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Abstract 

Proactive event-driven computing refers to the use of event-driven information 

systems having the ability to eliminate or mitigate the impact of future undesired 

events, or to exploit future opportunities, on the basis of real-time sensor data and 

decision making technologies. Maintenance management can benefit from these 

advancements in order to tackle with the increasing challenges in today’s dynamic 

and complex manufacturing environment in the context of Industry 4.0.  

To this end, the current thesis combines and brings together the research fields 

of Industry 4.0, Maintenance Management and Proactive Computing in order to 

frame maintenance management and information systems in the context of Industry 

4.0. Therefore, it paves the way for the next generation of maintenance manage-

ment in the frame of Industry 4.0, i.e. Proactive Maintenance. The focus of the cur-

rent thesis is on proactive decision making. Consequently, it proposes proactive de-

cision methods, capable of handling uncertainty, applicable to maintenance man-

agement and its interrelationships with other manufacturing operations, algorithms 

for continuous improvement of proactive decision making through the proposed 

Sensor-Enabled Feedback (SEF) approach and algorithms for context-awareness in 

proactive decision making. To do this, it utilizes methods and techniques for opera-

tional research, data analytics and machine learning. 

The aforementioned algorithms have been embedded in a proactive information 

system for decision making which was integrated with other tools in order to imple-

ment all the steps of the Proactive Maintenance framework. The system has been 

deployed and evaluated in real industrial environment, while further evaluation was 

conducted with extensive simulation experiments. Finally, the lessons learned and 

the managerial implications of the proposed approaches are discussed. 

Keywords: Industry 4.0, Proactive Decision Making, Maintenance Management, 

Proactive Maintenance, Event Processing, Uncertainty 





Περίληψη 

Η προδραστική πληροφορική οδηγούμενη από γεγονότα αφορά τη χρήση 

πληροφοριακών συστημάτων οδηγούμενων από γεγονότα που έχουν την ικανότητα 

να εξαλείφουν ή να αμβλύνουν την επίδραση μελλοντικών ανεπιθύμητων γεγονό-

των ή να αξιοποιούν μελλοντικές ευκαιρίες με βάση δεδομένα αισθητήρων πραγ-

ματικού χρόνου και τεχνολογίες λήψης αποφάσεων. Η διοίκηση συντήρησης μπορεί 

να επωφεληθεί από την προδραστική πληροφορική για να αντιμετωπίσει τις προ-

κλήσεις στο πλαίσιο της Βιομηχανίας 4.0 (Industry 4.0). 

Για το σκοπό αυτό, η παρούσα διατριβή συνδυάζει τους ερευνητικούς τομείς 

της Βιομηχανίας 4.0, της Διοίκησης Συντήρησης και της Προδραστικής Πληροφορι-

κής. Με αυτό τον τρόπο, ανοίγει το δρόμο για την επόμενη γενιά διοίκησης συντή-

ρησης στο πλαίσιο της Βιομηχανίας 4.0, την Προδραστική Συντήρηση (Proactive 

Maintenance). Το επίκεντρο της διατριβής είναι η λήψη προδραστικών αποφάσεων. 

Συνεπώς, προτείνει μεθόδους προδραστικών αποφάσεων για βιομηχανική συντή-

ρηση, αλγόριθμους για συνεχή βελτίωση της λήψης προδραστικών αποφάσεων μέ-

σω της προτεινόμενης προσέγγισης Ανατροφοδότηση Υποβοηθούμενη από Αισθη-

τήρες (Sensor-Enabled Feedback - SEF) και αλγόριθμους για την επίγνωση πλαισίου. 

Για να γίνει αυτό, αξιοποιεί μεθόδους και τεχνικές επιχειρησιακής έρευνας, ανάλυ-

σης δεδομένων και μηχανικής μάθησης. 

Οι προαναφερθέντες αλγόριθμοι έχουν ενσωματωθεί σε ένα προδραστικό 

πληροφοριακό σύστημα για τη λήψη αποφάσεων το οποίο ολοκληρώθηκε με άλλα 

εργαλεία για την υλοποίηση όλων των βημάτων του πλαισίου της Προδραστικής 

Συντήρησης. Το σύστημα εγκαταστάθηκε και αξιολογήθηκε σε πραγματικό βιομη-

χανικό περιβάλλον, ενώ πραγματοποιήθηκε περαιτέρω αξιολόγηση με εκτεταμένα 

πειράματα προσομοίωσης.  

Λέξεις κλειδιά: Βιομηχανία 4.0, Προδραστική Λήψη Αποφάσεων, Διοίκηση Συντή-

ρησης, Προδραστική Συντήρηση, Επεξεργασία Γεγονότων, Αβεβαιότητα                                                                                                                                         
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1 Introduction 

1.1 Motivation 

The emergence of the Internet of Things (IoT) has paved the way for enhancing 

the monitoring capabilities of enterprises by means of extensive use of physical and 

virtual sensors. Taking advantage of the big data generated from a large amount of 

sensors requires the development of event monitoring and data processing systems 

that are able to handle real-time data in complex, dynamic environments in order to 

get meaningful insights about business performance. These advancements lead to 

the possibility to decide and act ahead of time, i.e. to be proactive in resolving prob-

lems before they appear or realizing opportunities before they become evident.  

The potential of the proactive approach is high, especially in the complex and 

dynamic manufacturing environment in the context of the Industry 4.0 paradigm. 

Manufacturing operations are driven by events, which are increasingly collected 

through sensors and processed via real-time operational technology and systems. 

Therefore, any action, activity, or monitored parameter change, which influences the 

operational status of a manufacturing process is potentially a trigger for proactive 

decision making.  

Every major shifting of manufacturing paradigm has been supported by the ad-

vancement of information technology (Bi et al., 2014; Mahmood, 2018). Modern 

manufacturing companies have started monitoring and detecting early warning sig-

nals that machines or systems are degrading or in danger of breakdown. While this is 

valuable information, if organizations improve their analytics maturity, information 

will be fully harnessed, and the potential is much greater.  

Maintenance operations are a major part of the total operating costs of manu-

facturing plants as they can represent up to 40 % of the production process costs 

(Widodo and Yang, 2011), but also, they have an impact on reliability, safety and en-
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vironment (Garg, and Deshmukh, 2006). Moreover, failure of critical assets has been 

rated as the most significant risk to operational performance (Aboelmaged, 2015). 

Due to the emergence of the new technologies and computing paradigms, several 

approaches, frameworks and architectures for intelligent maintenance have ap-

peared both in the academic and the industrial realms (Pistofidis et al., 2012; Fum-

agalli, and Macchi, 2015; Macchi et al., 2018).  

However, currently, there is still a lack of services and tools capable of efficiently 

processing real-time big data from heterogeneous sources, implementing complex 

algorithms and provide meaningful insights about potential problems in an event-

driven streaming infrastructure (Engel et al., 2012; Camarinha-Matos et al., 2013). 

Moreover, there is a large gap for the effective implementation of predictive 

maintenance programs extensively in industry, mainly due to the complexity of these 

solutions and their life cycle and thus, due to the challenges in their practical imple-

mentation (Guillen et al., 2016). 

Maintenance management in the frame of Industry 4.0 can take advantage of the 

recent advancements in proactive computing, for fully exploiting its capabilities and 

supporting decisions ahead of time. Previous approaches, e.g. in the field of predic-

tive maintenance, concluded in offline or processing batches of data (Wu et al., 

2007; Elwany, Gebraeel, 2008). However, in a streaming computational environ-

ment, appropriate methods, algorithms and systems need to be developed. Conse-

quently, there is the need for services and tools that will provide real-time proactive 

decision making capabilities along with adaptation and context-awareness mecha-

nisms in order to result in reliable maintenance recommendations. 

1.2 Contribution 

The current thesis combines and brings together the research fields of Industry 

4.0, Maintenance Management and Proactive Computing in order to frame mainte-

nance management and information systems in the context of Industry 4.0 taking 

advantage of proactive event processing in enterprise systems.  
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The contribution of the current thesis is summarized to the following dimensions: 

1. It paves the way for the next generation of maintenance management 

in the frame of Industry 4.0. To this end, it presents a framework for a 

new maintenance strategy, i.e. Proactive Maintenance, its definition and 

characteristics, as well as its generic conceptual architecture. This archi-

tecture can be seen as a blueprint for the development of Proactive 

Maintenance information systems.  

2. It proposes proactive decision making. Since proactive decision making is 

an unexplored area, the thesis develops proactive event-driven decision 

methods for maintenance management and its interrelationships with 

other manufacturing operations. To do this, it takes advantage of the area 

of Operational Research. It also embeds them in an information system 

capable of being integrated with systems incorporating real-time detec-

tion/ diagnostic and prediction/ prognostic algorithms. 

3. It proposes continuous improvement of proactive decision making. The 

thesis develops an approach for Sensor-Enabled Feedback (SEF) in order 

to improve the accuracy of proactive decision methods and consequently, 

the reliability of the generated proactive recommendations. To do this, it 

takes advantage of the area of Data Analytics and Anomaly Detection. 

This approach is embedded in the information system along with the 

methods and algorithms of the previous direction.  

4. It proposes context-awareness in proactive decision making. The thesis 

develops an approach for context-awareness in proactive decision making 

utilizing machine learning techniques. In this way, it can tackle with un-

certainty in intelligent decision making. To do this, it takes advantage of 

the area of Data Analytics and Machine Learning. The context-aware 

mechanism is continuously updated through SEF.  
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1.3 Relation to Research Projects 

The current PhD thesis has been partly financially supported by the following Eu-

ropean Commission projects:  

a) ProaSense (Proactive Sensing Enterprise)1, Research and Innovation Action pro-

ject under Grant Agreement 612329, FP7-ICT-2013-10 (Framework Program 7 – 

Information and Communication Technologies), ICT-2013.1.3 - Digital Enterprise. 

 The vision of the project is to pave the way for a new class of enterprise 

systems, proactive enterprises, that will be continuously aware of what 

“might happen” in the relevant business context and optimize their behav-

ior to achieve that what “should be the best action”.  

 The main parts of the current thesis are based upon the work conducted in 

the context of the ProaSense project. 

 

b) UPTIME (Unified PredicTIve Maintenance system)2, Innovation action project 

under Grant Agreement 768634, H2020-FOF-2017 (Horizon 2020 – Factories-Of-

the-Future), FOF-09-2017 - Novel design and predictive maintenance technolo-

gies for increased operating life of production systems. 

 UPTIME aims to design a unified predictive maintenance framework and 

an associated unified information system in order to enable the predictive 

maintenance strategy implementation in manufacturing industries.  

 The current thesis has been enriched based upon the work conducted in 

the context of the UPTIME project. More specifically, the literature review 

was further extended and the framework for Proactive Maintenance was 

finalized. 

                                                      
1
 http://www.proasense.eu/  

2
 https://www.uptime-h2020.eu/  

http://www.proasense.eu/
https://www.uptime-h2020.eu/
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1.4 Research Design and Structure of the Dissertation 

The research design and methodology of the current thesis is depicted in Figure 1-1. 

Table 3-1 presents the contents of each step of the adopted research methodology 

as well as the Chapters of the thesis to which they correspond.  

The first step deals with a Literature Review on the background concepts: Indus-

try 4.0, Maintenance Management and Proactive Enterprise with the aim to identify 

their interrelationships. To this end, a synthesis of the literature review is conducted 

and the research area and focus is identified. The second step deals with posing the 

research questions and outlining the proposed solution of the thesis aiming to pave 

the way Towards Proactive Maintenance Management. The third step deals with 

the development of a Framework for Proactive Maintenance. In this step, Proactive 

Maintenance is defined and the conceptual architecture is developed. The Proactive 

Maintenance conceptual architecture is compatible with RAMI 4.0.  

 

 

Figure 1-1: The Research Design and Methodology 
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Table 1-1: The Contents of each Research Methodology Step 

 
Research Methodology 

Step 

 
Contents 

Literature Review 
(Chapter 2) 

 Identification of research area and focus 

 Review of literature regarding the background 
concepts: 
o Industry 4.0 
o Maintenance Management 
o Proactive Enterprise 

 Synthesis of the literature review 

Towards Proactive Mainte-
nance Management 

(Chapter 3) 

 Research Questions 

 The Thesis 

Framework for Proactive 
Maintenance 

(Chapter 4) 

 Definition of Proactive Maintenance 

 Concept of Proactive Maintenance 

 Conceptual Architecture of Proactive Maintenance 

Proactive Decision Making 
in Maintenance Manage-

ment 
(Chapter 5) 

 Motivation 

 State-of-the-art analysis 

 Development of methods and functionalities 

Continuous Improvement of 
Proactive Decision Making 

(Chapter 6) 

 Motivation 

 State-of-the-art analysis 

 Development of methods and functionalities 

Context-awareness in Pro-
active Decision Making 

(Chapter 7) 

 Motivation 

 State-of-the-art analysis 

 Development of methods and functionalities 

Information System  
(Chapter 8) 

 The PANDDA system for proactive decision making 
o Architecture 
o Design and Development 
o User Interface and Walkthrough 

Deployment in Industrial 
Environment 
(Chapter 9) 

 The MHWirth Business Case 
o Description 
o Deployment use cases 

 The HELLA Business Case 
o Description 
o Deployment use cases 

Evaluation 
(Chapter 10) 

 System evaluation by users 

 System performance evaluation 

 Sensitivity Analysis and Comparative Analysis of 
the implemented functionalities 

 Discussion of evaluation results 

Lessons Learned and Man-
agerial Implications 

(Chapter 11) 

 Lessons Learned 

 Managerial Implications 
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The fact that the focus of the thesis is on proactive decision making (which is the 

least explored area of the aforementioned framework) triggers jointly the subse-

quent three steps of the research methodology, i.e. Proactive Decision Making, Con-

tinuous Improvement of Proactive Decision Making, Context-awareness in Proac-

tive Decision Making. For each one of them, a more focused state-of-the-art analysis 

is conducted in order to reveal the research gaps. On the basis of these research 

gaps, the approaches, methods, models and functionalities are developed.  

The step incorporating the Information System takes place based upon both the 

Framework for Proactive Maintenance and the Proactive Decision Making, Continu-

ous Improvement of Proactive Decision Making, Context-awareness in Proactive De-

cision Making steps. In this step of the research methodology, the ProActive seNsing 

enterprise Decision configurator DAshboard (PANDDA) system for proactive decision 

making is designed, developed and implemented incorporating the previously men-

tioned functionalities. Finally, it is integrated with an overall system implementing 

the Proactive Maintenance framework.  

The next step of the adopted research methodology deals with the Deployment 

in Industrial Environment. More specifically, the PANDDA system which incorpo-

rates the aforementioned functionalities is deployed in two business cases as part of 

an overall Proactive Maintenance information system. These two business cases are: 

MHWirth, an oil drilling manufacturing company, and HELLA Saturnus Slovenija, an 

automotive lighting equipment manufacturing company. The Evaluation step takes 

place through system evaluation by users, system performance evaluation and ex-

tensive simulation experiments for conducting sensitivity and comparative analyses 

of the adopted functionalities. On the basis of these results, a discussion of results is 

presented. Finally, in the last step of the research methodology, the Lessons Learned 

and Managerial Implications of adopting a Proactive Maintenance strategy in Indus-

try 4.0 are discussed. 
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2 Literature Review 

In this Chapter, the literature review on the background concepts of Industry 4.0, 

Maintenance Management and Proactive Enterprise is presented. These three back-

ground concepts are reviewed with the aim to identify their interrelationships. The 

research area and focus of the current thesis is the intersection of all the three 

terms.  

2.1 Scope of the Literature Review 

The literature review presents a qualitative analysis of research done to date on 

the background concepts of “Industry 4.0”, “Maintenance Management” and “Pro-

active Enterprise” and their interrelationships with two basic objectives: (i) to identi-

fy the topic set studied; and (ii) to discuss the available empirical evidence, detecting 

contradictions and inconsistencies in the literature as well as the research gaps that 

should be fulfilled. The literature review on the aforementioned background con-

cepts aims to identify the interrelationships found to date among these concepts, as 

shown in Figure 2-1. This Figure actually shows the scope of the current literature 

review. Each circle is further analyzed in the course of the literature review and ena-

bles identifying the background concepts’ interrelationships, their overlaps and their 

gaps based on Figure 2-1.  

 

Figure 2-1: The scope of the literature review 
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2.2 Industry 4.0 

2.2.1 Overview 

In the manufacturing realm, the advances of science and technology continuous-

ly support the development of industrialisation all around the world (Belvedere, et 

al., 2013). From a technological evolution perspective, there are four industrial revo-

lutions commonly identified (Kagermann, et al., 2013). The first three industrial revo-

lutions took around two centuries, and are the result of, respectively: (1) the intro-

duction of water and steam-powered mechanical manufacturing facilities; (2) the 

application of electrically-powered mass production technologies through the divi-

sion of labour; and (3) the use of electronics and information technology (IT) to sup-

port further automation of manufacturing (Drath and Horch 2014). In recent years, 

along with the increased research attention on the Internet of Things (IoT) (Atzori, et 

al., 2010) and Cyber-Physical Systems (CPS) (Khaitan, and McCalley, 2015), govern-

ments and industries worldwide have noticed this trend and acted to benefit from 

what this new industrial revolution wave could provide (Ridgway, et al., 2013; 

Siemieniuch, et al., 2015; Liao et al., 2017):   

(i) From the government plans perspective, 

 Since 2011 the United States (US) government began a series of na-

tional-level discussions, actions and recommendations, titled ‘Ad-

vanced Manufacturing Partnership (AMP)’, to ensure the US to be pre-

pared to lead the next generation of manufacturing (Rafael, et al., 

2014). 

 In 2012, the German government passed the ‘High-Tech Strategy 2020’ 

action plan, which annually sets billions of euros aside for the devel-

opment of cutting-edge technologies. As one of the ten future projects 

in this plan, the ‘Industrie 4.0’ represents the German ambitions in the 

manufacturing sector (Kagermann, et al., 2013). 

 The French government initiated a strategic review in 2013, named the 

‘La Nouvelle France Industrielle’, in which 34 sector-based initiatives 
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are defined as France’s industrial policy priorities (Conseil national de 

l’industrie, 2013). 

 In 2013, the United Kingdom (UK) government presented a long-term 

picture for its manufacturing sector until the year of 2050, called the 

‘Future of Manufacturing’. It aims to provide a refocused and re-

balanced policy for supporting the growth and resilience of UK manu-

facturing over the coming decades (Foresight, 2013). 

 The European Commission lunched the new contractual Pubic-Private 

Partnership (PPP) on ‘Factories of the Future (FoF)’ under the Horizon 

2020 programme in 2014 (European Commission, 2016). 

 In 2014, the South Korea government announced the ‘Innovation in 

Manufacturing 3.0’ that emphasised four propulsion strategies and as-

signments for a new leap of Korean manufacturing (Kang et al., 2016). 

 The Chinese government issued the ‘Made in China 2025’ strategy 

alongside the ‘Internet Plus’ plan in 2015. It prioritises ten fields in the 

manufacturing sector to accelerate the informatization and industriali-

sation in China (Li, 2015). 

 In 2015, the Japanese government adopted the 5th Science and Tech-

nology Basic Plan, where particular attentions have been paid to the 

manufacturing sector for realising its world-leading ‘Super Smart Socie-

ty’. (Cabinet Office, 2015) 

 The Singapore government has committed $19 billion to its RIE 2020 

Plan (Research, Innovation and Enterprise) in 2016. Eight key industry 

vertical have been identified within the advanced manufacturing and 

engineering domain (National Research Foundation, 2016). 

 

(ii) From the industrial plans perspectives,  

 AT&T, Cisco, General Electric, IBM and Intel founded the ‘Industrial In-

ternet Consortium (IIC)’ in 2014 to catalyse and coordinate the priori-

ties and enabling technologies of the Industrial Internet (Evans and 

Annunziata, 2012).  
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 Meanwhile, other big firms like Siemens, Hitachi, Bosch, Panasonic, 

Honeywell, Mitsubishi Electric, ABB, Schneider Electric and Emerson 

Electric have also already invested heavily in IoT and CPS related pro-

jects. 

 

The Industrial Revolution is a concept and a development that has fundamentally 

changed our society and economy. The term “development” may seem to indicate 

some tardiness in the context of a “revolution,” which really signifies a rapid and 

fundamental change, but there is no doubt that major alterations occurred within a 

relatively short period. Industries arose and replaced small-scale workshops and 

craft studios. Textile and pottery factories were the first to recognize the new dawn, 

and a new infrastructure of canals and railway lines enabled efficient distribution. It 

was the transition from industrious to industrial, and the start of a boom for both. 

From the first mechanical loom, dating from 1784, 234 years ago, we can distinguish 

four stages in the ongoing process called the Industrial Revolution.  

That is the way we currently look at it. The first “acceleration” occurred toward 

the end of the 18th century: mechanical production on the basis of water and steam. 

The Second Industrial Revolution is placed at the beginning of the 20th century: the 

introduction of the conveyor belt and mass production, to which the names of icons 

such as Henry Ford and Frederick Taylor are linked. Number three is the digital au-

tomation of production by means of electronics and IT.  

The fourth industrial revolution, known as Industry 4.0, includes intelligent pro-

duction, IoT technologies and CPS aiming to bring together (Information Technology 

(IT) and Operational Technology (OT). The four industrial revolutions are shown in 

Figure 2-2. Currently, industry is found at the edge of the third and the fourth indus-

trial revolutions. However, a lot of aspects should be explored in depth as shown in 

Figure 2-3 and Figure 2-4. 
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Figure 2-2: The four industrial revolutions (Source: BCM Advanced Research) 

 

Figure 2-3: From Industry 3.0…  (Source: Platform Industrie 4.0) 

 

Figure 2-4: … to Industry 4.0 (Source: Platform Industrie 4.0) 
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The basic principle of Industry 4.0 is the core of IoT and smart manufacturing: 

work in progress products, components and production machines will collect and 

share data in real time. This leads to a shift from centralized factory control systems 

to decentralized intelligence (Shrouf et al., 2014). The German Federal Ministry of 

Education and Research defines Industry 4.0 as “the flexibility that exists in value-

creating networks is increased by the application of CPS. This enables machines and 

plants to adapt their behavior to changing orders and operating conditions through 

self-optimization and reconfiguration. The main focus is on the ability of the systems 

to perceive information, to derive findings from it and to change their behavior ac-

cordingly, and to store knowledge gained from experience. Intelligent production 

systems and processes as well as suitable engineering methods and tools will be a 

key factor to successfully implement distributed and interconnected production fa-

cilities in future Smart Factories”. Industry 4.0 core elements are depicted in Figure 

2-5. 

The intense employment of IoT technology and cyber-physical systems across the 

industrial value chain leads to huge amounts of heterogeneous data. Perceiving in-

formation and extracting business insights and knowledge from these data along 

with the knowledge storage gained from experience is one of the major challenges in 

Industry 4.0 (Gölzer et al., 2015; Gröger et al., 2016; Gröger, 2018). Intelligent pro-

duction systems and processes as well as suitable engineering methods and tools 

(e.g. data analytics techniques) will be a key factor to successfully implement distrib-

uted and interconnected production facilities in future Smart Factories. To represent 

these issues, RAMI 4.0, a 3D model representing all different manually interconnect-

ed features of the technical – economical properties has been developed3.  

Industry 4.0 combines production methods with state-of-the-art information and 

communication technology. The driving force behind this development is the rapidly 

increasing digitisation of the economy and society. In the world of Industrie 4.0, 

people, machines, equipment, logistics systems and products communicate and co-

operate with each other directly. Production and logistics processes are integrated 

                                                      
3

 http://www.control.lth.se/media/Education/EngineeringProgram/FRTN20/2016/ZVEI-Industrie-
40-RAMI-40-English.pdf  

http://www.control.lth.se/media/Education/EngineeringProgram/FRTN20/2016/ZVEI-Industrie-40-RAMI-40-English.pdf
http://www.control.lth.se/media/Education/EngineeringProgram/FRTN20/2016/ZVEI-Industrie-40-RAMI-40-English.pdf
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intelligently across company boundaries to make manufacturing more efficient and 

flexible. At the same time, manufacturing costs can be reduced despite the individu-

alised manufacturing. Networking the companies in the supply chain makes it possi-

ble to optimise not only individual production steps, but the entire value chain (Plat-

form Industrie 4.0).  

The discovery of new technologies has escorted industry development from the 

early adoption of mechanical systems, to support production processes, to today’s 

highly automated assembly lines, in order to be responsive and adaptive to current 

dynamic market requirements and demands. This requires establishing the factory 

with capabilities of self-awareness, self-prediction, self-comparison, self-

reconfiguration, and self-maintenance (Platform Industrie 4.0). Moreover, optimized 

decision-making is a key characteristic of a smart factory. Taking the right decisions 

at anytime is a key to succeed in the market (Shrouf et al., 2014). To this end, new 

improvements and value can be provided by the analysis of large quantities of col-

lected data by IoT devices (i.e. big data).  

 

Figure 2-5: Industry 4.0 Core Elements (Source: BCM Advanced Research) 

According to BCG, the potential impact of Industry 4.0 in Germany will be obvi-

ous in four main areas (Rüßmann et al, 2015): 

 Productivity. During the next ten years, Industry 4.0 will be embraced by 

more companies, boosting productivity across all German manufacturing 

sectors by €90 billion to €150 billion. Productivity improvements on con-

version costs, which exclude the cost of materials, will range from 15 to 

25 percent. When the materials costs are factored in, productivity gains 

of 5 to 8 percent will be achieved. These improvements will vary by indus-

try. Industrial-component manufacturers stand to achieve some of the 
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biggest productivity improvements (20 to 30 percent), for example, and 

automotive companies can expect increases of 10 to 20 percent.  

 Revenue Growth. Industry 4.0 will also drive revenue growth. Manufac-

turers’ demand for enhanced equipment and new data applications, as 

well as consumer demand for a wider variety of increasingly customized 

products, will drive additional revenue growth of about €30 billion a year, 

or roughly 1 percent of Germany’s GDP. 

 Employment. The growth it stimulates will lead to a 6 percent increase in 

employment during the next ten years. And demand for employees in the 

mechanical-engineering sector may rise even more—by as much as 10 

percent during the same period. However, different skills will be required. 

In the short term, the trend toward greater automation will displace 

some of the often low-skilled laborers who perform simple, repetitive 

tasks. At the same time, the growing use of software, connectivity, and 

analytics will increase the demand for employees with competencies in 

software development and IT technologies. 

 Investment. Adapting production processes to incorporate Industry 4.0 

will require that German producers invest about €250 billion during the 

next ten years (about 1 to 1.5 percent of manufacturers’ revenues). 

2.2.2 Big Data and Internet of Things in Industry 4.0 

Intelligence is the key enabler to facilitate work and in a broad sense and consists 

of two parts. Algorithmic intelligence describes how to reach a goal via a process 

(e.g., driving your car to a destination) and tactical intelligence describes how to 

reach the destination with consideration to changing factors (e.g. checking the car 

tire pressure to compensate for changing road conditions). Industry 4.0 in the sim-

plest form concerns enabling manufacturing with the element of tactical intelligence 

using techniques and technologies such as IoT, cloud computing and big data (Trap-

pey et al., 2016). IoT is considered to be a paradigm shift for Internet technologies. 

Estimations show that as of 2014 the number of IoT-enabled devices has exceeded 

the world’s human population. IoT is used by consumers as well as by manufacturers 



Literature Review 

45 
 

that rely on cyber (software, data systems) and physical (devices, machinery, equip-

ment) connectivity to function effectively (Trappey et al., 2017). While Industry 4.0 

was initially considered a technology experiment, it is now a necessity to maintain 

competitiveness in a constantly changing industry environment. IoT is a core ena-

bling technology that enables industries to move from Industry 3.0 to Industry 4.0 by 

inserting intelligence into products and processes across the supply chain. Industry 

4.0 also represents the aggregation of IoT, CPS, cloud computing and big data analyt-

ics to improve the goal of a near zero defect state (Cheng et al., 2016). 

Various aspects of IoT technology have been reviewed in the academic realms 

(Da Xu et al., 2014; Trappey, et al., 2017). IoT can be considered as a global network 

infrastructure composed of numerous connected devices that rely on sensory, com-

munication, networking, and information processing technologies (Da Xu et al., 

2014). So far, IoT has been gaining attraction in industry, in manufacturing enterpris-

es having installed sensors generating real-time big data, such as logistics, manufac-

turing, retailing, and pharmaceutics. With the advances in wireless communication, 

smartphone, and sensor network technologies, more and more networked things or 

smart objects are being involved in IoT. As a result, these IoT-related technologies 

have also made a large impact on new information and communications technology 

(ICT) and enterprise systems technologies (Da Xu et al., 2014). 

Identifying and structuring an architecture or model is a long process with much 

negotiation to abstract from specific needs and technologies in order to fulfill the 

following requirements (Weyrich, and Ebert, 2016): 

 Connectivity and communications either one-to-one (unicast) or data collec-

tion and information dissemination to multiple partners (multicast and 

anycast). 

 Device management must provide solutions once a device is added or a de-

vice configuration changes and must be propagated to other devices. 

 Data collection, analysis, and actuation are relevant for extracting infor-

mation and knowledge for offering services. 
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 Scalability is important to handle increased processing volumes for different 

installation sizes. 

 Security features are necessary to provide trust and privacy and are required 

for all aspects of the IoT. 

Many market researchers such as Gartner and Cisco consider the industrial IoT as 

the IoT concept with the highest overall potential, although it has not gathered yet 

the interest that smart homes or wearables have gathered, due to the high invest-

ments required and the long periods of implementation needed. Modern manufac-

turing companies collect and store operations-related data or even utilize technolog-

ical infrastructures and information systems for monitoring and detecting early 

warning signals that machines or systems are degrading or in danger of breakdown. 

While this is valuable information that can reduce risk of unplanned downtime and 

potentially save the enterprise money, if organizations improve their analytics ma-

turity, information will be fully harnessed, and the potential is much greater.  

This fact depends on the level of maturity a manufacturing enterprise has 

reached, in terms of data processing capabilities, ICT advancements and mainte-

nance management development. According to Gartner4 and PwC5, to seize near-

term opportunities, capitalize on the long-term structural shift and accelerate the 

overall development of the Industrial IoT, technology providers need to focus on 

brownfield innovation to support existing equipment in the field, and raise the mar-

ket awareness on successful use cases and implementations, while technology 

adopters should reorient their overall business strategy to take full advantage of the 

latest developments in the Industrial IoT by also identifying their new ecosystem 

partners.  

