomous University of Mexico, MX)

License Creative Commons BY 3.0 Unported license
© Sergio Rajsbaum

Joint work of Srgio Rajsbaum, Eli Gafni, Maurice Herlihy, Yoram Moses, Michel Raynal

Pretend Synchrony is the title of a recent talk at VDS in Essaouira, Morocco 2018 by Ranjit
Jhala where a restricted computational model is shown to be sufficient to verify correctness
assertions for several distributed problems. In addition to Ranjit, others discussed related
approaches at VDS, including Josef Widder, Cezara Dragoi, Bernhard Kragl and Ahmed
Bouajjani, sometimes emphasizing the importance of the classic Communication-Closed
Layers paradigm of Elrad and Frances. Motivated by these works, I will describe some of
the research (not as recent, some dating back to 1998) which we have done on pretending
synchrony from the distributed computing perspective, in the hope that this topics serves
as a good point for exchanging ideas between the verification and distributed computing
communities. I will discuss work on layering analysis for consensus, generalizations to
other problems using topology [1], and iterated models together with recursive distributed
algorithms [3, 4].

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-69084-1_1
http://dx.doi.org/10.1007/978-3-319-69084-1_1
http://dx.doi.org/10.1007/978-3-319-69084-1_1
http://dx.doi.org/10.1007/978-3-319-69084-1_1
http://dx.doi.org/10.1007/978-3-319-69084-1_1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Javier Esparza, Pierre Fraigniaud, Anca Muscholl, and Sergio Rajsbaum 75

References
1 Maurice Herlihy, Dmitry N. Kozlov, Sergio Rajsbaum. Distributed Computing Through

Combinatorial Topology. Morgan Kaufmann 2013.
2 Yoram Moses, Sergio Rajsbaum. A Layered Analysis of Consensus. SIAM J. Comput.

31(4):989–1021 (2002).
3 Sergio Rajsbaum. Iterated Shared Memory Models. LATIN 2010, Lecture Notes in Com-

puter Science 6034, Springer 2010.
4 Sergio Rajsbaum, Michel Raynal. An Introductory Tutorial to Concurrency-Related Dis-

tributed Recursion. Bulletin of the EATCS 111 (2013).

3.24 Biased Clocks: A way to Improve Effectiveness of Run Time
Monitoring of Distributed Systems

Sandeep S. Kulkarni (Michigan State University – East Lansing, US)

License Creative Commons BY 3.0 Unported license
© Sandeep S. Kulkarni

Joint work of Sandeep S. Kulkarni, Vidhya Tekken Valapil
Main reference Vidhya Tekken Valapil and Sandeep S. Kulkarni, “Biased Clocks: A Novel Approach to Improve

the Ability to Perform Predicate Detection with O(1) Clocks”, SIROCCO 2018.

Runtime Monitoring of distributed systems requires O(n) sized timestamps given that events
in a system cannot be partitioned into a total order. O(n) sized timestamps severely limit
the ability to utilize them in practice. O(1) sized timestamps such as logical clocks or hybrid
logical clocks can be used for runtime monitoring. However, they miss several instances
where the property of interest is violated but the violation is not detected. We propose a new
type of clocks, biased clocks, that improve the effectiveness of clocks in monitoring. Biased
clocks treat local events on a process differently than messages. In particular, by adding
a bias to the timestamp received in a message, we show that it substantially improves the
ability to detect violations of desired system properties.

3.25 Playing with scheduling policies
Arnaud Sangnier (University Paris-Diderot, FR)

License Creative Commons BY 3.0 Unported license
© Arnaud Sangnier

Joint work of Arnaud Sangnier, Carole Delporte-Galler, Hugues Fauconnier, Yann Jurski and François
Laroussinie

In order to develop distributed algorithms, assumptions are made on their execution context:
will the entities behave synchronously or in an asynchronous way, will the entities execution
be scheduled in a round-robin way or will its order be completely non-deterministic, will the
entities crash, will they be dependent one from each other or should they be able to run the
algorithm independently, etc.

