Understanding the Inconsistencies between
Text Descriptions and the Use of Privacy-sensitive
Resources of Mobile Apps

Takuya Watanabe
Waseda University
3-4-1 Okubo Shinuku
Tokyo, Japan

watanabe @nsl.cs.waseda.ac.jp

Hironori Washizaki
Waseda University
3-4-1 Okubo Shinuku
Tokyo, Japan
washizaki @waseda.jp

ABSTRACT

Permission warnings and privacy policy enforcement are widely
used to inform mobile app users of privacy threats. These mecha-
nisms disclose information about use of privacy-sensitive resources
such as user location or contact list. However, it has been reported
that very few users pay attention to these mechanisms during instal-
lation. Instead, a user may focus on a more user-friendly source of
information: text description, which is written by a developer who
has an incentive to attract user attention. When a user searches
for an app in a marketplace, his/her query keywords are gener-
ally searched on text descriptions of mobile apps. Then, users
review the search results, often by reading the text descriptions;
i.e., text descriptions are associated with user expectation. Given
these observations, this paper aims to address the following re-
search question: What are the primary reasons that text descrip-
tions of mobile apps fail to refer to the use of privacy-sensitive re-
sources? To answer the research question, we performed empirical
large-scale study using a huge volume of apps with our ACODE
(Analyzing COde and DEscription) framework, which combines
static code analysis and text analysis. We developed light-weight
techniques so that we can handle hundred of thousands of distinct
text descriptions. We note that our text analysis technique does
not require manually labeled descriptions; hence, it enables us to
conduct a large-scale measurement study without requiring expen-
sive labeling tasks. Our analysis of 200,000 apps and multilin-
gual text descriptions collected from official and third-party An-
droid marketplaces revealed four primary factors that are associ-
ated with the inconsistencies between text descriptions and the use
of privacy-sensitive resources: (1) existence of app building ser-
vices/frameworks that tend to add API permissions/code unneces-
sarily, (2) existence of prolific developers who publish many ap-

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.

Symposium on Usable Privacy and Security (SOUPS) 2015, July 22-24,
2015, Ottawa, Canada.

Mitsuaki Akiyama
NTT Secure Platform Labs
3-9-11 Midoricho Musashino
Tokyo, Japan

akiyama.mitsuaki@lab.ntt.co.jp

Tetsuya Sakai
Waseda University
3-4-1 Okubo Shinuku
Tokyo, Japan

tetsuyasakai @acm.org

Tatsuya Mori
Waseda University
3-4-1 Okubo Shinuku
Tokyo, Japan

mori @nsl.cs.waseda.ac.jp

plications that unnecessarily install permissions and code, (3) exis-
tence of secondary functions that tend to be unmentioned, and (4)
existence of third-party libraries that access to the privacy-sensitive
resources. We believe that these findings will be useful for im-
proving users’ awareness of privacy on mobile software distribu-
tion platforms.

1. INTRODUCTION

Most applications for mobile devices are distributed through mo-
bile software distribution platforms that are usually operated by the
mobile operating system vendors, e.g., Google Play, Apple App
Store, and Windows Phone Store. Third-party marketplaces also
attract mobile device users, offering additional features such as lo-
calization. According to a recent report published by Gartner [1],
the number of mobile app store downloads in 2014 are expected to
exceed 138 billion. Mobile software distribution platforms are the
biggest distributors of mobile apps and should play a key role in
securing mobile users from threats, such as spyware, malware, and
phishing scams.

As many previous studies have reported, privacy threats related
to mobile apps are becoming increasingly serious, and need to be
addressed [2, 3, 4, 5]. Some mobile apps, which are not neces-
sarily malware, can gather privacy-sensitive information, such as
contact list [6] or user location [7]. To protect users from such pri-
vacy threats, many of mobile app platforms offer mechanisms such
as permission warnings and privacy policies. However, in practice,
these information channels have not been fully effective in attract-
ing user attention. For instance, Felt et al. revealed that only 17%
of smartphone users paid attention to permissions during installa-
tion [4]. The Future of Privacy Forum revealed that only 48% of
free apps and 32% of paid apps provide in-app access to a privacy
policy [8]. Further more, Chin et al. reported that roughly 70-80%
of end users ignored privacy policies during installation process [9].

Let us turn our attention to a promising way of communicating
with users about apps and privacy. This information channel is the
text descriptions provided for each app in a marketplace. The text
description is usually written in natural, user-friendly language that
is aimed to attract users’ attention; it is more easily understood
than the typical privacy policy. In addition, when a user searches
for an app in a marketplace, s/he create query keywords, which
are generally searched on text descriptions. Then, users review the

USENIX Association

2015 Symposium on Usable Privacy and Security 241

search results, often by reading the text descriptions; i.e., text de-
scriptions can work as a proxy to the user expectations. In fact,
text descriptions have a higher presence than permission warnings
or privacy policies, and therefore, are a good channel for informing
users about how individual apps gather and use privacy-sensitive
information.

With these observations in mind, this work aims to address the
following research question through the analysis of huge volume of
Android applications:

RQ: What are the primary reasons that text descriptions of
mobile apps fail to refer to the use of privacy-sensitive re-
sources?

The answers to the question will be useful for identifying sources
of problems that need to be fixed. To address the research ques-
tion, we developed a framework called ACODE (Analyzing COde
and DEscription), which combines two technical approaches: static
code analysis and text analysis. Using the ACODE framework, we
aim to identifiy reasons for the absence of the text descriptions for
a given privacy-sensitive permission. Unlike the previous studies,
which also focused on analyzing the text descriptions of mobile
apps [10, 11, 12, 13], our work aims to tackle with a huge volume
of applications. To this end, we adopt light-weight approaches,
static code analysis and keyword-based text analysis as described
below.

Our static code analysis checks whether a given permission is de-
clared. Then, it investigates whether the code includes APIs or con-
tent provider URIs ! that require permission for accessing privacy-
sensitive resources. Lastly, it traces function calls to check that the
APIs and/or URIs are actually callable to distinguish them from
apps with dead APIs/URIs that will never be used; e.g., reused code
could include chunks of unused code, in which privacy-sensitive
APIs were used.

Our description analysis leverages techniques developed in the
fields of information retrieval (IR) and natural language processing
(NLP) to automatically classify apps into two primary categories:
apps with text descriptions that refer to privacy-sensitive resources,
and apps without such descriptions. Here we present three note-
worthy features of our approach. First, since we adopt a simple
keyword-based approach, which is language-independent, we ex-
pect that it is straightforward to apply our text analysis method to
other spoken languages. In fact, our evaluation through the mul-
tilingual datasets demonstrated that it worked for both languages,
English and Chinese. Second, although our approach is simple, it
achieves a high accuracy for nine distinct data sets. The accuracy is
comparable to the existing pioneering work, WHYPER [11], which
makes use of the state-of-the-art NLP techniques. The reason we
developed the ACODE framework instead of using the WHYPER
framework was that we intended to extend our analysis to multiple
natural languages. The WHYPER framework leverages API doc-
uments to infer semantics. As of today, Android API documents
are not provided in Chinese. Accordingly, we were not able to
make use of the WHYPER framework to analyze Chinese text de-
scriptions. Finally, like the WHYPER framework, our text analysis
technique does not require manually labeled descriptions. There-
fore, it enables us to enhance the text analysis of descriptions to
any permission APIs without requiring expensive labeling tasks. It
also enables us to reduce cost of text analysis significantly. The key
idea behind our approach is to leverage the results of code analysis
as a useful hint to classify text descriptions.

!Content providers manage access to data resource with per-
mission using Uniform Source Identifiers (URIs); for instance,

android.provider.ContactsContract.Contacts.CONTENT_URI

is an URI used to get all users registered in the contact list.

To the best of our knowledge, only a few previous studies have
focused on analyzing the text descriptions of mobile apps [10, 11,
12]. A detailed technical comparison between these studies and
ours is given in section 7 (see Table 10 for a quick summary), and
here we note that this work is distinguishable from other studies
by being an extensive empirical study. The volume of our dataset
is several orders of magnitude larger than previous studies. In
addition, because we wanted to extract generic findings, we con-
ducted our experiments in such a way as to incorporate differences
in the resources accessed, market, and natural language. Our anal-
ysis considered access of 11 different resources taken from 4 cat-
egories, i.e., personal data, SMS, hardware resources, and system
resources (see Table 1). We chose the resources because they are
the most commonly abused or the potentially dangerous ones. We
collected 100,000 apps from Google Play and a further 100,000
apps from third-party marketplaces. For the natural language anal-
ysis, we adopted English and Chinese, because they are the two
most widely-spoken languages worldwide [14]. Furthermore, to
evaluate the performance of text analysis, we obtained a total of
6,000 text descriptions from 12 participants. Each description was
labeled by three distinct participants.

The key findings we derived through our extensive analysis are
as follows:

The primary factors that are associated with the inconsistencies
between text descriptions and use of privacy-sensitive resources are
broadly classified into the following four categories.:

(1) App building services/frameworks: Apps developed with
cloud-based app building services or app building frame-
work, which could unnecessarily install many permissions,
are less likely to have descriptions that refer to the installed
permissions.

Prolific developers: There are a few prolific developers who
publish a large number of applications that unnecessarily
install permissions and code.

Secondary functions: There are some specific secondary
functions that require access to a permission, but tend to
be unmentioned; e.g., 2D barcode reader (camera resource),
game score sharing (contact list), and map apps that directly
turns on GPS (write setting), etc.

Third-party libraries: There are some third-party libraries
that requires access to privacy-sensitive resources; e.g., task
information (crash analysis) and location (ad-library, access
analysis).