The need for increased data analytics maturity has been identified in the indus-

trial and research realms. However, taking advantage of the sensor-generated big 

data requires the development of data processing systems that are able to handle 

real-time data in complex, dynamic environments. In this way, the effective increase 

of data analytics maturity can facilitate predictions and decisions ahead of time, 

                                                      
4
 https://www.gartner.com/doc/3065317/using-advanced-analytics-predict-equipment  

5
 http://www.pwc.com/gx/en/industries/industry-4.0.html  

https://www.gartner.com/doc/3065317/using-advanced-analytics-predict-equipment
http://www.pwc.com/gx/en/industries/industry-4.0.html
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leading to increased operational intelligence. According to Gartner6, there are four 

levels of data analytics maturity, each one building on the previous one: Monitor, 

Diagnose and Control, Manage, Optimize. In the first level, companies monitor 

through sensors or other measuring devices and report on asset behaviour. In the 

second level, on the basis of monitoring, enterprises diagnose issues and sometimes 

respond to the sensing issue. For instance, monitoring and controlling equipment 

enables the throttling back or shutting down of an expensive piece of equipment 

when temperatures or pressures exceed certain thresholds that could lead to down-

time. The third level enables organizations to manage the performance of asset and 

processes by creating predictive models in order to enable shifting from unplanned 

maintenance to predictive maintenance, resulting in less downtime, better quality 

and reduced costs. Finally, level 4 is about optimizing decisions, processes and sys-

tems on the basis of the real-time predictive models. Organizations can do this to 

determine the optimal production schedule/product mix or predictive maintenance 

schedule across assets to optimize asset life and profit, and to minimize downtime 

while meeting customer demand (business outcome).  

2.2.3 Cyber Physical Systems 

Cyber-Physical Systems (CPS) is defined as transformative technologies for man-

aging interconnected systems between its physical assets and computational capa-

bilities (Baheti and Gill, 2011). With recent developments that have resulted in high-

er availability and affordability of sensors, data acquisition systems and computer 

networks, the competitive nature of today’s industry forces more factories to move 

toward implementing high-tech methodologies and to converge IT and automation 

as shown in Figure 2-6. Consequently, the ever growing use of sensors and net-

worked machines has resulted in the continuous generation of high volume data 

(Lee, et al., 2013). In such an environment, CPS can be further developed for manag-

ing Big Data and leveraging the interconnectivity of machines to reach the goal of 

intelligent, resilient and self-adaptable machines (Lee, et al., 2015).  

                                                      
6
 https://www.gartner.com/doc/2826118/industrial-analytics-revolutionizes-big-data  

https://www.gartner.com/doc/2826118/industrial-analytics-revolutionizes-big-data
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Figure 2-6: Convergence of IT and automation (Source: iot-analytics.com) 

The 5C CPS architecture provides a step-by-step guideline for developing and de-

ploying a CPS for manufacturing application. In general, a CPS consists of two main 

functional components: (1) the advanced connectivity that ensures real-time data 

acquisition from the physical world and information feedback from the cyber space; 

nd (2) intelligent data management, analytics and computational capability that con-

structs the cyber space. However, such requirement is very abstract and not specific 

enough for implementation purpose in general. In contrast, the 5C architecture 

clearly defines, through a sequential workflow manner, how to construct a CPS from 

the initial data acquisition, to analytics, to the final value creation (Lee et al., 2015), 

as shown in Figure 2-7. Figure 2-8 shows applications and techniques associated with 

each level of the 5C architecture 

 

Figure 2-7: 5C architecture for implementation of Cyber-Physical System (Lee et al., 2015). 
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Figure 2-8: Applications and techniques associated with each level of the 5C architecture (Lee et al., 2015). 

2.2.4 RAMI 4.0 

Authors of the RAMI 4.0 model are BITCOM, VDMA and ZWEI. They decided to 

develop a 3D model because the model should represent all different manually in-

terconnected features of the technical – economical properties, as shown in Figure 

2-9. Very important criterion in the modern engineering is the product life cycle with 

the value stream which it contains. The left – hand horizontal axis displays this fea-

ture. There are expressed e.g. constant data acquisition throughout the life cycle. 

Even the totally digitization of the whole development – market chain offers great 

potential for improvement of products, machines, and other layers of the Industry 

4.0 architecture throw-out the all life cycle (Zezulka et al., 2016). This look corre-

sponds well with the IEC 62890 draft standard. The next model axis (right in the hori-

zontal level) describes function position of the components in the Industry 4.0. In 

this axis, there is specified the functionality of the components, no any specification 

for implementation but the function assignment only. The axis respects both IEC 

6224 and the 61512 standards. But the IEC 6224 and the 61512 standards are in-
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tended for specification of components in a position in one enterprise or works unit 

only. Therefore the highest level in the axis horizontal right is the Connected world. 

 

Figure 2-9: The Reference Architectural Model Industrie (RAMI) 4.0 (Source: Platform Industrie 4.0) 

The individual layers and their interrelationships, shown in Figure 8, are de-

scribed as follows (Platform Industrie 4.0, 2014): 

Function of layers in vertical axis: 

 Asset Layer: This layer represents reality, e.g. physical components such as 

ideas, archives, documents, linear axes, metal parts, diagrams. Also human 

being is a part of the Asset Layer. They are connected with the virtual reality 

world by the Integration layer. Passive connection of the assets to the higher 

Integration Layer is done by for instance means of QR codes.  

 Integration Layer: This layer makes provision of information on the assets 

(HW/SW, components) in a form which is available for computer processing. 

It makes also computer control of the process, generation of events from as-

sets and it contains elements, which are connected with IT (RFID readers, 

sensors, HMI, actuators, etc.). Integration of persons is a part of Integration 

layer functions as well – (via HMI).  
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 Communication Layer: This layer provides standardization of communication 

by means of uniform data format in the direction of the Information Layer. It 

provides also services for control of the integration Layer.  

 Information Layer: Provides run time for preprocessing of events, execution 

of event-related rules. It enables formal description of the rules and event 

pre – processing. Next functions of the Information layer are: Ensuring data 

integrity, consistent integration of different data, obtaining new, higher qual-

ity data (data, information, knowledge) provision of structured data by 

means of service interfaces. It also receives events and transforms them to 

match the data which are available for the higher layer.  

 Functional Layer: Functional Layer enables formal description of functions 

and creates platform for horizontal integration of various functions. It con-

tains run time and modeling environment for services for support of business 

processes and a run time environment for applications and technical func-

tionality. Rules and decision – making logic are generated in the Functional 

Layer. Some use case can be executed in lower layers as well. But remote ac-

cess and horizontal integration can take place within the Functional layer on-

ly because of the necessity of data integrity.  

 Business Layer: The layer ensures the integrity of functions in the value 

stream, enables mapping business models and the resulting of the overall 

process. It contents legal and regulatory Framework conditions, enables 

modeling of the rules which the system has to follow. The layer creates also a 

link among different business processes. 

 

Function of layers in the horizontal left axis: 

The left – hand side horizontal axis represents the life cycle & and value stream 

of industrial production. This axis is divided to Type and Instance. A type of any 

product, machine or SW/HW represents the initial idea. This covers the placing of 

design orders, development and testing up to the prototype of production. After all 

tests and validation, the type is prepared for serial production. On the other hand, 
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the type of any component, machine or HW/SW etc. creates a basis for the serial 

production. Each manufactured product represents an instance of that type, for ex-

ample has a unique serial number. The instances are sold and delivered to custom-

ers. For customers are the products initially once again only types. They become in-

stances when they are installed in a particular system. The change from type to in-

stance may be repeated many times. The fine structure of the life cycle and value 

stream look in the RAMI 4.0 over the axis left hand horizontal shows a division of the 

Type to Development and Maintenance/ usage, but due to the physical character of 

the problem – instances consist from Production and Maintenance/usage. The func-

tion of layers in the horizontal left axis can be explained in following simple example: 

The development of a new electrical drive represents creation of a new type of an 

engine. The drive (controlled engine) is developed, initial samples are set up and 

tested and a first prototype series is manufactured and validate. After successful 

testing, the new drive type is released for sale (product designation in sales cata-

logue of the producer). In this moment a first serial production can be started. Each 

drive in the serial production has its serial number (a unique identification) and is an 

instance of the previously developed electric drive. Feedback from customers to in-

stances of the type may lead to corrections in the mechanical part of the drive and 

correction in the control SW. Such modifications are modification in the type, i.e. 

they are applied as amendments to the type documentation and new instances of 

the modified type are produced. The left hand side of the RAMI 4.0 model repre-

sents the value stream as well.  

Digitization and linking of the value stream (in the Industry 4.0 idea and praxis) 

big potential for improvement of produced types. Logistic data can be used in as-

sembly, purchasing sees inventories in real time and know were parts from suppliers 

are at any moment, customers sees the completion status of the product during 

production etc. The value stream in the totally digitized production enables linking of 

purchasing, order planning, assembly, logistic, maintenance, the customer and sup-

pliers and so on. It provides great improvement potential .The life cycle can there-

fore be viewed together with the value- adding processes which it contains and not 

in isolation as it is in the present production (Platform Industrie 4.0. (2014)). 
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2.2.5 Industry 4.0 Component Model 

The second very important model for purposes of the Industry 4.0 that has been 

developed by BITCOM, VDMA and ZWEI during the last one year is the Industry 4.0 

components model. It is intended to help producers and system integrators to create 

HW and SW components for the Industry 4.0. It is the first and the only specific 

model which goes out from the RAMI 4.0 model. It enables better description of 

cyber – physical features and enables description of communication among virtual 

and cyber – physical objects and processes (Zezulka et al., 2016). The HW and SW 

components of future production will be able to fulfil requested tasks by means of 

implemented features specified in the Industry 4.0 components model. The most 

important feature is the communication ability among the virtual objects and pro-

cesses with real object and processes of production while this model specifies the 

conform communication. Physical realization of it is that any component of the In-

dustry 4.0 system takes an electronic container (shell) of secured data during the all 

life cycle. The data are available to all entities of the technical – production chain. 

Therefore this model goes out from a standardized, secure and safety real time 

communication of all components of production. The electronic container (shell) of 

data and the all Industry 4.0 component model is specified in Figure 2-10 (Adolphs et 

al., 2015). 

 

Figure 2-10: The I4.0 component model (Source: Platform Industrie 4.0) 
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2.3 Maintenance Management  

2.3.1 Overview 

Over the last few decades, maintenance functions have drastically evolved with 

the growth of technology (Ahmad, and Kamaruddin, 2012). Maintenance is defined 

as a set of activities or tasks used to restore an item to a state in which it can per-

form its designated functions (Duffuaa, et al., 1999; Dhillon, 2017). The modern in-

dustry is increasingly demanded to work at high reliability, low environmental risks, 

and human safety while operating their processes at maximum yield (Peng et al., 

2010). Industrial maintenance, is gaining significance (Cannata et al., 2010; Ruschel 

et al., 2017) both within the academic and industrial community, as it develops from 

being considered a minor activity, towards a strategic task in operation management 

(Pinjala et al., 2006), thus being called asset lifecycle management. 

Technological development has resulted in increased complexity in both indus-

trial machinery and production systems. The economical consequences from an un-

expected 1-day stoppage in industry may become as high as up to 100,000 to 

200,000 euros (Peng et al., 2010). Operational reliability of industrial machinery and 

production systems has a significant influence on the profitability and competitive-

ness of industrial companies. This emphasizes the increasing importance of effective 

maintenance strategies of machinery, production processes, and systems in industry 

(Peng et al., 2010). Maintenance strategies can be broadly classified into Breakdown 

Maintenance (BM), Time-Based Maintenance (TBM) and Condition-Based Mainte-

nance (CBM) (Duffuaa, et al., 2001). Other terms such as “preventive maintenance”, 

“planned maintenance”, “predictive maintenance” are also used. 

Breakdown Maintenance, also known as run-to-failure, corrective or reactive 

maintenance, is a strategy that is used to restore (repair or replace) some equipment 

to its required function after it has failed (Blanchard, et al., 1995) implementing cor-

rective actions. This strategy leads to high levels of machine downtime (production 

loss) and maintenance (repair or replacement) costs due to sudden failure (Tsang, 

1995).  



Literature Review 

55 
 

Time-Based Maintenance, also known as Preventive Maintenance or planned 

maintenance, involves the performance of a set of certain maintenance activities 

prior to the failure of equipment in specific time intervals (Lofsten, 1999). It has re-

placed the Breakdown Maintenance and is still widely used in manufacturing firms. 

This strategy contributes to minimizing failure costs and machine downtime (produc-

tion loss), and increasing product quality (Usher, et al., 1998). In the industry, appli-

cation of the TBM strategy can be generally performed through either experience or 

original equipment manufacturer (OEM) guidelines and it is performed at regular 

time intervals (Sheu, et al., 1995). TBM will also encounter some minor or major 

planned shutdowns of systems for predetermined overhaul or repair activities on 

still functioning equipment. System overhaul and critical item replacement at fixed 

intervals are widely adopted in automated manufacturing and control systems. Alt-

hough TBM can reduce the probability of system failures and the frequency of un-

planned emergency repairs, its intervals based on OEM recommendations may not 

be optimal because actual operating conditions may be very different from those 

considered by the OEM (Labib, 2004; Tam, et al., 2006). On the economy aspect, 

TBM tends to be too conservative that results in very high maintenance costs.  

TBM is widely used in industry; however, companies are increasingly turning to 

CBM, with manufacturing companies considering the use of condition monitoring. 

CBM is becoming essential for every manufacturing business as products have be-

come more and more complex due to the evolution of technology and thus, quality 

and reliability have become issues of high significance (Jardine et al., 2006; Peng et 

al., 2010; Hashemian, and Bean, 2011). Consequently, the costs of time-based pre-

ventive maintenance have increased and CBM has started to be evolved as a novel 

lever for maintenance management (Jardine et al., 2006; Guillen et al., 2016). 

Condition-Based Maintenance (CBM) is a maintenance strategy where the deci-

sion to perform maintenance is reached by observing the “condition” of the system 

and its components (Guillen et al., 2016). CBM attempts to avoid unnecessary 

maintenance tasks by taking maintenance actions only when there is evidence of 

abnormal behaviors of a physical asset (Jardine et al., 2006). Generally, CBM can be 

treated as a method used to reduce the uncertainty of maintenance activities and is 
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carried out according to the requirements indicated by the equipment condition (de 

Jonge et al., 2017).  

Condition monitoring has been significantly enabled by the development of ap-

propriate technologies and sensing equipment measuring various parameters. In this 

way, the engineers are able to monitor in real-time the actual health state of equip-

ment and to decide about maintenance actions. Condition monitoring is increasingly 

realized with equipment-installed sensors, which have the capability of measuring 

with high frequency a multitude of parameters (Jardine et al., 2006; ISO 2012a; ISO 

2012b) leading to processing and storage of a huge amount of data (big data) that 

pose challenges to the subsequent processing pipeline of data analysis, knowledge 

extraction and decision making.  

Predictive Maintenance goes a step beyond the mere real-time monitoring of 

the manufacturing system. It indicates the use of detection and prediction algo-

rithms about the current and the future health state of the manufacturing system 

respectively with the use of Prognostics and Health Management (PHM) methods 

and techniques. In this way, maintenance decision making is facilitated. The concept 

of Predictive Maintenance evolved almost in parallel with the concept of CBM, how-

ever with a different meaning. At the beginning, Predictive Maintenance did not 

consider condition monitoring, but it dealt with predictions based on expert 

knowledge and manufacturer’s specifications of equipment. Even today, there are 

several research works dealing with Predictive Maintenance without considering 

sensor-generated real-time data. 

The classical industrial view of CBM and predictive maintenance is mainly fo-

cused on the use of condition monitoring techniques such as vibration analysis, 

thermography, acoustic emission or tribology (ISO 2011). The recent developments 

of maintenance management lead to a new predictive maintenance approach, 

providing powerful capabilities for physical understanding of the useful life of a sys-

tem through dynamic pattern recognition in various available data sources, Remain-

ing Useful Life (RUL) or Remaining Life Distribution (RLD) prediction and providing 
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maintenance-related recommendations in order to exploit the full potential of the 

predictive maintenance framework and the advances in ICT. 

2.3.2 Condition Based Maintenance and Predictive Maintenance 

Sometimes predictive maintenance is used as an alternative term of CBM. Other 

terms that are used in literature are “online monitoring”, “risk-based maintenance” 

(Hashemian, and Bean, 2011) and Prognostics and Health Management (PHM) 

(Sheppard et al., 2008; Lee et al., 2014; Guillen et al., 2016).  

CBM relies on diagnostic and prognostic models and uses them to support deci-

sions about the appropriate maintenance actions based on the current health state 

of a system and/or its predicted performance and remaining lifetime. It is performed 

after one or more indicators show that equipment is going to fail or that equipment 

performance is deteriorating. CBM was introduced to try to maintain the correct 

equipment at the right time and is based on using real-time data to prioritize and 

optimize maintenance resources (Jardine et al., 2006; Peng et al., 2010; Voisin et al., 

2010; Guillen et al., 2016).  

The term “Predictive maintenance” focuses on techniques that help determine 

the condition of in-service equipment in order to predict when maintenance should 

be performed. This approach offers cost savings over routine or time-based preven-

tive maintenance, because tasks are performed only when warranted.  In most cas-

es, the term “predictive maintenance” does not necessarily include real-time condi-

tion monitoring through sensors, while the term “Condition Based Maintenance” 

does not necessarily include predictions (Liu et al., 2016; Nguyen et al., 2017), since 

it may refer to (near) real-time diagnostic outcomes, i.e. detection of the current 

condition, and actions upon them (Garcia et al., 2006; Lindström et al., 2017).  

CBM has a long history. From visual inspection, which is the oldest method yet 

still one of the most powerful and widely used, it has evolved to automated methods 

that use advanced signal processing techniques based on pattern recognition, includ-

ing neural networks, fuzzy logic, and data-driven empirical and physical modeling 

(Hashemian, and Bean, 2011; Guillen et al., 2016). However, nowadays, nearly 30% 
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of industrial equipment does not benefit from predictive maintenance technologies 

(PwC, 2017). Predictive maintenance is the preferred maintenance method in 89% of 

cases, compared to time-based maintenance, which is prudent in only 11% of cases 

(Hashemian, and Bean, 2011).  

Several maintenance frameworks have been proposed in the literature outlining 

the steps involved in performing CBM.  Lee et al. (2004) describes three core steps: 

(i) data acquisition, to collect the data; (ii) data processing, to handle the data; and 

(iii) maintenance decision making, to decide about the optimal maintenance policy. 

Peng et al. (2010) focused on the third step (maintenance decision making), further 

detailing it into diagnosis and prognosis. The authors also indicated the need for his-

torical data and for the development of a model for representing system behavior. 

Irigaray et al. (2009) focused on supporting CBM by storing relevant data and infor-

mation and utilizing them so that the most appropriate decisions are drawn and are 

updated dynamically by means of a platform based on web services and a systematic 

process consisting of four layers: condition monitoring, assessment of the health 

state, prognosis and decision making. 

Peng et al. (2010) described in detail a maintenance decision support framework 

consisting of five main steps: (i) feature selection, which is conducted with the aid of 

historical data as well as several methods such as Principal Component Analysis, Ge-

netic Algorithms and Support Vector Machine (SVM); (ii) data training (analysis); (iii) 

diagnostics and prognostics, by using real-time data; (iv) reliability and Remaining 

Useful Life (RUL) where the result is verified and its precision is assessed in order to 

give feedback to steps (ii) and (v); and (v) maintenance schedule, which considers 

the cost function which is extracted from the relationship between the maintenance 

cost, RUL and reliability of the system.  

A generic conceptual framework for CBM decision support has been proposed by 

Voisin et al. (2010). This framework considers the interactions of prognosis with the 

whole business environment and represents the business processes which are inte-

grated with prognosis. A simplified version is shown in Figure 2-11 (Iung et al., 2009; 

Voisin et al., 2010). Moreover, it separates the decision support step from diagnos-
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tics and prognostics by combining and updating two earlier frameworks (Léger and 

Morel, 2001; Muller et al., 2008a; Lebold and Thurston, 2001). Diagnosis and Prog-

nosis in sensor-driven environments are well studied areas in literature; however, 

decision making in this context is still underexplored area. 

 

Figure 2-11: The role of diagnosis and prognosis in CBM (adapted from Voisin et al., 2010) 

The MIMOSA OSA-CBM specification7 is a standard architecture for moving in-

formation in a condition-based maintenance system. It has already been implement-

ed in several industries, such as aerospace industry within the framework of Inte-

grated Vehicle Health Management (IVHM) (Lebold and Thurston, 2001; Dunsdon 

and Harrington, 2008; Benedettini et al., 2009). A more in depth look reveals a way 

to reduce costs, improve interoperability, increase competition, incorporate design 

changes, and further cooperation in the realm of condition-based maintenance. The 

OSA-CBM provides a means to integrate many disparate components and eases the 

process by specifying the inputs and outputs between the components. It is an im-

plementation of the ISO-13374 functional specification. OSA-CBM adds data struc-

tures and defines interface methods for the functionality blocks defined by the ISO 

standard. According to ISO-13374, the six blocks of functionality are: Data Acquisi-

tion, Data Manipulation, State Detection, Health Assessment, Prognostics Assess-

ment, Advisory Generation.  

                                                      
7
 http://www.mimosa.org/mimosa-osa-cbm  

http://www.mimosa.org/mimosa-osa-cbm
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Data Acquisition deals with converting an output from the transducer to a digital 

parameter representing a physical quantity and related information. Data Manipula-

tion performs signal analysis, computes meaningful descriptors, and derives virtual 

sensor readings from the raw measurements. State Detection facilitates the creation 

and maintenance of normal baseline “profiles”, searches for abnormalities whenever 

new data are acquired, and determines in which abnormality zone, if any, the data 

belong (e.g. “alert” or “alarm”). The final three blocks normally attempt to combine 

monitoring technologies in order to assess the current health of the machine, predict 

future failures, and provide recommended action steps to operations and mainte-

nance personnel. More specifically: Health Assessment diagnoses any faults and 

rates the current health of the equipment or process, considering all state infor-

mation. Prognostic Assessment determines future health states and failure modes 

based on the current health assessment and projected usage loads on the equip-

ment and/or process, as well as remaining useful life predictions. Finally, Advisory 

Generation provides actionable information regarding maintenance or operational 

changes required to optimize the life of the process and/or equipment. 

Guillen et al. (2016) studied CBM with the aim to provide a framework bringing 

together the managerial and the technical perspective based on international stand-

ards. This framework introduces three complementary points of views of this same 

process simultaneously: (i) CBM basic concepts (detection, diagnosis, prognosis) 

within the basic CBM flow. These concepts are reinterpreted using two views: (ii) The 

Data-processing view: CBM flow and concepts reinterpretation within the Data-

Processing technical requirements. (iii) The Maintenance information view: mainte-

nance requirements translation.   

In maintenance, Industry 4.0 find its application in designing of self-learning and 

smart system that helps predict failures, diagnose and trigger maintenance sched-

ules (Kumar, and Galar, 2018). In order to extract specific and relevant information, 

these smart systems are highly demanded for data access, for quality and also for 

the use of multiple sources of data (Lee et al., 2013; Lee et al., 2015). Development 

of intelligent maintenance systems based on cyber-physical approach, for failure de-
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tection, providing diagnostics and prognostics, has been the core focus on several 

research projects (Syed et al., 2012, Sankavaram et al., 2013; Kroll et al., 2014). 

PwC proposes the Predictive Maintenance 4.0 concept, i.e. predictive mainte-

nance in the frame of Industry 4.0 (PwC, 2017). PwC defined the application of big 

data analytics in maintenance as the fourth level of maturity in predictive mainte-

nance, namely Predictive Maintenance 4.0 (PwC, 2017). Based on their definition, 

Predictive Maintenance 4.0 is about predicting future failures in assets and ultimate-

ly prescribing the most effective preventive measure by applying advanced analytic 

techniques on big data about technical condition, usage, environment, maintenance 

history, similar equipment elsewhere and in fact anything that may correlate with 

the performance of an asset. The four levels are described below: 

 Level 1 Visual inspections: periodic physical inspections; conclusions are 

based solely on inspector’s expertise. 

 Level 2 Instrument inspections: periodic inspections; conclusions are based 

on a combination of inspector’s expertise and instrument read-outs. 

 Level 3 Real-time condition monitoring: continuous real-time monitoring of 

assets, with alerts given based on pre-established rules or critical levels. 

 Level 4 PdM 4.0: continuous real-time monitoring of assets, with alerts sent 

based on predictive techniques, such as regression analysis. 

2.3.3 Decision Making in Predictive Maintenance 

2.3.3.1 The Role of Decision Making in Predictive Maintenance 

Decision making in predictive maintenance indicates the phase which is triggered 

by (near) real-time predictions (e.g. about a future failure) in order to generate pro-

active recommendations about maintenance actions that eliminate or mitigate the 

impact of the predicted failure. In addition, decision making incorporates domain 

knowledge related to maintenance management of the specific industry.  

Although there is a rich literature on diagnostic and prognostic models, automat-

ed decision making in the context of predictive maintenance is an underexplored 
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area. The evolution of Internet of Things (IoT) and the emergence of Industry 4.0 

pave the way for an extensive use of sensors in the manufacturing environment 

measuring a multitude of parameters. Efficient processing of all this data and provid-

ing meaningful business insights is of outmost importance. To this end, the level of 

big data analytics maturity can be increased by generating recommendations ahead 

of time on the basis of (near) real-time predictions. In this way, manufacturing firms 

can optimize their performance and obtain a significant competitive advantage. Cur-

rently, there are many conceptual papers regarding Industry 4.0, but decision mak-

ing for predictive maintenance in this context has not been examined yet. 

The current literature review focuses on decision making algorithms for predic-

tive maintenance. In this sense, it investigates decision making algorithms that are 

triggered by predictions that have been derived through condition monitoring. Con-

dition monitoring is the process of monitoring the condition in order to identify a 

significant change which is indicative of a developing fault (Han, and Song, 2003). It is 

a major component of predictive maintenance (Márquez et al., 2012). During the last 

years, due to the emergence of Industry 4.0 and IoT, condition monitoring tech-

niques have evolved from visual inspections and manual analysis of data sets to high-

frequency sensors generating real-time big data about several parameters (e.g. vi-

bration, temperature, thermography, etc.). On the basis of this data, advanced data 

analytics techniques can be applied in order to handle the uncertainty due to the 

stochastic manufacturing operations.  

Since the dynamicity and complexity of the manufacturing environment make 

decision making a challenging task, there is an increasing interest on maintenance 

decision making algorithms. However, existing literature reviews on maintenance 

decision making algorithms have usually the following limitations: (i) they do not dis-

tinguish between static and dynamic models (through condition monitoring), e.g. 

between offline and real-time models; (ii) they get involved with various mainte-

nance strategies without focusing on predictive maintenance; (iii) Decision making is 

not necessarily executed on the basis of predictions; (iv) They focus on specific cate-

gories of decision making methods (e.g. optimization) and/ or maintenance aspects 

(e.g. maintenance policy). 
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An important and well-established principle of predictive maintenance is the P-F 

curve, which is shown in Figure 2-12. P-F curve indicates how a part of equipment 

starts being degraded to the point at which the forthcoming failure can be predicted 

(the potential failure point "P"). Thereafter, if it is not predicted and no suitable ac-

tion is taken, it continues to deteriorate - usually at an accelerating rate - until it 

reaches the point of functional failure (Point "F"). The amount of time which elapses 

between the point where a potential failure occurs and the point where it deterio-

rates into a functional failure is known as the P-F interval (Veldman et al., 2011). This 

interval can be seen as an opportunity window during which actions can be taken 

with the aim to eliminate the anticipated functional failure or mitigate its effect. In 

an Industry 4.0 context, decision making algorithms can be triggered by real-time 

predictions within this interval in order to generate proactive recommendations. 

 

Figure 2-12: P-F curve 

Such decision making algorithms should take into account several constraints and 

objectives and provide the best maintenance plan, i.e. the one that minimizes the 

maintenance costs and optimizes overall business performance. Figure 2-13 depicts 

the relationship among the predicted time-to-failure, the equipment reliability and 

the maintenance costs. It shows that while time-to-failure is approaching zero, relia-

bility is decreasing (Peng et al., 2010). When time-to-failure becomes zero, a failure 

(e.g. breakdown of equipment) occurs. The best time to do maintenance is when the 

maintenance cost is minimum and reliability has started to decrease significantly. 
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Figure 2-13: Relationship among time-to-failure, reliability and maintenance cost 

The increasing complexity and uncertainty of the manufacturing environment 

has leveraged the emergence of several algorithms aiming to better support decision 

making, e.g. for maintenance planning (Ruschel et al., 2017). Effective and automat-

ed (i.e. by providing recommendations) decision making in predictive maintenance 

leads to higher reliability of equipment and reduced losses (Ruschel et al., 2017). 

Smart decision making is at the heart of Industry 4.0 since the ultimate goal of de-

ploying widespread sensors is to achieve smart decision making through comprehen-

sive data collection (Zheng et al., 2018). However, the uncertainty existing in predic-

tive analytics but also in the degradation process itself and the time constraints un-

der which a decision should be taken pose significant challenges in the applicability 

of the decision making algorithms. Such decision making algorithms should be able 

to provide courses of actions with the aim to improve equipment operating life at 

maximised performance. During the last years, with the emergence of Predictive 

Maintenance as a novel lever of maintenance management, there is an increasing 

interest in decision making algorithms aiming to better support maintenance deci-

sions. 

2.3.3.2 Decision Making Algorithms in Literature 

This Section investigates decision making algorithms for predictive maintenance in 

literature. In order to facilitate the comprehension and the investigation of the exist-
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ing algorithms, we structured the literature in 5 areas of decision making problems in 

predictive maintenance based on similar classifications existing in literature (e.g. 

Alaswad, and Xiang, 2017; Ruschel et al., 2017; Chemweno et al., 2018). Most of pa-

pers belong to more than one area. However, the categorization to these 5 areas 

was formulated based on the focus as well as the main contribution and novelty of 

each work to the specific area. The 5 areas of decision making algorithms in predic-

tive maintenance along with the associated references are shown in Table 2-1. These 

areas are the following: 

 Maintenance Planning and Scheduling: This area includes algorithms that 

enable defining the maintenance actions based on the adopted policies and 

the information about the impacts and risks.  

 Reliability- and Degradation- based Decision Making: This area includes al-

gorithms incorporating the degradation rates in order to minimize long-run 

costs, and thus, to enable the scheduling of mitigating maintenance actions. 

They may also utilize information from the equipment conditions, in order to 

support the modelling and balancing between costs and reliability objectives, 

e.g. using probabilistic methods.  

 Joint Optimization: This area includes algorithms aiming to optimize mainte-

nance results, considering the objectives of the production system in order to 

ensure overall business improvements. Optimized maintenance cost reduc-

tion does not always lead to optimization of equipment availability, which 

can lead to delays in the production and delivery of the final product. To this 

end, there are algorithms achieving the balance between maintenance with 

production, logistics and quality objectives. 

 Multi-State and Multi-Component Systems Optimization: This area includes 

algorithms that allow the identification of intermediate stages of their condi-

tion. Therefore, on the basis of this, optimization models lead to intermedi-

ate decision making. Although there is a high amount of algorithms in the lit-

erature, we selected the ones that are applied in a more explicit and direct 

way.  
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 Maintenance Cost and Risk Estimation and Optimization: This area includes 

algorithms dealing with cost issues in order to facilitate the decision making 

of maintenance actions with the optimal cost. Sometimes, there is the possi-

bility of estimating and calculating maintenance costs for different situations 

and scenarios. There are also algorithms that map the impact of failures with 

financial issues. Such algorithms also provide a ranking of the critical compo-

nents of the system along with a priority of suitable maintenance actions. 

