This is a sample chapter of
The Meson Manual

You can purchase a full copy at

http://meson-manual.com

© 2020 Jussi Pakkanen



Chapter 2
How compilation works

Compiling source code into executables looks fairly simple on the surface but gets
more and more complicated the lower down the stack you go. It is a testament
to the design and hard work of toolchain developers that most developers don’t
need to worry about those issues during day to day coding.

There are (at least) two reasons for learning how the system works behind
the scenes. The first one is that learning new things is fun and interesting an
sich. The second one is that having a grasp of the underlying system and its
mechanics makes it easier to debug the issues that inevitably crop up as your
projects get larger and more complex.

This chapter aims outline how the compilation process works starting from
a single source file and ending with running the resulting executable. The
information in this chapter is not necessary to be able to use Meson. Beginners
may skip it if they so choose, but they are advised to come back and read it once
they have more experience with the software build process.

The treatise in this book is written from the perspective of a build system.
Details of the process that are not relevant for this use have been simplified or
omitted. Entire books could (and have been) written about subcomponents of
the build process. Readers interested in going deeper are advised to look up
more detailed reference works such as chapters 41 and 42 of [10].

2.1 Basic term definitions

compile time All operations that are done before the final executable or library
is generated are said to happen during compile time. Some people use the
term informally and include linking in compile time. Others are more strict
and use the term link time to distinguish between the two.



10

2 HOW COMPILATION WORKS

run time All operations that happen once a built executable is run are said to
happen during run time (sometimes also called runtime). In this chapter
we are mostly interested in the run time behaviour of symbol resolution
via dynamic linking.

source file Source files contain the actual source code that programs are made
of. They usually have file name extensions such as .c, .java or .cpp.

header file Some languages have separate header files that contain things such
as function and variable declarations (but not their definitions). In C++
code that uses templates this gets a bit murkier. It is possible, and in fact
quite common, to have code inside header files, but for the purposes of this
chapter we can mostly ignore it.

object file An object file is the intermediate step between a source file and an
executable or library. The compiler converts one source file into one object
file, which contains machine executable binary code. An object file is not
usable on its own until it is linked to a build target.

compiler A compiler’s job is to take source files, parse their contents and
generate corresponding binary code. It is also responsible for optimising the
output, printing warnings, generating debug information and sometimes
even doing static analysis on the source code.

linker The task of taking built object files and dependency libraries and as-
sembling that into a cohesive whole, usually either a shared library or an
executable, falls to the linker. Few people need to deal with the linker
directly, and on most platforms it is invoked via the compiler.

static linker A static linker is a tool that produces static libraries from object
files.

symbol Many things in binary code have names by which they can be identified.
Examples include functions and global variables. These names are called
symbols.

static library A static library is an archive file containing only object files.

shared library A shared library is a fully built piece of code that other programs
can use. When a program (or library) is linked against a shared library
no code is copied. Instead the linker stores the name of the dependency
library in the target it is building to be used later by the dynamic linker at
runtime.

executable An executable is a program that can be run.



2.2 BUILDING THE HELLO WORLD APPLICATION MANUALLY

compilation linking

G Ems G

Figure 2.1: The compilation steps needed for a program consisting of one source
file.

dynamic linker An executable using shared libraries can not be executed
directly. Some process must find the libraries it needs and map all symbols
used by the executable to their respective locations. This task is handled
by the dynamic linker. It does not come from the compiler toolchain, but
is a core component provided by the operating system.

2.2 Building the Hello World application manually

A simple way to get started is to compile a simple program manually. For this
we’ll use the helloworld application presented in Figure 1.1. As discussed above,
the build process can be split into two separate parts: the compilation step and
the linking step. The workflow is visualised in Figure 2.1. The compilation is
done by invoking the compiler.

$ c++ -c -0 hello.o hello.cpp

By default most compilers want to compile and link the entire application in
one step. We have to use the -c command line argument since we only want to
compile. The output goes to the object file hello.o.