The main contribution of our work is the derivation of these an-
swers through the extensive analysis of huge volume of datasets.
We believe that these findings will be useful for identifying sources
of problems that need to be fixed to improve the users’ awareness of
privacy on mobile software distribution platforms. For instance, as
our analysis revealed, there are several HTMLS5-based app-building
framework services that unnecessarily install permissions, which
could render the system vulnerable to additional threats of mali-
cious JavaScript injection attacks. Therefore, an app developer
should not install unnecessary permissions. However, if a devel-
oper used a rogue app-building framework service, he/she may
likely not be aware of unnecessary permissions installed. ACODE
enables operators of mobile software distribution platforms to pay
attentions to these cases, which are invisible otherwise.

The rest of this paper is organized as follows. Section 2 describes
our the ACODE framework in detail. In section 3, we show the
details of the static code analyzer. Section 4 contains details of
the text description classifier. We present our findings in section 5.
Section 6 discusses the limitations of ACODE and future research
directions. Section 7 summarizes the related work. We conclude

2

~

A3

=

4

2

242 2015 Symposium on Usable Privacy and Security

USENIX Association

Input 200K apps

Apps that declare the permission (C0) ‘

Static code Apps with API functions/URIs (C1) -
analyzer (Sec. I s ==

Apps with callable API
functions/URIs (C2)

Does description of the app refer
Text descriptions to the use of the permission?
I

analyzer (Sec.
Yes(C3) | No(C4)

Analvei Apps with What are
nalysis informative these apps?
(Sec. V) descriptions

Figure 1: Overview of the ACODE framework.

our work in section 8.

2. ACODE FRAMEWORK

In this section, we provide an overview of the ACODE frame-
work. We also connect the components of the ACODE framework
to the corresponding sections where we will give their details.

2.1 Goal and overview

Figure 1 is an overview of the ACODE framework. As discussed
previously, we used a two-stage filter, employing a static code ana-
lyzer and text descriptions analyzer. In the first stage, the first filter
extracted apps that declare at least one permission, e.g., location
(C0). The second filter extracted apps with code that include cor-
responding APIs/URIs (C1). The third filter checked whether the
APIs/URIs are callable from the apps by employing function call
analysis (C2). In the second stage, the text classifier determined
whether the text descriptions refer to the use of location explicitly
or implicitly (C3), or not at all (C4). Note that we are not consider-
ing apps that do not declare to use permission, but have descriptions
that indicate that permission is needed.

These filtration mechanisms enabled us to quantify the effective-
ness of text descriptions as a potential source of information about
the use of privacy-sensitive resources. For instance, by counting
the fraction of apps that are classified as C3 (see figure 1), we can
quantify the fractions of apps with text descriptions that success-
fully inform users about the use of privacy-sensitive resources for
each resource. By examining the sources of apps that are classi-
fied as C4, we can answer our research question, RQ. The detailed
analysis will be shown in section 5.

Figure 2 illustrates the components used in the ACODE frame-
work. For each application, we had an application package file
(APK) and a description. APK is a format used to install Android
application software. It contains code, a manifest file, resources,
assets, and certificates. The text descriptions of apps were collected
from mobile software distribution platforms. As shown in the fig-
ure, the APKs and text descriptions were input to the static code
analyzer and description classifier, respectively.

2.2 Static code analyzer

The goal of the static code analyzer is to extract APK files whose
code include callable APIs/URIs that are required to use permis-
sions related to a privacy-sensitive resource. For a given permis-
sion, first, we extracted apps that declare the use (C1, see sec-
tion 3.1). Then, we checked whether disassembled code of the
app include the APIs/URIs, which require the permission (C2, see
section 3.2). If code included at least one API or URI, then, we
checked whether it was actually callable within the app by inves-

Table 1: List of permissions used for this work.

Category Permission Definition*
ACCESS_FINE_ Allows an app to access precise location from location sources
LOCATION such as GPS, cell towers, and Wi-Fi.
Personal GET_ACCOUNTS Allows access to the list of accounts in the Accounts Service.
data READ_CONTACTS Allows an application to read the user's contacts data.
READ_CALENDAR Allows an application to read the user's calendar data.
READ_SMS Allows an application to read SMS messages.
SMS SEND_SMS Allows an application to send SMS messages.

Hardware | CAMERA
resources | RECORD_AUDIO

Required to be able to access the camera device.

Allows an application to record audio.

Allows access to the list of accounts in the Accounts Service .

GET_TASKS . .
- (This constant was deprecated in API level 21)

System

KILL_BACKGROUND_
resources

PROCESSES
WRITE_SETTINGS

*http://developer.android.com/reference/android/Manifest.permission.html

Allows an application to call killBackgroundProcesses(String).

Allows an application to read or write the system settings.

tigating the function call graph with some heuristics we developed
(C3, see section 3.3). It should be noted that the static code analysis
has some limitations that we will discuss in section 6.

2.3 Description classifier

The goal of the description classifier was to classify text descrip-
tions into two categories: those that refer to the use of a resource
(C3), and those that do not (C4). In other words, we wanted to
determine automatically whether a user can, by reading the text de-
scription, know that an app may use a privacy-sensitive resource.
To do this, we leveraged several text analysis techniques. We also
make use of the results of code analyzer to extract keywords as-
sociated with a resource. To extract keywords that are useful in
classifying text descriptions, we first present text data preprocess-
ing techniques in section 4.1. Next, in section 4.2, we present the
keyword extraction method that leverages techniques used in the
field of information retrieval. We also evaluate the accuracy of the
description classifier in 4.3.

3. STATIC CODE ANALYSIS

This section describes the static code analysis techniques used in
the ACODE framework. The purpose of static code analysis was
to extract apps that include callable APIs/URISs to use a given per-
mission. Before applying function call analysis, which is a process
of checking whether given function is callable, we applied two fil-
tration mechanisms: (1) permission filtration and (2) API/URI fil-
tration. These filtrations are effective in reducing the computation
overhead needed for function analysis. We also note that permis-
sion filter is useful to prune apps that include callable APIs/URIs,
but will not actually use it.

3.1 Permission filtration

First, we applied permission filtration, which simply checks whether

an app declares a given permission. According to Zhou et al. [15],
permission filtration is quite effective in reducing the overhead of
analyzing a huge amount of mobile apps. For each app, we investi-
gated its AndroidManifest.xml file to check whether it declares per-
missions to access given resources. The process can be easily auto-
mated using existing tools such as aapt [16]. To further accelerate
the data processing, we also leveraged multiprocessing techniques.
Table 1 summarizes the 11 different permissions we analyzed in
this work. To perform generic analysis, we chose the permissions
from 4 categories, personal data, SMS, hardware resources, and
system resources. These resources were chosen because they are
the most commonly abused or the potentially dangerous ones.

3.2 API/URLI filtration

USENIX Association

2015 Symposium on Usable Privacy and Security 243

Static code analyzer (Sec. Ill)

lnPUt Extract apps with
Permission API/URI Function call callable AP
APK filtration ~ |— filtration [—>{ tree analysis |—» functions/URIs
(Sec. lILA) (Sec. 111.B) (Sec. 1I.C) associated with the
permission
Permissi PI/URI map

Privacy-sensitive

Resource

{Location, Contact,

Text descriptions Analyzer (Sec. IV)/

camera}

Text preprocessing
(Sec. IV.A)

Keyword extraction
(Sec. IV.B)

Does a description
refer to the use of
permission?
- {Yes No}

Text classification
(Sec. IV.C) >

Figure 2: Components of the ACODE framework.

Next, for each sample, we checked whether it includes APIs or
content provider URIs that require permissions to access privacy-
sensitive resources. For this task, we made use of the API calls for
permission mappings extracted by a tool called PScout [17], which
was developed by Au et al. [18]. In addition to API-permission
mapping, the PScout database also includes URI-permission map-
ping. To check the existence of APIs or URIs, first, using Android
apktool [19], we extracted DEX code from APK files and disas-
sembled them into smali format [20]. Then, we checked whether a
set of APIs is included in the code of an APK file.

We note that some apps may require permissions but not include
any APIs or URIs that request the permission. This may occur for
several reasons. apps. If such possibly overprivileged apps are sim-
ply overprivileged due to developer’s error, they do not impact our
study, because those apps may not need to use APIs or URIs. How-
ever, as Felt et al. [3] reported, one of the common developer errors
that cause overprivilege is Intent. A sender application can send an
Intent to a receiver application, which uses permission API. In such
cases, the sender of the Intent does not need to have permissions
for the API. We saw many such cases, especially related to camera
permissions. In fact, [3] reported that of the apps that unnecessarily
request camera permission, 81% send an Intent to open the already
installed camera applications (including the default camera) to take
a picture. Our observation is in agreement with their finding.

Thus, our API/URI filtration scheme may miss a non-negligible
number of apps that actually use the camera through Intent. How-
ever, note that our final analysis will be applied to the apps in set
C2 as shown in figure 1. Therefore, we are confident that the re-
moval of such apps should not affect our analysis, because we do
not expect to see significant differences between the descriptions of
those apps removed due to the Intent problem and the descriptions
of apps included in C2.