Table 2-1: Areas of decision making algorithms in predictive maintenance. 

Area of Contribution Number of 
references 

References 

Maintenance Plan-
ning and Scheduling 

23 Yu et al., 2003; Carnero, 2006; Muller et al., 2007; Su, and 
Tsai, 2010; Li, and Gao, 2010; Martorell et al., 2010; Var-
nier, C., and Zerhouni, 2012; Al-Najjar, and Jacobsson, 2013; 
Xu et al., 2013; Duarte et al., 2013; Guo et al., 2013; 
Mendes et al., 2014; de Jonge et al., 2015; Gopalakrishnan 
et al., 2015; Xu et al., 2015; Terkaj et al., 2015; Wan et al., 
2015; Nadj et al., 2016; Yildirim et al., 2016a; Yildirim et al., 
2016a; Said et al., 2016; Fitouri et al., 2016; Ghosh et al., 
2017 

Reliability- and Deg-
radation- based De-
cision Making 

24 Sun et al., 2007; Wu et al., 2007; Elwany, and Gebraeel, 
2008; Muller et al., 2008; Xu, and Hu, 2008; Islam, and 
Khan, 2010; Zhu et al., 2010; Besnard, and Bertling, 2010; 
Zhu et al., 2011; Tian et al., 2012; Castro et al., 2012; 
Moghaddass et al., 2014; Le et al., 2014; Hong et al., 2014; 
Song et al., 2014; Tang et al., 2015a; Tang et al., 2015b; Do 
et al., 2015; Lin et al., 2015; Park et al., 2016; Drumheller et 
al., 2017; He et al., 2017; Animah, and Shafiee, 2017; Zan et 
al., 2018 

Joint Optimization 16 Zhou et al., 2007; Njike et al., 2009; Rausch, and Liao, 2010; 
Gulledge et al., 2010; Nodem et al., 2011; Wang, 2011; 
Portioli-Staudacher, and Tantardini, 2012; Lee, and Ni, 
2013; Kouedeu et al., 2015; Gan et al., 2015; Jafari, and 
Makis, 2015; Jiang et al., 2015; Van Horenbeek, and Pin-
telon, 2015; Cinus et al., 2016; Gu et al., 2017 

Multi-State and Mul-
ti-Component Sys-
tems Optimization 

11 Le, and Tan, 2013; Zhou et al., 2013; Xia et al., 2013; Van 
Horenbeek, and Pintelon, 2013; Sheu et al., 2015; Azadeh et 
al., 2015; Jiang et al., 2015b; Huynh et al., 2015; Nguyen et 
al., 2015; Li et al., 2016; Keizer et al., 2016 

Maintenance Cost 
and Risk Estimation 
and Optimization 

23 Fouladirad et al., 2008; van der Weide et al., 2010; 
Nordgård et al., 2010; Sharma, and Sharma, 2010; Vaurio, 
2011; van der Weide et al., 2011; Fouladirad et al., 2014; 
Cheng et al., 2012; Dandotiya, and Lundberg, 2012; Emde, 
and Boysen, 2012; Sharma, and Sharma, 2012; Sinkkonen et 
al., 2013; Faccio et al., 2014; Susto et al., 2014; Haroun, 
2015; Susto et al., 2015; Wu et al., 2015; Wang, 2016; Chen, 
and Kezunovic, 2016; Bumblauskas et al., 2017; Li et al., 
2017; Si et al., 2017 
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In the papers investigated, the decision making algorithms are based on the follow-

ing categories of methods: 

 k-out-of-n structure refers to a n-components system that works if at least k 

of the n components work, or fail if at least k of the n components fail. 

 Dempster-Shafer is a mathematical theory of evidence that allows combining 

evidence from different sources and represents them by a reliability function. 

 Genetic Algorithms are metaheuristic algorithms inspired by the process of 

natural selection. Genetic algorithms are commonly used to generate high-

quality solutions to optimization, multi-objective optimization and search 

problems by relying on bio-inspired operators such as mutation, crossover 

and selection. 

 Simulated annealing is a probabilistic technique for approximating the global 

optimum of a given function. Specifically, it is a metaheuristic to approximate 

global optimization in a large search space. It is often used when the search 

space is discrete. 

 Probabilistic relational model is a representation language for statistical 

models that combine a frame-based logical representation with probabilistic 

semantics such as Bayesian networks. 

 Markovian processes (Markov chains, Markov Decision Process, Semi-

Markov Decision Process, Partially Observable Markov Decision Process) is a 

stochastic process with discrete states in which the probability distribution of 

the next state depends only on the current state and not on the sequence of 

events that preceded. 

 Case-based Reasoning is a technique that seeks to solve new problems by 

adapting solutions used to solve previous problems. 

 Logical Analysis of Data is a data analysis methodology that integrates Bool-

ean functions and optimization concepts. 

 Probabilistic Safety Assessment is a technique for numerically quantifying 

risk measures. 

 Fuzzy Logic and Inference is the actual process of mapping from a given input 

to an output using fuzzy logic. 
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 Collaborative Planning enables the management of information and 

knowledge to support maintenance decision making. 

 Rule-based Systems (e.g. Event-Condition-Action rules) are an approach that 

incorporates the domain knowledge in an expert system. It may incorporate 

probabilities or fuzzy sets. 

 Mathematical Programming/ Optimization (Linear, Non-linear, Stochastic 

Dynamic, Mixed Integer Optimization) aims to deal with optimization prob-

lems formulated in a respective objective function. 

 Multi-objective Optimization deals with mathematical optimization prob-

lems involving more than one objective function to be optimized simultane-

ously. 

 Regression Analysis is a set of statistical processes for estimating the rela-

tionships among variables. It includes many techniques for modelling and an-

alyzing several variables, when the focus is on the relationship between a de-

pendent variable and one or more independent variables. 

 Cost Risk Analysis involves the trade-off between the cost risk of a failure 

and the cost risk of a maintenance action and is usually based on the predict-

ed reliability distribution. 

 Proportional Hazards Models are a class of survival models in statistics. Sur-

vival models relate the time that passes before some event occurs to one or 

more covariates that may be associated with that quantity of time. In a pro-

portional hazards model, the unique effect of a unit increase in a covariate is 

multiplicative with respect to the hazard rate. 

 Bayesian Networks is a probabilistic graphical model (a type of statistical 

model) that represents a set of variables and their conditional dependencies 

via a directed acyclic graph. 

 Statistical Process Control is a method of quality control which employs sta-

tistical methods to monitor and control a process. This helps ensure the pro-

cess operates efficiently, producing more specification-conforming product 

with less waste (rework or scrap). 
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 Collaborative Filtering is a method originated from recommended systems 

aiming to enable decision making in order to support the user based on the 

identified requirements. 

 Artificial Neural Networks are systems that learn (i.e. progressively improve 

performance on) tasks by considering examples, generally without task-

specific programming. 

2.3.3.3 Discussion and Limitations 

Despite the high amount of works regarding decision making algorithms for 

predictive maintenance, there are still several aspects that concern both industry 

and academia. The literature review reveals a large gap between academic ap-

proaches and industrial applications. Despite the high amount of related research 

works in literature, there are not many research and industrial platforms incorporat-

ing decision making algorithms. It seems that it is difficult for manufacturing compa-

nies to deploy and adapt the decision making algorithms existing in literature to their 

own specific business context, data types and proprietary models. To this end, the 

need for shifting from theoretically-based research to applied-based research has 

been outlined (Ruschel et al., 2017). 

From the literature review, it seems that predictive maintenance capabilities 

have not been sufficiently examined in the context of Industry 4.0 and big data tech-

nologies. By means of a collaborative environment, pertinent knowledge and intelli-

gence become available at the right place and time, in order to facilitate reaching the 

best maintenance decisions. However, the formalization of knowledge, information 

as well as preferences of the decision maker added to the high amount of data gen-

erated by sensing equipment concerns both academia and industry (Ruschel et al., 

2017). This fact reveals that there are still difficulties in handling and analysing this 

multitude of data in an efficient and meaningful way. 

Consequently, manufacturing companies are still reluctant to adopt novel 

technologies and information systems to a large extent for improving their mainte-

nance operations. This fact has led technology providers to narrow their develop-

ment efforts to real-time condition monitoring software or, less often, to diagnostic 
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and prognostic algorithms for specific use cases. In this way, they do not provide full 

exploitation of the large amounts of data generated by sensors in the direction of 

developing algorithms, methods and techniques for (near) real-time decision mak-

ing.  

Although there are lots of research works regarding decision making algo-

rithms for predictive maintenance, they are usually limited to specific problems, do-

mains and industries requiring Maintenance Planning and Scheduling and are appli-

cable under several assumptions. Consequently, their applicability in real industrial 

environments is limited, while they cannot be transferred to a different production 

process with similar challenges in a straightforward way.  

A large amount of works deals with optimization of inspection intervals ac-

cording to the actual reliability of the equipment. In this way, the aim is to conduct 

Reliability- and Degradation- based Decision Making for the definition of the in-

spection intervals. Although this is useful information, it does not exploit the availa-

bility of historical and real-time data and the information that can be extracted in 

order to recommend specific actions that should be applied by the engineers and the 

operators in order to significantly facilitate Maintenance Planning and Scheduling.  

Moreover, rarely the Reliability- and Degradation- based Decision Making 

algorithms take into account real-time prognostic information (e.g. prediction about 

a future failure) for generating (near) real-time recommendations. There is a loose 

integration between predictive analytics and decision making algorithms. The com-

mon practice is to utilize the current level of degradation that is derived from the 

analysis of the indicators measured by sensors along with expert knowledge. In addi-

tion, they rely on processing of batches of data at specific sampling times. To this 

end, there is the need for scalable and efficient (near) real-time decision making al-

gorithms. This aspect has both a technological (use of appropriate technologies, e.g. 

for streaming data) and a functional (use of appropriate decision models, e.g. recur-

sive and computationally efficient) perspective. 

Moreover, several decision making algorithms for predictive maintenance are 

based upon model-based prognostic algorithms instead of data-driven. Therefore, 
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the associated decision making algorithms are mainly knowledge-based due to the 

lack of data analytics exploitation. The stochastic nature of the degradation process 

makes decision making for predictive maintenance highly uncertain and complex. 

For this reason, a large amount of existing decision making algorithms utilize simula-

tion models or iterative solution procedures. Only the simple models get usually in-

volved with exact solutions (e.g. single machine). Moreover, sometimes simulation is 

combined with more advanced optimization techniques (e.g. genetic algorithms, 

simulated annealing) in order to decrease the computational effort and provide 

more reliable results. 

There is a gap in literature regarding generic decision models representing 

the decision making process instead of the physical process. Moreover, there is a gap 

regarding the use of probabilistic methods in a streaming context with the aim to 

tackle with uncertainty. However, there is a clear trend in literature, currently mainly 

at a conceptual level, towards less human intervention in decision making by con-

ducting advanced analytics for big data with self-learning capabilities by observing 

the largest number of data and information extracted directly from the machinery, in 

relation to the information based on the expert judgment. 

Several algorithms aim to reduce maintenance costs using Maintenance Cost 

and Risk Estimation and Optimization approaches, however without taking into ac-

count other parameters such as the availability of the equipment, the total cost of 

production, the available inventory of maintenance spare parts, the transportation 

costs, the quality defects, the safety of operations, etc. In this way, it is possible to 

achieve the costs reduction in the maintenance actions, but negatively impacting on 

other objectives. This fact has led to the emergence of Joint Optimization approach-

es aiming to improve the overall business performance or at least optimize certain 

objectives apart from maintenance costs. For example, the downtime of the system 

might be influenced by logistical delays and a reduction in inventory cost can have an 

indirect benefit to predictive maintenance operations. 

More sophisticated decision making algorithms have also been developed in 

order to represent the actual manufacturing systems, i.e. Multi-State and Multi-

Component Systems Optimization. These research works are far less than the ones 
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regarding single component systems; however, the decision making algorithms for 

single-component systems cannot be properly applied to multi-component systems. 

Multi-component systems aim to consider various categories of dependencies 

among components. However, the fact that they are specific to the equipment or to 

the manufacturing process as well as their increased complexity pose challenges in 

their implementation in the context of a sensor-driven manufacturing environment. 

The majority of the Maintenance Planning and Scheduling, Joint Optimiza-

tion and Maintenance Cost and Risk Estimation and Optimization algorithms rely on 

the assumption of perfect maintenance or replacement, without considering various 

degrees of maintenance, e.g. recommending maintenance actions with different cost 

functions and impacts on equipment lifetime. 

In the dynamic, sensor-driven manufacturing environment of Industry 4.0, a 

problem setting normally changes rapidly. This is a crucial step towards reliability of 

information, since an increase in reliability of these algorithms also leads to more 

accurate recommendations for maintenance actions. Although feedback mecha-

nisms for continuous improvement and learning of the diagnostic and prognostic 

algorithms have been well perceived by academia and industry, mechanisms for 

tracking the suggested recommendations and for continuously improve the decision 

algorithms is an underexplored area. Currently, machine learning methods for updat-

ing the decision models have not been widely investigated in literature. 

2.3.4 E-maintenance  

E-maintenance has been increasingly used in many organizations in recent years, 

particularly in the USA and Europe not only because it reduces business risks, but 

also as a value-adding process in today’s competitive business environment (Aboel-

maged, 2015).  Information and Communication Technologies (ICTs) are transform-

ing the way systems are maintained, they provide the support to generate more sys-

tems behaviour knowledge and to introduce new tools and processes for a more 

proactive maintenance (Guillen et al., 2016). This maintenance support, has been 

defined as E-Maintenance (Muller et al., 2008): “Maintenance support which in-
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cludes the resources, services and management necessary to enable proactive deci-

sion process execution. This support includes e-technologies (i.e. ICT, Web- based, 

tether-free, wireless, infotronics technologies) but also, e-maintenance activities 

(operations or processes) such as e-monitoring, e-diagnosis, e-prognosis, etc.” E-

maintenance provides a new working context extending the service maintenance to 

a knowledge-driven organization, where the information flows integrating diverse 

processes (especially those related with monitoring and CBM), knowledge providers 

(technicians of the service provider, machinery builder/engineers/ technicians, and 

operators on field), and expert/decision support systems (intelligent systems). This 

includes the intelligent maintenance systems concept (Espindola et al., 2013; Guillen 

et al., 2016). 

E-maintenance refers to the convergence of emerging information and commu-

nication technologies with information systems which take into account the re-

sources, services and management to enable decision making in a proactive way 

(Muller et al, 2008a). E-maintenance has become important in the last years due to 

the emergence of technologies which are able to optimize maintenance-related 

workflows and the integration of business performance, which enable openness and 

interoperation of e-maintenance with other components of e-enterprise (Iung et al., 

2009). This support does not include only technologies, but also operations and pro-

cesses related to maintenance such as condition monitoring, diagnostics, prognos-

tics, etc. (Muller et al., 2008a; Muller et al., 2008b; Irigaray et al., 2009; Levrat and 

Iung, 2007). E-maintenance is considered not only in production and operation stag-

es but also as an integral part of the whole lifecycle management (Takata et al., 

2004; Iung et al., 2009).  

Despite the potential applications of e-maintenance, a number of issues need to 

be considered to successfully implement e-maintenance system in various contexts 

(Aboelmaged, 2015). Though e-maintenance research has grown rapidly over the 

past decade, there has been lack of emphasis on developing conceptual frameworks 

that integrate fragmented key themes within e-maintenance research stream. In the 

same vein, Kajko-Mattsson et al. (2011) indicated that e-maintenance research is still 

immature and suffers from lack of common definitions, lack of sound and widely ac-
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cepted underlying theories, vague usage scope, and lack of commonly defined com-

ponents inherent in the e-maintenance. Although literature on e-maintenance has 

debated the concept from various views with little consensus, careful content analy-

sis of e-maintenance definitions reveal two key perspectives; managerial and engi-

neering. The managerial perspective focuses e-maintenance as a strategy (e.g. 

Hausladen and Bechheim, 2004; Lee et al., 2006; Levrat et al., 2008; Muller et al., 

2008b) or a set of supporting activities and processes such as monitoring, diagnosis, 

and prognosis of real-time system health data (e.g. Candell et al., 2009; Ucar and 

Qiu, 2005). Alternatively, engineering perspective emphasizes the role of infor-

mation and communication technologies such as intelligent sensors, channels, soft-

ware solutions, and e-collaboration methods that configure e-maintenance system 

(e.g. Han and Yang, 2006, Bangemann et al., 2006; Tao et al., 2003; Pistofidis et al., 

2012). 

Consequently, common characteristics of e-maintenance approach can be syn-

thesized as follows (Aboelmaged, 2015): 

 e-maintenance is a strategy 

 e-maintenance supports decision making at different organizational levels 

 e-maintenance has great opportunities for cost-effective decisions to be 

made 

 e-maintenance integrates maintenance principles with e-business or e-

technologies applications (e.g. telecommunications, web services, mobile, 

wireless and portable devices, and other means of electronic collaboration) 

 e-maintenance monitors and manages systems and assets over the internet 

 e-maintenance integrates production and maintenance operations systems 

 e-maintenance collects feedback from remote customer sites and integrates 

it to upper level enterprise applications 

 e-maintenance generates dynamic and real-time maintenance information 

that enables knowledge application for assets and production systems 
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 e-maintenance includes scientific approaches and methodologies that prog-

nosis system’s well-being and increases its productivity for better competi-

tiveness. 

 
To deal with the challenges arising out of high volume of data generated by ma-

chines in Industry 4.0 scenario, big data and advanced tools are developed and im-

plemented so that data can be systematically processed into information and facili-

tate decision-making with more information in real time. However, the design of e-

maintenance solutions remains a task with several challenges: 

 Organizational Challenges: These challenges mainly focus on enterprise 

resource management related aspects like (1) organizations restructuring 

for those involved in maintenance, (2) resource planning (e.g. spare part, 

material, etc.), (3) information management, (4) management of hetero-

geneous organizations and (5) knowledge management. 

 Architectural Challenges: Challenges dealing with the issues of the archi-

tecture of eMaintenance solutions, like (1) developing framework for 

eMaintenance development, (2) developing models for distributed pro-

cessing and analysis of data, (3) service model developmentfor distribut-

ed data analysis, (4) developing prognostic tool-based models, (5) model 

development for visualization of relevant data that supports interaction 

between human and machine, and (6) developing model for dispersed da-

ta storage capability. 

 Infrastructural Challenges: When services, according to SOA, are devel-

oped and implemented, infrastructural challenges arise to address to the 

issues pertaining to providing necessary tools and technologies required 

to meet the service needs and requirements. Some of these challenges 

include (1) wired/wireless network infrastructure, (2) service and user au-

thentication, (3) mechanism for safety and security, (4) maintainability of 

eMaintenance services, (5) availability performance management and 

tracing and tracking mechanism and (6) establishment of documentation 

and archiving mechanism. 
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 Content and Contextual Challenges: There are those challenges that are 

connected with the data sourced from eMaintenance services, like (1) es-

tablishing appropriate ontology through which data from data sources 

(e.g. process, product, condition monitoring and business data) are inte-

grated smoothly, 2) providing quality assurance mechanism so as to in-

crease decision-making quality, (3) providing mechanism to establish us-

er’s current situation so as to adapt information to user’s context, (4) 

mechanism to manage uncertainty in data sets, (5) mechanism for de-

scribing various context and (6) for pattern recognition. 

 Integration Challenges: Coordination, integration and orchestration of 

services and data managed by eMaintenance solution raises integration 

challenges like (1) service management, interaction and interactivity, (2) 

management of configurations and (3) enablement of integration capabil-

ity across a multiplatform and technologies. 

Failure of critical assets was rated as the most significant risk to operational per-

formance. This fact has led to an increasing demand for predictive maintenance in-

formation systems and technologies for preventing asset failure, detecting quality 

issues, improving operational processes, etc. To this end, several software compa-

nies have developed systems for predictive maintenance-related aspects (e.g. IBM: 

Predictive Maintenance, SAP: Predictive Maintenance and Service, Software AG: IoT 

Predictive Maintenance, BOSCH: Predictive Maintenance, SAS: The Early Warning 

Project on Predictive Maintenance). Moreover, several research projects resulted in 

e-maintenance prototypes. The development of e-maintenance prototype systems 

can be distinguished in two chronological periods which also have different charac-

teristics. The first wave of appearance, development and deployment of e-

maintenance concepts and prototypes in the context of research projects was during 

the period 2003-2008, see e.g. Watchdog Agent (Djurdjanovic et al., 2003) in the in-

ternational research project “Embedded Watchdog Agent/ Lifecycle Unit 

(EWA/LCU)”, TELMA Platform (Iung, 2003; Levrat and Iung, 2007; Levrat et al., 2008) 

in “DYNAMITE” EU project and PROTEUS (Szymanski et al., 2003; Bangemann et al., 

2006) in the PROTEUS project. The second wave of emerging e-maintenance para-
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digms appeared in 2014 and is still evolving in the context of national and EU pro-

jects (e.g. SUPREME, iMain, RepAIR, MANTIS, preInO, UPTIME). The second wave 

appeared due to the emerging opportunities of the industrial IoT, big data infrastruc-

tures and communication devices, but also due to the increasing financial pressures 

which have led to a significant demand of eliminating maintenance costs by optimiz-

ing business performance.  

2.4 Proactive Computing 

2.4.1 Proactivity in Information Systems 

Most applications currently supported by event processing platforms are reactive 

by nature. There have been various research efforts reported on proactive event-

driven computing providing promising results in terms of processes optimization in 

the areas of compliance (Thullneret al., 2011), network management (Fu, and Xu, 

2010), task execution (Hocheol et al., 2010), traffic management (Artikis et al., 2014; 

Wang, and Cao, 2014), healthcare (He et al., 2017), logistics (Feldman et al., 2013), 

credit card fraud management (Artikis et al., 2014) and industrial maintenance appli-

cations (Sejdovic, and Kleiner, 2016). However, they developed conceptual or ad-hoc 

models that are not easily reused for other purposes. The underlying motivation of 

proactive computing stems from social and economic factors, and is based on the 

fact that prevention is often more effective than cure. 

The term proactive computing was first introduced by Tennenhouse (2000). 

However, anticipatory systems can be considered as the origin of proactive compu-

ting. Rosen in 1985 defined the anticipatory system as “A system containing a predic-

tive model of itself and/or its environment, which allows it to change state at an in-

stant in accord with the model’s predictions pertaining to a later instant” (Rosen, 

2012). Although the contexts in which questions such as “what should we do now?” 

are posed are different, they are all alike in their fundamental concern with the mak-

ing of policy, and the associated notions of forecasting the future and planning for it 

(Louie, 2010; Nadin, 2016). A reactive system can only react, in the present, to 
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changes that have already occurred in the causal chain, while an anticipatory sys-

tem’s present behavior involves aspects of past, present, and future (Louie, 2010). 

The presence of a predictive model serves precisely to pull the future into the pre-

sent; a system with a ‘‘good’’ model thus behaves in many ways as if it can anticipate 

the future. Model-based behavior requires an entirely new paradigm, an ‘‘anticipa-

tory paradigm’’, to accommodate it. This paradigm extends – but does not replace – 

the ‘‘reactive paradigm’’ which has dominated the study of natural systems (Nadin, 

2016).  

According to Tennenhouse, proactive computing describes the evolution away 

from interactive computing, i.e., from classical human-centered workstation settings 

to human-(un)supervised pervasive computing scenarios. Tennnehouse’s two princi-

ples were: getting human above the loop (instead of in the loop) of computing, and 

respond to human stimuli faster than human abilities. Tennenhouse’s proactive term 

overlaps with the term autonomic computing that emerged later, however it charac-

terizes both systems that exhibit reactive behavior, in the sense that they react to 

event that already happened; proactive behavior is about dealing with events before 

they happen. Tennenhouse conducted a fundamental re-examination of the bounda-

ry between the physical and virtual worlds; changes in the time constants at which 

computation is applied; and movement from human-centered to human-supervised 

(or even unsupervised) computing. He identified three main requirements for proac-

tive systems: 

 Getting physical. Proactive systems will be intimately connected to the world 

around them, using sensors and actuators to both monitor and shape their 

physical surroundings. Research into “getting worked systems to their envi-

ronments.  

 Getting real. Proactive computers will routinely respond to external stimuli at 

faster-than-human speeds. Research in this area must bridge the gap be-

tween control theory and computer science in the form of software- and 

network-enabled control (e.g.  control regimens that tolerate statistical varia-

tions in component availability and connectivity). 
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 Getting out. Interactive computing deliberately places human beings in the 

loop. However, shrinking time constants and sheer numbers demand re-

search into proactive modes of operation in which humans are above the 

loop. 

 
Want et al. (2003) further discuss proactive computing as well as the differences 

to autonomic computing. The aim of proactive computing is unobtrusive systems 

that connect to the physical world and require as little human interaction as possi-

ble. Further, they should anticipate the user's needs and act on his/ her behalf. The 

authors identify seven principles as foundations of proactive systems: connecting 

with the physical world, deep networking, macro-processing, dealing with uncertain-

ty, anticipation, closing the control loop, and making systems personal. Despite lead-

ing to similar techniques, autonomic computing, in contrast, describes the discipline 

of managing the complexity of a heterogeneous system through appropriate system 

design principles. Salovaara, and Oulasvirta (2004) discuss the general concept of 

proactive computing. They suggest that a system can act proactively, if it has a hy-

pothesis about what its user's goals are. In order to achieve these goals, the system 

makes use of different resources. The authors present a classification of six different 

types of proactive resource management in order to become a proactive system: 

preparation, optimization, advising, manipulation, inhibition, and finalization of us-

er's resources.  

Handte et al. (2012) describe proactivity from an adaptation perspective as modi-

fications of an application performed before an application can no longer be execut-

ed. Vansyckel et al. (2013) further included context adaptation as a necessity, in or-

der to be able to avoid having to adapt the application itself. As an example, in (Vain-

io et al., 2008), the system automatically adjusts the lighting of the environment 

based on what it anticipates the users desire is. Hence, it acts on the users behalf. 

However, it does so after it notices a change, i.e., in a reactive manner from an adap-

tation standpoint. Hence, proactive can refer to before the user acts, or before the 

triggering event happens, respectively. The main difference is that in order to act 
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before an event takes place, the system must have knowledge of that event and, 

hence, requires prediction.  

The evolution from responsive to reactive computing was achieved with the de-

velopment of models and tools to express and execute reactive systems in an easy 

way. This major breakthrough turned event-driven applications pervasive and part of 

the main-stream computing (Engel et al., 2012).  A similar evolution is necessary in 

order to enable pervasive use of proactive computing. Building on EDA, proactive 

event-driven computing is an evolving paradigm where a decision is neither made 

due to explicit requests nor as a response to events, but is triggered by real-time 

predictions about a future predicted event and is made under time constraints by 

exploiting large amounts of historical and streaming data (Engel et al., 2012).  

Proactivity refers to the ability to avoid or eliminate the impact of undesired fu-

ture events, or to exploit future opportunities, by applying predictive models com-

bined with real-time sensor data and automated decision making technologies (En-

gel et al., 2012). Consequently, proactivity in terms of information systems is driven 

by predictions, leading to in-creased situation awareness and decision making capa-

bilities ahead of time (Engel et al., 2012). In proactive event processing, a proactive 

situation deals with the prediction of a future undesired event based on real-time 

data streams and with decision making on the basis of the predicted event before it 

occurs. Therefore, proactive event pro-cessing must include the notion of a future 

event, the identification of predictive event patterns, and possible courses of actions 

(Engel et al., 2012).  

The proactivity principle extends the reactive one underlying the Sensing Enter-

prise, referred in literature as sense-and-response (Elwany, and Gebraeel, 2008) or 

detect-and-act (Tao et al., 2014), to a new model of situational awareness, consisting 

of four phases: Detect, Predict, Decide, Act (Engel et al., 2012; RTInsights, 2016). 

Detect deals with monitoring the universe; a detection of the current indicators. 

Predict utilizes the current indicators in order to forecast that the system is going to 

a state outside the admissible state in the future if nothing changes. The Decide 

phase results in a real-time decision about the best way to eliminate or mitigate the 
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problem and stay within the admissible states. The Act phase has to do with the ac-

tual implementation of the action.  

According to Lundberg (2006), companies that are capable of analyzing their 

business operations based on the rapidly growing mass of data, of predicting the 

best proceeding process sequence, and proactively controlling their processes based 

on this knowledge will be a decisive step ahead of their competitors. This kind of 

company sketches the vision of a ‘‘Predictive Enterprise’’ as the next stage in the 

evolution of real-time enterprises within the age of data as a crucial competitive as-

set. 

PwC (2016) introduced the concept of “proactive organization”, mainly focusing 

on the services offered to customers. According to PwC, a proactive organization 

aims to identify and capture digital signals, to identify the right moment to offer ser-

vices and to identify the right mode of sevice delivery. Therefore, proactive organisa-

tions recognise the critical value of data and are continuously looking for new 

sources of data and ways of gaining meaningful insights from it. This data treatment 

should be subjected to privacy and confidentiality regulations and should be used for 

better decisions. 

Krumeich et al. (2016) proposed the concept of “prescriptive enterprise” and 

concluded in an architectural paradigm consisting of five layers: Integration Layer, 

dealing with Events, Transactions, Process Data and Big Data; Descriptive Analytics 

Layer, dealing with In-Memory Data Management and Connectivity; Predictive Ana-

lytics Layer, dealing with streaming analytics; Prescriptive Analytics Layer, dealing 

with real-time decisions; Adaptation Layer, dealing with intelligent actions and adap-

tation mechanisms. 

Several factors in today’s computing infrastructure open the door for this break-

through: (i) the growing availability of affordable and pervasive sensor technology, 

(ii) the spreading of broadband connectivity, and (iii) the developments in predictive 

analytics technology. The latter highlights a different angle to this process. Analytics 

has evolved from being merely descriptive (understanding of historical data), to be-

ing predictive (providing forecasts of future behavior). The next step is prescriptive 
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analytics, a term which stands for the use of data to prescribe the best course of ac-

tion to realize the best outcome (Russel, and Norvig, 2016). We can view the proac-

tive idea as the event-driven variation of prescriptive analytics; reactive computing, 

coupled with predictive analytics, yields the ability to react to events before they 

occur, which is the essence of proactive event-driven computing (Engel, and Etzion, 

2011). 

Proactive computing can enhance the concept of “Sensing Enterprise”. “Sensing 

Enterprise” refers to the ability of the enterprise to process information captured by 

sensors and to provide added value insights (Camarinha-Matos et al., 2013) by taking 

advantage of IoT advances such as advanced sensor fusion, faster wireless connectiv-

ity and real-time predictive analytics (Li et al., 2015). The sensing enterprise incorpo-

rates reactive behaviors, providing direct links between “stimuli” and actions (San-

tucci et al., 2012). To this end, EDAs are able to close the business - ICT gap by deliv-

ering appropriate business functionality and enabling interconnectivity at an object 

level (Potocnik, and Juric, 2014). However, most applications currently supported by 

event processing platforms are reactive by nature. Reactive event processing deals 

with detection of situations and reaction to them. A reactive situation is an event 

occurrence that might require a reaction (Engel et al., 2011).  