Linking is just as simple.

$ c++ -0 hello hello.o

We don'’t call the linker binary (which on this platform is called 1d) but
instead use the compiler to do the linking for us. The reason for this becomes
fairly obvious if we look at the command line needed to link the program with
plain 14d.

1d -o hello \
—-dynamic-linker /1ib64/1d-1linux-x86-64.s0.2 \

/usr/lib/x86_64-linux-gnu/Scrtl.o \
/usr/1ib/x86_64-linux-gnu/crti.o \

11



12

2 HOW COMPILATION WORKS

/usr/lib/gcc/x86_64-1linux-gnu/7/crtbeginS.o \
hello.o \

-L/usr/1ib/x86_64-linux-gnu \
-L/usr/1ib/gcc/x86_64-linux-gnu/7/ \

-1stdc++ -1lgcc -1lc -lgcc_s \
/usr/lib/gcc/x86_64-1linux-gnu/7/crtendS.o \
/usr/1ib/x86_64-1linux-gnu/crtn.o

These command line arguments specify all sorts of functionality needed to
talk with the core operating system and by the C++ language runtime. Unless
you are working on the compiler toolchain or other such low level component, it
is unlikely you’ll ever need to deal with the linker manually.

The built executable can now be run.

$ ./hello
Hello, world.

2.3 Basic symbol resolution

From the developer point of view, compilation is fairly straightforward and easy
to comprehend. Source code goes in and a binary artefact comes out. Linking,
on the other hand, is a lot more vague. The most user visible operation that
happens during linking is symbol resolution. In order to understand it, we must
first examine what symbols are in the compilation context.

Symbol resolution happens at a very low level, and thus it is necessary to go all
the way down to assembly code to understand its behaviour. A simple source file
and its corresponding assembly output can be seen in Figure 2.2. Understanding
exactly what the individual assembly instructions do is not necessary, a rough
understanding of the overall structure is sufficient.

A symbol is nothing more than a string which specifies a name of a thing in
the program. To keep things from getting too simple, not all symbols have a
name and some names do not have a corresponding symbol. The sample code
has three different named elements: the print_number and printf functions
and the number variable. The first two of these have a symbol name but the
variable name does not. This is because linking only with elements that are in
global scope, that is, functions and global variables and constants. Both of these
names can be found in the assembly output.

The element that does have a symbol but not a name is the character array
"Number %d\n.". This may seem surprising given that the character array is
only used inside the function just like the number variable. What happens behind
the scenes is that the compiler elevates the character array to a global constant



2.4 STATIC LINKING

#include<stdio.h> .LCO:
.string "Number %d.\n"
void print_number (int number) { print_number:
printf ("Number %d.\n", number); mov esi, edi
} Xor eax, eax
mov edi, OFFSET FLAT:.LCO
jmp printf

Figure 2.2: A simple C function (left) and the result of compiling it to x86_64
assembly (right).

and gives it a secret symbol name, which in this case is .LCO, as can be seen at
the beginning of the assembly output. Effectively it is as if the compiler had
compiled a program that looks like this:

#include<stdio.h>

/* Leading dot removed, because variable names can not
* have the character "."
*/

const char LCO[] = "Number %d.\n";

in them.

void print_number (int number) {
printf (LCO, number);
}

At this point the compiler’s job is finished and the object files are handed to
the linker. Its job can be most easily understood by looking at the last line of
the assembly code which is jmp printf. This is the call to the printf function
which is part of the standard library. Sadly processors do not understand textual
labels, they can only jump to specific memory addresses. The main task of the
linker is to go through the compiled code and replace all references to symbols
with numerical addresses that point to the corresponding functions and global
variables. If all symbols used by the program are found the program can be
generated and run. In case any piece of code tries to use a symbol that the linker
can not find, the linker will abort with an error.