3.3 Function call analysis

Now, we present the function call analysis of the ACODE frame-
work. For convenience sake, let the term function include method,
constructor execution, and field initialization; i.e., we trace not only
method calls, but also class initializations. Figure 3 presents a
pseudo-code of the algorithm we developed for function call analy-
sis. It checks whether APIs/URIs of a given permission are callable
(true) or not (false). The algorithm uses depth-first search to search
the function call tree. If it finds a path from the given function to
a class of ORIGIN (line 4), it concludes that the app has at least
one API/URI that is callable, where ORIGIN is composed of three

classes: Application, App Components, and Layout. Application

is a class that initiates an Android app. It is called when an app is

1: INPUT

2: p:apermission

3: a:an application (APK)

4: ORIGIN = [Application, App Components, Layout]
5: list = getAU(p,a) # list of APIs/URIs associated with p
6: done =] # empty list

7:

8: WHILE list is not empty DO

9: f=list.pop()

10: IF fis in done:

11: skip the function

12: ENDIF

13: IF f.parentClass is in ORIGIN:

14: RETURN True

15: ENDIF

16: IF (f.parentClass inherits Android SDK)
17: AND (f is not init)

18: AND (f is not a static method):

19: list.append(f.parentClass.init)

20: ELSEIF (fis referenced):

21: list.append(f.refFunctions)

22: ENDIF

23: done.append|(f)

24: ENDWHILE

25: RETURN False

Figure 3: Pseudo-code that checks the callability of APIs of a
permission.

launched. App Components are the essential building blocks that

define the overall behavior of an Android app, including Activities,

Services, Content providers, and Broadcast receivers.
While the Application and App Components classes need to be
specified in the manifest file of an app, the Layout class does not.
It is often used by ad libraries to incorporate ads using XML.
getAU (Line 5) is a function that returns a list of APIs/URIs for
a given permission. As an implementation of getAU, we adopted
PScout [17]. refFunctions (line 21) is a function that returns a
list of functions that reference to the given function or URI. As an
implementation of refFunctions, we adopted androguard [21],
which we modified to handle URIs. If a function of a class, say Foo,
implements a function of the Android SDK class whose code is not
included in the APK, we cannot trace the path from the function in
some cases. To deal with such cases, we made a heuristic to trace
the function that calls the init-method of class Foo (lines 16-19).
We note that the heuristics can handle several cases such as async
tasks, OS message handlers, or callbacks from framework APIs
such as onClick(). A method is callable if it is overridden in a
subclass or an implementation of the Android SDK and an instance
of the class is created. Async tasks, the OS message handler, or

244 2015 Symposium on Usable Privacy and Security

USENIX Association

other callbacks implement their function by overriding the methods
of the Android SDK subclass. Therefore, it should be handled by
the heuristics.

4. TEXT DESCRIPTION ANALYSIS

This section describes the text description analysis used in the
ACODE framework. The aim of this analysis was to classify de-
scriptions into two classes: (1) text descriptions that reference a
privacy-sensitive resource, and (2) text descriptions that do not.
To this end, we adopted a set of basic techniques used in both IR
and NLP fields. As we shall see shortly, our keyword-based ap-
proach is quite simple and works accurately for our task. As Pan-
dita et al. [11] reported, a keyword-based approach could result in
poor performance if it was designed naively. So, we carefully con-
structed our keyword extraction processes. As a result, we achieved
87-98% of accuracy for the combinations of 3 resources and two
languages. Simple and successful text description classification en-
abled us to automate the analysis of 200,000 text descriptions.

Section 4.1 describes how we preprocessed the description data
so that we can extract keywords that are useful in classifying text
descriptions. Section 4.2 presents the keyword extraction method
that leverages techniques used in the field of information retrieval.
Section 4.3 describes our experiments to compare our description
classifier with the WHYPER framework in terms of accuracy.

4.1 Text Data Preprocessing

To analyze natural language text descriptions, we applied several
text preprocessing methods. These methods are broadly classified
into four tasks; (1) generic text processing, (2) domain-specific stop
words removal, (3) feature vector creation, and (4) deduplication.
Especially the tasks (2) and (4) are crucial in extracting good key-
words that can accurately classify the text descriptions.

4.1.1 Generic text preprocessing

We first apply widely-used generic text preprocessing techniques:

word segmentation, stemming, and generic stop words removal.
Word segmentation is a process of dividing text into words. This
process is required for Chinese but not for English, in which words
are already segmented with spaces. We used KyTea [22] for this
task. For English, we applied stemming, which is a process of re-
ducing derived words to their stem. It is known to improve the
performance of text classification tasks. We used NLTK [23] for
this task. Note that the concept of stemming is not applicable to
Chinese. Lastly, we applied generic stop words removal, which is
a process of removing a group of words that are thought to be use-
less for classification tasks because they are commonly used in any
documentation (e.g., determiners and prepositions). As lists of stop
words, we used the data in NLTK [23] for English and the data in
imdict [24] for Chinese.

4.1.2 Domain-specific stop words removal

Next, we created domain-specific stop words list so that we can
remove terms that are not generic stop words but are commonly
used in mobile app descriptions; e.g., “app” or “free”. To this end,
we make use of the technique proposed in Ref. [25], which is a
term-based sampling approach based on the Kullback-Leibler di-
vergence measure. Since the technique measures how informative
aterm is, we can remove the least weighted terms as the stop words.
Number of sampling trial was set to 10,000. When we changed the
threshold of extracting the top-L stop words; i.e., from L = 20 to
L = 150, the following results are not affected at all. In the follow-
ings, we use L = 100. The extracted domain-specific stop words for

LT3

English include “app”, “free”, “get”, “feature”, “android”, “like”,

etc. Top-100 domain-specific stop words for English and Chinese
are listed in Table 11 in the Appendix.

4.1.3 Feature vector creation

Using the preprocessed descriptions, we created a binary feature
vector for each text description as follows. Let W = {w, wa, ..., w;,}
be a set of entire words after the screening process shown above.
A feature of vector of the ith text description is denoted as x; =
{xi(w1), x;(w2), ..., Xi(wy)}, where x;(w;) = 1if w; is present in the
ith text description. If w; is not present, x;(w;) = 0.

4.1.4 Deduplication

Because we adopt the keyword extraction approach based on rel-
evance weights as shown in the next subsection, the deduplication
process plays a crucial role in eliminating the effect of same or sim-
ilar descriptions generated by a single developer. For instance, if a
developer produces thousands of apps with the same text descrip-
tion, which is often the case we observe in our datasets, the words
included in the apps may cause unintended biases when computing
the relevance weights of terms. To deduplicate the descriptions, we
remove the same or similar descriptions by using the cosine simi-
larity measure; i.e., for a given pair of feature vectors x; and x;, the
cosine similarity is computed as s = cos (x, - X/ Ixillx jl), and if s is
larger than a threshold, the duplicated description is removed. We
note that the value of threshold was not sensitive to the succeeding
keyword extraction results if it is set between 0.5 to 0.8.

4.2 Keyword Extraction

To extract keywords, we leverage the idea of relevance weights,

which measures the relation between the relevant and non-relevant
document distributions for a term modulated by its frequency [26].
Relevance weighting was developed in the IR community as a means
to produce optimal information retrieval queries. To make use of
the relevance weights for our problem, we need to have sets of rele-
vant and non-relevant documents. Since we do not have any labels
that indicate whether a document is relevant, i.e., it refers to a per-
mission, or non-relevant, i.e., it does not refer to a permission, we
set the following assumption.
Assumption: For a given permission, descriptions of apps that de-
clare the permission and have callable APIs can be regarded as
“pseudo relevant document”, while the descriptions of the remain-
ing apps can be regarded as “pseudo non-relevant document”.

Note that our research question contradicts with this assumption;
i.e., we are interested in the reason why an app with callable API
for a permission does not refer to the permission. Nevertheless,
our performance analysis using multiple permissions in two spoken
languages empirically supports that our approach actually works
well in extracting effective keywords.

Under this assumption, we calculate the relevance weights for
each word as follows. For a word w;, the relevance weight (RW) is

(r,~ +O.5)(N—}’li —R+r; +05)

RW(w,) = log (ni—r; +0.5)(R—-r; +05) ~

where r; is the number of relevant documents word w; occurs in, R
is the number of relevant documents, #; is the number of documents
word w; occurs in, and N is the number of documents, respectively.

Using the entire descriptions with code analysis outputs, we ex-
tracted the keywords that have the largest relevance weights. Ta-
ble 2 presents a subset of extracted keywords for each permission.
For space limitation, we present only the Top-3 English keywords.
We have listed the top-10 keywords for English and Chinese in
Table 12 in the Appendix. In most cases, the keywords look in-
tuitively reasonable. Interestingly, some keywords such as “sms”

USENIX Association

2015 Symposium on Usable Privacy and Security 245

Table 2: Extracted top-3 keywords for English descriptions.

Resources Ist 2nd 3rd
Location ps location map
Account grab google youtube
Contact sms call contact
Calendar calendar reminder | meeting
SMS (read) [sms [message [incoming
SMS (send) [sms | message [sent
Camera [camera | scan [photo
Audio | recording | voice [record
Get tasks lock security task

Kill background process | task kill manager
Write setting alarm ring bluetooth

are found in multiple resources; i.e., contact, SMS (read), and SMS
(send). In fact, these resources tend to co-occur. In the following,
we will use these keywords to classify descriptions. Once we com-
piled the keywords, the text classification task is straightforward.
If a text description includes one of the extracted keywords for a
permission, the description is classified as positive, i.e., it refers to
the permission. The problem is how we set the number of key-
words to be used. We will study the sensitivity of the threshold in
Section 4.3.2.

4.3 Performance Evaluation

To evaluate the accuracy of our scheme, we use manually labeled
data sets. We first present the way how we compile the labeled data
set. Next, we evaluate the accuracy of our approach, using the la-
beled data. Finally, to validate the robustness of our approach, we
use the external dataset and compare the performance with the ex-
isting state-of-the-art solution, the WHYPER framework. In the
analysis of accuracy (Section 4.3.3), we use 200,000 apps, which
will be described in Section 5.1 as training sets; i.e., they are only
used for keyword extraction. The labeled test set is a subset of
those, on which we measure accuracy. We note that in the evalu-
ation, our training set included test set; i.e., we extracted the key-
words using the entire text descriptions, which is the training set,
and applied the keywords (i.e., classifier) to the labeled descrip-
tions, which is the test set. In general, training classifier using test
set is not good because such setting could over-estimate the accu-
racy of the model. However, the effect should be small because
our classifier was based on frequencies of terms and the test set
accounted for only 0.6% of entire samples.