As a matter of fact, some tasks may be achieved in some executions contexts and changing
an hypothesis on these contexts may lead to impossibility results. For instance, consensus
cannot be achieved with 2 processes running a wait-free algorithm on a shared memory
system, but this task is feasible when considering obstruction-free algorithms. One difficulty
is however to find a formal way to define executive contexts. In this talk, I will present a

18211

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
Vidhya Tekken Valapil and Sandeep S. Kulkarni, ``Biased Clocks: A Novel Approach to Improve the Ability to Perform Predicate Detection with O(1) Clocks'', SIROCCO 2018.
Vidhya Tekken Valapil and Sandeep S. Kulkarni, ``Biased Clocks: A Novel Approach to Improve the Ability to Perform Predicate Detection with O(1) Clocks'', SIROCCO 2018.
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

76 18211 – Formal Methods and Fault-Tolerant Distributed Comp.: Forging an Alliance

recent approach which consists in using automata to represent some executive contexts for
shared memory systems and two-player games to detect the possibility or impossibility of
achieving consensus in such contexts.

3.26 Linearizability via Order-extension Results
Ana Sokolova (Universität Salzburg, AT)

License Creative Commons BY 3.0 Unported license
© Ana Sokolova

Joint work of Ana Sokolova, Harald Woracek

The semantics of concurrent data structures is usually given by a sequential specification
and a consistency condition. Linearizability is the most popular consistency condition due
to its simplicity and general applicability. Verifying linearizability is a difficult, in general
undecidable, problem.

In this talk, I will discuss the semantics of concurrent data structures and (1) give an
overview of work done on this topic by myself and a group of coauthors, as well as (2) present
recent order extension results (joint work with Harald Woracek) that lead to characterizations
of linearizability in terms of violations, a.k.a. aspects. The approach works for pools, queues,
and priority queues; finding other applications is ongoing work. In the case of pools and
queues we obtain already known characterizations, but the proof method is new, elegant,
and simple, and we expect that it will lead to deeper understanding of linearizability.

3.27 Model checking of incomplete systems
Paola Spoletini (Kennesaw State University – Marietta, US)

License Creative Commons BY 3.0 Unported license
© Paola Spoletini

Joint work of Paola Spoletini, Claudio Menghi, Carlo Ghezzi, Marsha Chechik, Anna Bernasconi, Lenore Zuck
Main reference Claudio Menghi, Paola Spoletini, Carlo Ghezzi: “Dealing with Incompleteness in Automata-Based

Model Checking”, in Proc. of the FM 2016: Formal Methods – 21st International Symposium,
Limassol, Cyprus, November 9-11, 2016, Proceedings, Lecture Notes in Computer Science,
Vol. 9995, pp. 531–550, 2016.

URL http://dx.doi.org/10.1007/978-3-319-48989-6_32

Incomplete models [3] describe the behavior of systems where some components or func-
tionalities are still unspecified. These models can be used in different scenarios; examples
are (1) analysis the trade-offs among alternative solutions for the unspecified parts, (2)
development of component-based and distributed systems. Classic model checking assumes
that a complete model of the system is available and does not support the verification of
incomplete models. This is an obstacle to early detection of design errors since in early
phases of the system design models are often incomplete.

In this talk, I present a novel automata-based model checking approach that supports
verification of incomplete models. I explore two complementary solutions for handling cases
in which the satisfaction of a given property depends on the yet unspecified parts of the
model.

The first solution enables the computation of constraints that must be satisfied by future
replacements of the unspecified components to guarantee the satisfaction of the given property.
The satisfaction of these constraints by the replacements of the unspecified components,

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-48989-6_32
http://dx.doi.org/10.1007/978-3-319-48989-6_32
http://dx.doi.org/10.1007/978-3-319-48989-6_32
http://dx.doi.org/10.1007/978-3-319-48989-6_32
http://dx.doi.org/10.1007/978-3-319-48989-6_32

Javier Esparza, Pierre Fraigniaud, Anca Muscholl, and Sergio Rajsbaum 77

that can be checked in isolation, ensures the fulfilment of the property of interest [3]. This
approach can be complemented with a framework [1] that helps developers understanding
why a property of interest is satisfied or “possibly” satisfied (i.e., its satisfaction depends
on unknown parts) by enriching the model checker outcome with a proof of satisfaction or
“possibly” satisfaction in these cases.

While the presented approach was developed to deal with incomplete systems, it could
be also used to distribute the complexity of the verification of very large systems. This may
be obtained though an iterative decomposition of the system into smaller parts that are
encapsulated into unspecified components.

The second solution is based on a framework that supports (1) incompleteness through a
formal specification of pre- and post-conditions and (2) independent development, reuse of
off-the-shelf components, synthesis and verification of sub-components [2].