2.4 Static linking

Thus far we have only looked at single executables where all source code is
compiled and linked directly. In real world projects this setup is fairly rare. Most

13



14

2 HOW COMPILATION WORKS

applications use code that has been built separately. A collection of prebuilt
code is called a library. There are two different kinds of libraries, static libraries
and shared libraries and using code from these on a target is called static linking
and shared linking, respectively. We shall first look at static linking, since it is
the simpler of the two.

To demonstrate linking we are going to need two things: a library and an
executable using it. We’ll create our own library called messageprinter. It consists
of one file, messageprinter.c.

#include<stdio.h>

void print_message() {
printf ("I am a library.\n");
}

The only thing this function does is print a message to the screen proving
that the function has been called. A main program using the library is equally
plain.

void print_message();

int main(int argc, char *xargv) {
print_message();
return O;

The only thing to note is that main. ¢ manually specifies the function prototype
at the beginning rather than by including a header. This is merely to simplify
the code.

This is all that we need to build and run an executable using static linking.
Building the static library takes two commands.

$ cc -c -o messageprinter.o messageprinter.c

$ ar csrD libmessageprinter.a messageprinter.o

The first command is the familiar compiler invocation. The second command
is where the library gets built. It is done with the ar command, which is known
as the static linker. This is actually a misnomer, since ar does not do any linking
at all. The only thing it does is take all the specified object files and put them
together in an archive file. Its behaviour is almost identical to other archive
program such as tar and zip. Because of this the static linker is sometimes
called a static archiver. The library file name is libmessageprinter.a. The



2.5 SHARED LINKING

standard way of naming libraries is to have the 1ib prefix and .a as the file
extension. This is not mandatory, the archive can have any name, but most tools,
processes and developers expect this naming scheme so you should use it unless
there are strong reasons for doing something else.

The library can be used by adding it on the final executable’s link command
line.

$ cc -c¢ -0 main.o main.c
$ cc -o main main.o libmessageprinter.a

$ ./main
I am a library.

In addition to passing the library directly, there is an alternative syntax that
is used especially for libraries provided by the system.

$ cc -o main main.o -L. -lmessageprinter

This way of using the library requires two command line arguments. The
latter one is -lmessageprinter which tells the linker to find a library called
messageprinter, following the standard naming scheme, and link against that.
The standard naming scheme is the one mentioned above. If the library file is
not libmessageprinter.a, the linker could not find it and linking would fail.
By default the linker only does lookups in the system library directories. Since
our library is not in one of those, we need to add the current directory to the list
of lookup directories with the -L. command line argument.

The algorithm the linker uses to handle static libraries is straightforward. If
it finds that some object file contains a symbol needed by the main program,
it will copy out that object file and link all of it with the main program. The
behaviour is the same as if you had manually specified those object files to be
linked like this:

$ cc -o main main.o messageprinter.o

In this simple case the entire contents of the static library is used. But if
the library contains many object files, only the ones whose symbols are actually
needed (and their transitive dependencies) end up in the final executable. If only
a small fraction of the library’s code is needed, this can lead to noticeable space
savings in the final executable.

2.5 Shared linking

Building and using a shared library is not very different from static linking.

15



16

2 HOW COMPILATION WORKS

$ cc -o messageprinter.o -fPIC -c messageprinter.c

$ cc -o libmessageprinter.so -shared messageprinter.o

The only difference to static linking are the output filename and the two
command line arguments. The compiler argument -£fPIC tells the compiler that
the object file will be used in a shared library so it must be built as position-
independent code. What this means will be explained later in this chapter.
On many platforms this argument is not needed as all code is built position-
independent by default but we use it here for portability. The linker argument
-shared tells the linker to produce a shared library as output.

Linking the main program with the shared library is almost identical to using
a static library.