4.3.1 Creation of labeled datasets

We created the labeled data sets with the aid of 12 international
participants who are from China, Korea, Thailand, and Indonesia.
All the participants were university students with different disci-
plines in science and engineering. 7 were female and 5 were male.
4 were native English speakers, and 8 were native Chinese speak-
ers. None of them had experience of developing Android applica-
tions. All the native Chinese speakers were fluent in English (na-
tive level). Students who were native speakers of Chinese labeled
Chinese descriptions. In summary, six students labeled English de-
scriptions, and the other six labeled Chinese descriptions. Here,
we picked up three distinct resources, i.e., location, contact, and
camera, out of the 11 resources we considered in this work.

Since a resource is used for various purposes, and referred to by
various terms, we wanted to avoid participants focusing too much
on a particular keyword, such as “camera”. Instead, we asked par-
ticipants to identify whether an app will use a camera, rather than
whether it mentions a camera. This enabled us to identify several

Table 3: Summary of labeled datasets.

English
Location | Contact | Camera
of descriptions 1,000 1,000 1,000
of labels 3,000 3,000 3,000
Chinese
Location | Contact | Camera
of descriptions 1,000 1,000 1,000
of labels 3,000 3,000 3,000

Table 4: Statistics of labeled descriptions to be used for perfor-
mance evaluation.

English

[Location | Contact | Camera
of positive descriptions | 128 | 208 | 276
of negative descriptions | 611 | 449] 289

Chinese

[Location | Contact | Camera
of positive descriptions | 38] 102] 157
of negative descriptions | 828 | 544] 583

interesting keywords, such as “QR” and “scan”. Also, we note that
the question should reflect users’ awareness of a resource.

Before asking participants to label text descriptions, we picked
some descriptions from our entire data set. If random sampling
were applied to the entire set, there would be a significant imbal-
ance between the two classes. In particular, there would be very few
positive samples, i.e., text descriptions that reference a resource. To
avoid such an imbalance, we applied the access permission filter
shown in section 3.1 so that the sampled text descriptions would
include a certain number of positive samples. Although this solu-
tion could create some bias toward the positive class, in fact it did
not matter, as will be shown later in this paper. From the set of
apps that declare access permissions for using resources, we ran-
domly sampled 1,000 text descriptions. In total, we sampled 6,000
descriptions, as shown in table 3.

Having sampled text descriptions, we asked each participant to
label 500 text descriptions for each resource (e.g., 500 X 3 = 1,500
descriptions in total). A participant labeled text descriptions in ei-
ther English or Chinese. To increase the quality of labels, each text
description was labeled by three distinct, fixed participants. We ob-
tained a total of 18, 000 labels for 6, 000 text descriptions, as shown
in table 3.

Finally, we eliminate inconsistent labels to ensure that the qual-
ity of labels is high; i.e., we used only the text descriptions upon
which all three evaluators agreed. Table 4 summarizes the text de-
scriptions that met this criterion. We used these labeled descrip-
tions for evaluating accuracy of our approach, as described in the
next subsection.

4.3.2 Threshold Sensitivity Study

Using the labeled datasets, we empirically studied the relation
between threshold and classification accuracy. Here, the definition
of the accuracy is the fraction of correctly classified text descrip-
tions, using the top-K keywords. Figure 4 presents how the num-
ber of keywords, K is correlated with the classification accuracy.
As shown in the graph, across the 6 of labeled datasets, the accu-
racy is fairly stable around K = 3. Also, we notice that K = 3 gives
the highest accuracy with the minimum variance. As we increase
K, the accuracy is degraded; i.e., as K increases, the less relevant
the keywords become. In fact, while many of keywords listed in

246 2015 Symposium on Usable Privacy and Security

USENIX Association

-
|
|

=4
>

14
P

Accuracy

S
1Y)

=4
o

4 5
Top-K words

Figure 4: K vs. accuracy. The circles indicate median values
and the bars indicate maximum/minimum values, respectively.

Table 5: Accuracy of our approach (K = 3) for the 6 of labeled
datasets.

Resource [Lang [[TP [TN [FP [FN [[ACC [PPV [NPV
EN 118 | 591 20 10 0.959 | 0.855 | 0.983

Location | —r 23 [826 | 2 | 15 || 0.980 | 0.920 | 0.982
Contact EN || 177 | 396 | 53 | 31 || 0.872 | 0.770 | 0.927
CN 64 [535 | 9 | 38 || 0.027 | 0.877 | 0.934
EN || 206 | 284 | 5 | 74 || 0.867 | 0.976 | 0.802
Camera

CN 98 | 575 8 59]| 0.909 [0.925 | 0.907

Table 12 in the Appendix look natural, some lower-ranked key-
words such as “gps” for SEND_SMS or “call” for READ_CALENDAR
do not really make sense. Given these observations, in the follow-
ing analysis, we adopt K = 3 in classifying the document. We note
that the chosen threshold works nicely for the external dataset pro-
vided by the authors of WHYPER [11]. We will report the results
in Section 4.3.4.

4.3.3 Accuracy of Text Classification

We now evaluate the accuracy of our text classifier. To measure
the accuracy, we use several metrics. First, TP, TN, FP, and FN rep-
resents number of true positives, number of true negatives, number
of false positives, and number of false negatives, respectively. We
also use three derivative metrics: accuracy (ACC), Positive predic-
tive values (PPV), and Negative predictive values (NPV), which are
defined as

TP+TN
ACC = ,
TP+TN+FP+FN
TP TN
PPV = —-—— NPV=———,
TP+ FP TN +FN

respectively. PPV and NPV measure how many of descriptions
classified as positive/negative are actually positive/negative. These
measures are suitable to our requirements because we aim to derive
the answers of our research question by studying the characteristics
of classified descriptions. Therefore, we expect that these measures
have high values.

Table 5 presents the results of performance evaluation. In both
languages, the observed accuracy was good for all categories; e.g.,
ACCs were 0.87-0.98. Also, in most cases, NPVs were larger than
0.9. Since one of our objectives is to understand the reasons why
text descriptions fail to refer to access permissions, the high num-
ber of NPVs is helpful, because it indicates that majority of de-
scriptions classified as negative are actually negative. In summary,
our scheme was validated to enable automatic classification of text
descriptions into the two categories with good accuracy. It works
well for both languages, English and Chinese.

4.3.4 Robustness

Table 6: Statistics of the WHYPER datasets.

Contact | Calendar | Audio
of positive samples 107 86 119
of negative samples 83 110 81

Table 7: Comparison of accuracy of ACODE (K = 3), WHY-
PER semantic analysis (WHYPER), and WHYPER keyword
(WKW).

Resource | method TP | TN | FP | FN ACC PPV NPV
ACODE 96 63 | 20 11 0.837 | 0.828 | 0.851
Contact WHYPER 92 77 6 15 0.889 | 0.939 | 0.837
WKW 95 46 | 37 12 0.742 | 0.720 | 0.793
ACODE 77 98 12 9 0.893 | 0.865 | 0.916
Calendar | WHYPER 81 99 11 5 0918 | 0.880 | 0.952
WKW 84 60 | 50 2 0.735 | 0.627 | 0.968
ACODE 95 57 | 24 20 0.742 | 0.720 | 0.793
Audio WHYPER 103 69 12 16 0.860 | 0.896 | 0.812
WKW 113 38 | 43 6 0.755 | 0.724 | 0.864

To validate the robustness of our approach, we use the external
labeled dataset [27], which is provided by the authors of the WHY-
PER framework [11]. Since the dataset also includes the outcomes
of the WHYPER framework, we can directly compare the perfor-
mance of the two frameworks. Since the dataset consists of a set
of labels for each sentence, we reconstructed original descriptions
from the sentenses and assign labels to the descriptions; i.e., if a de-
scription consists of at least one sentence that declares the use of a
permission, the description is labeled as positive, otherwise labeled
as negative. Table 6 summarizes the dataset’>. All the descriptions
are written in English.

Table 7 shows the comparison of performance of the ACODE
framework and the WHYPER framework in classifying descrip-
tions. Our results show that the performance of the ACODE frame-
work is comparable with that of the WHYPER framework. Espe-
cially, the delta for NPV, which is the most important metrics for
our study, is less than 0.04 for all the three cases. We also no-
tice that the keyword-based approach used in the WHYPER paper
(WKW in the table) had high false positives. We conjecture that
the high false positives are due to the nature of extracted keywords,
which include some generic terms such as data, event, and capture.

Notice that the WHYPER dataset consists of higher fractions of
positive descriptions, compared to ours. This may reflect the fact
that the apps used for WHYPER study were collected from the top-
500 free apps; i.e., it is likely the top apps were built by skilled de-
veloper and had informative descriptions. In contrast, our datasets
consist of larger fractions of negative samples. Since our datasets
were collected from entire app space, they consist of various apps,
including the ones that failed to add informative descriptions due to
the reasons that will be described in the next section. Despite this
potential difference in the population of datasets, our framework
established good accuracy among all the datasets.

In summary, we evaluated the accuracy of the ACODE frame-
work using 5 of 11 permissions we considered®. In the following
large-scale analysis, we assume that the ACODE framework es-
tablishes good accuracy for the rest of permissions as well. The

2We derived these numbers by analyzing the dataset [27]
3To be precise, we verified 5 of 11 permissions for English and 3
of 11 permissions for Chinese.