On the contrary, a proactive event-driven architecture combines advanced event 

processing with dynamic forecasting capabilities leveraged towards online optimisa-

tion and decision-making. The decisions are made in real time and require swift and 

immediate processing of Big Data, that is, extremely large amounts of noisy data 

flooding in from various locations, as well as historical data. The implementation of 

proactive event-driven computing in an enterprise context is shown in Figure 2-14. 

Achieving this vision requires novel research in three different directions (Artikis et 

al., 2012; Artikis et al., 2014; Fournier et al., 2015):  

 Dealing with large quantities of data. Massive volumes of historical data and 

massive streaming data have to be analyzed to forecast events. Most systems 

are not capable of handling big data in real-time because of scalability prob-

lems, the need to cleanse noisy data offline, or the difficulty in fusing differ-
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ent types of data coming from different sources online. The result is that 

most analyses are done on offline data, while online data is not leveraged for 

immediate operational decisions. 

 Extending the state-of-the-art in event processing to deal with future 

events and uncertainty due to incomplete and noisy streaming data. The 

ability to process past events and forecast future ones makes proactive sys-

tems a compelling application area. But, the uncertain nature of future 

events requires a major leap in event processing systems. 

 Devising methods for making near-optimal decision within time constraints. 

The decision about which is the best action to take in proactive computing 

has two properties that differ from most contemporary decision support sys-

tems: (1) the decision should be taken on-line and under real-time con-

straints, which may dictate the use of approximation techniques and (2) The 

decision often entails autonomic actions, rather than providing only recom-

mendations for human decision makers. 

 

 

Figure 2-14: Implementation of proactive event-driven computing in an enterprise context (RTInsights, 2016) 
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2.4.2 Event Processing 

In the context of the “Sensing Enterprise”, physical and virtual sensing devices 

such as sensors, actuators and controllers are able to observe changes in terms of 

the systems examined and their condition and to generate data in the form of 

events, which are then further processed by an appropriate information system (Da 

Xu et al., 2014). In addition, web-service communication technologies can be ex-

ploited in order to effectively integrate sensors into a multi-layered real-time big 

data architecture. To do this, the EDA paradigm is appropriate for closing the ICT-

business gap. 

In recent years, there are several attempts of coupling event processing archi-

tecttures with proactive computing for overcoming challenges of efficiency and 

scalability. IoT aims to connect different things over the networks. As a key technol-

ogy in integrating heterogeneous systems or devices, Service-Oriented Architecture 

(SOA) can be applied to support IoT. The architectural design of IoT is concerned 

with architecture styles, networking and communication, smart objects, Web ser-

vices and applications, business models and corresponding process, cooperative data 

processing, security, etc. (Da Xu, et al., 2014). From the technology perspective, the 

design of an IoT architecture needs to consider extensibility, scalability, modularity, 

and interoperability among heterogeneous devices.  

As things might move or need real-time interaction with their environment, an 

adaptive architecture is needed to help devices dynamically interact with other 

things. The decentralized and heterogeneous nature of IoT requires that the archi-

tecture provides IoT efficient event-driven capability. Thus, SOA is considered an ef-

fective approach to achieve interoperability between heterogeneous devices in a 

multitude of way (Xu, 2011; Miorandi, et al., 2012; Da Xu, et al., 2014). Designing a 

SOA for IoT is a big challenge, in which service-based things might suffer from per-

formance and cost limitations. In addition, scalability issues often arise as more and 

more physical objects are connected to the network. When the number of things is 

large, scalability is problematic at different levels including data transfer and net-
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working, data processing and management, and service provisioning (Miorandi et al., 

2012). 

2.4.2.1 Service-Oriented Architecture (SOA) and Event-Driven Architecture 

(EDA) 

In recent years there has been much use of the terms Event-Driven Architecture 

(EDA) and SOA. SOA is a distributed software architecture where self-contained ap-

plications expose themselves as services, which other applications can connect to 

and use. To reach its full potential, SOA applications should be self-describing, dis-

coverable, and platform- and language-independent (Papazoglou, 2008). This leads 

to loose coupling and high flexibility. The adoption of SOA in a company typically 

starts as an IT initiative to improve infrastructure efficiency and can then mature into 

optimised use for business purposes. One of the most common ways to implement 

SOAs are web services (De Prado et al., 2017). Web services are self-descriptive 

software modules which can be accessed through a net and which develop a task 

facilitating machine to machine interoperability (Papazoglou, 2008).  

REST web services emerged as an alternative to more traditional SOAP web ser-

vices. REST is an architectural style for distributed hypermedia systems where ser-

vices provide resources identified by URLs (Fielding, and Taylor, 2000). Communica-

tions between REST services and their clients take place using HTTP main operations, 

mainly GET, POST, PUT and DELETE. With the growth of service components and 

processes in service oriented applications, a new service infrastructure is required 

for maintaining applications in a flexible way. This infrastructure must support well-

known web service standards and provide support for a message middleware (Pa-

pazoglou, 2008). These requirements are ful lled by an ESB. An ESB provides services 

to complex architectures through a messaging system, supplying interoperability 

among diverse applications and components through standard interfaces; that al-

lows applications to be offered as services in the ESB (De Prado et al., 2017). 

Event-based programming, also called EDA is an architectural style in which one 

or more components in a software system execute in response to receiving one or 
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more event notifications (Etzion et al., 2011). An event is an indication of something 

that has already happened, whereas a request, expresses the requestor’s wish that 

something specific should happen in the future (Luckham, 2002). In a decoupled 

event processing system, an event producer does not depend on a particular pro-

cessing or course of action being taken by an event consumer (Etzion et al., 2011). 

Moreover, an event consumer does not depend on processing performed by the 

producer other than the production of the event itself. In a decoupled system there 

can be more than one consumer of an event, and the action taken can vary signifi-

cantly among consumers (Etzion et al., 2011). It can also vary during the lifetime of 

the application. As an event producer does not know what an event consumer is go-

ing to do with an event, or even how many consumers there are, it usually does not 

make sense for the event producer to expect a response to its events (Etzion et al., 

2011). 

SOA and EDA were considered to be different architectures. However, there is a 

consensus during the last years. In this way, they are not considered to indicate al-

ternative architectures but it is possible to use event processing within an overall 

SOA. In other words, EDA can complement SOA because services can be activated by 

triggers fired on incoming events (Luckham, 2012). For this reason, there have been 

several attempts for the development of SOA 2.0 (also called advanced SOA or 

event-driven SOA) that focuses on events, inspired by EDA (De Prado et al., 2017). 

Even though SOA conceptually offers loose coupling and is intended to be dis-

tributed, service orchestration is typically done centrally, with the orchestrator tak-

ing control of the involved services. EDA is extremely loosely coupled and highly dis-

tributed by design. An event creator only needs to know that the event occurred, it 

does not need to know anything about who is interested in the event or how it will 

be processed (Engel et al., 2011). With EDA, applications turn from synchronised and 

blocking to asynchronous and non-blocking (Engel et al., 2011). 

In fact the term event-driven SOA is now used by some analysts and vendors to 

denote the combination of EDA and SOA.  An event-based programming approach 

can be mixed with request-response components in a SOA in two ways (De Prado et 
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al., 2017): (i) It is possible for a component to implement both approaches. In other 

words, it can provide or consume a request-response interface and also be an event 

producer or event consumer. (ii) The SOA infrastructure that hosts the SOA compo-

nents can provide instrumentation that produces events on behalf of request-

response style services. 

2.4.2.2 Main concepts of event processing 

EDAs and conceptual models that support them have evolved in the last several 

years, departing from the traditional computing architectures which employ syn-

chronous, request-response interactions between client and servers. This is a para-

digm shift in two senses (Engel et al., 2012): first, event driven architectures support 

applications that are reactive in nature, in which processing is triggered in response 

to events, contrary to traditional responsive applications, in which processing is done 

in response to an explicit request. Second, event driven architecture adhere to the 

decoupling principle, in which there are event producers, event consumers and 

event processing agents that are mutually independent. Figure 2-15 shows an illus-

tration of such architecture, showing the logical separation of event processing logic 

from the event producers and event consumers (Etzion, and Niblett, 2010). 

 

Figure 2-15: The major architectural components of event processing architecture (Etzion, and Niblett, 2010) 

An EDA consists of event producers and event consumers, while it also incorpo-

rates event processing agents and an event processing network (Etzion, and Niblett, 

2010). An event producer is an entity at the edge of an event processing system that 

introduces events into the system. An event consumer is an entity at the edge of an 
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event processing system that receives events from the system. An event processing 

agent is a software module that processes events. An event processing network 

(EPN) is a collection of event processing agents, producers, consumers, and global 

state elements connected by a collection of channels. An example showing the event 

processing components is depicted in Figure 2-16. 

 

Figure 2-16: An example of an Event Processing Network (EPN). (Etzion, and Niblett, 2010) 

An event stream (or stream) is a set of associated events. It is often a temporally 

totally ordered set (that is to say, there is a well-defined timestamp-based order to 

the events in the stream). A stream in which all the events must be of the same type 

is called a homogeneous event stream; a stream in which the events may be of dif-

ferent types is referred to as a heterogeneous event stream. Streams can be a con-

venient way to think of and model an event processing application. Some event pro-

cessing systems make the stream their major abstraction. It can be more natural to 

think of an event processing agent as operating on an entire stream of events, rather 

than as operating on each event one by one. 

An event processing building block represents an event processing concept and is 

used to create platform-independent definition elements, which are implementation 

neutral instances of this building block (Etzion, and Niblett, 2010). For example, we 

can use the event type building block to create implementation-neutral representa-

tions of the event types needed by an application such as the Delivery Request event 
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type used in the Fast Flower Delivery application. Each application is made up of a 

collection of these definition elements, customized to perform a particular role and 

connected together to form an event processing network. When the application is 

implemented, these platform-independent definition elements have to be translated 

into one or more platform-specific runtime artifacts, using platform-specific tools. 

Any event-driven application will involve one or more different types of events 

and, as its name suggests, the event type building block allows us to describe these 

types (Etzion, and Niblett, 2010). This building block defines the structure of an 

event (this is sometimes called an event schema) along with some of its semantics. 

The event producer and event consumer building blocks are used to represent the 

concepts of the same name. The event producer represents an application entity 

that emits events into the EPN, and the event consumer an application entity that 

receives them. These building blocks model only those bits of the behavior of the 

event producer or consumer that are visible to other components of an event pro-

cessing network. So the event producer building block does not specify how an event 

producer instance actually comes to emit an event, and the event consumer building 

block does not specify what an event consumer instance does when it consumes an 

event. The event producer or event consumer definition element can represent ei-

ther a single producer or consumer instance, or a whole class of such instances. In 

some applications there might be just one instance of the producer (for example, if 

the producer is a firewall router raising alert events); in other cases there might be 

many instances (for example, smoke detectors in a building). Where there are many 

instances it would be tedious to require every one to be represented by a separate 

definition element. 

The event processing agent building block represents a piece of intermediary 

event processing logic inserted between event producers and event consumers. In 

contrast to the event producer and event consumer, the event processing agent 

building block models the behavior of the agents built from it (Etzion, and Niblett, 

2010). EPAs are further refined into types, as shown in Figure 2-17. 
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An event channel’s principal job is to route events between event producers and 

event consumers. Apart from the five building blocks already introduced, there are 

two further building blocks (Etzion, and Niblett, 2010): the context building block and 

the global state element building block. A context element collects a set of condi-

tions from various dimensions (temporal, spatial, segmentation-oriented, and state-

oriented), giving us a way to categorize event instances so that they can be routed to 

appropriate agent instances. For example, you can use a segmentation-oriented con-

text to make sure that events relating to different customers are handled by differ-

ent event processing agent instances. A global state element refers to data that is 

available for use both by event processing agents and by contexts. This data may be 

system-wide global variables, reference data used to enrich events, and event stores 

that hold past events. The seven fundamental building blocks of event processing are 

shown in Figure 2-18. 

 

Figure 2-17: Event Processing Agent Types (Etzion, and Niblett, 2010) 

It is not surprising that there is a pressing need for real-time recognition of 

events in the multitude of data that is being recorded and processed. This require-

ment may be addressed by employing recognition systems that detect situations or 

events of special significance within an organization, given streams of `low-level' in-

formation that are very difficult to be utilized by humans. The vast majority of to-

day's event processing systems focus on the efficiency of reasoning algorithms. 

However, these don't take into account the various types of uncertainty that exist in 
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most applications (Engel et al., 2012). As big data applications, many of the emerging 

event processing systems are required to process events that arrive from sources 

such as sensors and social media, which have inherent uncertainties associated with 

them. In these cases, the streams of events may be incomplete or inaccurate, for 

example, regarding the time and location of events. 

 

Figure 2-18: The fundamental building blocks of event processing (Etzion, and Niblett, 2010) 

2.5 Synthesis of Literature Review 

The emergence of the Internet of Things (IoT) has paved the way for enhancing 

the monitoring capabilities of enterprises with the extensive use of physical and vir-

tual sensors. Taking advantage of the big data generated from a large amount of 

sensors requires the development of event monitoring and data processing systems 

that are able to handle real-time data in complex, dynamic environments in order to 

get meaningful insights about business performance and increase data analytics ma-

turity. The EDA paradigm strongly contributes to the development of monitoring and 

control architecture, enabling interconnectivity at an object level, and consequently 

impacting e-maintenance platforms (Karim, 2009). 

To this end, proactive event-driven computing leads to the possibility to decide 

and act ahead of time, i.e., to be proactive in resolving problems before they appear 

or realizing opportunities before they become evident and be able to recover and 
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support continuity according to the “Detect, Predict, Decide, Act” proactive pattern 

(Engel et al., 2012). The need for a business turning from reactive to proactive is in-

creasing. Proactive enterprise leads to increased situation awareness capabilities 

ahead of time. This leads to a new class of enterprise systems, proactive systems, 

that will be continuously aware of that what “might happen” in the relevant business 

context and optimize their behavior to achieve what “should be the best action” 

even during stress and balancing on demanding margins. The manufacturing domain, 

and especially the maintenance operations, can significantly benefit from the “Proac-

tive Enterprise” concept.  

Maintenance operations are a major part of the total operating costs. Studies 

show that approximately 60% of all the manufacturing equipment fails prematurely 

after the implementation of corrective maintenance actions (Karim et al., 2009). In-

sufficient maintenance management can result in equipment deterioration and qual-

ity defects which correspond to financial losses due to delays, customer complaints, 

and purchasing of new equipment spare parts (Ollila and Malmipuro, 1999).  

Since manufacturers increasingly see maintenance as a strategic business func-

tion for maintenance costs, downtime reduction and asset lifecycle increase, it is no 

longer viewed as a "necessary evil". Manufacturers now have more alternatives than 

ever to employ a costly "run until it breaks" maintenance strategy, or an inefficient 

"fix it regardless" maintenance approach. To this end, Predictive Maintenance has 

been emerging during the last years in conjunction with the use of IoT-based condi-

tion monitoring technology and data analytics capabilities. Predictive maintenance is 

an evolving maintenance strategy that is increasingly gathering the interest of mod-

ern manufacturing companies. Various predictive maintenance frameworks have 

been proposed in both the industrial and academic realms. Based on the existing 

frameworks, predictive maintenance consists of four main steps: Signal Processing, 

Diagnosis, Prognosis, Decision Making. 

Moreover, since automation over available predictive maintenance services is 

crucial to build manufacturing value-driven solutions (Macchi et al., 2014; Camarin-

ha-Matos et al., 2013; Aboelmaged, 2015; Guillén et al., 2016), the e-maintenance 
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paradigm has become important in the last years due to the emergence of technolo-

gies which are able to optimize maintenance-related workflows and the integration 

of business performance, which enable openness and interoperation of e-

maintenance with other components of e-enterprise (Iung et al., 2009). E-

maintenance facilitates a higher degree of proactivity, supporting greater control 

and capacity to act on the systems, including efficiency and effectiveness of mainte-

nance plans monitoring (Muller et al., 2008; Guillen et al., 2016). This fact leads to 

the need of adopting “more proactive strategies” in maintenance management 

(Guillen et al., 2016). Although e-technologies provide several advantages, optimiza-

tion of e-maintenance benefits with the aim to improve the production system per-

formance requires not only technology, but also appropriate models, methods and 

methodologies (Muller et al., 2008b; Irigaray et al., 2009).  

The future factory will take advantage of new capabilities and will enable the re-

alization of sophisticated approaches based on the collaboration of devices, network 

services within the single enterprise and among enterprises (Cannata et al., 2010). 

This is a key issue especially for the maintenance; however, two main challenges 

should be overcome (Cannata et al., 2010): (i) Interoperability: several e-

maintenance platforms are based on proprietary technologies, which implies higher 

costs and slow market adoption, since implementation costs and time are required; 

(ii) Scalability and flexibility: due to rapidly changing market and to on-going trend 

towards flexible and adaptive factories, there is a need for scalable platforms in or-

der to effectively support the changing conditions.  

Currently, there is still a lack of services and tools capable of efficiently pro-

cessing real-time big data from heterogeneous sources, implementing complex algo-

rithms and provide meaningful insights about potential problems along with a con-

tinuous self-improvement approach (Camarinha-Matos et al., 2013). The capabilities 

of proactive event-driven decision making have not been examined in manufacturing 

operations, due to several challenges associated to large scale, big data-driven en-

terprise environments as well as due to the lack of appropriate algorithms. Moreo-

ver, there is a large gap for the effective implementation of predictive maintenance 

programs extensively in industry, mainly due to the complexity of these solutions 
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and their life cycle and thus, due to the challenges in their practical implementation 

(Guillen et al., 2016).  

Existing solutions suffer from several limitations: (i) Most of them focus on prod-

uct maintenance, i.e. on the service stage of the Product Lifecycle Management 

(PLM) (e.g. warranty failures) and not on industrial maintenance, i.e. on the manu-

facturing stage of the PLM; (ii) They are mainly based upon physical, domain-specific 

models that are not easily extensible for other equipment or for other industries; (iii) 

They rarely exploit big data processing infrastructures for real-time, sensor data, 

since they usually use batches of data, while the level of data analytics maturity is 

usually low; (iv) Each one of them focuses on a specific aspect (e.g. condition moni-

toring, diagnostics, etc.) instead of having a unified approach for covering all the 

phases and industrial operations-related aspects. 
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3 Towards Proactive Maintenance           

Management 

In this Chapter, the research questions are formulated and the thesis is present-

ed. More specifically, the research questions along with their constituting parame-

ters are described and an outline of the proposed solution is presented. 

3.1 Introduction 

Maintenance strategies have been evolving throughout the years towards more 

efficient ones by taking advantage of the development of technologies and infor-

mation systems. Figure 3-1 shows the evolution maintenance strategies which lead 

to a higher positive impact on business performance, but also to a higher demand 

for increasing data analytics maturity. 

 

Figure 3-1: The evolution of maintenance strategies 

Proactive Maintenance, which is the proposal of the current thesis, incorporates 

condition monitoring equipment, sensors and actuators generating huge amounts of 

real-time data. This IoT-based environment requires scalable and efficient methods, 

algorithms and systems for big data processing. It also takes advantage of the e-
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maintenance concept in order to enable proactive decision process execution with 

appropriate decision models and algorithms. In this way, there is an increased level 

of data analytics maturity, since they result in specific recommendations for mainte-

nance optimization. In addition, the methods and algorithms used in Proactive 

Maintenance information systems can take into account other manufacturing opera-

tions as well in order to result in an optimized business performance. 

3.2 Research Questions 

This Section presents the four research questions of the current thesis. Table 3-1 

outlines these research questions and their constituting parameters. 

Table 3-1: Research Questions and their Parameters 

Research Questions Parameters 

What is the next genera-

tion of maintenance in an 

IoT-based industrial envi-

ronment? 

 How to support a novel lever of maintenance management 

in an IoT-based industrial environment? 

 How to develop a generic maintenance framework taking 

into account the most recent advancements in mainte-

nance management and computer science? 

 What new aspects should be investigated in order to ena-

ble the aforementioned framework’s implementation? 

How to support proactive 

decision making in 

maintenance operations? 

 How to support real-time, event-driven proactive decision 

making in maintenance operations?   

 What are the interactions of maintenance management 

with other industrial operations? 

 What decision methods and technical requirements are 

needed? 

How to conduct continu-

ous improvement of pro-

active decision making? 

 How to improve the accuracy of the cost-related input pa-

rameters of the decision methods and thus, the reliability 

of the generated recommendations themselves in an 

event-driven infrastructure?  

 How to provide meaningful visualization and real-time 

monitoring of the actual cost performance? 

How to incorporate con-

text-awareness in proac-

tive decision making and 

actions implementation? 

 How to consider operations-related context in mainte-

nance optimization?  

 How to consider context-aware costs under uncertainty in 

a real-time, event-driven computational environment? 
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3.2.1 Research Question 1: What is the next generation of maintenance in 

an IoT-based industrial environment? 

Existing modern maintenance solutions suffer from several limitations: (i) Most 

of them focus on product maintenance, i.e. on the service stage of the Product 

Lifecycle Management (PLM) (e.g. warranty failures) and not on industrial mainte-

nance, i.e. on the manufacturing stage of the PLM; (ii) They are mainly based upon 

physical, domain-specific models that are not easily extensible for other equipment 

or for other industries; (iii) They rarely exploit big data processing infrastructures for 

real-time, sensor data, since they usually use batches of data, while the level of data 

analytics maturity is usually low; (iv) Each one of them focuses on a specific aspect of 

maintenance (e.g. condition monitoring, diagnostics, etc.) instead of having a unified 

approach for covering all the phases and industrial operations-related aspects; (v) 

They have been described at an abstract conceptual level with no practical applica-

tions as a result of the high complexity of maintenance solutions; (vi) They have not 

been validated in an industrial environment as a result of manufacturing companies’ 

reluctancy or aversion to change. 

To this end, the current thesis aims to explicitly define the next generation of 

maintenance management by converging and synthesizing predictive maintenance, 

proactive computing, Industry 4.0, IoT, Big Data and the ISO 13374 as implemented 

to MIMOSA OSA-CBM. For this reason, it will examine its key characteristics, the ad-

vancements in technologies and information systems engineering to be exploited 

and will conclude to a generic conceptual architecture that can be seen as blueprint 

for maintenance applications in a sensor-driven, big data-rich industrial environ-

ment. Finally, it will identify the most developed aspects of Proactive Maintenance 

and will identify the gaps that should be addressed. The answer to this research 

question will enable to have a common understanding and will facilitate Proactive 

Maintenance implementation in modern manufacturing firms.  
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3.2.2 Research Question 2: How to support proactive decision making in 

maintenance operations? 

Automation of maintenance decisions on the basis of real-time sensor-driven 

prognostic information is an unexplored area. Existing works provide only a diagnos-

tic or a prognostic output, while they rely on processing of batches of data and not 

on real-time, event-driven information. In addition, several research works in proac-

tive computing have only been described conceptually and have not been embedded 

in a real-time, event-driven environment. The convergence of maintenance man-

agement and proactive event-driven computing in the frame of Industry 4.0 can sig-

nificantly enable overcoming the aforementioned challenges.   

Following RQ1, the current thesis aims to fulfil the research gaps existing at the 

Decide phase of the “Detect- Predict-Decide- Act” proactivity principle in the context 

of maintenance decisions in conjunction with other interrelated operational deci-

sions. The Decide phase is still an unexplored area in terms of methods, models and 

technologies. Consequently, the current thesis aims to investigate and develop pro-

active decision methods capable of addressing maintenance-related aspects in a re-

al-time, event-driven infrastructure in order to provide proactive recommendations 

that can lead to expected losses minimization and improvement of the overall busi-

ness performance. Therefore, RQ2 can be analysed to the following questions: 

 How to support real-time, event-driven proactive decision making in 

manufacturing operations such as maintenance, spare parts inventory 

and supplier selection?   

 What decision methods and technical specifications are required?  

 What are the interactions of maintenance management with other indus-

trial operations? 

3.2.3 Research Question 3: How to conduct continuous improvement of pro-

active decision making? 

Proactive event-driven decision making is highly sensitive to its input parameters, 

especially to those related to cost.  Even slightly different action cost values com-
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pared to their actual ones may lead to the recommendation of a wrong (not optimal) 

action and/or timing for its implementation. Since cost related information may be 

either estimated by humans or measured through sensors, these deviations may oc-

cur due to user input’s inaccuracies or the quality of collected data (e.g. due to sen-

sor noise), respectively.  

To overcome the aforementioned problems associated with the inaccuracy of 

manually inserted cost-related information and the resulting inaccurate rec-

ommendations, there is the need for continuous learning of cost parameters by con-

sidering the actual costs incurred because of the action during the time period it is 

implemented. Moreover, the user should be able to monitor in real-time the actual 

operational performance in terms of costs. Therefore, RQ3 can be analysed to the 

following questions: 

 How to improve the accuracy of the cost-related input parameters of the 

decision methods and thus, the reliability of the generated recommenda-

tions themselves?  

 How to provide meaningful visualization and real-time monitoring of the 

actual cost performance? 

3.2.4 Research Question 4: How to incorporate context-awareness in proac-

tive decision making? 

The large amount of sensor-generated data leads to a strong demand for data-

driven, real-time systems capable of efficiently processing them, in order to get 

meaningful insights about potential problems. Proactive decision making requires 

context-awareness (Engel et al., 2011); however, the high frequency of the real-time 

events and the high uncertainty pose challenges to the efficient handling of context-

awareness.  

Context-awareness has been considered in detection (Detect phase) and predic-

tion (Predict phase) algorithms (Feng et al., 2009; Wan et al., 2014; Thaduri et al., 

2014; Galar et al., 2015; Schmidt et al., 2016), but not in decision making algorithms 

and especially in proactive event-driven decision methods, where there is uncertain-
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ty about the future state of the system examined. In this sense, they have focused 

on reactive applications rather than proactive ones. Consequently, RQ4 can be ana-

lysed to the following questions: 

 How to consider operations-related context in maintenance optimiza-

tion?  

 How to consider context-aware costs under uncertainty in a real-time, 

event-driven computational environment? 

3.3 The Thesis 

The proposed solution aims to fulfill the identified research gaps and thus, to an-

swer to the aforementioned research questions. The way with which the current 

thesis addresses the research questions are described in the following sections. Ta-

ble 3-2 shows the alignment of research questions with the thesis propositions along 

with the related publications and chapters (Chapters 4-7) of the current thesis. Chap-

ter 8 deals with the development of the associated information system. Chapter 9 

presents the deployment of the information system in industrial environment. Chap-

ter 10 presents the evaluation results, while Chapter 11 the lessons learned and the 

managerial implications of adopting the proposed approaches. 

The answers to the four Research Questions are outlined in Section 3.3.1.1, Sec-

tion 3.3.1.2, Section 3.3.1.3 and Section 3.3.1.4 respectively. It should be noted that 

Section 3.3.1.1 deals with the overall framework for Proactive Maintenance, while 

Section 3.3.1.2, Section 3.3.1.3 and Section 3.3.1.4 zoom in the proactive decision 

making aspects, after the generation of predictions. On the basis of the aforemen-

tioned framework for Proactive Maintenance, the literature review reveals there are 

various research works dealing with real-time data-driven diagnostic and prognostic 

algorithms and information systems. However, the appropriate decision making al-

gorithms are still unexplored providing a high potential for research with a high-

value impact. To this end, the current thesis deals with proactive decision making 

making in maintenance management, continuous improvement of proactive decision 

making and context-awareness in proactive decision making. Proactive decision mak-
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ing is addressed with the functionalities presented at the conceptual architecture of 

Figure 3-2 and explained in the respective answers of the research questions. 

Table 3-2: Alignment of Research Questions and Thesis Propositions 

Research Questions Thesis Proposition Related 

Publications 

Chapter 

What is the next generation of mainte-

nance in an IoT-based industrial envi-

ronment? 

Framework for Proac-

tive Maintenance 

j1, c1, c4, 

c5, c9, c13, 

c14 

4 

How to support proactive decision mak-

ing in maintenance operations? 

Proactive Decision 

Making 

j3, j4, c2, c3, 

c8, c10, c11, 

c12 

5 

How to conduct continuous improve-

ment of proactive decision making? 

Continuous Improve-

ment of Proactive De-

cision Making 

j3, c6, c10, 

c11 

6 

How to incorporate context-awareness in 

proactive decision making and actions 

implementation? 

Context-awareness in 

Pro-active Decision 

Making 

j3, c7, c11 7 

 

 

Figure 3-2: The Conceptual Architecture for Proactive Decision Making 
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3.3.1.1 Framework for Proactive Maintenance 

To exploit the capabilities that IoT, big data processing technologies and proac-

tive computing provided in the context of Industry 4.0, there is the need for a frame-

work that will be able to facilitate the implementation of maintenance in an IoT-

based industrial environment. To this end, a new generation of maintenance man-

agement is defined, i.e. Proactive Maintenance. Proactive Maintenance consists of 

the following phases: SENSE, DETECT, PREDICT, DECIDE, FMECA and ANALYZE. 

Proactive Maintenance goes beyond traditional definitions and specifications of 

CBM and predictive maintenance and outlines the maintenance operations in the 

frame of Industry 4.0. To this end, the concept of Proactive Maintenance is present-

ed. Moreover, the conceptual architecture of Proactive Maintenance is developed 

and its phases along with their inputs and outputs are defined. The Proactive 

Maintenance conceptual architecture is compatible with RAMI 4.0.  

3.3.1.2 Proactive Decision Making in Maintenance Management 

The aim is to address proactive decision making with Proactive Decision Meth-

ods capable of being embedded in a real-time, event-driven infrastructure triggered 

by sensor-generated data. At design-time, the users are able to select the most ap-

propriate decision method for mitigating predicted undesired events, on the basis of 

functional and non-functional requirements, as well as to enter domain knowledge 

with the aim to define the Decision Method Instance (DMI) Configuration. DMIs are 

specific instances of decision methods, corresponding to a predicted undesired event 

(e.g. a business failure). The concept of DMI allows the extension of the system with 

more decision methods addressing different problems. For each DMI, domain 

knowledge entered by users may include the alternative mitigating actions, their 

cost functions, the cost of the undesired event as well as the decision horizon. 

These decision methods should be able to provide real-time recommendations 

about optimal action(s) and optimal time for action(s) implementation on the basis 

of prediction events. Therefore, there is the need for development of such methods 

that deal with various maintenance-related operations in a manufacturing firm. 
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Moreover, they should be able to be incorporated in appropriate information sys-

tems that will be integrated with IoT devices through Detect and Predit systems. This 

thesis tackles with decisions about maintenance actions, joint maintenance and lo-

gistics actions and selection of maintenance spare parts’ suppliers. 