References
1 Anna Bernasconi, Claudio Menghi, Paola Spoletini, Lenore D. Zuck, Carlo Ghezzi. From

Model Checking to a Temporal Proof for Partial Models. SEFM 2017:54–69
2 Claudio Menghi, Paola Spoletini, Marsha Chechik, Carlo Ghezzi. Supporting Verification-

Driven Incremental Distributed Design of Components. FASE 2018:169–188
3 Claudio Menghi, Paola Spoletini, Carlo Ghezzi. Dealing with Incompleteness in Automata-

Based Model Checking. FM 2016:531–550

3.28 Distributed Encoding of the Integers
Corentin Travers (University of Bordeaux, FR)

License Creative Commons BY 3.0 Unported license
© Corentin Travers

Joint work of Corentin Travers, Pierre Fraigniaud, Sergio Rajsbaum, Petr Kuznetsov, Thibault Rieutord
Main reference Pierre Fraigniaud, Sergio Rajsbaum, Corentin Travers: “Minimizing the Number of Opinions for

Fault-Tolerant Distributed Decision Using Well-Quasi Orderings”, in Proc. of the LATIN 2016:
Theoretical Informatics – 12th Latin American Symposium, Ensenada, Mexico, April 11-15, 2016,
Proceedings, Lecture Notes in Computer Science, Vol. 9644, pp. 497–508, Springer, 2016.

URL http://dx.doi.org/10.1007/978-3-662-49529-2_37

A distributed encoding of the integer is a distributed structure that encodes each positive
integer n with a word w of length n over some (non-necessarily finite) alphabet A, such
that any for any n′ < n, any subword w′ of w of length n′ is not the distributed code of n′.
Relying on well-quasi ordre theory, we show that the first N integers can be distributedly
encoded using words on an alphabet with letters on O(log(α(n))) bits, where α is a function
growing at least as slowly as the inverse-Ackerman function.

We then show that distributed encoding of the integers can be applied in failure prone
distributed systems to build failure detector outputting very few bits and to construct short
certificate for distributed decision.

References
1 Pierre Fraigniaud, Sergio Rajsbaum, Corentin Travers, Petr Kuznetsov, Thibault Rieutord.

Perfect Failure Detection with Very Few Bits. SSS 2016:154–169.

18211

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-662-49529-2_37
http://dx.doi.org/10.1007/978-3-662-49529-2_37
http://dx.doi.org/10.1007/978-3-662-49529-2_37
http://dx.doi.org/10.1007/978-3-662-49529-2_37
http://dx.doi.org/10.1007/978-3-662-49529-2_37

78 18211 – Formal Methods and Fault-Tolerant Distributed Comp.: Forging an Alliance

3.29 Towards verification of distributed algorithms in the Heard-of
model

Igor Walukiewicz (University of Bordeaux, FR)

License Creative Commons BY 3.0 Unported license
© Igor Walukiewicz

Joint work of Anca Muscholl, Corentin Travers, Igor Walukiewicz

We consider algorithms in the Heard-of model of distributed computation proposed by
Charron-Bost and Schiper in 2009. We aim at verifying automatically if a given algorithm
solves the consensus problem. In order to state the problem formally we need to fix what
operations can algorithms perform. We propose to consider operations that are definable by
existentially quantified linear inequalities. We call such algorithms tame. We show that even
for tame algorithms the problem is undecidable. Then we present two decidable special cases.
One when algorithms use only two values. The other is based on a short run property. We
show that every run is equivalent to a short run if the algorithm has what we call stability
property.

3.30 (Strong) Linearizability – A Tutorial
Philipp Woelfel (University of Calgary, CA)

License Creative Commons BY 3.0 Unported license
© Philipp Woelfel

This is a tutorial on linearizability, the gold standard of correctness conditions for shared
memory algorithms. The first part of the talk will cover necessary definitions, examples,
properties, and why linearizability is so important. The second part of the talk will show
why linearizability is not enough for randomized algorithms, and will introduce a stronger
correctness condition, strong linearizability, that resolves the issues with linearizability in
certain randomized models.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Javier Esparza, Pierre Fraigniaud, Anca Muscholl, and Sergio Rajsbaum 79