USENIX Association

2015 Symposium on Usable Privacy and Security 247

Table 8: Summary of Android apps used for this work.

English | Chinese | Data collection periods
Official (Google Play) | 100,000 0 | Apr2012 - Apr2014
Third-party (Anzhi) 0 74,506 | Nov 2013 — Apr 2014
Third-party (Nduoa) 0 25,494 | Jul 2012 — Apr 2014

potential effect of the assumption will be discussed in Section 5.5.

S. ANALYSIS OF CODES AND DESCRIP-
TIONS

Using the ACODE framework, we aim to answer our research
question RQ shown in Section 1. We first describe the details of
the data sets we used for our analysis, in section 5.1. Then, we
apply our code analysis to the apps and extract apps with callable
APIs/URIs of permissions (C2, see figure 1) in section 5.2. Using
the extracted apps with callable APIs/URIs of permissions, sec-
tion 5.3 aims to quantify the fractions of apps with text descriptions
that successfully inform users about the use of privacy-sensitive re-
sources for each resource. In section 5.4 we aim to answer the re-
search question RQ. We discuss in-depth analysis to understand the
reasons of failures for text descriptions classified as C4 in inform-
ing users about access permissions. Finally, Section 5.5 discusses
the limitations of our analysis and evaluation.

5.1 Data sets

We collected Android apps from the official marketplace [28]
and two other third-party marketplaces [29, 30]. All these market-
places have huge user bases. Note that these were all free apps.
Although we might see some disparity between free and paid apps,
we leave this issue open for future research.

After collecting mobile apps, we first pruned samples that are
corrupt or have zero length text descriptions. From the rest of
the samples, we randomly picked 100,000 apps for each type of
markets. Table 8§ summarizes the data sets we collected. Among
200,000 apps, only 1,831 apps were duplicated in package names
between the two markets. To simplify the interpretation of analy-
ses, we assigned different languages, English and Chinese, to the
official and third-party marketplaces. Note that we have already
shown that our text description classification scheme works well
for both languages.

5.2 Extracting apps with callable APIs/URIs
of privacy-sensitive resources

Table 9 presents the results of our code analysis. Overall, many
applications require permission of location. As we will detail later,
many of these are apps that use ad libraries. Interestingly, the pop-
ularity of personal data resource requirements is almost identical
across markets. The most popular is location, second is contact,
third is accounts, and fourth is calendar. Generally, third-party mar-
kets tend to require/use more permissions than the official market.
This may correlate to the existence of defense mechanisms installed
on the official marketplace — Bouncer [31].

Another useful finding we can extract from the results is that over
privilege (CO — C1) is observed commonly across the categories.
Also, there are non-negligible numbers of apps that have code to
use permissions but cannot be called (C1 — C2). This often occurs
when a developer incorporates an external library into an app; the
library has many functions, including APIs/URIs of permissions,
but the app does not actually call the APIs/URIs. Our code analysis
can prune these applications from further analysis.

Overprivilege ratios are especially high for account and con-

Official Third-party

LOCATION u
Personal ACCOUNTS -
data CONTACTS I |
CALENDAR |
READ_SMS |
SMS
SEND_SMS | |
Hardware CAMERA N |
TEeSOUrCes pec AUDIO -
GET_TASKS [||
System
resources KILL_BG_PROC I |
| |

W_SETTINGS

o

02 04 06 08 1

o

02 04 06 08 1

Figure 5: Fractions of descriptions that refer to a permission.
Populations are C2 apps shown in Table 9; e.g., of the 18,165
of official market apps with callable functions that request lo-
cation permission, roughly 30% of them mentioned the use of
location in the description.

tact permissions in the third party marketplaces and for camera,
calendar, and kill background processes permissions in both mar-
kets. Careful manual inspection revealed that these cases can be
attributed to misconfiguration on the part of developers; i.e., the In-
tent issue discussed in section 3.2. Such apps were pruned by the
second filter. We also note that these apps do not need to declare
permissions because the permissions are misconfigurations. These
observations agree with the work performed by Felt et al. [3]. Al-
though our scheme pruned those applications, the pruning did not
affect the analysis because the pruned apps are unlikely to exhibit
special characteristics in their text descriptions.

5.3 Analysis of apps with callable APIs/URIs
for a permission.

Using apps that include callable APIs/URIs for a permission (C2
in Table 9), we analyzed their text descriptions. Figure 5 presents
the results. We first notice that fractions of positive text descrip-
tions are higher for official market apps. This can be considered
natural, given that official market is more restrictive. We also no-
tice that some resources such as CALENDAR for both markets and
SMS permissions and the KILL_BG_PROC (kill background process)
permission for the official market are well described in their de-
scriptions.

For the official market, GET_TASK and ACCOUNTS were the per-
missions that were less described (15-20%). In contrast, READ_SMS
and CALENDAR were the permissions that were well described (70—
80%). These results are consistent with intuition that permissions
that are directly associated with user actions tend to be well de-
scribed. Overall, our impression is that for the official market, the
fractions of proper descriptions are higher than expected. Thus, if
the descriptions of remaining apps were improved, the text descrip-
tion could serve as a good source of information to let users know
about sensitive resources.

Finally, we note that the descriptions of apps collected from of-
ficial market was only English, while the descriptions of apps col-
lected from third-party market was only Chinese. Therefore, we
cannot tell if the observed differences are due to the market or the
language. We leave the issue for future work.

5.4 Answers to the Research Question

To answer the research question RQ, we performed the manual
inspection to the extracted apps that fail to refer to use of permis-

248 2015 Symposium on Usable Privacy and Security

USENIX Association

Table 9:

Numbers of extracted apps for each category.

Official market apps

Personal data

SMS

System resources

| Location | Accounts [Contacts | Calendar

I
[[SMS (read) | _SMS (send)

[[Hardware resources |[
il

|| Camera | Audio Get tasks [Kill bg processes | Write setting

Permission (CO) 25026 6962 1893 1352

5204 409

API/URI (C1) 23390 6177 333 526

4621 248

Callable (C2) 18165 4238 100 287

3297 208

Third-party market apps

Personal data Il
|| SMS (read)

SMS

[Fiardware resources || System resources

| Location] Accounts | Contacts [Calendar

[SMS Gend)

[Camera | Audio || Gettasks | Kill bg processes | Wiite setting

Permission (C0) 40278 6585 9907 394 7686

16204 14581 10745 37436 7457 15249

API/URI (C1) 36885 3148 4863 98 4668

13807 6934 8354 19147 1158 11564

32122 1542 3429 66 4185

Callable (C2)

12355 6139 6147 15447 957 1029

sions. The methodologies of the manual inspection are described
below. Given a permission, e.g., Camera, we fist identify Java
classes that include the APIs associated with the permission. From
the identified class, we can extract a package name such as /com/
google/android/foo/SampleCameraClass. java, which is seg-
mented into a set of words, com, google, android, foo, and Sample-
Class. By analyzing the package name words for apps that fail to
refer to use of the permission, we can find intrinsic words that are
associated with specific libraries such as “zxing” used for handling
QR code or service names such as “cordova”, which is an app build-
ing framework. In addition, we can analyze developer certificates
included in app packages. We also apply dynamic analysis of the
apps when we need to check how the permission is used. Using
the methodologies, we classified such apps into the four categories.
For each category, we extracted reasons why text descriptions fail
to refer to permissions.

(1) App building services/frameworks

Through the analysis of package names of apps, we noticed that
many of apps were developed with cloud-based app building ser-
vices, which enable a developer to create a multi-platform app with-
out writing code for it. Examples of cloud-based app building ser-
vices are SeattleClouds, iBuildapp, Appsbar, appbuilder, and biz-
nessapps. Similarly, many of apps were developed with mobile
app building frameworks, which also enable a developer to create
a multi-platform app easily. Examples of such mobile app building
frameworks are Apache Cordova (Phonegap) and Sencha. These
services/frameworks provide a simple and intuitive interface to ease
the processes of building a mobile app.

Among many such services/frameworks, we found a few ser-
vices/frameworks that generate apps that unnecessarily install many
permissions, and put callable APIs/URIs for the permissions into
the code. Since a developer using such a service/framework cannot
change that setting, it is likely that even the developer is not aware
of the fact that app install the permissions with callable APIs/URIs;
hence, it is less likely the developer writes about the permissions in
the description.

Figure 6 shows CDFs of number of permissions per application.
First, apps collected from the official market have small number
of permissions among the 11 permissions; i.e., more than 80% of
apps had zero permissions. They had other generic permission such
as Internet. Second, we considered an intrusive cloud-based app
building service and one of the popular app building frameworks.
Both cases tend to install a large number of permissions. Espe-
cially, roughly half of the apps that were built with the intrusive
cloud-based app building service had a fixed number of permis-
sions (4 out of 11). We carefully inspected these apps, and found
that many permissions such as record audio were unnecessarily in-
stalled by the services/frameworks.

We revealed that the apps built by the intrusive cloud-based app
building services are popular in official market, but not popular in
third-party market. In the official market, more than 65% of apps

CDF

0.4] '

Official
Third-party
- ==~ Framework
Cloud-based

10

0.2

0.0!
0

Permissions

Figure 6: CDFs of number of permissions per application. The
11 permissions listed in Table 1 are used.

that failed to refer to use of record audio were developed with
these services. Similarly, more than 25% of apps that failed to re-
fer to use of contact list were developed with these services.
We also observed non-negligible number of such apps in other re-
sources; i.e., 5% for location and 10% of camera. For app build-
ing frameworks, one of the frameworks accounted for more than
28% of apps that failed to refer to use of record audio in the
third-party market. In fact the permission was not necessary for the
apps.