3.3.1.3 Continuous Improvement of Proactive Decision Making 

The aim is to address the continuous improvement of proactive decision making 

with an adaptation mechanism. Proactive event-driven decision making is highly sen-

sitive to its input parameters. The proposed approach, called Sensor-Enabled Feed-

back (SEF), gathers and processes sensor-generated data during actions implementa-

tion in order to improve the accuracy of the input parameters required by the proac-

tive decision methods and thus, the reliability of the generated recommendations. 

At design-time, through the DMI Configuration, the user is able to add additional 

parameters dedicated to the SEF mechanism. To this end, the user inserts the cost 

factors which each cost function consists of and maps each cost factor with the rele-

vant sensor (e.g. a cost factor about cost due to production loss in a manufacturing 

enterprise is mapped to a sensor measuring productivity). 

This approach is capable of being embedded in a big data infrastructure where 

sensors generate large amounts of data in the form of events.The SEF mechanism 

removes noise from sensor data and applies analytics techniques (i.e. curve fitting, 

anomaly detection) in order to derive the update parameter value. The role of SEF is 

twofold: (a) The user is informed online about the real-time estimated parameter 

(e.g. cost) along with the associated context before, during and after action imple-

mentation through the Online Monitoring functionality, and (b) The updated pa-

rameter value and the actual context within which it was obtained feed into the con-

text model in order to update it with the new knowledge for the next time a predic-

tion event is received and a recommendation is provided. 

3.3.1.4 Context- awareness in Proactive Decision Making 

The aim is to address context-awareness in proactive decision making with a 

probabilistic Context-aware Model that is updated through the SEF mechanism. Re-



Proactive Computing in Industrial Maintenance Decision Making 

104 
 

search on context-aware systems has focused on reactive applications rather than 

proactive ones, while it has focused on detection (Detect phase) and prediction 

(Predict phase) algorithms but not in decision making algorithms and especially in 

proactive event-driven decision methods. The context-awareness mechanism incor-

porates a machine learning approach for estimating the uncertain input parameters 

of proactive decision methods. 

At design-time, the context-aware model is enacted as soon as the user inserts 

the domain knowledge required during DMI Configuration along with the associated 

affecting context in order to create the constraints and the causal relationships be-

tween the contextual elements and the affected input parameters of the proative 

decision methods. The output feeds into the Proactive Decision Methods block, 

which is triggered by real-time prediction events. The machine learning methods are 

suitable for intelligent context-aware systems in order to handle uncertainty (Tha-

duri et al., 2017) about the future context as well as about the values of input pa-

rameters. The use of a probabilistic context-aware model overcomes the challenge 

of the uncertainty regarding the context at the recommended time for the action 

imple-mentation, since it is used for the input parameter risk estimation (e.g. cost 

risk). 
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4 Framework for Proactive Maintenance 

In this Chapter, the proposed framework for Proactive Maintenance is presented. 

This Chapter includes the definition and the description of the Proactive Mainte-

nance concept, as well as the overall conceptual architecture for Proactive Mainte-

nance.  

4.1 Definition of Proactive Maintenance 

Proactive Maintenance indicates the next generation of maintenance manage-

ment with the aim to contribute to the digital transformation of manufacturing en-

terprises from reactive to proactive. Alternatively, it could be defined as Condition-

based Predictive Maintenance in the frame of Industry 4.0. The term “predictive 

maintenance” that is often used does not necessarily include real-time condition 

monitoring through sensors. The term “Condition Based Maintenance” that is usually 

used does not necessarily include predictions, since it may refer to (near) real-time 

diagnostic outcomes, i.e. detection of the current condition. 

Proactive Maintenance is based upon four technological pillars: Industry 4.0, IoT, 

Big Data and Proactive Computing. To this end, Proactive Maintenance is a new 

maintenance strategy that is based to a large extent on the IoT technologies and re-

al-time information systems. It takes advantage of the industrial IoT infrastructure, 

sensor-generated big data processing technologies and e-maintenance services with 

the aim to provide real-time monitoring, detections, predictions and proactive rec-

ommendations about maintenance actions. The aim is to eliminate or mitigate the 

impact of future failures in order to maximize reliability of operations and improve 

the business performance. The e-maintenance services interact with e-operations 

services in order to also consider the global impact of maintenance-related changes 

to the manufacturing operations, while self-learning mechanisms are applied to all 
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the phases of Proactive Maintenance in order to continuously improve the generat-

ed information. 

Proactive Maintenance has a managerial and a technological perspective. From a 

managerial point of view, its implementation requires the identification of the need 

for a different maintenance strategy through feasibility studies as well as the radical 

change of maintenance-related business processes and operations in all the enter-

prise organizational levels (operational, management, strategic). From a technologi-

cal point of view, it requires appropriate technologies and information systems for 

effectively supporting the Industry 4.0 principles. Therefore, Proactive Maintenance 

should include the following characteristics: 

 IoT-based Condition Monitoring. Condition monitoring is applied with 

sensors at a component, machine or production process level. The deci-

sions about their type and their distribution (placement) are affected by 

the manufacturing system examined. These hardware and/or software 

sensors generate huge amounts of real-time data (big data) in the context 

of IIoT which are further processed through appropriate infrastructures.  

 Event-Driven Architecture. Event processing is used to process massive 

primitive events and get valuable high level information from them by 

continuously monitoring the event flow. Therefore, through the event 

triggers, event-driven infrastructures are able to handle big data in a scal-

able and efficient way.  

 Prognosis Lifecycle. Prognostic lifecycle covers all the maintenance phas-

es, through which information is processed; from signal processing and 

diagnostics till prognostics and maintenance decision making along with 

continuous improvement during actions implementation. Predictions 

about the future equipment condition, on the basis of which mitigating 

actions can be applied ahead of time, constitute the backbone of Proac-

tive Maintenance. They can be realized with associated predictive event 

processing agents.  
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 Proactive Computing. Proactive event processing makes it possible to an-

ticipate potential issues during process execution and thereby enables 

proactive process management, i.e. to decide and act on the basis of real-

time predictions. The proactive event-driven applications are subjected to 

the proactive principle. A proactive situation includes a future event, a 

predictive pattern, the probability distribution function of the event oc-

currence, a list of mitigating actions and costs (e.g. the cost of the future 

event, the costs of actions as function of implementation time). 

 E-maintenance Support. The e-maintenance concept is linked to the Pro-

active Maintenance framework, since it provides the communication and 

technological background for real-time data processing and information 

exposure to the users and thus, it can support all the phases of the proac-

tive principle. E-maintenance applications and platforms can facilitate 

proactivity and further advance to a greater value with the development 

of Cyber-Physical Systems, while they are able to utilize an event-driven 

architecture for scalable sensor-generated big data processing. 

 Interaction with other Industrial Operations. Since, every change in in-

dustrial operations affects the others, maintenance operations should be 

considered along with its interactions with the other operations. A reduc-

tion in production, quality and inventory costs is considered as one of the 

most important indirect benefits of Proactive Maintenance. For instance, 

due to the available real-time prognostic information, predictive mainte-

nance actions along with quality improvement and production activities 

can be recommended and spare parts can be ordered just in time. 

4.2 The Concept of Proactive Maintenance 

Proactive Maintenance strategy implementation requires a complete methodol-

ogy as well as appropriate information systems capable of processing information 

captured by sensors in order to provide added value insights by taking advantage of 

IoT advances for handling failure uncertainty. Failure uncertainty is derived from the 

stochastic nature of the degradation processes of manufacturing equipment and 
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leads to high uncertainty in decision making (Van Horenbeek et al., 2013; Li et al., 

2015).  

Although the use of sensors with high monitoring capabilities within the modern 

enterprises’ network and across different levels is a reality, the strategic value of da-

ta analysis should be increased. The current status is the use of sensors and infor-

mation systems for monitoring various parameters that are known to affect equip-

ment condition from expert knowledge. Although this is valuable information, this 

approach does not enable the maintenance strategy transformation. Currently, there 

is still lack of services and tools capable of efficiently processing real-time big data 

from heterogeneous sources, implementing complex algorithms and provide mean-

ingful insights about potential problems along with a self-improvement approach. 

Novel IT technologies and e-maintenance systems are still not well perceived by the 

industry due to the high consulting costs (since vendors are selling 

closed/proprietary solutions) and the projects’ long duration. Even in the case of 

open source solutions, the consulting costs are very high and the projects last long. 

Proactive Maintenance maximizes the expected utility and exploits the full po-

tential of predictive maintenance management, sensor-generated big data pro-

cessing, e-maintenance, proactive computing and industrial data analytics. It is able 

to be applied in the context of the production process of any manufacturing compa-

ny regardless their processes, products and physical model used. To this end, the 

concept of Proactive Maintenance converges and synthesizes predictive mainte-

nance, proactive computing, the Gartner’s levels of industrial analytics maturity and 

the ISO 13374 as implemented to MIMOSA OSA-CBM in order to create a consistent 

basis for a generic Proactive Maintenance architecture in an IoT-based industrial en-

vironment. In this way, the convergence of Operational Technology and Information 

Technology can also be achieved. Figure 4-1 depicts the relationships among these 

concepts and their aggregation to SENSE, DETECT, PREDICT, DECIDE, ANALYZE, and 

FMECA phases. 
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Figure 4-1: The Proactive Maintenance Concept 

4.3 The Conceptual Architecture of Proactive Mainte-

nance 

The large scale and complexity of modern software projects result in several 

challenges for software architectural designers. The inception phase of the architec-

ture design introduces several canonical architectural elements providing a basic 

functional decomposition of the envisaged system (Kruchten, 2004). The goal of Pro-

active Maintenance software design is to transform the real world problem into 

software solution using conceptual modelling for accurately describing the real world 

problem, capturing and facilitating analysis of the system in the context of its envi-

ronment, incorporating key product features, requirements, and essential domain 

knowledge, including information about the structural, behavioural, and functional 

characteristics (Liu, and Gluch, 2004; ISO/IEC/IEEE42010, 2011; Mahmood, and Mon-

tagna, 2012; Bernus et al., 2015; Pelliccione et al., 2017). 

Due to the increasing number of networked components, a level of complexity has 

been reached which is difficult to handle using traditional development processes 

(Fennel et al., 2006). During the last years, there is a paradigm shift from a hardware-

, component-driven to a requirement- and function-driven development process, 

and a stringent standardization of infrastructure elements (Pelliccione et al., 2017) in 

order also to ensure reusability and knowledge transfer (Gröger, 2018). Architectural 

practices need to keep a clear focus on scalable and flexible systems architectures 
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providing ubiquitous, interoperable and networked solutions to realise smarter sys-

tems, platforms and ICT infrastructures for all entities operating in a common busi-

ness ecosystem (Romero, and Vernadat, 2016).  

In the context of Industry 4.0, standards are essential for ensuring the reliable 

and efficient interaction of various different systems. DIN, the German Institute for 

Standardization and its partner institute DKE, has presented an updated Roadmap 

Industry 4.08. The Roadmap gives an overview of existing standards in this area and 

identifies the need for new standards along with appropriate recommendations. A 

major outcome of these processes is the RAMI 4.0 model which is described in DIN 

SPEC 913459. The Proactive Maintenance architecture was designed according to the 

Proactive Maintenance concept and the ISO/IEC/IEEE 42010 “System and software 

engineering – Architecture description” (ISO/IEC/IEEE42010, 2011) which defines the 

architecture as: “< system > fundamental concepts or properties of a system in its 

environment embodied in its elements, relationships, and in the principles of its de-

sign and evolution”.  

In this Section, the proposed Proactive Maintenance conceptual architecture 

is presented. Since the Proactive Maintenance architecture should be compatible 

with RAMI 4.0, Section 4.3.2 presents Proactive Maintenance architecture in the 

frame of RAMI 4.0. 

4.3.1 The Proactive Maintenance Architecture 

The Proactive Maintenance conceptual architecture forms the basis for the 

development of a unified information system capable of covering the whole prog-

nostic lifecycle and linking maintenance with other industrial operations, i.e. produc-

tion, logistics, quality. The Proactive Maintenance system is able to be applied in the 

context of the production process of any manufacturing company regardless their 

processes, products and physical model used. It is applicable at the level of compo-

nent, machine and production system, depending on the placement of sensors 

                                                      
8

 https://www.din.de/blob/65354/f5252239daa596d8c4d1f24b40e4486d/roadmap-i4-0-e-
data.pdf  

9
 https://www.din.de/en/din-and-our-partners/press/press-releases/updated-german-

standardization-roadmap-on-industry-4-0-110576  

https://www.din.de/blob/65354/f5252239daa596d8c4d1f24b40e4486d/roadmap-i4-0-e-data.pdf
https://www.din.de/blob/65354/f5252239daa596d8c4d1f24b40e4486d/roadmap-i4-0-e-data.pdf
https://www.din.de/en/din-and-our-partners/press/press-releases/updated-german-standardization-roadmap-on-industry-4-0-110576
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throughout the production lifecycle and the data availability in the manufacturing 

company’s legacy data systems (e.g. Enterprise Resources Planning- ERP, Manufac-

turing Execution System- MES). Within the Proactive Maintenance system, there are 

interactions between the various e-maintenance services and the e-operations data 

and information from the manufacturing companies’ systems in order to synchronise 

maintenance with production, quality and logistics management. The interrelation-

ship between the e-maintenance and the e-operations services allow the exchange 

of the appropriate information. The functional / high level view of the conceptual 

architecture is depicted in Figure 4-2.  

 

Figure 4-2: The Functional/ High Level View of the Proactive Maintenance Conceptual Architecture 

The functional/ high level view of the Proactive Maintenance conceptual archi-

tecture consists of five main phases: SENSE, DETECT, PREDICT, DECIDE, ANALYZE, and 

FMECA (Failure Mode, Effects and Criticality Analysis). It should be noted that FMEA 

is a bottom-up, inductive analytical method which may be performed at either the 

functional or piece-part level. FMECA extends FMEA by including a criticality analysis, 

which is used to chart the probability of failure modes against the severity of their 

consequences. The result highlights failure modes with relatively high probability and 
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severity of consequences, allowing remedial effort to be directed where it will pro-

duce the greatest value. It also consists of four layers: User Interaction Layer, Real-

time Processing Layer, Batch Processing Layer, Persistence Layer. In the Real-time 

Processing Layer and Batch Processing Layer there are interactions between the e-

maintenance and the e-operations services. The e-operations services deal with pro-

cessing and analysis of data, information and knowledge dealing with other manu-

facturing operations that are closely related to maintenance and affect each other. 

For instance, logistics management (e.g. spare parts inventory, lead times, etc.), 

quality management (e.g. scrap rate threshold, defects, etc.) and production plan-

ning (e.g. production plan, resource plan, etc.) are key issues to be considered for 

maintenance planning. On the other way around, these manufacturing operations 

are influenced by the decisions taken related to maintenance operations. Conse-

quently, the e-maintenance services interact with the e-operations services in order 

to schedule jointly the maintenance and the production activities along with quality 

and logistics aspects. The scope of each Layer along with the phases is explained be-

low.  

The User Interaction Layer occupies the top level of the conceptual architecture 

and is addressed with an integrated Graphical User Interface (GUI). It has three main 

goals:  

 To enable the user configuring the components constituting the architecture 

(e.g. enabling the embodiment of the appropriate expert knowledge about 

various input parameters, inserting user preferences, etc.) 

 To allow the user monitor real-time information deriving from the respective 

phases, i.e. the current and the predicted equipment behaviour, warning 

alerts, the generated recommendations, etc.  

 To provide visualization capabilities incorporating appropriate techniques. 

This phase includes the gathering, storing, analysing and visualizing the re-

sults with respect to maintenance-related information in conjunction with 

production, logistics and quality issues. This information is exposed to the us-

er using line diagrams, histograms, pie-charts, heat maps, relationships, geo 

maps, etc. supporting various strategies for problem investigation, e.g. drill-
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down to identify root causes, generalisation to find similar occurrences in the 

past and to develop improvement measures. 

At the Real-time Processing layer, the respective phases are executed based on 

the sensor-generated real-time data. The phases that are associated to the Real-time 

Processing Layer are: SENSE, DETECT, PREDICT, DECIDE. Each phase is triggered by 

the previous one, taking also into account relevant data and information regarding 

logistics management, quality and production planning. The scope of each phase in 

this Layer is described below: 

 SENSE: This phase deals with the collection, aggregation and manipulation of 

sensor data. The large amounts of enterprise data as well as the existing in-

formation and knowledge come from various heterogeneous data sources 

dealing with different manufacturing operations. The SENSE phase handles 

these data and processes them to the subsequent phases in the form of sen-

sor data streams for further analysis and processing. 

 DETECT: This phase deals with the real-time state detection and health as-

sessment of a whole system or components with respect to a mechanical sys-

tem in order to provide a diagnostic output. The analysis is carried out by dif-

ferent algorithms. Therefore, there is a library with typical algorithms for data 

analytics easily extensible with new algorithms. The results of each analysis 

can be weighted in order to estimate the current condition of the analysed 

component. This integrative approach for the state determination of complex 

technical systems recognizes the presence of an unusual (and potentially 

hazardous) state within the behaviours or activities of a system (e.g. measur-

ing indicators of degradation), with respect to some model of ‘normal’ behav-

iour. To do this, it requires the last updated model of normal behaviour, the 

normal operation threshold, etc. The diagnostic models continuously learn 

from the actual equipment behaviour by updating and improving the incor-

porated diagnostic models with data analytics and FMECA information. 

 PREDICT: This phase includes real-time state prediction of a whole system or 

components with respect to the mechanical system, e.g. prediction about the 

time-to-failure, the probability distribution function of the failure occurrence, 
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the Remaining Useful Life (RUL), the Remaining Life Distribution (RLD). The 

failure prediction constitutes the backbone of predictive maintenance. The 

analysis is carried out by different prognostic algorithms through the defini-

tion of calculation flows and their instantiation to machines, components or 

sites. These algorithms are executed considering constraints deriving from 

quality management, logistics management and production planning (e.g. ac-

ceptable scrap rate thresholds in case of a machine malfunction) as well as  

results of historical data analytics (e.g. for creating the model) and FMECA. 

The algorithms and the prognostic models can be then continuously. 

 DECIDE: This phase includes decision making algorithms for providing rec-

ommendations ahead of time (i.e. in a proactive manner) taking into account 

the real-time prognostic information and information/ knowledge deriving 

from users (e.g. maintenance engineers) or from further data analysis. On the 

basis of the real-time prognostic information, the optimal mitigating mainte-

nance actions and the optimal times for their implementation are recom-

mended considering both perfect and imperfect maintenance actions with 

various degrees. This phase also takes into account logistics, production and 

quality issues. In this way, maintenance decision making can be shifted from 

expert knowledge and/ or early warnings into business performance optimi-

zation. The decision models are continuously updated based on data analytics 

and FMECA results (e.g. with the updated risk ranking).  

At the Batch Processing Layer, the respective phases are executed based on the 

legacy data and the updated existing information regarding e-maintenance and e-

operations. The phases that are associated to the Real-time Processing Layer are: 

ANALYZE, FMECA. The scope of each phase of the Batch Processing Layer is de-

scribed below: 

 ANALYZE: This phase is triggered on a batch mode and aims to conduct anal-

ysis on legacy and historical data in order to find useful information and to 

produce rules, regarding downtimes and failures of a production line or other 

information related to other manufacturing operations. The exploitation of 

the legacy and historical data can lead to finding patterns and cluster-
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ing/classifying failures based on similar characteristics. Moreover, the analy-

sis is conducted on the basis of actions that mitigated the impact of a failure 

or of failures that actually occurred before the recommended actions imple-

mentation. To this end, this phase is able to feed into the FMECA, the 

PREDICT and the DECIDE phases so that they provide more informed results 

taking into account the knowledge extracted from the legacy data systems.  

 FMECA: This phase includes an FMECA mechanism which incorporates algo-

rithms for the identification of potentially relevant and critical failures modes 

and conducts analysis of the criticalities that might arise. It foresees the de-

velopment of dedicated automatized processes in order to enable, on the ba-

sis of failures modes, critical elements, process, logistics and production data 

what are the most likely effects and what are their implications in terms of 

maintenance and operations management. The resulting failure modes, fre-

quencies, risks and other associated results feed into the DETECT, PREDICT 

and DECIDE phases in order to update the respective algorithms and models.  

The Persistence Layer of the conceptual architecture aims to support the func-

tionalities implemented at the Real-time Processing and Batch Processing Layers as 

well as at the User Interaction Layer of the architecture. It includes a Database Ab-

straction Layer (DAL) and houses a relational database engine where all information 

needed by the other three layers is stored and retrieved. For the raw sensor data 

itself, this data storage concept is enhanced by a database for time-series to ensure 

efficient and reliable storage of this data, while visualization functionalities will use 

an indexing database to facilitate the exposure of analytics.  

The functional/ high level view of the conceptual architecture represents the 

Proactive Maintenance flow in the sense that the output of one phase triggers the 

next subsequent phase.  

Table 4-1 shows the potential inputs and outputs of each phase based on the 

functional/ high level view of the Proactive Maintenance conceptual architecture. It 

also takes into account relevant literature about condition-based, predictive mainte-

nance. 
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Table 4-1: Inputs and Outputs of each UPTIME phase 

Proactive 
Maintenance 
phases 

Input Output 

 
 

SENSE 

 Data demands/requirements (e.g. infor-
mation about the data to be collected and re-
quired pre-processing) 

 Raw sensor data (e.g. about measured pa-
rameters used as indicators of degradation) 

 Data set / time series (e.g. 
sampled sensor data) 

 Sensor data streams 

 
 

DETECT 

 Sensor data set (e.g. about measured parame-
ters used as indicators of degradation) 

 Historical data and domain knowledge (e.g. 
thresholds indicating a dangerous state) 

 Current health state 

 Alert of a potentially dan-
gerous state 

 
 
 

PREDICT 

 Current health state 

 Alert of a potentially dangerous state 

 Sensor data set / time series 

 Historical data and domain knowledge (e.g. 
about the measured parameter used as indi-
cator of degradation till failure) 

 Early warning 
OR 

 RUL/ RLD and confidence 
level 

OR 

 Probability distribution of 
the failure occurrence  

 
 
 
 

DECIDE 

 RUL/ RLD/ time-to-failure and confidence 
level 

OR 

 Probability distribution of the failure occur-
rence 

 

 Failure prevention and mitigation measures 

 Risk Ranking 

 Results of legacy data analytics 

 Early notification 
OR 

 Recommendations about:  
 Optimal actions 
 Optimal time for im-

plementation 

 
 

FMECA 

 Rules, patterns and failures classification 

 Legacy data on maintenance (e.g. machinery 

failures, maintenance actions) 

 Threshold parameters 

 Reliability Block Diagrams 

 Parameter threshold 

 Risk ranking 

 Failure prevention and 
mitigation measures 

 
 

ANALYZE 

 Legacy data on maintenance (e.g. machinery 
failures, maintenance actions, data from the 
production plan to be aligned with mainte-
nance) 

 Historical data on machinery maintenance 
and operations 

 Rules, patterns and fail-
ures classification 

 Constraints and additional 
operational information 

4.3.2 Mapping Proactive Maintenance Conceptual Architecture to RAMI 4.0 

In this Section, the Proactive Maintenance conceptual architecture in the 

frame of RAMI 4.0 is presented. In Proactive Maintenance, the RAMI 4.0 is adopted 

to communicate the scope and design of the system, to further collaboration and 

integration with other relevant initiatives by framing the developed concepts and 

technologies in a common model. In this sense, the Proactive Maintenance concep-
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tual architecture is compatible with RAMI 4.0 facilitating maintenance implementa-

tion in the frame of Industry 4.0. In this way, RAMI 4.0 is instantiated to maintenance 

operations. This is a challenging task since the Industry 4.0 paradigm is still evolving 

with limited past experience of successful implementations.  

RAMI 4.0 is a three-dimensional model representing different interconnected 

features of the technical – economical properties and showing how to approach the 

issue of Industry 4.0 in a structured manner. It consists of three axes: (i) the hierar-

chy levels; (ii) the architecture layers; and, (iii) the lifecycle value stream. The follow-

ing sub-sections present these axes in the context of Proactive Maintenance. The 

need for sub-models for individual aspects and processes in RAMI 4.0 has been rec-

ognized as a crucial next step for its further evolution (Hankel, and Rexroth, 2015). 

Mapping of the Proactive Maintenance conceptual architecture to RAMI 4.0 enables 

the integration of the maintenance process with the other operations and processes 

of the manufacturing enterprise based upon the Industry 4.0 paradigm. An I4.0 com-

ponent is a crucial aspect of Industry 4.0. It deals with the digitization of assets in the 

manufacturing process. It consists of one or more assets and an administrative shell. 

The administrative shell is the virtual representation of an asset. The I4.0 component 

is located within the layers of RAMI 4.0, up to the Functional Layer. It can adopt vari-

ous positions in the life cycle and value stream, and occupy various hierarchical lev-

els. The following sub-sections describe the three axes of RAMI 4.0 in the context of 

Proactive Maintenance. 

4.3.2.1 Hierarchy Levels 

Industry 4.0 brings changes in the architecture of the classical control pyra-

mid of production complexes as well technological processes. Industry 4.0 architec-

ture of hierarchical level shows a functional assignment of components (Zezulka et 

al., 2016). This axis within an enterprise or factory follows the IEC 62264 and IEC 

61512 standards. The level over and below the IEC standards area represents steps 

further and describes also groups of factories, collaboration within external engi-

neering firms, component suppliers and customers. Therefore, the hierarchy levels 

are: product, field device, control device, station, work centre, enterprise, and con-
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nected world. Proactive Maintenance architecture is applicable at a component, ma-

chine or production process level. In this sense, it can be implemented in flexible 

smart systems and machines capable of interacting and communicating across the 

hierarchy levels through a network. The implementation of a Proactive Maintenance 

system in a “Connected World” (i.e. connected factories with integrated mainte-

nance processes) would require its use by all of them in order to create synergies 

(e.g. between a factory and its supplier of maintenance spare parts). 

4.3.2.2 Architecture Layers 

Figure 4-3 shows the Proactive Maintenance conceptual architecture in the 

frame of the RAMI 4.0 architecture layers. The individual layers and their interrela-

tionships are described below.  

Asset Layer: Since this layer represents the reality (“physical things in the real 

world”), production equipment and users are part of it. Proactive Maintenance is 

implemented on the production equipment with the involvement of Proactive 

Maintenance system users. The production equipment can be further analysed. 

Integration Layer: This layer makes provision of information on the assets in a form 

which is available for computer processing by connecting elements as well as people 

with IT. In the context of Proactive Maintenance, this layer involves the equipment-

installed sensors, the actuators and the legacy data systems (MES, ERP, etc.). It also 

includes the Human Machine Interfaces of the legacy data systems (e.g. ERP GUI) 

through which the users insert data.  

Communication Layer: Since this layer provides standardization of communication 

by means of uniform data format, it includes the IoT Gateway, the Broker and the 

Legacy Data Uplifting. In this way, the Proactive Maintenance solution will gather the 

data from the information sources for further processing in the subsequent Infor-

mation Layer. 

Information Layer: This layer provides pre-processing of events and execution of 

event-related rules by enabling their formal description. It also manages data persis-

tence, ensures consistent data integrity and transformation for feeding into the 
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Functional Layer. In the context of Proactive Maintenance, it includes sensor and 

legacy data pre-processing, which correspond to functionalities of data preparation 

and pre-processing while feeding into the Real-time (Stream) Processing and the 

Batch Processing environment respectively. To this end, this layer also includes the 

Real-time Processing and the Batch Processing environment as well as the Storage, 

i.e. the appropriate databases. In this way, the required data are extracted and com-

bined accordingly in order to be available by the functions of the next layer. 

Functional Layer: This layer enables the formal description of functions and creates 

platform for horizontal integration of various functions. It contains run time and 

modelling environment for services supporting the business processes and a run 

time environment for applications and technical functionalities. In this layer, the fol-

lowing functions take place: Detection (which includes the real-time detection/ diag-

nostic algorithms), Prediction (which includes the real-time prediction/ prognostic 

algorithms), Proactive Decision Making (along with its feedback functionalities) and 

FMECA as well as the legacy data analysis that aim to update and improve the mod-

elling and the parameter values of predictive maintenance core functions (i.e. diag-

nosis, prognosis, proactive decision making, FMECA). The aforementioned functions 

are executed on the basis of data integrity of the previous layer. 

Business Layer: This layer ensures the integrity of functions in the value stream and 

enables mapping business models and the resulting of the overall process. It takes 

into account the policies, rules and constraints according to which the system oper-

ates through the interrelationships of maintenance to other manufacturing opera-

tions. It also creates a link among different business processes through the exposure 

of appropriate information to the user. In this sense, this layer involves the Configu-

ration of the Proactive Maintenance solution, the Real-time Monitoring of Proactive 

Maintenance functions and the Visualization of its results. It also incorporates its 

interrelationships with other business processes and the integration with manufac-

turing operational functions interrelated with maintenance (e.g. logistics manage-

ment, quality management, production planning). 
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Figure 4-3: Mapping the Proactive Maintenance conceptual architecture to RAMI 4.0 

4.3.2.3 Lifecycle Value Stream 

The lifecycle value stream axis is divided to Type and Instance. The Type is di-

vided to Development and Maintenance / Usage, while the Instance is divided to 

Production and Maintenance / Usage (Platform Industrie 4.0). A type represents the 

initial idea, while each manufactured product represents an instance of that type 

(Platform Industrie 4.0). The instances are sold and delivered to customers. The 

change from type to instance may be repeated many times (Platform Industrie 4.0). 

Feedback from customers to instances of the type may lead to corrections. Such 

modifications deal with the type, i.e. they are applied as amendments to the type 

documentation and new instances of the modified type are produced. The value 

stream in the totally digitized production can be viewed in conjunction with value-

adding processes, since it enables linking of purchasing, production planning, logis-

tics, quality, customers and suppliers (Platform Industrie 4.0). 

The lifecycle value stream of Proactive Maintenance has both managerial and 

technical implications. As far as the managerial perspective is concerned, the type 

includes the idea as well as the development and validation of a Proactive Mainte-

nance strategy. After successful validation, the new consulting service is released.  
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Each instantiation of the Proactive Maintenance strategy to a specific production 

process or industry represents an instance of that type. As far as the technical per-

spective is concerned, the type includes the idea as well as the development and 

testing of a prototype for Proactive Maintenance which set the basis for serial pro-

duction. Each instantiation of the system to a specific equipment, production process 

or industry, and to a specific legacy data system or installed sensor represents an 

instance of that type.  
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5 Proactive Decision Making in Maintenance 

Management 

In this Chapter, the proactive approach in decision making is presented. Based on this 

approach, proactive event-driven decision methods are developed in order to provide rec-

ommendations for maintenance and maintenance-driven operations. Automation of proac-

tive maintenance decisions on the basis of real-time sensor-driven prognostic information is 

an unexplored area.  