$ cc -o main main.o libmessageprinter.so

You can also use the -L. -lmessageprinter syntax, which works in the
same way. If you try to run the result, you will get a mysterious crash:

$ ./main
./main: error while loading shared libraries:

libmessageprinter.so:
cannot open shared object file: No such file or directory

This error stems from the main difference between static and shared libraries.
Shared libraries are full featured operating system components whereas static
libraries are only archives of objects. The former can be used in various ways
during runtime but the only thing you can meaningfully do to a static library is
link it to an executable or a shared library.

In static linking all object code used by the application is copied to the
target executable. In shared linking this does not happen. Instead the shared
library’s name is written in the executable’s dynamic section. It contains a list
of all external shared libraries required to run the program. No code from the
shared library is copied inside the executable. When the program is run it is the
responsibility of the operating system’s dynamic linker to find all shared libraries
needed by the program and to resolve all missing symbols. This lookup is done
every time the program is run.

Just like the static and shared linkers need to be told where to look up libraries,
the dynamic linker needs to be told told where to look up shared libraries. Due
to security reasons the current directory is not in the library search path by
default’. We need to add it to the list with the LD_LIBRARY_PATH environment
variable.

1 Just like the current directory is not in PATH by default.



2.6 LINKING MULTIPLE LIBRARIES

$ LD_LIBRARY_PATH=. ./main

I am a library.

One unexplained question about this program remains about the program’s
use of printf. Since it is a symbol and all symbols need to be resolved before a
program can be run (both when shared and static linking), where does that symbol
come from? To find this out we need to look inside the produced executable.
There are many tools available to inspect the contents of programs. We’ll use
the 1dd program that lists all libraries needed by an executable.

$ LD_LIBRARY_PATH=. 1dd main
linux-vdso.so.1 (0x7f£fd3e9f7000)

libmessageprinter.so => ./libmessageprinter.so (0x7£741e7£1000)
libc.so0.6 => /1ib/x86_64-linux-gnu/libc.so0.6 (0x7£741e400000)
/1ib64/1d-1inux-x86-64.s0.2 (0x7£741ebf5000)

Even though we specified one shared library, the final executable ended up
with four of them. linux-vdso.so.1 is a performance optimisation mechanism
that makes certain Linux system calls faster. The second line contains the shared
library we just built.

The third one is 1ibc.so.6. This is where printf actually comes from. This
library is called the C runtime library and contains all functionality needed by C
programs, such as malloc for allocating memory. It also contains code needed
for process startup and teardown. Most programming languages have a similar
runtime library that they link dynamically against their programs. There are
also languages that don’t behave in this manner.

The final entry is /11b64/1d-1inux-x86-64.s0. This is the system’s dynamic
linker. It may seem bizarre that the dynamic linker, whose job is to find an
executable’s shared dependency libraries is itself provided as a shared library.
The answer to this chicken and egg problem is that the dynamic linker is not
a dependency library in the traditional sense, 1dd merely reports it that way.
In reality it is set up as the program’s ELF interpreter. A detailed description
of the issue is out of scope for this book, but interested readers can find more
information in the ELF reference documentation [18].

2.6 Linking multiple libraries

Linking multiple libraries is only slightly more complex than only one. Basically
the linker will proceed through the items on the link line one by one until all
linker targets have been processed. Thus far the behaviour of all operating

17



18

2 HOW COMPILATION WORKS

systems and toolchains has been almost identical, but this is where they start to
differ noticeably.

For the purposes of this discussion, let’s assume that we have a project that
consists of one main object file and two libraries called one and two. The main
object uses functionality from library one which in turn uses functionality from
library two.

2.6.1 The classical Unix linking model

The sample project would eventually be linked using the following command:

$ cc -o main main.o libone.a libtwo.a

Here use static libraries. The way the linker goes about its job is that it
starts by taking the first argument main.o. It processes the file and makes a list
of all external symbols that it requires. Then it processes the next argument
libone.a. For each symbol in the missing symbol list it will try to see if any of
the object files inside the library provides it. If yes, it will copy the object file
out as described in section 2.4.