We also note that unnecessarily installed permissions on a frame-
work such as phonegap, which is HTMLS5-based mobile app build-
ing framework, could bring additional threats because such permis-
sion can be abused through various channels of Cross-Site Scripting
attacks [32].

(2) Prolific developers

Through the analysis of distributions of number of apps per de-
veloper certificate, we noticed that a very few number of developers
accounted for a large number of descriptions without mention of
privacy-sensitive resources. We call such developers “prolific de-
velopers”. For instance, five prolific developers published 47% of
third-party market apps that fail to refer to send SMS. We applied
eleven popular commercial anti-virus scanners to the apps with
SMS permission, and checked whether either of scanner detected
the types of application. If at least one scanner detected an app as
malware/adware, we marked it as malware/adware. We found that
majority of the apps with unmentioned SMS permission were mal-
ware/adware and have been removed from the market later. There
are other cases. Three prolific developers published 38% of third-
party market apps that fail to use of kill background processes.
Another three prolific developers published 32% of third-party mar-
ket apps that fail to use of write setting. We carefully in-
spected these apps, and found that they do not have any reasons
to use the permissions. Although not conclusive, we conjecture
that these prolific developers likely reuse their own code for build-
ing a large number of apps; i.e., they tend to include unnecessary
permissions/code.

USENIX Association

2015 Symposium on Usable Privacy and Security 249

(3) Secondary functions

Through the careful analysis of descriptions that failed to refer
to permissions, we found several secondary functions that tend to
be unmentioned. For instance, several apps have functions to share
information with friends, e.g., scores of games. In many cases,
such functions require to access contact list. However, such activ-
ity is often unmentioned in the descriptions because it is an optional
function. Another example is map-based apps that require to access
the write setting permission to enable location positioning ser-
vice such as GPS or Wi-Fi. Such map-based apps accounted for
44% of apps that failed to refer to write setting. Among sev-
eral cases, the most notable one was barcode reader, which requires
access to camera device. Although there are several barcode reader
apps, majority of apps with barcode reader function are shopping
apps or social networking apps. Since the barcode reader is not a
primary function for those apps, it tends to be unmentioned in their
descriptions. To study the impact of such cases, we extracted apps
that use barcode libraries such as ZXing [33] or ZBar [34]. We
found that in the official market, more than 53% of apps that failed
to refer to use of camera had barcode reader libraries in their code.
In the third-party market, more than 66% of such apps had barcode
libraries. Mobile application distribution platform providers may
want to support exposing the use of privacy-sensitive resources by
functions that tend to be unmentioned.
(4) Third-party libraries

There are some third-party libraries that need to use privacy-
sensitive resources. For instance, it is well known that ad libraries
make use of resources of location or account information for es-
tablishing targeted advertisement [5]. Another example of third-
party libraries are log analysis libraries and crash analysis libraries.
These libraries make use of get task permission and location in-
formation. We analyzed apps that have callable location APIs/URIs
and text descriptions that do not refer to the location permission.
We found that in the official market, more than 62% of such apps
use ad libraries. In the third-party market, more than 80% of such
apps used ad libraries. Similarly, in the third-party market, more
than 20% of apps that failed to refer to location permission used
access analysis libraries. Thus, if a developer uses these third-party
libraries, it is likely that the description of the app fails to refer to
the permission unless the developer explicitly expresses it.

5.5 Threats to Validity

This section discusses several limitations of our analysis and
evaluation.

5.5.1 Static code analysis

Although we developed an algorithm to check whether privacy-
sensitive APIs/URIs are callable, we are aware of some limita-
tions. First, although the algorithm can detect the callability of
APIs/URIs, we cannot precisely ensure that they are actually called.
Second, our static code analysis cannot dynamically track assigned
program code at run-time, such as reflection. Third, as Poeplau et
al. [35] revealed, some malware families have the ability to self-
update; i.e., after installation, an app can download the new version
of itself and load the new version via DexClassLoad. Employ-
ing dynamic code analysis could be a promising solution to these
problems. However, other challenges may include scalability and
the creation of test patterns for UI navigations [36, 37]. As we
mentioned earlier, we adopted static analysis because our empirical
study required analysis of a huge volume of applications. On the
other hand, we note that static code analysis has a chance to extract
hidden functions that cannot be explored by a dynamic analysis.
We leave these challenges for our future work.

5.5.2 Accuracy of the keyword-based approach

As we mentioned earlier, we evaluated the accuracy of the ACODE
framework using 5 of 11 permissions we considered. Our assump-
tion is that the ACODE framework establishes good accuracy for
the rest of 6 permissions. However, there may be a concern that the

keyword-based approach works better for some permissions more

than others. We note that some of the results derived in Section 5.4
were based on permissions for which we did not evaluate the ac-
curacy; e.g., SEND_SMS, KILL_BG_PROC, and GET_TASKS. There-
fore, the results might have threats to validity. A simple solution to
address the concern is to extend the labeled dataset, however, we
were not able to perform the additional experiments due to the high
cost of labeling descriptions written in two languages. Although
not conclusive, we note that we have validated that the descriptions
were correctly classified through the manual inspection, using ran-
domly sampled apps; i.e., the obtained results were partially vali-
dated.

6. DISCUSSION

In this section, we discuss the feasibility and versatility of the
ACODE framework. We also outline several future research direc-
tions that are extensions of our work.

6.1 User experience

In this study, we asked participants to read whole sentences care-
fully, regardless of the size of the text description. In a real-user
setting, users might stop reading a text description if it is very long.
Studying how the length of text descriptions or the placement of
permission-related sentences affect user awareness is a topic for fu-
ture work. In addition to text descriptions, mobile software distri-
bution platforms provide other information channels, such as meta
data or screenshots of an app. As users may also pay attention to
these sources of information, studying how these sources provide
information about permissions is another research challenge we are
planning to address.

6.2 Cost of analysis

Because this work aims to tackle with a huge volume of appli-
cations, we adopt light-weight approaches; static code analysis (in-
stead of dynamic code analysis) and keyword-based text analysis
(instead of semantic analysis). In the followings, we detail the cost
of our approach. The cost of data analysis with the ACODE frame-
work can be divided into two parts: the static code analyzer and the
text descriptions analyzer. For the static code analyzer, the most
expensive task is the function call analysis because we first need to
build function call trees to study whether an API is callable. Our
empirical study showed that the task of function call analysis for an
application took 6.05 seconds on average. We note that the tasks
can be easily parallelized. By parallelizing the tasks with 24 of
processes on a commodity PC, we were able to process 200 K apps
within a single day. For the text description analyzer, collecting
label was the most expensive task. On average, a single participant
labeled 1,500 of descriptions within 10 hours. However, once we
get the performance evaluation of our approach, we do not need to
employ the task again because our work does not need manually-
labeled samples. Since we adopt keyword-based approach, analyz-
ing hundred thousands of descriptions was quite fast.

Overall, all the tasks can be completed within a single day, and
we can further accelerate the speed if this is desired. As our objec-
tive is not to perform the analysis in real-time, we believe that the
cost of performing analyses with the ACODE framework is afford-
able.

250 2015 Symposium on Usable Privacy and Security

USENIX Association

6.3 Permissions that should or should not be
mentioned.

Android OS manages several permissions with a protection level
defined as “dangerous,” which means “a higher-risk permission that
would give a requesting application access to private user data or
control over the device that can negatively impact the user [38].”
Ideally, users should be aware of all these dangerous permissions.
The dangerous permissions can be broadly classified into two cat-
egories: for users and for developers. Permissions for users in-
clude read/write contacts, access fine location, read/write calen-
dar, read/write user dictionary, camera, microphone, Bluetooth, and
send/read SMS. The three resources analyzed in this paper are the
permissions aimed at users. Permissions for developers include set
debug app, set process limit, signal persistent processes, reorder
tasks, write setting, and persistent activity.

Permissions for users are intuitively understandable. Thus, they
should be described in the text descriptions. Permissions for de-
velopers are difficult for general users to understand; thus, describ-
ing them may be confusing. As describing these permissions could
even distract users’ attention from the text descriptions, they should
not be mentioned in the text descriptions. For such dangerous per-
missions aimed at developers, we need to develop another informa-
tion channel that lets users know about the potential threats in an
intuitive way. We note that the ACODE framework can be used to
identify dangerous permissions that are least mentioned. Knowl-
edge of such permissions will be useful to develop a new informa-
tion channel.

7. RELATED WORK

Researchers have studied mobile apps from various viewpoints,
including issues of privacy, permission, and user behavior. In this
section, we review the previous studies along four axes: system-
level protection schemes, large-scale data analyses, user confidence
and user behavior, and text descriptions of mobile apps.

7.1 System-level protection schemes

As a means of protecting users from malicious software, sev-
eral studies have proposed install-time or runtime protection ex-
tensions that aim to achieve access control and application iso-
lation mechanisms such as [39, 40, 41, 42, 43]. Kirin [39] per-
forms lightweight certification of applications to mitigate malware
at install-time based on a conservative security policy. With regard

to install-time permission policies and runtime inter-application com-

munication policies, SAINT [40] provides operational policies to
expose the impact of security policies on application functional-
ity, and to manage dependencies between application interfaces.
TaintDroid [41] modifies the operating system and conducts dy-
namic data tainting at runtime in order to track the flow of sensi-
tive data to detect when this data is exfiltrated. Quire [44] is de-
fense mechanisms against privilege escalation attacks with inter-
component communication (ICC). Finally, SEAndroid [43] brings
flexible mandatory access control (MAC) to Android by enabling
the effective use of Security Enhanced Linux (SELinux).