Participants

Paul C. Attie
American University of
Beirut, LB

Hagit Attiya
Technion – Haifa, IL

A. R. Balasubramanian
Chennai Mathematical
Institute, IN

Michael Blondin
TU München, DE

Benedikt Bollig
ENS – Cachan, FR

Borzoo Bonakdarpour
McMaster University –
Hamilton, CA

Ahmed Bouajjani
University Paris-Diderot, FR

Dan Brownstein
Ben Gurion University –
Beer Sheva, IL

Keren Censor-Hillel
Technion – Haifa, IL

Aiswarya Cyriac
Chennai Mathematical
Institute, IN

Giorgio Delzanno
University of Genova, IT

Cezara Dragoi
ENS – Paris, FR

Jo Ebergen
Oracle Labs –
Redwood Shores, US

Yuval Emek
Technion – Haifa, IL

Constantin Enea
University Paris-Diderot, FR

Javier Esparza
TU München, DE

Bernd Finkbeiner
Universität des Saarlandes, DE

Marie Fortin
ENS – Cachan, FR

Pierre Fraigniaud
University Paris-Diderot and
CNRS, FR

Matthias Függer
ENS – Cachan, FR

Paul Gastin
ENS – Cachan, FR

Swen Jacobs
Universität des Saarlandes, DE

Igor Konnov
INRIA Nancy – Grand Est, FR

Sandeep Kulkarni
Michigan State University –
East Lansing, US

Marijana Lazic
TU Wien, AT

Jérémy Ledent
Ecole Polytechnique –
Palaiseau, FR

Martin Leucker
Universität Lübeck, DE

Stephan Merz
INRIA Nancy – Grand Est, FR

Roland Meyer
TU Braunschweig, DE

Yoram Moses
Technion – Haifa, IL

Anca Muscholl
University of Bordeaux, FR

Rotem Oshman
Tel Aviv University, IL

Mor Perry
Tel Aviv University, IL

Sergio Rajsbaum
National Autonomous University
of Mexico, MX

David A. Rosenblueth
National Autonomous University
of Mexico, MX

Arnaud Sangnier
University Paris-Diderot, FR

Ana Sokolova
Universität Salzburg, AT

Paola Spoletini
Kennesaw State University –
Marietta, US

Corentin Travers
University of Bordeaux, FR

Igor Walukiewicz
University of Bordeaux, FR

Philipp Woelfel
University of Calgary, CA

18211

	Executive Summary Anca Muscholl, Javier Esparza, Pierre Fraigniaud, and Sergio Rajsbaum
	Table of Contents
	Overview of Talks
	On Verifying Robustness of Concurrent Systems Ahmed Bouajjani
	Visual/interactive design of fault-tolerant distributed algorithms Paul C. Attie
	Formal Analysis of Population Protocols Michael Blondin
	Synthesis of Distributed Systems from Logical Specifications Benedikt Bollig and Marie Fortin
	Automated Fine-Tuning of Probabilistic Self-Stabilizing Algorithms Borzoo Bonakdarpour
	Tutorial: Distributed Runtime Verification Borzoo Bonakdarpour
	Distributed Property Testing Keren Censor-Hillel
	Parameterized Verification of Topology-sensitive Distributed Protocols Giorgio Delzanno
	Communication-closed asynchronous protocols Cezara Dragoi
	Verification of a Fault-Tolerant Cache-Coherency Protocol Jo Ebergen
	Distributed Monitoring of Controlled Events Yuval Emek
	Specifying and Verifying Concurrent Objects Constantin Enea
	Distributed Synthesis Bernd Finkbeiner
	Faithful Delay Models in Circuits and Distributed Systems Matthias Függer
	Indistinguishability: Friend and Foe in Concurrent Programming Hagit Attiya
	Cutoff Results for Parameterized Verification and Synthesis Swen Jacobs
	What my computer can find about your distributed algorithm Igor Konnov
	Synthesizing Thresholds for Fault-Tolerant Distributed Algorithms Marijana Lazic
	Breaking and (Partly) Fixing Pastry Stephan Merz
	Indistinguishability, Duality, and Coordination Yoram Moses
	Interactive Distributed Proofs Rotem Oshman
	Proof-Labeling Schemes: Broadcast, Unicast and In Between Mor Perry
	Pretend Synchrony- some distributed computing approaches Sergio Rajsbaum
	Biased Clocks: A way to Improve Effectiveness of Run Time Monitoring of Distributed Systems Sandeep S. Kulkarni
	Playing with scheduling policies Arnaud Sangnier
	Linearizability via Order-extension Results Ana Sokolova
	Model checking of incomplete systems Paola Spoletini
	Distributed Encoding of the Integers Corentin Travers
	Towards verification of distributed algorithms in the Heard-of model Igor Walukiewicz
	(Strong) Linearizability – A Tutorial Philipp Woelfel

	Participants