Once the linker has satisfied as many missing symbols as it possibly can,
the static library is discarded. Any object files that were not needed to satisfy
symbols are thrown away. After that the linker will go to the next argument
libtwo.a and repeat the process. If all symbol requirements were found, the
linking step is a success, otherwise an error is raised.

The main problem with this algorithm is that it is fragile and sometimes
confusing. It breaks if you get the order of libraries wrong. This will not link:

$ cc -0 main main.o libtwo.a libone.a

The reason is simple. When libtwo.a is being processed, none of the symbols
it provides are in the list of needed symbols. That means that everything in it
gets thrown away. When libone.a is processed those symbols are added to the
list, but they can’t be fulfilled any more because 1ibtwo.a is gone.

This was a fairly common problem back when Makefiles were written by hand.
It is very confusing to be told by the linker that your program has unresolved
symbols even though you can clearly see them on the linker command line. This
lead to lots of “cargo cult” problem solving where developers would add the same
libraries on the command line many times in the hopes that eventually it would
work.

Sometimes it is even necessary to have the same dependency library on the
command line multiple times. This happens if you have a circular dependency
between two libraries. This happens when library A requires symbols from library



2.7 WHICH IS BETTER, SHARED OR STATIC LINKING?

B and vice versa. If this ever happens the only reasonable approach is to change
the code so the circular dependency is broken. If this is not possible for some
reason, then the only workable solution is to tell the linker to first link A, then
B and then A again. Or possibly B, A, B depending on how the calling program
uses the libraries. In fact for pathological cases there may be an arbitrary number
of repetitions needed. It is left as an exercise to the reader to work out how that
might come about.

The reason for this behaviour is that linkers were originally designed and
implemented in the early 70s. At the time computers were slow and had little
memory. Keeping all symbols alive would have required too many resources, and
actively reducing the amount of data to keep in memory made sense. Then, as it
usually happens, computers got a lot faster so this limitation was no longer an
issue, but the behaviour was kept to maintain backwards compatibility.

The most widespread linker in current use that behaves like this is the GNU
bfd linker, which is the default on most Linux distributions.

2.6.2 Modern linker model

Modern linkers behave in roughly the same way as the classical Unix linker,
except that they don’t discard any libraries. This means that symbol resolution
happens globally. It does not matter which order the libraries are defined, because
the linker will search for symbols in every file.

The exact order in which symbols are resolved depends on each linker. Usu-
ally developers do not have to care about it as long as no symbol is repeated.
Duplicated symbols are considered an error. Most new linkers behave in this
manner, including the Visual Studio linker, macOS linker and the lld linker
provided by the LLVM project.

2.7 Which is better, shared or static linking?

This is a common topic of, shall we say, lively debate on the Internet. Both
of these approaches have their merits and use cases. Meson does not have a
preference, instead it aims to work identically with both library types. Switching
between the two library types is simple, as the only change needed is to alter the
library target’s type.

2.8 Dynamic linker and symbol resolution

Now that we know the difference between static and shared linking we can
examine how symbol resolution works in more detail. We will remain at the

19



20

2 HOW COMPILATION WORKS

conceptual level, though. Readers interested in the actual implementation details
are instructed to look up more detailed reference works such as [5].

Resolving symbols in static linking is not particularly complicated. As was
discussed in Section 2.3 the compiler will write placeholder code for all symbols
outside the current translation unit. In addition it writes a set of relocation
records. They are merely a list of locations of said placeholders and which
symbol’s address they should be filled in with. When the final executable is
linked, the linker has all the code and thus the addresses of all symbols. It can
then overwrite the placeholders with the real addresses.

Dynamic linking is more difficult. Nothing about it known at link time apart
from its name. We don’t know what address it will end up when the program is
run due to address layout randomisation or ASLR. This is a security mechanism
against various memory corruption vulnerabilities. Whenever a piece of code is
loaded into memory, whether it comes from an executable or a shared library, it
is placed at a random address in the process’ virtual address space. Thus some
sort of an indirection mechanism is needed to make things work.