While the above studies improved the system-level security and
privacy of smartphone, this work attempts to address the problem
from a different perspective — understanding the effectiveness of
text description as a potential source of information channel for
improving users’ awareness of privacy.

7.2 Large-scale data analyses

Several researchers have conducted measurement studies to un-
derstand how many mobile apps access to private resources and

how they use permissions to do so [2, 3, 4, 5]. A survey report pub-
lished by Bit9 [2] included a large-scale analysis of Android apps
using more than 410,000 of Android apps collected from the offi-
cial Google Play marketplace. Through the analysis, they revealed
that roughly 26% of apps access personal information such as con-
tacts and e-mail, 42% of apps access GPS, and 31% of apps access
phone calls or phone numbers. Book et al. [5] analyzed how the
behavior of the Android ad library and permissions have changed
over time. Through the analysis of 114,000 apps collected from
Google Play, they found that the use of most permissions has in-
creased over time, and concluded that permissions required by ad
libraries could expose a significant weakness in user privacy and
security. From the perspective of dynamic code loading, Poeplau
et al.[35] conducted an analysis of 1,632 popular apps, each with
more than 1 million installations, and revealed that 9.25% of them
are vulnerable to code injection attacks.

7.3 User confidence and user behavior

Several works on user confidence and user behavior discuss users’
installation decisions [9, 45, 46, 47]. Refs. [46, 47] studied user
behavior in security warnings, and revealed that most users con-
tinue through security warnings. Good et al. [45] conducted an
ecological study of computer users installing software, and found
that providing vague information in EULAs and providing short
notices can create an unwarranted impression of increased security.
Chin et al. [9] studied security and privacy implications of smart-
phone user’s behaviors based on a set of installation factors, e.g.,
price, reviews, developer, and privacy. Their study implicates user
agreements and privacy policies as the lowest-ranked factors for the
privacy. As these studies on user confidence and behavior suggest,
user agreements or privacy policies are not effectively informing
consumers about privacy issues with apps. Centralized mobile soft-
ware distribution platforms should provide mechanisms that im-
prove privacy awareness so users can use apps safely and confi-
dently. We believe that our findings obtained using the ACODE
framework can be used to complement these studies.

7.4 Text descriptions

As mentioned in section 1, only a few works have focused on
text descriptions of mobile apps [10, 11, 12, 13]. The WHYPER
framework [11] is the pioneering work that attempted to bridge
the semantic gap between application behaviors and user expec-
tations. They applied modern NLP techniques for semantic analy-
sis of text descriptions, and demonstrated that WHYPER can ac-
curately detect text sentences that refer to a permission. Qu et
al. [13] indicated an inherent limitation of the WHYPER frame-
work, i.e., the derived semantic information is limited by the use
of a fixed vocabulary derived from Android API documents and
synonyms of keywords there. To overcome the issue, they pro-
posed the AutoCog framework based on modern NLP techniques
extracting semantics from descriptions without using API docu-
ments. The key idea behind their approach is to select noun-phrase
based governor-dependent pairs related to each permission. They
demonstrated that the AutoCog framework moderately improved
performance as compared to the WHYPER framework. Gorla et
al. [12] proposed the CHABADA framework, which can identify
anomalies automatically by applying an unsupervised clustering al-
gorithm to text descriptions and identifying API usage within each
cluster. Like our work, CHABADA uses API functions to iden-
tify outliers. On the other hand, the aim of ACODE is not to find
anomalies, but to quantify the effectiveness of text descriptions as
a means of making users aware of privacy threats. To this end,
using a simple keyword-based approach, the ACODE framework

USENIX Association

2015 Symposium on Usable Privacy and Security 251

Table 10: Comparison between related works.

Acknowledgments

We are grateful to the authors of WHYPER framework [11] for
sharing the invaluable datasets with the research community. We
also thank Akira Kanaoka for inspiring us to start this work. Our
special thanks are to Lira Park, Gracia Rusli, Ahro Oh, Suthinan
Thanintranon, Karyu Chen, Xia Tian, Bo Sun, Jiarong Chen, Xue-
feng Zhang, Hao Wang, Dan Li, Chen Wang for their assistance in
collecting the labeled text descriptions used in this work. Finally,
we thank the anonymous reviewers for their thoughtful suggestions
for improving this paper. In particular, we thank our shepherd,

ACODE WHYPER AutoCog CHABADA | Linetal. [10]
Understanding | Identifying Assessing Understanding
L inconsistency sentences that description-to- Identifying user expectation
objective
between codes | refer to a permission fidelity | outlier apps on sensitive
and descriptions | permission of applications resources
of apps 200,000 581 83,656 32,308 134
of studied 11 3 11 N/A 4
permissions
markets Official, Official Official Official Official
Third-party
) English,
languages Chinese English English English English
code Function call Permission Permission API analysis Permission
analysis tree analysis check check Y check
fiescn‘[‘)t‘lon Keyword- Semant»lc Semant.lc Topic model N/A
analysis based analysis analysis

attempts to assess the reasons why text descriptions do not refer to
permissions. As we revealed, the performance of our approach is
comparable with that of the WHYPER framework. We also note
that the ACODE framework is more fine-grained than CHABADA
since ACODE checks whether API functions/URIs found in code
are callable by employing function call analysis. Finally, Lin et
al. [10] studied users’ expectations related to sensitive resources
and mobile apps by using crowdsourcing. They asked participants
to read the provided screenshots and text description of an app,
and asked several questions to investigate users’ perceptions of the
app as related to privacy-sensitive resources. They concluded that
users’ expectations and the purpose for using sensitive resources
have a major impact on users’ subjective feelings and their trust
decisions. This observation supports the importance of improving
users’ privacy awareness on mobile software distribution platforms.

We summarize the differences among the above three studies,
and our own in table 10. In addition to the technical differences
shown above, our work is distinguishable from other studies in its
large-scale empirical analysis, which spans across 11 of distinct
permissions, two market places, and 200K of text descriptions writ-
ten in two different natural languages.

8. CONCLUSION

By applying the ACODE framework to 200,000 apps collected
from both official and third-party marketplaces, our analysis across
the 11 distinct resources revealed four primary factors that are as-
sociated with the inconsistencies between text descriptions and use
of privacy-sensitive resources: (1) existence of app building ser-
vices/frameworks that tend to add API permissions/code unneces-
sarily, (2) existence of prolific developers who publish many ap-
plications that unnecessarily install permissions and code, (3) exis-
tence of secondary functions that tend to be unmentioned, and (4)
existence of third-party libraries that access to the privacy-sensitive
resources.

We believe that our work provides an important first step to-
ward improving users’ privacy awareness on mobile software dis-
tribution platforms. For instance, developers of app building ser-
vices/frameworks can use our findings to check the behaviour and
deployment of their products. Individual mobile app developers
can pay attention to our findings when they write text descriptions
or use third-party libraries. And mobile software distribution plat-
form providers can pay attentions to all the potential reasons that
lead to the inconsistencies between user expectations and developer
intentions. Based on the findings revealed by the ACODE frame-
work, they may be able to come up with new information channels
that effectively inform users about the use of privacy-sensitive re-
sources.

William Enck for his valuable feedback.

9.
(1]

[2

—

[3

—

[4

—_

(5]

(6]

(7]

[8

—_—

[9

—

[10]

(1]

[12]

[13]

REFERENCES
S. Shen and B. Blau, “Forecast: Mobile App Stores,

Worldwide, 2013 Update.”
https://www.gartner.com/doc/2584918/
forecast-mobile-app-stores-worldwide.

B. Report, “Pausing Google Play: More Than 100,000
Android Apps May Pose Security Risks.” https:
//www.bit9.com/research/pausing-google-play/.
A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner,
“Android permissions demystified,” in Proceedings of the
18th ACM Conference on Computer and Communications
Security, CCS *11, pp. 627-638, 2011.

A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and

D. Wagner, “Android permissions: user attention,
comprehension, and behavior,” in Symposium on Usable
Privacy and Security (SOUPS), 2012.

T. Book, A. Pridgen, and D. S. Wallach, “Longitudinal
analysis of android ad library permissions,” in IEEE Mobile
Security Technologies (MoST), 2013.

Y. Zhou and X. Jiang, “Detecting passive content leaks and
pollution in android applications,” in 20th Annual Network &
Distributed System Security Symposium (NDSS), Feb. 2013.
J. Kim, Y. Yoon, K. Yi, and J. Shin, “ScanDal: Static
analyzer for detecting privacy leaks in android applications,”
in MoST 2012: Mobile Security Technologies 2012, May
2012.

Future of Privacy Forum, “FPF Mobile Apps Study.”
http://www. futureofprivacy.org/wp-content/
uploads/Mobile-Apps-Study-June-2012.pdf.

E. Chin, A. P. Felt, V. Sekar, and D. Wagner, “Measuring
user confidence in smartphone security and privacy,” in
Symposium on Usable Privacy and Security (SOUPS), 2012.
J. Lin, S. Amini, J. I. Hong, N. Sadeh, J. Lindqvist, and

J. Zhang, “Expectation and purpose: Understanding users’
mental models of mobile app privacy through
crowdsourcing,” in Proceedings of the 2012 ACM
Conference on Ubiquitous Computing, pp. 501-510, 2012.
R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie,
“Whyper: Towards automating risk assessment of mobile
applications,” in Proceedings of the 22Nd USENIX
Conference on Security, pp. 527-542, Aug 2013.

A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking
app behavior against app descriptions,” in /ICSE’14:
Proceedings of the 36th International Conference on
Software Engineering, 2014.

V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen,
“Autocog: Measuring the description-to-permission fidelity
in android applications,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications
Security, CCS *14, 2014.