5.1 Introduction and Motivation 

Despite the significance of proactive maintenance decisions (Gupta & Lawsirirat, 2006; 

Campos, 2009; Ahmad, and Kamaruddin, 2012; Guillen et al., 2016), their automation by 

providing system-generated recommendations in a real-time, event- driven environment 

remains a challenge (Van Horenbeek, et al., 2013; Aboelmaged, 2015). Existing works re-

garding maintenance applications have usually the following limitations: (i) they provide 

only a diagnostic or a prognostic output; (ii) they rely on processing of batches of data and 

not on real-time, event-driven information; (iii) when they provide recommendations, they 

deal with immediate action implementation, something that does not lead to an optimized 

performance (because the expected loss may be minimized some time into the future, be-

fore the occurrence of the undesired event); (iv) they rarely are integrated to algorithms 

addressing other operational issues driven by maintenance (e.g. inventory, supplier selec-

tion). In addition, several research works in proactive computing have only been described 

conceptually and have not been embedded in a real-time, event-driven environment. 

In the following sub-sections, the approach of proactive decision making and its instanti-

ation to maintenance operations is described. The approach and the decision methods ad-

dress two blocks of the conceptual architecture for the Decide phase the “DMI Configura-

tion” (as far as the decision methods configuration is concerned) block of the User Interac-
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tion Layerand the “Proactive Decision Methods” block of the Real-time Processing Layer. 

These two blocks are highlighted with red color in the conceptual architecture in Figure 5-1. 

 

Figure 5-1: The functionalities for proactive decision making in the conceptual architecture. 

5.2 The Proactive Approach in Decision Making 

The proposed approach focuses on enabling decision makers to create new decision 

method instances addressing the problem at hand, e.g., the maintenance needs of specific 

manufacturing equipment. Therefore, they are able to configure them by editing the do-

main knowledge that is required by the method. This domain knowledge may include a list 

of actions, the cost of the undesired event, the costs of actions, etc. Decision method in-

stances are specific instances of decision methods, corresponding to specific equipment or 

other subject of a predicted undesired event which triggers, during runtime, the decision 

method for mitigating it. Decision methods are then enacted online in order to generate 

timely and reliable proactive recommendations based on the analysis of the streaming data 

and the derived predictions for undesirable situations, i.e. events which lay outside the de-

sired states space. Proactive recommendations deal with the optimal maintenance actions 

and the optimal time for their implementation. The recommendations are actually generat-



Proactive Decision Making in Maintenance Management 

125  

ed on the basis of the utility or the loss prediction (expected utility / loss) in the course of 

time until the decision horizon. Therefore, the aim is to apply an action at a time that max-

imizes the expected utility (or minimizes the expected loss). 

Figure 5-2 depicts the conceptual approach for proactive decision making. The expected 

loss due to maintenance is represented as a function of the implementation time. There-

fore, t = 0 is the time when a prediction is received and a recommendation is provided. The 

expected loss functions are optimized within the boundaries of t = 0 and the time of the end 

of decision horizon (e.g. next planned maintenance). For example, for three alternative ac-

tions, the optimal action is Action 2 and the optimal time for its implementation is the time 

when the expected loss is minimized. In this way, the user gets a recommendation that min-

imizes the expected loss and provides them a time window until the recommended imple-

mentation time in order to be prepared appropriately. With the proposed approach, deci-

sion making can be shifted from early warnings into business performance optimization. 

 

Figure 5-2: Conceptual approach for proactive decision making (Adapted from Feldman et al., 2013) 
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5.3 Overview of the Proposed Proactive Decision Methods 

In this PhD thesis, there have been developed two proactive event-driven methods for 

proactive decision making for maintenance actions, two for joint proactive maintenance and 

logistics optimization and one for proactive selection of maintenance spare parts suppliers. 

These methods are presented in the following Sections. The aforementioned proactive 

event-driven decision methods provide a different output recommendation and each one of 

them requires a different input. The input is taken by two sources: events generated by the 

Predict phase and users through a decision configurator dashboard. This information is 

shown in Table 5-1, Table 5-2 and Table 5-3 and is further described in the following sec-

tions. The optimization of the resulting functions is conducted by using the Brent’s method 

which is is a root-finding algorithm combining the bisection method, the secant method and 

inverse quadratic interpolation (Gegenfurtner, 1992). 

 

Table 5-1: Input and output of proactive decision making for maintenance actions 

Decision 
Method 

Input from user Input from 
events 

Output 

Proactive 
Expected 
Loss Rate 

Optimization 

 Corrective action cost 
function 

 Planned action cost 
function 

 Planned time for 
action implementation  

 Probability 
Distribution of 
the occurrence of 
the event 

 Parameters of the 
probability 
distribution (e.g. 
λ for exponential) 

 Optimal time for 
the predefined 
action 
implementation 

Proactive 
Markov 
Decision 
Process 

 List of maintenance 
actions 

 Action cost functions 

 Time-to-undesired 
event after action 

 Delays 

 Cost of undesired 
event (e.g. failure) 

 Decision horizon 

 Optimal action 

 Optimal 
implementation 
time 
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Table 5-2: Input and output of proactive decision making for joint maintenance and logistics actions 

Decision 
Method 

Input from user Input from 
events 

Output 

Proactive joint 
replacement and 
spare parts 
inventory 
decision model 

 Cost of undesired event 

 Planned action cost 
function 

 Planned time for action 
implementation (e.g. 
planned maintenance) 

 Shortage inventory cost 
as a function of time 

 Holding inventory cost 
as a function of time 

 Lead time between the 
time of placing the 
order up and the time of 
receiving the order 

 Probability 
Distribution of 
the occurrence 
of the event 

 Parameters of 
the probability 
distribution 
(e.g. λ for exp.) 

 Optimal 
maintenance 
(mitigating) action 

 Optimal 
implementation 
time of the 
maintenance 
action 

 Optimal spare 
parts ordering 
(prerequisite) 
action 

 Optimal time of 
ordring 

Proactive joint 
maintenance 
and spare parts 
inventory 
decision model 

 Cost of failure 

 Cost function of the 
action effect 

 Cost function of the 
action implementation 

 Cost of buying the spare 
parts 

 Cost function of 
shortage inventory 

 Lead time between the 
time of placing the 
order up and the time of 
receiving the order 

 Decision horizon 

 Optimal time for 
maintenance 
(mitigating) action 
implementation 

 Optimal time for 
spare parts 
ordering 
(prerequisite) 
action 
implementation 

 

Table 5-3: Input and output of proactive decision making for supplier selection 

Decision 
Method 

Input from user Input from 
events 

Output 

Proactive 
selection of 
maintenance 
spare parts 
suppliers 

 Available budget 

 Number of suppliers 

 Historical data about 
portfolios of suppliers 

 Prices prediction 
till next planned 
maintenance, 

 Recommended 
time for ordering 

 Markowitz bullet’ 
and its ‘efficient 
frontier’ 

 The optimal 
portfolio of 
suppliers 
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The proposed decision methods are based on failure probability predictions and thus, on 

reliability analysis. In this sense, they are triggered by probability distribution functions of 

failure occurrence that have been derived from degradation modelling techniques. Based on 

the terminology of reliability analysis, an event density function of 𝜺, denoted by 𝒈𝜺(𝒕), in-

dicates the probability that  𝜺 will occur at time t. The cumulative distribution function of g 

is denoted by 𝑮𝜺(𝒕), and is called the lifetime distribution function of 𝜺. 𝑮𝜺(𝒕) indicates the 

probability that  𝜺 will occur between time zero and time t (Engel et al., 2012; Kapur, and 

Pecht, 2014), while �̅�𝜺(𝒕) = 𝟏 − 𝑮𝜺(𝒕) denotes the cumulative probability distribution func-

tion of the undesired event not occurring. When an action 𝒂 is applied to reduce the proba-

bility of an undesired event, 𝒂 is associated with a new event density function 𝒈𝒂
𝜺 (𝒕), which 

is the probability that 𝜺 occurs at time t, although 𝒂 has been applied before t.  This hap-

pens because the implementation of action 𝒂 does not prevent 𝜺 with certainty (Engel et al., 

2012). Therefore, the probability distributions are calculated as shown in Equation 5-1 and 

Equation 5-2. In Equation 5-2, the conditioning (denominator) takes into account the fact 

that until the action occurrence at 𝒕𝟏, the distribution in place was 𝑮𝜺 (Engel et al., 2012). 

For example, in case of exponential distribution, time-to-breakdown = 1 / λ, where λ is the 

parameter of exponential distribution. 

Equation 5-1 

𝑃 (𝑡1, 𝑡2) =
𝐺 (𝑡2) − 𝐺 (𝑡1)

1 − 𝐺 (𝑡1)
 

 

Equation 5-2 

𝑃𝑎𝑖
(𝑡1, 𝑡2) =

𝐺𝑎𝑖
(𝑡2) − 𝐺𝑎𝑖

(𝑡1)

1 − 𝐺 (𝑡1)
 

𝑃 (𝑡1, 𝑡2) denotes the probability distribution function of the occurrence of the undesired 

event in the time interval (t1, t2), conditioned on not occurring until time 𝑡1, while 𝑃𝑎𝑖
(𝑡1, 𝑡2) 

denotes the probability distribution function of the occurrence of the undesired event in the 

time interval (t1, t2) conditioned on not occurring until time 𝑡1 and assuming that the action 

𝑎 has been implemented exactly at time 𝑡1. This happens because the implementation of 

action a does not prevent ε with certainty. Moreover, �̅� (𝑡1, 𝑡2) denotes the probability dis-

tribution function that the undesired event 𝜀 does not occur within the time interval (𝑡1, 𝑡2) 
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conditioned on not occurring until time 𝑡1. In the following sections, we present the math-

ematical formulation of the three aforementioned decision methods. 

5.4 Proactive Decision Making for Maintenance Actions 

5.4.1 Motivation 

Advances in maintenance management methods have led to the transformation of the 

traditional ‘‘fail and fix’’ practices into the ‘‘predict and prevent’’ ones (Muller et al., 2008b). 

New practices put failure prediction at the backbone of maintenance management (Ahmad, 

and Kamaruddin, 2012). Maintenance management can take advantage of the recent ad-

vancements in proactive event-driven computing, for fully exploiting its capabilities and 

supporting proactive decisions, ahead of time.  

Next generation of maintenance management will incorporate event stream processing 

and advanced computation capabilities enabling generation of recommendations support-

ing proactive decisions. Despite the significance of proactive maintenance decisions (Gupta 

& Lawsirirat, 2006; Campos, 2009; Ahmad, and Kamaruddin, 2012), their automation by 

providing system-generated recommendations in a real-time, event- driven environment 

has not been realized yet. Therefore, developing methods and information systems that 

provides automated decision making ahead of time on the basis of predictions, capable of 

processing data generated by sensors and able to be deployed in a real industrial environ-

ment remains a challenge (Ahmad, and Kamaruddin, 2012; Van Horenbeek, and Pintelon, 

2015; Aboelmaged, 2015). 

5.4.2 State-of-the-Art Analysis 

Despite the high amount of works regarding maintenance decision making algorithms, 

there are still several aspects that concern both industry and academia. For example, it is 

difficult for manufacturing companies to deploy and adapt the decision making algorithms 

existing in literature to their own specific business context, physical models and data availa-

bility (Ruschel et al., 2017). This fact becomes even more important in the context of the 

Industry 4.0 paradigm and modern big data technologies. 
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Consequently, manufacturing companies are slowly adopting novel technologies and in-

formation systems for improving their maintenance operations, while technology providers 

are used to provide solutions with limited capabilities (e.g. monitoring of parameters, do-

main-specific diagnostic and prognostic algorithms). Moreover, existing algorithms and in-

formation systems for maintenance decision making have a loose integration with predictive 

analytics algorithms generating prognostic information. The common practice is to utilize 

the current level of degradation that is derived from the analysis of the indicators measured 

by sensors along with expert knowledge.  

Existing works rely on processing of batches of data at specific sampling times (Iung et 

al., 2009; Peng et al., 2010; Julka et al., 2011). This inhibits the responsiveness of the system 

to provide event-driven prognostic information and thereafter provide on-the-fly decision 

making for maintenance. To this end, there is the need for a shift towards scalable and effi-

cient (near) real-time decision making algorithms. This aspect has both a technological (use 

of appropriate technologies, e.g. for streaming data) and a functional (use of appropriate 

decision models triggered only when there are predictions about future failures, e.g. recur-

sive and computationally efficient) perspective. 

There is a gap in literature regarding generic decision models representing the decision 

making process instead of the physical process. Moreover, there is a gap regarding the use 

of probabilistic methods in a streaming context with the aim to tackle with uncertainty. Fi-

nally, a remaining challenge is the lack of methods and algorithms capable of recommending 

optimized actions at optimized times for both perfect and imperfect (of various degrees) 

maintenance. 

5.4.3 The Proposed Decision Methods 

5.4.3.1 Proactive Expected Loss Rate Optimization 

Quantitative risk analysis seeks to numerically assess probabilities for the potential con-

sequences of risk, and is often called probabilistic risk analysis or probabilistic risk assess-

ment. Risk analysis is a technique for identifying, characterizing, quantifying, and evaluating 

the loss from an event. Cost risk analysis or cost uncertainty analysis is an important aspect 

of cost estimation. Cost risk is defined as the probability of the occurrence of an event mul-



Proactive Decision Making in Maintenance Management 

131  

tiplied by its impact in cost (Arunraj, and Maiti, 2007). A cost risk function is calculated by 

adding the products of each alternative value i of the cost function with the probability of 

having this cost function. 

The Proactive Expected Loss Rate Optimization (ELR) method estimates the expected 

loss rate (expected loss per unit of time) of a single pre-defined action each time a predic-

tion event triggers Decide phase. It recommends the optimal time for the pre-defined 

maintenance action implementation. This method is based upon cost risk analysis (com-

bined with reliability analysis due to the utilization of failure probability) which is defined as 

the probability of the occurrence of an event multiplied by its impact in cost (Arunraj and 

Maiti, 2007). Equation 5-3 shows the calculation of the ELR. 

Equation 5-3 

𝐸𝐿𝑅(𝑡)  =
𝐶𝑢𝑒(𝑡) ∗ 𝐺 (𝑡)

𝑡𝑢𝑒
+

𝐶𝑝𝑎(𝑡) ∗ �̅� (𝑡)

𝑡𝑝𝑎
 

Where: 𝐶𝑢𝑒(𝑡) is the cost function of the undesired event, 𝐶𝑝𝑎(𝑡) is the cost function of a 

planned action implemented at a pre-defined time, 𝑡𝑝𝑎 is the pre-defined time when a 

planned action is implemented, 𝑡𝑢𝑒 is the most probable value of the time-to-undesired 

event distribution function (e.g. in case of exponential distribution, it is equal to 1 / λ).  

The loss rate is defined as the loss per unit of time. So, the expected loss rate is the addition 

of the existing expected loss rates multiplied by their associated cumulative probability dis-

tribution functions. In this case, the probability distribution function of the occurrence of 

the undesired event can be of arbitrary distribution. Previous works have assumed static 

theoretical probability distributions (Vanneste, and Van Wassenhove, 1995) or batches of 

data that update the decision module at a specific sampling time (Elwany, and Gebraeel, 

2008) or by configuring a pre-defined set of possible times of the undesired event (Wu et al., 

2007), while assuming constant costs throughout time. However, these ways are not appli-

cable to a streaming data processing environment where sensors gather data in a very high 

frequency and costs of actions may vary according to the implementation time. Hence, a 

modification of the method in accordance to principles of proactive event-driven computing 

theory (e.g. use of cost functions), as shown in Equation 5-3, is required so that it can be 



Proactive Computing in Industrial Maintenance Decision Making 

132 
 

embedded in a streaming architecture and therefore, the decision method is enacted when 

a prediction event about an undesired event is received. 

5.4.3.2 Proactive Markov Decision Process 

In Markov Decision Process (MDP), a policy is evaluated according to its expected utility: 

the expectation on the value of the random variable defined as the sum of rewards ob-

tained by using the policy (Puterman, 2014). This expectation can be defined recursively 

using the Bellman equation. The classic MDP model assumes a discrete time model, where 

state transitions can be taken in fixed time steps and its solution is a policy that indicates 

the optimal action in each state according to the Bellman’s equation. This policy is evaluated 

according to its expected utility (or expected loss). In this setting, deciding when to take the 

action is a crucial part of the decision (Engel et al., 2011). Thus, the decision algorithm that 

uses MDP can provide proactive recommendations and support decisions about when to 

take which action (Engel et al., 2012).  

This can be done by considering the transition probability distributions as a function of 

time and thus, the expected utility functions can be optimized in order to find out which 

action has the maximum expected utility (or equally, the minimum expected loss) and at 

which time. The MDP states and their transitions are formulated according to the proactive 

computing model and the expected utility of each action is estimated by using the backward 

induction algorithm (Engel et al., 2012). For example, assuming that there are three possible 

actions and each one of them needs a delay δi from its implementation until it starts taking 

effect, the MDP model is formulated as shown in Figure 5-3 (Engel et al., 2012). Based on 

this formulation, the MDP is solved using backwards induction for finite horizon problems 

(Engel et al., 2012). 

Each state of the MDP proactive model corresponds to a reward which is derived from 

the cost of undesired event and the costs of actions. Costs of actions can have either a fixed 

value or a value as a function of implementation time, since the cost of taking an action 

changes in the course of time according to the time of its implementation. The costs are 

inserted by the user along with the delays, the effect of each action (how much time each 
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action prolongs the lifetime of the equipment) as well as the end of the decision epoch (the 

time at which there is no need for a decision any more – e.g. time of planned maintenance).  

 

Figure 5-3: MDP formulation for proactive decision making of maintenance actions 

The algorithm provides as output the optimal action and the optimal time of applying 

this action by conducting optimization of the expected utility functions of the alternative 

actions. This model is able to consider both perfect and imperfect maintenance actions with 

various degrees. In this method, the probability distribution function of the occurrence of 

the undesired event must belong to the exponential family, due to the Markov property. In 

the manufacturing domain, and more specifically in machine prognostics, the probability 

distribution functions of the occurrence of the undesired event depend on the degradation 

modelling until the breakdown. Degradation modelling usually follows an exponential, a 

gamma or a Weibull distribution (Elwany, and Gebraeel, 2008; Kapur, and Pecht, 2014; Guil-

lén et al., 2016). However, in some cases where the rate of degradation is not significantly 

affected by the cumulative damage, the linear degradation model can be used (Elwany, and 

Gebraeel, 2008) and therefore, the Proactive MDP method is not applicable. 

There is no cost (or benefit) of being at state Sn, hence 𝑈(𝑆𝑛) = 0. In state ε, there is a 

penalty of 𝐶  (i.e. the cost of failure), hence 𝑈(𝑆 ) = 𝐶 . In state ai we incur penalty of 

𝐶𝑎𝑖
(𝑡𝑎𝑖

) (i.e. the cost function of the action) and, given the probability to move to state ε, 

the policy evaluation gives: 

𝑈(𝑆𝑎𝑖
) = 𝐶𝑎(𝑡𝑎𝑖

) + 𝑃(𝑆𝑎𝑖
, 𝑆 ) ∗ 𝑈(𝑆 ) = 𝐶𝑎𝑖

(𝑡𝑎𝑖
) + 𝑃(𝑆𝑎𝑖

, 𝑆 ) ∗ 𝐶   



Proactive Computing in Industrial Maintenance Decision Making 

134 
 

In state δi, there is a penalty of 𝐶𝛿𝑖
(𝑡𝛿𝑖

) (i.e. the cost function of the action implementation) 

and given the probability to move to state f the policy evaluation gives: 

 

𝑈(𝑆𝛿𝑖
) = 𝐶𝛿𝑖

(𝑡𝛿𝑖
) + 𝑃(𝑆𝛿𝑖

, 𝑆 ) ∗ 𝐸𝐿(𝑆 ) + 𝑃(𝑆𝛿𝑖
, 𝑆𝑎𝑖

) ∗ 𝑈(𝑆𝑎𝑖
)  

               = 𝐶𝛿𝑖
(𝑡𝛿𝑖

) + 𝑃(𝑆𝛿𝑖
, 𝑆 ) ∗ 𝐶 + 𝑃(𝑆𝛿𝑖

, 𝑆𝑎𝑖
) ∗ [𝐶𝑎𝑖

(𝑡𝑎𝑖
) + 𝑃(𝑆𝑎𝑖

, 𝑆 ) ∗ 𝐶 ]  

 

Finally, the state Sd has not any penalty itself. Therefore, the utility function is computed as 

follows: 

𝑈(𝑆𝑑) = 𝑃(𝑆𝑑, 𝑆𝛿𝑖
) ∗ 𝑈(𝑆𝛿𝑖

) + 𝑃(𝑆𝑑, 𝑆 ) ∗ 𝑈(𝑆 )  

              = 𝑃(𝑆𝑑 , 𝑆𝛿𝑖
) ∗ {𝐶𝛿𝑖

(𝑡𝛿𝑖
) + 𝑃(𝑆𝛿𝑖

, 𝑆 ) ∗ 𝐶 + 𝑃(𝑆𝛿𝑖
, 𝑆𝑎𝑖

) ∗ [𝐶𝑎𝑖
(𝑡𝑎𝑖

) + 𝑃(𝑆𝑎𝑖
, 𝑆 ) ∗

𝐶 ]} + 𝑃(𝑆𝑑, 𝑆 ) ∗ 𝐶   

 

Consequently, the utility function for each action is derived from Equation 5-4: 

Equation 5-4 

𝑈𝑎𝑖 = 𝑃(𝑆𝑑, 𝑆𝛿𝑖
) ∗ {𝐶𝛿𝑖

(𝑡𝛿𝑖
) + 𝑃(𝑆𝛿𝑖

, 𝑆 ) ∗ 𝐶 + 𝑃(𝑆𝛿𝑖
, 𝑆𝑎𝑖

) ∗ [𝐶𝑎𝑖
(𝑡𝑎𝑖

) + 𝑃(𝑆𝑎𝑖
, 𝑆 ) ∗

𝐶 ]} + 𝑃(𝑆𝑑, 𝑆 ) ∗ 𝐶   

 

Let 𝑈0 denote the expected utility of taking no action. Backward induction for this policy 

gives: 

𝑈0(𝑆𝑑) = 𝑃(𝑆𝑑, 𝑆𝑛) ∗ 𝑈0(𝑆𝑛) + 𝑃0(𝑆𝑑, 𝑆 ) ∗ 𝑈0(𝑆 ) = 𝑃0(𝑆𝑑, 𝑆 ) ∗ 𝐶   

 

The transition probabilities from 𝑆𝑑 to 𝑆  or 𝑆𝛿𝑖
 are: 

𝑃(𝑆𝑑, 𝑆 ) = 𝑃 (𝑡0, 𝑡𝛿𝑖
)  

𝑃(𝑆𝑑 , 𝑆𝛿𝑖
) = 1 − 𝑃 (𝑡0, 𝑡𝛿𝑖

)  

To proceed from δi to αi, probabilities are given by: 

𝑃(𝑆𝛿𝑖
, 𝑆 ) = 𝑃 (𝑡𝛿𝑖

, 𝑡𝛼𝑖
)  

𝑃(𝑆𝛿𝑖
, 𝑆𝛼𝑖

) = 1 − 𝑃 (𝑡𝛿𝑖
, 𝑡𝛼𝑖

)  
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that is, we move to 𝑆𝑎𝑖
 if ε does not occur between the time the delay and the action im-

plementation. The transition from 𝑆𝛿𝑖
 to 𝑆  occurs with the complementary probability. 

Finally, the distribution over the event occurrence in state ai is denoted by: 

𝑃(𝑆𝑎𝑖
, 𝑆 ) = 𝑃𝑎𝑖

(𝑡𝑎𝑖
, 𝑇)  

T indicates the decision horizon, i.e. the end of decision epoch. If no action is taken, the 

probability to go to state ε is the probability of the event occurrence over the entire inter-

val: 

𝑃0(𝑆𝑑, 𝑆 ) = 𝑃 (𝑡0, 𝑇)  

And 𝑃0(𝑆𝑑, 𝑆𝑛) is the complementary probability. 

Therefore, Equation 5-4 is transformed to the expression of Equation 5-5: 

Equation 5-5 

𝑈𝑎𝑖 = [1 − 𝑃 (𝑡0, 𝑡𝛿𝑖
)]

∗ {𝐶𝛿𝑖
(𝑡𝛿𝑖

) + 𝑃 (𝑡𝛿𝑖
, 𝑡𝛼𝑖

) ∗ 𝐶 + [1 − 𝑃 (𝑡𝛿𝑖
, 𝑡𝛼𝑖

)]

∗ [𝐶𝛿𝑖
(𝑡𝛿𝑖

) + 𝑃𝑎𝑖
(𝑡𝑎𝑖

, 𝑇) ∗ 𝐶𝑓]} + 𝑃𝑓(𝑡0, 𝑡𝑎𝑖
) ∗ 𝐶𝑓 

The shape of the expected utility curves is determined by the three main factors that 

comprise it: 

 The cost incurred by the occurrence of failure prior to the time of the action taking 

affect (corresponding to the first two factors in Equation 5-5). This factor is mono-

tonic increasing in the time of action, since the longer we wait with taking an action, 

the greater the probability that a failure will happen beforehand.  

 The cost incurred by the occurrence of failure despite the application of the mitigat-

ing action (third factor in Equation 5-5), which is monotonic decreasing, since the 

probability that a failure will happen until the end of epoch is decreasing as time 

progresses.  

 The cost of taking the action (last factor in Equation 5-5), which is also decreasing 

with time, for two reasons: (i) the later the action is planned for, the smaller the 
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probability it will be taken, since the probability that a failure occurs before the ac-

tion increases; (ii) the action cost itself is typically nonincreasing. 

 

5.5 Joint Proactive Maintenance and Logistics Optimization 

5.5.1 Motivation 

Manufacturing failures cause significant problems in human safety, environmental im-

pact and reliability of industrial processes. The fact that unexpected failures deal with un-

certainty and stochastic degradation process of manufacturing equipment leads to high un-

certainty in the decision making process as well (Van Horenbeek et al., 2013). Thus, there is 

an increasing demand of maintenance management policies as well as associated infor-

mation systems in order to reduce unexpected failures, eliminate unscheduled downtimes, 

and minimize maintenance-related costs (Wu et al., 2007).  

Since maintenance and inventory management are strongly interconnected, they should 

both be considered simultaneously when optimizing a company’s operations (Van 

Horenbeek et al., 2013). Moreover, an accurate reliability evaluation is essential for taking 

reliable maintenance modelling and spare parts inventory planning decisions (Venkatesan, 

1984; Armstrong, and Atkins, 1996; Aronis et al., 2005; Vaughan, 2005; Wu et al., 2007; 

Elwany, and Gebraeel, 2008; Wang, 2012; Van Horenbeek et al., 2013). The decision about 

the predictive maintenance of equipment requires a balance between the cost due to 

premature replacement and the cost of unexpected failure. Moreover, the ordering time of 

spare parts and their stocking quantities should be planned so that holding costs are mini-

mized by avoiding, at the same time, stock-outs (Elwany, and Gebraeel, 2008; Bohlin, and 

Wärja, 2015).  

Due to the recent advances in technology and information systems and the plethora of 

methods for prognosis, decision models for joint maintenance and inventory optimization 

on the basis of prognostic information (e.g. Remaining Useful Life (RUL), Remaining Life Dis-

tribution) coming from real-time data (e.g. through sensors) have just started to emerge 

(Van Horenbeek et al., 2013). Real-time data processing for proactive decision making poses 
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several challenges in efficiency and scalability of the associated information systems. Cur-

rently, most of such models and methods can be run offline or on the basis of batches of 

data at specific sampling times. Although there are research works dealing with extracting 

insights about current and future situation of business processes, decision making on the 

basis of real-time, event-driven predictive analytics is still an underexplored area. More spe-

cifically, rarely joint maintenance and logistics decision models are real-time and event-

driven.  

The e-maintenance concept can significantly enhance proactive decision making in 

maintenance-driven operations management. However, despite the increasing capabilities 

of e-technologies, maximizing the e-maintenance benefits for the overall maintenance effi-

ciency requires more than technology (Guillen et al., 2016). There is the need for models 

and methods capable of being embedded in real-time systems triggered by real-time prog-

nostic information in an event processing, streaming computational environment. 

To the best of our knowledge, the most representative research work for such kind of 

problems was proposed by (Elwany, and Gebraeel, 2008) who transformed the decision 

model proposed by (Armstrong, and Atkins, 1996), so that it is updated continuously in real-

time according to the RUL estimation each time a sensor measurement is gathered. To do 

this, it takes into account the sampling time and follows the “Sense and Respond” concept. 

However, the availability of a multitude of data generated in the form of very high frequen-

cy events by various sources, paves the way for coupling prognostic-based decision methods 

with sensor-based, event-driven architectures that can support efficient processing of 

events and improved scalability, while having the ability of handling probability distributions 

functions instead of parameters (e.g. RUL).  

The proposed joint predictive maintenance and spare parts inventory decision models 

advance the state-of-the-art since they can be deployed in a sensor-based, real-time big da-

ta industrial environment using an Event Driven Architecture (EDA) and the e-maintenance 

concept (Muller et al., 2008) in the context of the framework for Proactive Maintenance. 

Due to the available prognostic information, the optimal time for maintenance of a part of 

equipment can be recommended and spare parts can be ordered JIT. The integration in an 
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EDA enables handling large amounts of data generated by sensors in high frequency, where 

the continuous update of the decision model is not possible. 

5.5.2 State-of-the-Art Analysis 

Companies keep inventories of spare parts in order to have availability in case of 

maintenance. The amount of spare parts in inventory depends on the demand, i.e. the cor-

rective and the preventive maintenance actions requiring the associated spare parts. There-

fore, maintenance and inventory management are strongly interconnected and should both 

be considered simultaneously when optimizing a company’s operations (Van Horenbeek et 

al., 2013). Most of the research works regarding joint maintenance and inventory optimiza-

tion deal with decisions that rely on time-to-failure/ reliability distributions derived from 

experimental setups or manufacturing companies’ specifications instead of real-time data 

and thus, they are not able to update the recommendations according to the actual and / or 

the predicted health state of the equipment. Although in the last years there have been 

published many research works about real-time prognostics, joint maintenance and spare 

parts decision models on the basis of these predictions have not been explored, as a conse-

quence of a general lack of proactive decision methods for maintenance. Such an approach 

could support manufacturing companies minimize their major costs, since a decrease in 

spare parts inventory cost is among the most significant indirect benefits provided by a pro-

active strategy (Van Horenbeek et al., 2013).  

In addition, almost all published papers on this domain deal with the application of CBM 

strategy taking into consideration the actual level of degradation, but not the prediction 

about the future degradation, the future failure or other prognostic information. So, there is 

untapped opportunity to explore such decision models to the implementation of Proactive 

Maintenance policy in industrial applications (Van Horenbeek et al., 2013). Due to the avail-

able prognostic information, proactive maintenance actions can be recommended and spare 

parts can be ordered Just-In-Time (JIT) (Van Horenbeek et al., 2013). On the other hand, the 

equipment downtime may be affected by logistics-related delays, while the time needed for 

finishing the implementation of the appropriate maintenance actions is rarely accurately 

known (Van Horenbeek et al., 2013). Finally, the vast majority of published papers assume 

that the parts of equipment are perfectly maintained after a pre-defined action implemen-
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tation or do not mention any assumption regarding the degree of restoration (Van 

Horenbeek et al., 2013).  