Suppose we build an executable called proggy in the current directory and
that it uses a shared library thingy which resides in directory subdir. The
program would be built with the following command line invocation:

$ gcc -g -0 proggy main.c subdir/libthingy.so

The linker adds an entry to the executable that it requires 1ibthingy.so to
run. This can be verified with the 1dd command.

$ 1dd proggy

subdir/libthingy.so (0x00007£5bfe106000)

As can be seen, the entry also contains the subdirectory where the library
resides in. To keep things from being too simple and straightforward, this depends
on the compiler flags used. If the executable is linked with the alternative link
syntax like this:

$ gcc -g -0 proggyL main.c -Lsubdir -1thingy

then only the filename is written in the executable:

$ 1dd proggy

libthingy.so => not found




2.8 DYNAMIC LINKER AND SYMBOL RESOLUTION

This behaviour is confusing and is probably inherited from the 70s and can
not be changed due to backwards compatibility. The solution to this is an entry
called soname, which is a “virtual file name” that can be defined for each shared
library. There are exact rules on how sonames should be determined but Meson
will do that automatically.

When an executable that uses shared libraries is run, it is the responsibility
of the dynamic linker, sometimes also called a loader, which starts with the main
executable and the list of sonames that it requires. It will search for shared
libraries matching the sonames on the system in a platform specific way. Any
libraries required by the found shared libraries are also looked up in the same
way. If any of the libraries can not be found, then the process is not run, but
instead exits with an error.

Now the dynamic linker is almost at the same position as we were when
linking the executable statically. It has all the symbol names and knows the
corresponding runtime addresses. It could, in theory, write the actual addresses
in the code that has been loaded in memory, but it turns out that this can’t be
done. All code loaded from files is mapped to memory as read-only so the actual
code can’t be changed. This is due to performance and security reasons. Thus
an additional piece of functionality is needed.

For function calls this is done with a data structure called the procedure
linkage table or PLT.2 A slightly simplified way of looking at it is to consider it
as a table of function pointers, one for each symbol needed. Once the table is
filled, the code can call any function it needs to execute. Yet, the tables are not
filled yet.

The ELF file format used by most unixes is very powerful and flexible and
supports many different ways of loading, using and interposing symbols. We
shall not look at them in detail, but what is important for this discussion is that
symbol loading is done lazily. That is, the actual location of any symbol is only
determined when someone actually calls it. This also improves program startup
times, since it is not uncommon for programs to only use a subset of all symbols
at runtime. Symbol lookup takes time, and resolving all symbols up front would
be slow. An outline of the lookup process can be seen in Figure 2.3.

Symbol resolution starts by the executable calling a function that resides in
some shared library. This is implemented by calling the function pointer in the
PLT that corresponds to the desired function. This reduces to calling a function
pointer in the PLT (which is an array) with an offset. All of this information
was available when the executable was built, so this can be done directly.

As discussed earlier, the PLT does not contain function pointers to the actual
code. Instead all pointers in the PLT have been set to point to a symbol resolution

2Global variables are looked up in an analogous fashion using a table called global offset
table or GOT.

21



22

2 HOW COMPILATION WORKS

4 program call function
,"’ PLT jump to loader
return | *
to caller look up symbol
dynamic loader patch PLT
\ + call symbol
shared library perform action

Figure 2.3: How the dynamic linker looks up symbols.

function inside the dynamic loader and to pass it an argument specifying which
function in the table initiated the call. The dynamic loader now knows which
function was called and can look up its actual runtime address. It writes this
address to the PLT entry and then jumps to that function. From the outside
it looks as if the program had called the correct function in the shared library
directly.

When the function is called a second time, the entry in the PLT already
points to the correct location. The expensive resolution operation is thus done
only once and only for those symbols that have actually been used.