252 2015 Symposium on Usable Privacy and Security

USENIX Association

[14] M. P. Lewis, ed., Ethnologue: Languages of the World.
Dallas, TX, USA: SIL International, seventeenth ed., 2013.

[15] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off
of my market: Detecting malicious apps in official and
alternative Android markets,” in /9th Annual Network &
Distributed System Security Symposium (NDSS), Feb. 2012.

[16] “Android asset packaging tool.”
http://www.kandroid.org/guide/developing/
tools/aapt.html.

[17] “PScout: Analyzing the Android Permission Specification.”
http://pscout.csl.toronto.edu/.

[18] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout:
Analyzing the android permission specification,” in
Proceedings of the 2012 ACM Conference on Computer and
Communications Security, CCS *12, pp. 217-228, 2012.

[19] ““android-apktool.”
http://code.google.com/p/android-apktool/.

[20] “smali — An assembler/disassembler for Android’s dex
format.” https://code.google.com/p/smali/.

[21] ““androguard.”
https://code.google.com/p/androguard/.

[22] “Kyoto Text Analysis Toolkit.”
http://www.phontron.com/kytea/.

[23] “Natural Language Toolkit.” http://www.nltk.org.

[24] “imdict-chinese-analyzer.” https:
//code.google.com/p/imdict-chinese-analyzer/.

[25] M. Makrehchi and M. S. Kamel, “Automatic extraction of
domain-specific stopwords from labeled documents,” in
Proceedings of the IR Research, 30th European Conference
on Advances in Information Retrieval, ECIR’08,
pp. 222-233, 2008.

[26] S. E. Robertson and K. S. Jones, “Simple, Proven
Approaches to Text Retrieval,” Tech. Rep. 356, University of
Cambridge Computer Laboratory, 1997.

[27] “Whyper: Towards automating risk assessment of mobile
applications.”
https://sites.google.com/site/whypermission/.

[28] “Google play.” http://play.google.com/.

[29] “Anzhi.com.” http://anzhi.com.

[30] “Nduoa market.” http://www.nduoa.com/.

[31] J. Oberheide and C. Miller, “Dissecting the android
bouncer.” SummerCon, Brooklyn, NY., 2012. http://jon.
oberheide.org/files/summerconl2-bouncer.pdf.

[32] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri, “Code
injection attacks on html5-based mobile apps:
Characterization, detection and mitigation,” in Proceedings
of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’14, pp. 66-77, 2014.

[33] “Official ZXing ("Zebra Crossing") project home.”
https://github.com/zxing/zxing.

[34] “ZBar bar code reader.”
http://zbar.sourceforge.net/.

[35] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and
G. Vigna, “Execute this! analyzing unsafe and malicious
dynamic code loading in android applications,” in
Proceedings of the Network and Distributed System Security
Symposium (NDSS), 2014.

[36] C.Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and
W. Zou, “Smartdroid: An automatic system for revealing
ui-based trigger conditions in android applications,” in
Proceedings of the Second ACM Workshop on Security and

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

Privacy in Smartphones and Mobile Devices, SPSM *12,

pp. 93-104, 2012.

A. Gianazza, F. Maggi, A. Fattori, L. Cavallaro, and

S. Zanero, “Puppetdroid: A user-centric ui exerciser for
automatic dynamic analysis of similar android applications,”
CoRR, vol. abs/1402.4826, 2014.

“Android developers guide: App manifest — permission.”
http://developer.android.com/guide/topics/
manifest/permission-element.html.

W. Enck, M. Ongtang, and P. McDaniel, “On lightweight
mobile phone application certification,” in Proceedings of the
16th ACM Conference on Computer and Communications
Security, CCS 09, pp. 235-245, ACM, 2009.

M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel,
“Semantically rich application-centric security in android,”
in Proceedings of the 2009 Annual Computer Security
Applications Conference, ACSAC *09, (Washington, DC,
USA), pp. 340-349, IEEE Computer Society, 2009.

W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,

P. McDaniel, and A. N. Sheth, “Taintdroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones,” in Proceedings of the 9th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’ 10, 2010.

S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi,
and B. Shastry, “Towards taming privilege-escalation attacks
on android,” in /9th Annual Network and Distributed System
Security Symposium (NDSS), 2012.

S. Smalley and R. Craig, “Security Enhanced (SE) Android:
Bringing Flexible MAC to Android,” in NDSS, The Internet
Society, 2013.

M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach,
“Quire: Lightweight provenance for smart phone operating
systems,” in 20th USENIX Security Symposium, 2011.

N. Good, R. Dhamija, J. Grossklags, D. Thaw, S. Aronowitz,
D. Mulligan, and J. Konstan, “Stopping spyware at the gate:
A user study of privacy, notice and spyware,” in Symposium
on Usable Privacy and Security (SOUPS), pp. 43-52, 2005.
C. Bravo-Lillo, L. F. Cranor, J. Downs, and S. Komanduri,
“Bridging the gap in computer security warnings: A mental
model approach,” IEEE Security & Privacy, vol. 9, no. 2,

pp. 18-26, 2011.

D. Akhawe and A. P. Felt, “Alice in warningland: A
large-scale field study of browser security warning
effectiveness,” in Proceedings of the 22Nd USENIX
Conference on Security, Security’13, 2013.

APPENDIX

USENIX Association

2015 Symposium on Usable Privacy and Security 253

Table 11: Top-100 Domain-specific Stop Words: English (top) and Chinese (bottom). The keywords are sorted from the first (top-left)

to the last (bottom-right).

OF)7 () app @)) (
6) - (7) free @®)’s (9) get (10) feature
(I1) time (12) use (I3) one (I4) new (I5)?
(16) also (17) application | (18) game (19) android | (20) phone
(21) Tike (22) make (23) find (24) help (25) ha
(26) version | (27) please (28) 29)” (30) simple
(31) screen (32) need (33) easy (34) best (35) play
(36) see (37) fun (38) way (39) want (40)n’t
(4T) device (42) information | (43) many (44) friend (45) using
(46) take (47) know (48) download | (49) keep (50) go
Bhu (52) work (53) enjoy (54) ielts 55 &
(56) full (57) different (58) world (59) show (60) support
(61) mobile | (62) Iet (63) available | (64)2 (65) level
(66) share N3 (68) give (69) day (70) score
(71) set (72) 1 (73) check (74) Tist (75) right
(76) number | (77) email (78) access (79) great (80) Iearn
(81) save (82) user (83) note (84) every (85) update
(86) well (87) even (88) much (89) button (90) view
(9T) add (92) smoked (93) try (94) Tive (95) first
(96) video (97) search (98) home (99) ad (100) allows

(1) (2) @R | @ L 5)—1

6~ (7) (8) e 9) & (10) A ¥

Iz |[(a)#& [a3) K (4 FHL | (15 e

(16) &r (I7) 2| (18) EHr | (19) K (20) bt

QD Tk (22) PEfE | (23) R | (24) /N | (25) FefE

e/ TeDEE @ IFE | ey &R | 30) KF

GDR | B32)mF | B3)EE | 34 WA (35 1

B6)rE | 37) Fk& | (38) #&F | (39) A% (40) &% AF

AD A [@) iz [@3) v £ [4 # (45) &

(46) Bl | @) BT | 48) FEH | 49y Bk | (50) &

(51) XFF | (52) BEZR | (53) Bewr | (54) ek (55) TH

(56) KR | (57) ZIL | (58) RIE | (59) bk | (60) it

(61) 358 | (62) 55K | (63) B | (64) W% | (65) Peil

(66) HBI | (67) THEL | (68) & H | (69) I (70) —F

=R [72 Fx | 73) 1 (74) WkE (75

(76) Tix 77 *F | (78) < | (79) &rdi (80) EL

81 Be%% | (82) A | (83)nbsp | (84) H F 85) vl

86) REF [(8) —% [B BEE | B #T [CORELES

OD B | (92) F5E | 93) ST | (94) & (95) 4%

6) & | 97) K | 98) % | (99) ‘& (100) AT

254 2015 Symposium on Usable Privacy and Security

USENIX Association

Table 12: Top-10 Extracted keywords for each permission: English (top) and Chinese (bottom). The keywords are sorted from the
first (left) to the last (right).

ACCESS_FINE_LOCATION E})g i % ocation % o §3§ s E?%f e
SEND_SMS 58 (s:rarﬁ % (r:r;)elrlstsaz::gte % Zi)r;t ggg Islfc:)??hcanon gz))te;uttomatlcally
KILL_BACKGROUND_PROCESSES (ol (70 (I manieer | pecion e
Dl [0 et Cmeing e 1o
CAMERA (6) direction™| (7 restiuramT |- (3) gllery— 9y ofer (10) compty
R T N L I
WRITE_SETTINGS {6 volie | (7) Soua—| Ry Switgh | Oy brtery | (T0ysong
RECORD_AUDIO (6T cneToste 7 TowsteT (8 vsitar 157 Shen (10 evert
READ_CONTACTS (6T Sen (7 rowemo | 8] egeie | (9) Momaeaty | (107 service
GET_ACCOUNTS (6 Sotaer— (7Y Teed TGOy jor (10} today
oA s s [Omear | Crmomy [@eley ol
ACCESS_FINE_LOCATION e L & L k112 Séf’f“?
SEND_SMS PR TR INT T
KILL_BACKGROUND_PROCESSES |t L. 2 gggﬁ 2 e o oo gf))é i
B o e e
ot S Sl
S Tor T o e o aheT
WRITE_SETTINGS OEEREOT.. T SN g%ﬁu
I I I e
s bk Lman |mis lonan
e o T § 2T

USENIX Association 2015 Symposium on Usable Privacy and Security 255