5.5.3 The Proposed Decision Methods 

5.5.3.1 Proactive joint replacement and spare parts inventory decision model 

This decision method is based on cost risk analysis (Hulett, 2016) combined with reliabil-

ity analysis (Ibrahim et al., 2005; Kapur, and Pecht, 2014), while it takes into account the fact 

that a failure may occur till the next planned maintenance, even though a maintenance ac-

tion has been implemented, due to low quality of the spare parts replaced or errors in the 

maintenance process of equipment. This decision model aims to provide timely and reliable 

recommendations about the optimal time for maintenance and the optimal time for order-

ing spare parts on the basis of a probability distribution function of a failure occurrence 

along with its parameters. Degradation modelling usually follows an exponential, a gamma 

or a Weibull distribution (Elwany, and Gebraeel, 2008; Kapur, and Pecht, 2014). However, in 

some cases where the cumulative damage does not significantly affect the degradation rate, 

the linear degradation model can be used (Elwany, and Gebraeel, 2008), since this method 

does not require a probability distribution belonging to the exponential family. 

Each factor of the decision model’s long-term maintenance and inventory costs equa-

tions represents a cost risk based on the input received from the real-time prediction event. 

In each time period, there are different associated costs that are expressed as a function of 

maintenance actions implementation time because their duration may be unknown or too 

random and there is a cost per unit of time. In addition, the prediction event is received and 

the recommendation is provided at time t = 0. The long-term maintenance cost as a function 

of time is extracted by Equation 5-6 while the long-term inventory cost as a function of time 

is extracted by Equation 5-7. Moreover, Table 1 presents the explanation for each variable. 

Equation 5-6 

𝐶𝑚(𝑡) = 𝑐𝑓(𝑡) ∗ 𝑃 (0, 𝑡) + (𝑐𝑓(𝑡) + 𝑐𝑝(𝑡)) ∗ 𝑃𝑎 (𝑡, 𝑇) + 𝑐𝑝(𝑡) ∗ �̅� (0, 𝑇) 
 

Equation 5-7 

𝐶𝑜(𝑡) = 𝑐𝑠(𝑡) ∗ 𝑃 (0, 𝑡 + 𝐿) + 𝑐𝑠(𝑡) ∗ 𝑃𝑎 (𝑡 + 𝐿, 𝑇) + 𝑐ℎ(𝑡) ∗ �̅� (0, 𝑇) 
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When an action 𝒂 is applied to reduce the probability of an undesired event, 𝒂 is associ-

ated with a new event density function 𝒈𝒂
𝜺 (𝒕), which indicates the probability that 𝜺 occurs 

at time t, although 𝒂 has been applied before t.  This happens because the implementation 

of action 𝒂 does not prevent 𝜺 with certainty. Therefore, the probability distributions are 

calculated as shown in Equation 5-1 and Equation 5-2. In Equation 5-2, the conditioning (de-

nominator) takes into account the fact that until the action occurrence at 𝒕𝟏, the distribu-

tion in place was 𝑮𝜺. 

Table 5-4: Explanation of the decision model’s variables. 

Variable Explanation 

𝑷𝜺(𝒕𝟏, 𝒕𝟐) Probability distribution function that the failure 𝜀  occurs 
within the time interval (𝑡1, 𝑡2) conditioned on not occur-
ring until time 𝑡1 

𝑷𝒂
𝜺 (𝒕𝟏, 𝒕𝟐) Probability distribution function that the failure 𝜀  occurs 

within the time interval (𝑡1, 𝑡2) conditioned on not occur-
ring until time 𝑡1 and assuming that the action 𝑎 has been 
implemented exactly at time 𝑡1 

�̅�𝜺(𝒕𝟏, 𝒕𝟐) Probability distribution function that the failure 𝜀 does not 
occur within the time interval (𝑡1, 𝑡2) conditioned on not 
occurring until time 𝑡1 

𝒄𝒇(𝒕) Cost of failure and of the associated corrective actions as a 
function of implementation time 

𝒄𝒑(𝒕) Cost of planned maintenance as a function of implementa-
tion time 

𝒄𝒔(𝒕) Shortage inventory cost as a function of time 

𝒄𝒉(𝒕) Holding inventory cost as a function of time 

𝑳 Lead time between the time of placing the order up and the 
time of receiving the order 

𝑻 Time until next planned maintenance 

 

𝒄𝒇(𝒕) is presented in the first and second factor of  Equation 5-6. 𝑪𝒇 being referred to 

the cost of failure for each time unit, in the first factor of Equation 5-6, 𝒄𝒇(𝒕) = 𝑪𝒇 ∗ 𝒕 (e.g. in 

case of linear function), because the associated probability distribution function refers to 

the time period (0, t), while in the second factor of Equation 5-6, t is replaced by (T-t), e.g. 

𝒄𝒇(𝒕) = 𝑪𝒇 ∗ (𝑻 − 𝒕), because the associated probability distribution function refers to the 

time period (t, T). 𝒄𝒑(𝒕) is referred to the set of specific pre-defined actions and is presented 
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to the second and third factor of Equation 5-6. It depends on the time period which it refers 

to. 𝑪𝒑 being referred to the cost of planned maintenance for each time unit and �̅�𝒑 to the 

average time needed for planned maintenance, in the second factor of Equation 5-6, 

𝒄𝒑(𝒕) = 𝑪𝒑 ∗ (𝑻 − 𝒕) (e.g. in case of linear cost function), while in the third factor of Equa-

tion 5-6, t is replaced by �̅�𝒑, e.g.  𝒄𝒑(𝒕) = 𝑪𝒑 ∗ �̅�𝒅𝒑, because the associated probability distri-

bution function refers exactly to T, when the planned maintenance is conducted. 𝒄𝒔(𝒕) also 

depends on the time period which it refers to and is presented to the first and second factor 

of Equation 5-7.  𝑪𝒔 being referred to the shortage cost for each time unit, in the first factor 

of Equation 5-7, t is replaced by (t+L), i.e. 𝒄𝒔(𝒕) = 𝑪𝒔 ∗ (𝒕 + 𝑳), while in the second factorof 

Equation 5-7, t is replaced by (𝑻 − (𝒕 + 𝑳)), i.e. 𝒄𝒔(𝒕) = 𝑪𝒔 ∗ (𝑻 − (𝒕 + 𝑳)). Finally, 𝒄𝒉(𝒕) 

depends on the time period which it refers to as well and is presented to the third factor of 

Equation 5-7. 𝑪𝒉 being referred to the holding cost for each time unit,  in the third factor of 

Equation 5-7, t is replaced by (𝑻 − (𝒕 + 𝑳)), i.e. 𝒄𝒉(𝒕) = 𝑪𝒉 ∗ (𝑻 − (𝒕 + 𝑳)).  

Equation 5-6 is minimized in order to provide the optimal time of conducting mainte-

nance 𝑡𝑚. In this way, the time-based maintenance can become condition-based by apply-

ing the same pre-determined activities when the long-term replacement cost is minimum. 

This equation consists of three factors which represent the cost risks:  

 The cost due to the probability of the occurrence of failure before the time of 

maintenance actions implementation. This factor shows that the longer we wait 

for implementing an action, the greater the probability that a failure will happen 

beforehand.  

 The cost due to the probability of the occurrence of failure despite the application 

of the mitigating action. This factor shows that the probability that a failure will 

happen until the end of epoch is decreasing in the course of time.  

The cost of implementing the action at the end of decision epoch, i.e. the next planned 

maintenance. This factor is taken into account because there is the possibility of the failure 

not occurring in the decision epoch although it has been predicted. Equation 5-7 is mini-

mized in order to provide the optimal time of ordering the spare parts 𝑡𝑜. In this way, the 

spare parts can be ordered JIT, so that the long-term inventory cost is minimum. This equa-

tion takes into account the obsolescence of spare parts, which affect the inventory costs, 

and also consists of three factors which represent the cost risks:  
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 The cost due to the probability of the occurrence of failure before the time of 

spare parts ordering plus the lead time required.  

 The cost due to the probability of the occurrence of failure despite the action 

implementation and, therefore, the lack of more spare parts.  

 The cost of implementing the action at the end of decision epoch, that is the next 

planned maintenance. This factor is taken into account because there is the pos-

sibility of the failure not occurring in the decision epoch although it has been 

predicted and thus, the spare parts that have been ordered remain in the ware-

house till the next planned maintenance.  

5.5.3.2 Proactive joint maintenance and spare parts inventory decision model 

This decision model is triggered by prognostic information in an event processing com-

putational environment on the basis of sensor-generated real-time data. Unlike other ap-

proaches, it incorporates multiple alternative maintenance actions since the recommended 

proactive maintenance actions address perfect and various degrees of imperfect mainte-

nance, while each one is mapped to the associated order of spare parts. Rarely joint 

maintenance and logistics decision models are real-time and event-driven, while they usual-

ly provide recommendations about a pre-defined maintenance action (assuming perfect 

maintenance) with its associated pre-defined order of spare parts.Moreover, it incorporates 

an MDP model handling transition probabilities distribution functions of time, while, in the 

place of state rewards, there are costs as functions of action implementation time. Conse-

quently, its output is an action-time policy instead of an action-state policy.  

The decision model’s output is a set of recommendations about the optimal mitigating 

(perfect or imperfect) maintenance action (out of a list of alternative actions) along with its 

implementation time and the optimal order of spare parts that are related to this action 

along with the optimal ordering time. Domain knowledge entered by users corresponds to 

the proposed model’s input parameters and includes the cost of the equipment failure (e.g. 

breakdown), the alternative actions along with their cost parameters, and the new lifetime 

after the action implementation (i.e. how much time each action prolongs the lifetime of 

the equipment) as well as the decision horizon (e.g. next planned maintenance). The latter is 

defined by the end of decision epoch, i.e. the time after which the effect of the predicted 
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undesired event fades and the probability of its occurrence returns to normal (Engel et al., 

2012). The action-related cost parameters deal with two factors: the cost of action imple-

mentation and the cost of action effect (after the action implementation). These two factors 

apply in both maintenance and inventory aspects and are expressed as a function of imple-

mentation time, because actions often affect operation until some specific future time (e.g. 

taking machinery down to maintenance and losing the rest of the working week). In this 

sense, the cost is a decreasing function in the activation time. The decision model takes ad-

vantage of the basic model for proactive event-driven computing (Engel et al., 2012) and 

extends it in order to address the joint optimization of maintenance and spare parts order-

ing in a proactive way when there are multiple alternative maintenance actions and associ-

ated spare parts orders. To this end, a MDP model is used and is formulated accordingly. 

The output of the MDP is not a policy consisting of an action-state pair, but a policy of an 

action-time pair, and therefore, the Bellman equation is structured accordingly. The decision 

model is able to provide recommendations about when to take which action provided that 

the cost of taking the action and / or the cost of the action effect changes over time. To do 

this, it incorporates the transition probability distributions as a function of implementation 

time. The state rewards of the MDP correspond to the costs as functions of implementation 

time. Consequently, the result is the action with the minimum expected loss (instead of the 

maximum utility) and the optimal time of applying it. The expected loss function of each 

action is estimated by using the backward induction algorithm for finite horizon problems 

(Watkins, and Dayan, 1992) and the Bellman equation is minimized with respect to time. 

The proactive formulation of the MDP model is solved for both maintenance and logistics so 

that the resulting expected loss functions are jointly optimized. 

Figure 5-4 shows an example of the proactive MDP formulation for joint maintenance and 

logistics optimization for three alternative actions. On the basis of this formulation, for arbi-

trary number of actions, the equations of the joint decision model are derived, i.e. the 

maintenance equation (for each maintenance mitigating action) and the spare parts order-

ing equation (for each order associated with the respective maintenance mitigating action). 

Both of them are derived in relation to the predicted failure, but there are different transi-

tion probability functions and state rewards in the same formulation, depicted in Figure 5-4. 

The state rewards correspond to the maintenance costs (i.e. cost of failure, cost of action 
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implementation, cost of action effect) for each alternative action and the inventory costs 

(i.e. shortage cost, holding cost) associated with each maintenance action along with their 

lead times. Table 5-5 shows the explanation of the proposed decision model’s variables. 

 

Figure 5-4: An example of the proactive MDP formulation for joint maintenance and logistics optimization. 

Table 5-5: Explanation of the proposed model’s variables. 

Variable Explanation 

𝑷𝒇(𝒕𝟏, 𝒕𝟐) Probability distribution function that the failure 𝑓  occurs 
within the time interval (𝑡1, 𝑡2) conditioned on not occurring 
until time 𝑡1 

𝑷𝒂
𝒇(𝒕𝟏, 𝒕𝟐) Probability distribution function that the failure 𝑓  occurs 

within the time interval (𝑡1, 𝑡2) conditioned on not occurring 
until time 𝑡1  and assuming that the action 𝑎  has been 
implemented exactly at time 𝑡1 

𝑬𝑳𝒂𝒊(𝒕) Expected loss function for maintenance action ai 

𝑪𝒇 Cost of failure 

𝑪𝒆𝒊
(𝒕) Cost function of the action effect 

𝑪𝒂𝒊
(𝒕) Cost function of the action implementation 

𝑬𝑳𝒐𝒊 Expected loss function for spare parts order oi 
𝑪𝒔𝒑 Cost of buying the spare parts 

𝑪𝒔(𝒕) Cost function of shortage inventory 

𝑳 Lead time between the time of placing the order up and the 
time of receiving the order 

𝑻 Decision horizon 

 

5.5.3.2.1 Maintenance Expected Loss Function 

For the maintenance equation, based on the aforementioned MDP formulation, there is no 

cost (or benefit) of being at state Sn, hence 𝐸𝐿(𝑆𝑛) = 0. In state f, there is a penalty of 𝐶𝑓 
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(i.e. the cost of failure), hence 𝐸𝐿(𝑆𝑓) = 𝐶𝑓. In state ei we incur penalty of 𝐶𝑒𝑖
(𝑡𝑒𝑖

) (i.e. the 

cost function of the action effect) and, given the probability to move to state f, the policy 

evaluation gives: 

𝐸𝐿(𝑆𝑒𝑖
) = 𝐶𝑒(𝑡𝑒𝑖

) + 𝑃(𝑆𝑒𝑖
, 𝑆𝑓) ∗ 𝐸𝐿(𝑆𝑓) = 𝐶𝑒𝑖

(𝑡𝑒𝑖
) + 𝑃(𝑆𝑒𝑖

, 𝑆𝑓) ∗ 𝐶𝑓  

In state ai, there is a penalty of 𝐶𝑎𝑖
(𝑡𝑎𝑖

) (i.e. the cost function of the action implementation) 

and given the probability to move to state f the policy evaluation gives: 

 

𝐸𝐿(𝑆𝑎𝑖
) = 𝐶𝑎𝑖

(𝑡𝑎𝑖
) + 𝑃(𝑆𝑎𝑖

, 𝑆𝑓) ∗ 𝐸𝐿(𝑆𝑓) + 𝑃(𝑆𝑎𝑖
, 𝑆𝑒𝑖

) ∗ 𝐸𝐿(𝑆𝑒𝑖
)  

               = 𝐶𝑎𝑖
(𝑡𝑎𝑖

) + 𝑃(𝑆𝑎𝑖
, 𝑆𝑓) ∗ 𝐶𝑓 + 𝑃(𝑆𝑎𝑖

, 𝑆𝑒𝑖
) ∗ [𝐶𝑒𝑖

(𝑡𝑒𝑖
) + 𝑃(𝑆𝑒𝑖

, 𝑆𝑓) ∗ 𝐶𝑓]  

 

Finally, the state Sd has not any penalty itself. Therefore, the expected loss is computed as 

follows: 

𝐸𝐿(𝑆𝑑) = 𝑃(𝑆𝑑, 𝑆𝑎𝑖
) ∗ 𝐸𝐿(𝑆𝑎𝑖

) + 𝑃(𝑆𝑑, 𝑆𝑓) ∗ 𝐸𝐿(𝑆𝑓)  

              = 𝑃(𝑆𝑑 , 𝑆𝑎𝑖
) ∗ {𝐶𝑎𝑖

(𝑡𝑎𝑖
) + 𝑃(𝑆𝑎𝑖

, 𝑆𝑓) ∗ 𝐶𝑓 + 𝑃(𝑆𝑎𝑖
, 𝑆𝑒𝑖

) ∗ [𝐶𝑒𝑖
(𝑡𝑒𝑖

) + 𝑃(𝑆𝑒𝑖
, 𝑆𝑓) ∗

𝐶𝑓]} + 𝑃(𝑆𝑑 , 𝑆𝑓) ∗ 𝐶𝑓  

 

Consequently, the expected loss function for each mitigating maintenance action is derived 

from Equation 5-8: 

Equation 5-8 

𝐸𝐿𝑎𝑖 = 𝑃(𝑆𝑑, 𝑆𝑎𝑖
) ∗ {𝐶𝑎𝑖

(𝑡𝑎𝑖
) + 𝑃(𝑆𝑎𝑖

, 𝑆𝑓) ∗ 𝐶𝑓 + 𝑃(𝑆𝑎𝑖
, 𝑆𝑒𝑖

) ∗ [𝐶𝑒𝑖
(𝑡𝑒𝑖

) + 𝑃(𝑆𝑒𝑖
, 𝑆𝑓) ∗

𝐶𝑓]} + 𝑃(𝑆𝑑, 𝑆𝑓) ∗ 𝐶𝑓  

Let 𝐸𝐿0 denote the expected loss of taking no action. Backward induction for this policy 

gives: 

𝐸𝐿0(𝑆𝑑) = 𝑃(𝑆𝑑, 𝑆𝑛) ∗ 𝐸𝐿0(𝑆𝑛) + 𝑃0(𝑆𝑑, 𝑆𝑓) ∗ 𝐸𝐿0(𝑆𝑓) = 𝑃0(𝑆𝑑, 𝑆𝑓) ∗ 𝐶𝑓  

 

The transition probabilities from 𝑆𝑑 to 𝑆𝑓 or 𝑆𝑎𝑖
 are: 

𝑃(𝑆𝑑 , 𝑆𝑓) = 𝑃𝑓(𝑡0, 𝑡𝑎𝑖
)  

𝑃(𝑆𝑑 , 𝑆𝑎𝑖
) = 1 − 𝑃𝑓(𝑡0, 𝑡𝑎𝑖

)  
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To proceed from ai to ei, probabilities are given by: 

𝑃(𝑆𝑎𝑖
, 𝑆𝑓) = 𝑃𝑓(𝑡𝑎𝑖

, 𝑡𝑒𝑖
)  

𝑃(𝑆𝑎𝑖
, 𝑆𝑒𝑖

) = 1 − 𝑃𝑓(𝑡𝑎𝑖
, 𝑡𝑒𝑖

)  

that is, we move to 𝑆𝑒𝑖
 if f does not occur between the time the action is applied until the 

time it takes effect. The transition from 𝑆𝑎𝑖
 to 𝑆𝑓 occurs with the complementary probabil-

ity. 

Finally, the distribution over the event occurrence in state ei is denoted by: 

𝑃(𝑆𝑒𝑖
, 𝑆𝑓) = 𝑃𝑒𝑖

𝑓
(𝑡𝑒𝑖

, 𝑇)  

T indicates the decision horizon, i.e. the end of decision epoch. If no action is taken, the 

probability to go to state f is the probability of the event occurrence over the entire interval: 

𝑃0(𝑆𝑑, 𝑆𝑓) = 𝑃𝑓(𝑡0, 𝑇)  

And 𝑃0(𝑆𝑑, 𝑆𝑛) is the complementary probability. 

Therefore, Equation 5-8 is transformed to the expression of Equation 5-9: 

Equation 5-9 

𝐸𝐿𝑎𝑖 = [1 − 𝑃𝑓(𝑡0, 𝑡𝑎𝑖
)] ∗ {𝐶𝑎𝑖

(𝑡𝑎𝑖
) + 𝑃𝑓(𝑡𝑎𝑖

, 𝑡𝑒𝑖
) ∗ 𝐶𝑓 + [1 − 𝑃𝑓(𝑡𝑎𝑖

, 𝑡𝑒𝑖
)] ∗ [𝐶𝑒𝑖

(𝑡𝑒𝑖
) +

𝑃𝑎𝑖

𝑓
(𝑡𝑒𝑖

, 𝑇) ∗ 𝐶𝑓]} + 𝑃𝑓(𝑡0, 𝑡𝑎𝑖
) ∗ 𝐶𝑓  

Equation 5-9 expresses the expected loss of each mitigating maintenance action. The 

minimization of the expected loss functions of all the alternative actions with respect to im-

plementation time provides a recommendation about the optimal action (the action with 

the global minimum) and the optimal time for its implementation (the time when the ex-

pected loss has its global minimum). In Equation 5-9, there is the cost function of the action 

implementation 𝐶𝑎𝑖
(𝑡𝑎𝑖

) (i.e. how much the process of action implementation costs – e.g. 

cost of spare parts, technician pay rate, etc.) and the cost function of the action effect 

𝐶𝑒𝑖
(𝑡𝑒𝑖

) (i.e. how much the result of the action costs – e.g. cost of operating at reduced 

equipment load). Provided that an estimation of the duration of action implementation is 
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known, 𝑡𝑎𝑖
= 𝑡 and 𝑡𝑒𝑖

= 𝑡 + 𝛥𝑡, where t indicates the time of action implementation. The 

polynomial of the action cost function of implementation as well as the initial estimation of 

the duration of action implementation can be continuously updated, as we are explaining 

below. In addition, t0 is considered equal to 0. Consequently, Equation 5-9 is transformed to 

Equation 5-10: 

Equation 5-10 

𝐸𝐿𝑎𝑖(𝑡) = [1 − 𝑃𝑓(𝑡0, 𝑡)] ∗ {𝐶𝑎𝑖
(𝑡) + 𝑃𝑓(𝑡, 𝑡 + 𝛥𝑡) ∗ 𝐶𝑓 + [1 − 𝑃𝑓(𝑡, 𝑡 + 𝛥𝑡)] ∗

[𝐶𝑒𝑖
(𝑡 + 𝛥𝑡) + 𝑃𝑎𝑖

𝑓(𝑡 + 𝛥𝑡, 𝑇) ∗ 𝐶𝑓]} + 𝑃𝑓(𝑡0, 𝑡) ∗ 𝐶𝑓   

Considering a fixed cost function of action implementation and the time periods to which 

the cost function of action effect corresponds, Equation 5-10 is transformed to Equation 

5-11: 

Equation 5-11 

𝐸𝐿𝑎𝑖(𝑡) = [1 − 𝑃𝑓(𝑡0, 𝑡)]

∗ {𝐶𝑎𝑖
+ 𝑃𝑓(𝑡, 𝑡 + 𝛥𝑡) ∗ 𝐶𝑓 + [1 − 𝑃𝑓(𝑡, 𝑡 + 𝛥𝑡)]

∗ [𝐶𝑒𝑖
(𝑇 − 𝑡 − 𝛥𝑡) + 𝑃𝑎𝑖

𝑓(𝑡 + 𝛥𝑡, 𝑇) ∗ 𝐶𝑓]} + 𝑃𝑓(𝑡0, 𝑡) ∗ 𝐶𝑓 

5.5.3.2.2 Logistics Expected Loss Function 

Similarly to the previous calculations, the logistics-related equation (dealing with 

spare parts ordering) for each alternative maintenance action is derived from backwards 

induction algorithm on the basis of the same MDP formulation. In this case, there is a short-

age inventory cost function 𝐶𝑠(𝑡) which is inserted in the following equations and a holding 

cost function which is taken into account indirectly due to the complementary probabilities. 

In addition, there is a cost of buying the spare parts 𝐶𝑠𝑝. The state negative rewards repre-

sent the inventory-related costs and the action states represent the order of spare parts 

that is mapped to each action, as it has been defined at the configuration of the equipment 

instance. The ordering of spare parts business function is driven by maintenance, therefore, 

the MDP formulation remains the same, but each state has a different reward which corre-

sponds to the spare parts ordering costs. So, the backwards induction algorithm gives: 

𝐸𝐿(𝑆𝑛) = 0  
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𝐸𝐿(𝑆𝑓) = 𝐶𝑠(𝑡𝑓) = 𝐶𝑠(𝑇 − 𝑇) = 0  

𝐸𝐿(𝑆𝑒𝑖
) = 0 + 𝑃(𝑆𝑒𝑖

, 𝑆𝑓) ∗ 𝐸𝐿(𝑆′𝑓) = 𝑃(𝑆𝑒𝑖
, 𝑆𝑓) ∗ 𝐶𝑠(𝑡𝑒𝑖

) 

 

𝐸𝐿(𝑆𝑎𝑖
) = 𝐶𝑠𝑝 + 𝑃(𝑆𝑎𝑖

, 𝑆𝑓) ∗ 𝐸𝐿(𝑆′𝑓) + 𝑃(𝑆𝑎𝑖
, 𝑆𝑒𝑖

) ∗ 𝐸𝐿(𝑆𝑒𝑖
)

= 𝐶𝑠𝑝 + 𝑃(𝑆𝑎𝑖
, 𝑆𝑓) ∗ 𝐶𝑠(𝑡𝑎𝑖

) + 𝑃(𝑆𝑎𝑖
, 𝑆𝑒𝑖

) ∗ 𝑃(𝑆𝑒𝑖
, 𝑆𝑓) ∗ 𝐶𝑠(𝑡𝑒𝑖

) 

 

𝐸𝐿(𝑆𝑑) = 𝑃(𝑆𝑑, 𝑆𝑎𝑖
) ∗ 𝐸𝐿(𝑆𝑎𝑖

) + 𝑃(𝑆𝑑, 𝑆𝑓) ∗ 𝐸𝐿(𝑆′𝑓) 

= 𝑃(𝑆𝑑, 𝑆𝑎𝑖
) ∗ [𝐶𝑠𝑝 + 𝑃(𝑆𝑎𝑖

, 𝑆𝑓) ∗ 𝐶𝑠(𝑡𝑎𝑖
) + 𝑃(𝑆𝑎𝑖

, 𝑆𝑒𝑖
) ∗ 𝑃(𝑆𝑒𝑖

, 𝑆𝑓) ∗ 𝐶𝑠(𝑡𝑒𝑖
)] + 𝑃(𝑆𝑑, 𝑆𝑓)

∗ 𝐶𝑠(𝑡𝑑) 

 

Therefore, the expected loss function for each action is given by Equation 5-12: 

Equation 5-12 

𝐸𝐿𝑜𝑖 = 𝑃(𝑆𝑑, 𝑆𝑎𝑖
) ∗ [𝐶𝑠𝑝 + 𝑃(𝑆𝑎𝑖

, 𝑆𝑓) ∗ 𝐶𝑠(𝑡𝑎𝑖
) + 𝑃(𝑆𝑎𝑖

, 𝑆𝑒𝑖
) ∗ 𝑃(𝑆𝑒𝑖

, 𝑆𝑓) ∗ 𝐶𝑠(𝑡𝑒𝑖
)] +

𝑃(𝑆𝑑 , 𝑆𝑓) ∗ 𝐶𝑠(𝑡𝑑)                      

 

Let 𝐸𝐿0 denote the expected loss of taking no action. Backward induction for this policy 

gives: 

𝐸𝐿0(𝑆𝑑) = 𝑃(𝑆𝑑, 𝑆𝑛) ∗ 𝐸𝐿0(𝑆𝑛) + 𝑃0(𝑆𝑑, 𝑆𝑓) ∗ 𝐸𝐿0(𝑆𝑓) = 𝑃0(𝑆𝑑, 𝑆𝑓) ∗ 𝐶𝑠(𝑡𝑑) 

 

Finally, the expected loss function of ordering the associated spare parts for each action is 

given by Equation 5-13: 

 

Equation 5-13 

𝐸𝐿𝑜𝑖(𝑡) = [1 − 𝑃𝑓(𝑡0, 𝑡𝑎𝑖
)] ∗ {𝐶𝑠𝑝 + 𝑃𝑓(𝑡𝑎𝑖

, 𝑡𝑒𝑖
) ∗ 𝐶𝑠(𝑡𝑎𝑖

) + [1 − 𝑃𝑓(𝑡𝑎𝑖
, 𝑡𝑒𝑖

)] ∗ 𝑃𝑎𝑖

𝑓
(𝑡𝑒𝑖

, 𝑇) ∗

𝐶𝑠(𝑡𝑒𝑖
)} + 𝑃𝑓(𝑡0, 𝑡𝑎𝑖

) ∗ 𝐶𝑠(𝑡𝑑)                               

Taking into account the lead times of the spare parts orders, Equation 5-13 can be trans-

formed to Equation 5-14: 
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Equation 5-14 

𝐸𝐿𝑜𝑖(𝑡) = [1 − 𝑃𝑓(𝑡0, 𝑡 + 𝐿)] ∗ {𝐶𝑠𝑝 + 𝑃𝑓(𝑡 + 𝐿, 𝑡 + 𝐿 + 𝛥𝑡) ∗ 𝐶𝑠(𝑡 + 𝐿) + [1 − 𝑃𝑓(𝑡 +

𝐿, 𝑡 + 𝐿 + 𝛥𝑡)] ∗ 𝑃𝑎𝑖

𝑓(𝑡 + 𝐿 + 𝛥𝑡, 𝑇) ∗ 𝐶𝑠(𝑡 + 𝐿 + 𝛥𝑡)} + 𝑃𝑓(𝑡0, 𝑡𝑎𝑖
) ∗ 𝐶𝑠(𝑇)                         

Considering the time periods to which the shortage cost function corresponds to, Equation 

5-14 is transformed to Equation 5-15: 

Equation 5-15 

𝐸𝐿𝑜𝑖(𝑡) = [1 − 𝑃𝑓(𝑡0, 𝑡 + 𝐿)] ∗ {𝐶𝑠𝑝 + 𝑃𝑓(𝑡 + 𝐿, 𝑡 + 𝐿 + 𝛥𝑡) ∗ 𝐶𝑠(𝑇 − 𝑡 − 𝐿) +

[1 − 𝑃𝑓(𝑡 + 𝐿, 𝑡 + 𝐿 + 𝛥𝑡)] ∗ 𝑃𝑎𝑖

𝑓(𝑡 + 𝐿 + 𝛥𝑡, 𝑇) ∗ 𝐶𝑠(𝑇 − 𝑡 − 𝐿 − 𝛥𝑡)} + 𝑃𝑓(𝑡0, 𝑡 + 𝐿) ∗

𝐶𝑠(𝑇)           

5.5.3.2.3 Joint optimization of maintenance and logistics 

Equation 5-10 and Equation 5-14 constitute the generic proactive decision model for 

joint maintenance and logistics optimization that is triggered by a prediction event contain-

ing the PDF of the equipment under consideration failure. Since the PDF depends on the 

degradation modelling until the breakdown, it will usually follow distribution belonging to 

the exponential family (e.g. exponential, Weibull, gamma) (Kapur, and Pecht, 2014) and 

therefore, it will fulfil the Markov property. Otherwise, it should be filtered and processed 

by the previous decision method for joint maintenance and logistics optimization. Before 

optimizing the equations of the proposed decision model, the PDFs should be calculated 

according to reliability theory. Therefore the Equation 5-1 and the Equation 5-2 are adapted 

accordingly.  

 

Equation 5-16 

𝑃𝑓(𝑡1, 𝑡2) =
𝐺𝑓(𝑡2) − 𝐺𝑓(𝑡1)

1 − 𝐺𝑓(𝑡1)
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Equation 5-17 

𝑃𝑎𝑖

𝑓(𝑡1, 𝑡2) =
𝐺𝑎𝑖

𝑓 (𝑡2) − 𝐺𝑎𝑖

𝑓
(𝑡1)

1 − 𝐺𝑓(𝑡1)
 

5.6 Proactive Selection of Maintenance Spare Parts’ Suppliers  

5.6.1 Motivation 

Since manufacturing companies need to work with different suppliers of maintenance 

spare parts, the purchasing department can play a key role in cost reduction and risk optimi-

zation as well as in empowering the suppliers for improved quality, response time and relia-

bility of supplies deliveries (Sepehri, 2013). In this sense, the strategic process of supplier 

management is replacing the function of purchasing (Sepehri, 2013) involving a smaller 

numbers of highly qualified buyers, decentralized control of non-value adding items and 

greater planning activity horizons. Consequently, supplier selection becomes one of the 

most important operations of supply chain management, since it should split the order 

quantities among suppliers for creating a constant environment of competitiveness 

(Sepehri, 2013).  

5.6.2 State-of-the-Art Analysis 

In manufacturing enterprises, procurement deals not only with the raw materials re-

quired for the production process, but also with spare parts needed for maintenance. There-

fore, the supplier relationship strategy should be aligned with the equipment maintenance 

strategy (Slack et al., 2010). Since the supplier selection process occupies a large amount of 

resources, companies expect to conclude in high value contracts. However, prices of spare 

parts and raw materials are subjected to fluctuations with uncertain trends, making pro-

curement, and especially supplier relationship management, a key element of business per-

formance (Sepehri, 2013). Suppliers’ prices affect long-term business profitability, business 

reputation and output product’s price, thus suppliers’ prices prediction algorithms and au-

tonomous interacting software agents have gathered an increased interest during the last 

years (Godarzi et al., 2014). At the same time, procurement management should ensure 
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reliability and quality of supplies in conjunction with the transaction costs and risks in a dy-

namic uncertain environment (Sepehri, 2013). Procurement management driven by proac-

tive maintenance can benefit from lean manufacturing in order to eliminate operation’s 

wastes during the production process (Cortes et al., 2016). Cooperating with one out-

sourced supplier may cause significant problems (Cortes et al., 2016), so having more choic-

es of suppliers that produce and deliver the same components can lead to less future risks 

and costs (Sepehri, 2013). 

5.6.3 The Proposed Decision Method 

This decision method is triggered by: (i) a recommendation about the optimal actions as 

well as the optimal time for a maintenance action implementation along with the optimal 

time of ordering the required spare parts; and (ii) the prediction of the spare parts’ prices 

until the decision horizon. It also takes into account the available purchasing budget, the 

number of the potential suppliers and historical data about past portfolios. Then, it provides 

recommendations about the optimal portfolio of suppliers given the purchasing budget at 

the recommended future ordering time so that the expected losses are minimized. Moreo-

ver, it incorporates the last update for prediction of suppliers’ prices throughout a decision 

horizon (e.g. until next planned maintenance), as derived from a predictive analytics service. 

The output of the algorithm is the ‘Markowitz bullet’ and its ‘efficient frontier’ as well as the 

optimal portfolio of suppliers, i.e. the percentage of the available purchasing budget that 

will be spent in each supplier out of a list of potential suppliers. The use of a portfolio opti-

mization approach supports the allocation of scarce resources in the manufacturing enter-

prise to different supplier relationships and thus, the minimization of supply-related risks. 

Since information processing is asynchronous, the supplier recommendation service re-

ceives and stores the most recent update of the suppliers’ prices predictions (e.g. from an 

ERP system based on EDI data) in order to use it when the joint maintenance and logistics 

recommendation service triggers it.  

Modern portfolio theory, or mean-variance analysis, is a mathematical framework for 

assembling a portfolio of assets such that the expected return is maximized for a given level 

of risk, defined as variance. Its key insight is that an asset's risk and return should not be 

assessed by itself, but by how it contributes to a portfolio's overall risk and return (Marko-
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witz, 1950). In the supplier selection problem, assets correspond to a pre-defined number of 

potential suppliers for maintenance spare parts. MPT shows how to choose a portfolio with 

the maximum possible expected return for the given amount of risk. Two essential decisions 

are necessary to be made to choose the best portfolio from a number of possible portfolios, 

each with its risk and return opportunities: (i) Determine a set of efficient portfolios; and (ii) 

Select the best portfolio out of the efficient set. 

Therefore, the optimal ordering time is received by Markowitz Portfolio Theory (MPT) 

optimization algorithm (Markowitz, 1952) and is processed in order to enable the purchas-

ing department to decide in advance what proportion of the procurement budget should be 

spent to each supplier based on the prices that they offer in the course of time for the same 

maintenance spare parts. In this case, the assets correspond to the suppliers and the portfo-

lio indicates the percentage of the whole amount of money that should be given to each 

supplier for company’s procurement.  

The optimal portfolio of suppliers is defined according to the risk and expected return equa-

tions of MPT.  

Expected Return: 𝐸(𝑅𝑝) = ∑ 𝑤𝑖𝐸(𝑅𝑖)𝑖  , where 𝑅𝑝  is the return on the portfolio of suppli-

ers, 𝑅𝑖 is the return on supplier i and 𝑤𝑖 is the the proportion of supplier "i" in the portfolio). 

 

Portfolio return variance: 𝜎𝑝
2 = ∑ 𝑤𝑖

2𝜎𝑖
2

𝑖 + ∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝜎𝑗𝜌𝑖𝑗𝑗≠𝑖𝑖  , where 𝜌𝑖𝑗  is the correla-

tion coefficient between the returns on suppliers i and j. 

 

Portfolio return volatility: 𝜎𝑝 = √𝜎𝑝
2 

The manufacturing company that needs spare parts to be supplied can reduce the 

risk of the portfolio of suppliers simply by holding a diversified portfolio of suppliers. The 

“risk-expected return space” plot of MPT represents every possible combination of risky 

suppliers and the collection of all such possible portfolios defines a region in this space. The 

left boundary of this region is a hyperbola, and the upper edge of this region is the efficient 

frontier in the absence of a risk-free supplier. Combinations along this upper edge represent 

portfolios for which there is lowest risk for a given level of expected return. Equivalently, a 

portfolio laying on the efficient frontier represents the combination offering the best possi-
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ble expected return for given risk level. The tangent to the hyperbola at the tangency point 

indicates the best possible CAL.  

For a given "risk tolerance" 𝑞 ∈ [0, ∞), the efficient frontier is found by minimizing the fol-

lowing expression: 

𝑤𝑇𝐶𝑤 − 𝑞 ∗ 𝑅𝑇𝑤 , where: 

 w is a vector of portfolio weights and ∑ 𝑤𝑖𝑖 = 1. 

 C s the covariance matrix for the returns on the suppliers in the portfolio 

 𝑞 ≥ 0 is a "risk tolerance" factor, where 0 results in the portfolio with minimal risk 

and ∞ results in the portfolio infinitely far out on the frontier with both expected re-

turn and risk unbounded 

 𝑅 is a vector of expected returns 

 𝑤𝑇𝐶𝑤 is the variance of portfolio return 

 𝑅𝑇𝑤 is the expected return on the portfolio 

 

An alternative approach to specifying the efficient frontier is to do so parametrically on 

the expected portfolio return 𝑅𝑇𝑤. This version of the problem requires that we minimize 

𝑤𝑇𝐶𝑤 subject to 𝑅𝑇𝑤 = 𝜇 for parameter μ. This problem is solved using convex optimiza-

tion (Diamond, and Boyd, 2016) because it is a complex problem with bounds, constraints 

and a Lagrange multiplier. Figure 5-5 depicts an example of the Markowitz bullet and the Effi-

cient Frontier. 

 

Figure 5-5: The Markowitz bullet and the Efficient Frontier. 
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6 Continuous Improvement of Proactive           

Decision Making 

In this Chapter, the proposed approach for continuous improvement of proactive event-

driven decision making is presented. In order to tackle with the high sensitivity of proactive 

decision making to its input parameters, the Sensor-Enabled Feedback (SEF) approach pro-

cesses and analyses sensor-generated data with the aim to improve the accuracy of proac-

tive decision methods’ user-defined parameters and consequently, the reliability of recom-

mendations. 

6.1 Introduction and Motivation 

As an emerging technology, Internet of Things (IoT) is expected to offer promising solu-

tions to transform the operation and role of manufacturing systems with the use of appro-

priate sensory, communication, networking, and information processing technologies (Da 

Xu et al., 2014). Since design and operation of a manufacturing system requires decision 

making at all levels and domains of business activities, prompt and effective decisions de-

pend not only on reasoning techniques, but also on the quality and quantity of data. Every 

major shifting of manufacturing paradigm has been supported by the advancement of in-

formation technology. The evolution of IoT and the development of industrial event-

processing technologies pave the way for proactivity in decision making, i.e. the ability to 

decide and act ahead of time based on data-driven predictions.  

Proactive event-driven decision making is highly sensitive to its input parameters (Engel 

et al., 2012), especially to those related to action cost, as shown in the evaluation results.  

Even slightly different action cost values compared to their actual values may lead to the 

recommendation of a wrong (not optimal) action and/or timing for its implementation. 

Since cost related information may be either estimated by humans or measured through 

sensors, these deviations may occur due to user input’s inaccuracies or the quality of col-

lected data (e.g. due to sensor noise), respectively.  



Proactive Computing in Industrial Maintenance Decision Making 

156 
 

Proactive decision making is sensitive to its input parameters, in the sense that their in-

accurate estimations can lead to wrong recommendations. Deviations of action costs as a 

function of time have a strong impact over the generated recommendation, since even 

slightly different values of action cost functions compared to their actual values, may lead to 

the recommendation of a wrong action and / or a wrong optimal time for its implementa-

tion, as shown in Figure 6-1. To overcome the aforementioned problems associated with the 

inaccuracy of manually inserted cost-related information and the resulting inaccurate rec-

ommendations, our approach enables the continuous learning of each action cost function 

by considering the actual costs incurred because of the action during the time period it is 

implemented. 

 

Figure 6-1: The effect of inaccurate cost functions on the proactive decision making output. 

In this Section, the development of an approach for automated and accurate cost esti-

mations in a real-time streaming computational environment is presented. The aim is to 

enhance proactive event-driven decision making for maintenance. The proposed Sensor-

Enabled Feedback (SEF) approach collects data during action implementation and uses them 

as feedback with the aim to update the action cost function. The updated cost function can 

then be used in the next recommendation cycle involving this action. Therefore, the aim of 

the SEF approach is twofold: (i) to inform the user online about the estimated cost of action 

during action implementation, and (ii) to update the cost function of the specific action and 
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use it in the next recommendation in which this action is involved. The proposed approach 

is independent of the proactive decision methods used, in the sense that it increases the 

accuracy of their cost-related input parameters without changing the methods themselves.  

In the following sub-sections, the approach of SEF and its instantiation to maintenance 

operations is described. The approach and the algorithm address three blocks of the con-

ceptual architecture for the Decide phase: the “DMI Configuration” (as far as the SEF config-

uration is concerned) block of the User Interaction Layer, the “Proactive Decision Methods” 

block of the Real-time Processing Layer and the “Online Monitoring” block of the User Inter-

action Layer. These three blocks are highlighted with red color in the conceptual architec-

ture in Figure 6-2. 

 

Figure 6-2: The functionalities for continuous improvement of proative decision making in the conceptual architecture. 

6.2 State-of-the-Art Analysis 

Although user input inaccuracy and industrial sensor noise affect significantly the effec-

tiveness of condition monitoring and maintenance optimization, only few research works 

have investigated approaches for tackling them (de Jonge et al., 2017). Despite the wide use 

of sensor data acquisition and manipulation, existing research works mainly focus on condi-
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tion monitoring applications for visualization, for exposing real-time information to the user 

and for detecting the current health state of a manufacturing system. These inaccuracies 

can be eliminated with the use of adaptation mechanisms during the actions implementa-

tion (Krumeich et al., 2016). To the best of my knowledge, there is not an approach for ex-

ploiting sensor and legacy data for cost estimations with the aim to improve the generated 

maintenance recommendations. For accurate cost estimations, all the contributors (i.e. cost 

factors) to the cost function of each action (e.g. the waiting orders, the equipment availabil-

ity, the transport costs) should be taken into account. This fact is achieved through the user 

interaction and specifically, by enabling the expert to insert their domain knowledge in an 

information system at design time. To this end, the need for generic tools capable of inte-

grating this information in order to formulate cost functions and thus, facilitate decisions 

has recently been identified in literature (Carlander et al., 2016). However, existing works 

consider the domain knowledge inserted by domain experts as fixed. 

6.3 The Approach for Sensor-Enabled Feedback 

The current work develops a method for continuous improvement of proactive recom-

mendations through event-driven SEF, in order to extend and build on the Decide phase.  

SEF gathers and processes feedback related to cost with the aim to continuously improve 

proactive maintenance decision making. This improvement is realized in terms of accuracy 

in the estimation of the cost-related input parameters and therefore, in terms of reliability 

of the generated recommendations. The SEF approach enhances and extends proactive 

event-driven decision making for maintenance by utilizing the combination of online 

changepoint detection, noise filtering and curve fitting algorithms. 

The DMI configuration requires domain knowledge from the user, which includes quanti-

fied cost functions of the various alternative actions over time. Action cost may be a func-

tion of its implementation time, while actions usually affect the operations until a specific 

future time (end of decision epoch). Examples of actions include take the equipment down 

for maintenance and lose the production for the rest of the working day, or reduce the pro-

duction rate until the end of the shift. In these cases, cost is mainly a decreasing function 

with respect to action implementation time because the later an action is implemented, the 
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lower the total cost associated with the action is, due to its shorter duration until the end of 

the decision horizon. On the other hand, the earlier an action is implemented, the lower the 

failure risk is. In some cases, the cost function can express different meanings. For example, 

if an action cannot prevent the undesired event, but it can reduce its impact, the cost of the 

action can include the reduced cost of undesired event. Such cost-related information may 

be limited or inaccurate, while the cost functions themselves may also change in the course 

of time, making their initial estimations from domain experts not only cumbersome to ob-

tain but also obsolete.  

The cost functions are configurable according to the implementation domain, the avail-

able sensors and the problem to be addressed. They are structured based on the sensor 

measurements and the cost data either provided by the user or existed in the manufactur-

ing company’s systems (e.g. the production plan in the ERP). In other words, at the user in-

teraction layer, the user is able to formulate the cost functions based on their expert 

knowledge and the available historical data in order to take into account all the contributors 

(i.e. cost factors) to the cost function of each action (e.g. the waiting orders, the equipment 

availability, the transport costs). The cost functions are formulated with respect to action 

implementation time. The SEF approach is implemented in two sub-components, which are 

detailed in the next sections: “Total Cost Calculation” and “Cost Function Estimation”. 

6.3.1 Total Cost Calculation 

The total action cost function in the manufacturing domain is typically an aggregation of 

different cost factors such as labour cost, cost due to downtime, cost due to scrapped parts, 

cost due to warranty claims, cost of spare parts, etc. Depending on the nature of the alter-

native actions, different existing manufacturing cost models can be used to decompose ac-

tion costs to several cost factors; see e.g. (Amorim-Melo et al. 2014). SEF leverages frequent 

feedback on the actual values of the various cost factors through different sensors (e.g. 

pressure sensor, accelerometer, etc. but also ERP) that provide either directly or indirectly 

cost-related real-time information during system operation. Noise in cost-related measure-

ments expressed as a cost deviation exists due to the noise apparent in hardware sensors 

and data/ information quality deficiencies (accuracy, timeliness, adequacy and credibility) 

(Li, and Lin, 2006) of information stored in production systems. Real-time information pro-
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cessing is able to overcome issues of delay and distortion (Hazen et al., 2014) provided that 

the level of data consistency is high in the attributes that are objective to the data (Kwon et 

al., 2014). SEF uses post-action implementation cost factor data for refining the total action 

cost function.  

  Figure 6-3 provides a zoom-in view of the “Total Cost Calculation” SEF sub-component. 

This sub-component gathers sensor data corresponding to cost factors, identifies significant 

deviations of their values in the course of time with the aim to detect when the correspond-

ing action starts or ends, removes noise from the sensor measurements (thus improving 

data/ information quality) and calculates the total cost of the action by aggregating the 

measurements of all the cost factors. 

 

Figure 6-3: The process for each cost factor the aggregation of which results in the “Total Cost Calculation” sub-

component of SEF 

The costs that are related to sensor measurements and company’s systems may not be 

attributed to the single recommended action; therefore, we distinguish between baseline 

cost data measured before action implementation and action-related cost data, with the 

latter being calculated by subtracting the baseline from the total cost during action imple-
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mentation. As shown in Figure 6-3, the “Total Cost Calculation” SEF sub-component incorpo-

rates the estimation of that cost baseline for each cost factor, i.e. of an aggregated value of 

cost data measured during the period before the action implementation. First, the sub-

component identifies whether the current state is a state before action implementation (i.e. 

sensor data corresponds to baseline costs), or a state during action implementation (i.e. 

sensor data corresponds to total costs). The transition from the one state to the other is 

identified online through the action start/end detection processes, both of which are de-

scribed in more details below. Once the point of transition has been identified, the cost 

baseline is calculated by applying Curve Fitting algorithms over the corrected (after noise 

filtering) cost data time series preceding it. The whole process is exposed to the users 

through online monitoring and visualization.  

The action start/end detection processes, mentioned above, are responsible for identify-

ing transitions from a “no action” to an “action” state and vice versa, respectively. At some 

point, a higher cost compared to the baseline is identified in one or more cost factors. This is 

an indicator of an action starting, since this cost increase occurs due to an action implemen-

tation. Its cost function consists of these specific cost factors that have previously defined 

and configured during user interaction.  The transition between a “no action” and an “ac-

tion” state is identified through an online cost changepoint detection algorithm. Such kinds 

of algorithms have been proved to achieve high levels of accuracy and effectiveness by con-

ducting online, real-time anomalies detection in a recursive way (Maleki et al., 2016); how-

ever, they have mainly be used in fault detection applications. The focus is on causal predic-

tive filtering; generating an accurate distribution of the next unseen datum in the sequence, 

given only data already observed. In the proposed methodology, a real-time, event-driven 

cost changepoint detection algorithm which considers only the most recent change by in-

corporating Bayesian Inference (Adams, and MacKay, 2007) is applied. In this way, the algo-

rithm identifies immediately the change of the system state (no action – baseline cost, ac-

tion-action cost) based on the probabilistic distribution over the possible runs. The algo-

rithm is formulated as follows. 

We assume that a sequence of cost factors observations 𝐶𝐹1, 𝐶𝐹2, … , 𝐶𝐹𝑇 may be divid-

ed into non-overlapping product partitions (Barry, and Hartigan, 1992). The delineations 

between partitions are called the changepoints. We further assume that for each partition 
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𝜌, the data within it are i.i.d. from some probability distribution 𝑃(𝐶𝐹𝑡|𝜂𝜌). The parameters 

𝜂𝜌, 𝜌 = 1,2, … are taken to be i.i.d. as well. We denote the contiguous set of observations 

between time a and b inclusive as 𝑥𝑎:𝑏. The discrete a priori probability distribution over the 

interval between changepoints is denoted as 𝑃𝑔𝑎𝑝(𝑔). We are concerned with estimating 

the posterior distribution over the current “run length,” or time since the last changepoint, 

given the data so far observed. We denote the length of the current run at time t by 𝑟𝑡. We 

also use the notation 𝐶𝐹𝑡
(𝑟)

 to indicate the set of cost factors observations associated with 

the run 𝑟𝑡. A r may be zero, the set 𝐶𝐹(𝑟) may be empty. The function 𝐻 is the hazard func-

tion.The overview of the Bayesian Online Cost Changepoint Detection algorithm is shown 

below: 

1. Initialize 
𝑃(𝑟0) = 𝑆(𝑟) 𝑜𝑟 𝑃(𝑟0 = 0) = 1 

𝑣1
(0)

= 𝑣𝑝𝑟𝑖𝑜𝑟 

𝑋1
(0)

= 𝑋𝑝𝑟𝑖𝑜𝑟 

2. Observe New Datum 𝑥𝑡 
3. Evaluate Predictive Probability 

𝜋𝑡
(𝑟)

= 𝑃(𝐶𝐹𝑡|𝑣𝑡
(𝑟)

, 𝑋𝑡
(𝑟)

) 

4. Calculate Growth Probabilities 

𝑃(𝑟𝑡 = 𝑟𝑡−1 + 1, 𝑥1:𝑡) = 𝑃(𝑟𝑡−1, 𝐶𝐹1:𝑡−1)𝜋𝑡
(𝑟)

(1 − 𝐻(𝑟𝑡−1)) 

5. Calculate Changepoint Probabilities 

𝑃(𝑟𝑡 = 0, 𝐶𝐹1:𝑡) = ∑ 𝑃(𝑟𝑡−1, 𝐶𝐹1:𝑡−1)𝜋𝑡
(𝑟)

𝑟𝑡−1

𝐻(𝑟𝑡−1) 

6. Calculate Evidence 

𝑃(𝐶𝐹1:𝑡) = ∑ 𝑃(𝑟𝑡, 𝐶𝐹1:𝑡)

𝑟𝑡

 

7. Determine Run Length Distribution 
𝑃(𝑟𝑡|𝐶𝐹1:𝑡) = 𝑃(𝑟𝑡, 𝑥1:𝑡)/𝑃(𝐶𝐹1:𝑡) 

 
8. Update Sufficient Statistics 

𝑣𝑡+1
(0)

= 𝑣𝑝𝑟𝑖𝑜𝑟 

𝑋𝑡+1
(0)

= 𝑋𝑝𝑟𝑖𝑜𝑟 

𝑣𝑡+1
(𝑟+1)

= 𝑣𝑡
(𝑟)

+ 1 
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𝑋𝑡+1
(𝑟+1)

= 𝑋𝑡
(𝑟)

+ 𝑢(𝐶𝐹𝑡) 

9. Perform Prediction 

𝑃(𝐶𝐹𝑡+1|𝐶𝐹1:𝑡) = ∑ 𝑃(𝐶𝐹𝑡+1|𝐶𝐹, 𝑟𝑡)𝑃(𝑟𝑡|𝐶𝐹1:𝑡)

𝑟𝑡

 

10. Return to Step 2 
 

Since sensors and other sources of data generate noisy and low quality data related ei-

ther to the baseline cost or to the cost of the implemented action, a noise filtering algorithm 

is required so that an accurate estimation of the costs (i.e. after removing noise) is made, 

allowing to base further processing for the calculation of baseline and action costs to more 

reliable data. Noise filtering of cost data time series is based on Kalman filter (and its non-

linear extensions where the state transition and observation models are not linear functions 

of the state, but they are of differentiable type, i.e. Unscented Kalman Filter) (Kalman, 1960; 

Wan, and Van Der Merwe, 2000; Julier, and Uhlmann, 2004), one of the most widely used 

methods for filtering, tracking, estimation and prediction (Ali, and Ushaq, 2009; Liu et al., 

2016) since it minimizes the variance of the estimation Mean Squared Error (MSE) (Jwo, and 

Cho, 2007). The main advantage of Kalman filter over other noise filtering methods is in the 

computational efficiency of the algorithm due to its efficient use of matrix operations allow-

ing for longer real-time artifact removal (Rajan, and Rajalakshmy, 2014). This aspect is cru-

cial for the proposed SEF approach due to the need for scalable real-time big data pro-

cessing. Moreover, since Kalman filter provides a sequential Minimum MSE estimation for a 

time-varying parameter vector that follows a state-space dynamical model, it combines sev-

eral advantages from other noise filters and namely simplicity, optimality, tractability and 

robustness (Ali, and Ushaq, 2009; Liu et al., 2016). In addition, the Kalman filter has been 

proved to perform better than the median filter, the Butterworth low-pass filter and the 

discrete wavelet package shrinkage in terms of Signal-to-Noise Ratio (SNR) and correlation 

coefficient (R) between filtered and reference signals (Wang et al., 2011). Moreover, the 

Kalman filter has been proved to have a better performance than Fast Fourier Transform 

detection (Will, and Cardoso, 2012). Despite its wide use in condition monitoring applica-

tions aiming to detect the current health state of the equipment, it has not been used for 

cost estimations with the aim to improve the generated maintenance recommendations. 
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For each cost factor, sensors generate noisy data with a specific frequency either with 

uniform or with non-uniform sampling. These noisy data can be filtered to remove noise and 

provide an accurate estimation of the variable of interest (cost factor). Different sensor 

samplings (e.g. uniform, non- uniform sampling) and cost function polynomials per cost fac-

tor are supported. The type of cost functions may be affected either by the cost model itself 

(e.g. labour cost may be a linear function which corresponds to a pay rate of X euros per 

hour and consequently, the noise corresponds to data low quality which leads to missing 

data due to errors in data entry) or by a business process that causes a cost increase (e.g. 

the number of defects per unit of time affects the cost function due to scrapped parts).   

   Therefore, SEF filters noisy cost-related measurements in an event processing compu-

tational environment and has two steps in each iteration: (i) Prediction, and (ii) Correction. 

In each step, a set of equations based on Kalman Filter theory is solved, aiming to remove 

noise from the cost-related measurements, as shown in Table 6-1.  

Table 6-1: Cost noise filtering set of equations 

Prediction Correction 

 
 
Cost Factor Value  Prediction:     

𝐶�̂�𝑘
− = 𝐴𝐶�̂�𝑘−1 

 
Covariance Prediction:  

𝑃𝑘
− = 𝐴𝑃𝑘−1𝐴𝑇 

 
Kalman Gain:    
  𝐾𝑘 = 𝑃𝑘

−𝐻𝑇(𝐻𝑃𝑘
−𝐻𝑇 + 𝑅)−1 

 
Cost Factor Value Update:      

  𝐶�̂�𝑘 = 𝐶�̂�𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐻𝐶�̂�𝑘

−) 

 
Covariance Update:    
 𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘

− 
 

 

In the prediction step, the Kalman filter produces estimates of the current state varia-

bles, along with their uncertainties. Once the outcome of the next measurement (necessari-

ly corrupted with some amount of error, including random noise) is observed, these esti-

mates are updated using a weighted average, with more weight being given to estimates 

with higher certainty. The algorithm is recursive. It can run in real time, using only the pre-

sent input measurements and the previously calculated state and its uncertainty matrix; no 

additional past information is required.In this way, a series of measurements observed over 
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time containing statistical noise and other inaccuracies is used and estimates of unknown 

variables that tend to be more accurate than those based on a single measurement alone 

are produced. To do this, a joint probability distribution over the variables for each 

timeframe is estimated (Kalman, 1960).  

Our model assumes that the true value of the cost factor at time k is evolved from the 

state at (k − 1) according to the “cost factor value prediction” equation. 𝐶�̂�𝑘
− corresponds to 

the prior estimate of cost factor value at the kth time step, 𝐴 represents the cost value tran-

sition matrix which is applied to the previous state, 𝑃𝑘
− represents the prior error covariance 

matrix, 𝑃𝑘 the error covariance matrix, while 𝐶�̂�𝑘 corresponds to the current estimate of 

cost value at the kth  time step. 𝐾𝑘 is the Kalman Gain, 𝐻 represents the cost measurement 

matrix, 𝑅 represents the cost deviation caused by sensor noise, while 𝑧𝑘 corresponds to the 

cost measurement vector. It should be noted that at the point of transition (changepoint) 

from the “no action” to the “action” state, the cost factor noise filtering algorithm referring 

to the baseline cost measurements stops and restarts being applied for the new values (af-

ter action implementation).  

During each decision epoch that an action is recommended and implemented, the total 

cost of this action is calculated based on the measured values of the underlying cost factors 

and their associated timestamps. This calculation is conducted by adding all the cost meas-

urements during the implementation of the action for all the associated cost factors. This 

cumulative total action cost is used not only for online monitoring by the user, but also for 

further data processing in the context of the cost function estimation sub-component which 

is described in the following sub-Section. 

6.3.2 Cost Function Estimation 

Figure 6-4 provides a zoom-in view of the “Cost Function Estimation” SEF sub-component. 

The left part of Figure 6-4 shows the cumulative total cost for an action in several decision 

epochs where that action has been implemented. In each iteration, the action has been im-

plemented at a different time point with respect to the end of decision epoch. The cost C(ti) 

represents the total cost of the action when it was implemented at the specific time, i.e. for 

this specific remaining time until the end of decision epoch. The pairs of the cumulative to-
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tal action cost and the remaining time until the end of decision epoch actually represent 

points of the action cost function as can be seen in right part of Figure 6-4. 

 

Figure 6-4: “Cost Function Estimation” sub-component of SEF. 

To estimate the analytical expression of the action cost function from these points, we 

apply Curve Fitting (Shawash, and Selviah, 2013) with non-negativity constraints, since the 

action cost should be positive in order to express the expenses due to an action implemen-

tation. Curve Fitting is applied on the basis of points constrained to supposed polynomials 

using the Levenberg–Marquardt algorithm for the sum of squares minimization (Moré, 

1978; Lourakis, 2005; Shawash, and Selviah, 2013) applied to the cost function, estimated 

according to corrected sensor data. Therefore, given a set of 𝑚 empirical datum pairs of 

time and cumulative total action cost (𝑡𝑖, 𝐶𝑖), the goal is to find the parameters 𝛽 of the 

model curve 𝑓(𝑡, 𝛽) so that the sum of the squares of the deviations 𝑆(𝛽) is minimized: 

�̂� = 𝑎𝑟𝑔 min
𝛽

𝑆(𝛽) ≡ 𝑎𝑟𝑔 min
𝛽

∑[𝐶 − 𝑓(𝑡𝑖, 𝛽)]2

𝑚

𝑖=1

 

Therefore, let the Jacobian of 𝑓(𝑡𝑖) be denoted 𝐽𝑖(𝑡), then the Levenberg-Marquardt 

method searches in the direction given by the solution 𝑝 to the equations: 

(𝐽𝑘
𝑇𝐽𝑘 + 𝜆𝑘𝐼)𝑝𝑘 = −𝐽𝑘

𝑇𝑓𝑘 

Where 𝜆𝑘 are nonnegative scalars and 𝐼 is the identity matrix. The method has the prop-

erty that, for some scalar 𝛥 related to 𝜆𝑘, the vector 𝑝𝑘 is the solution of the constrained 

subproblem of minimizing ‖𝐽𝑘𝑝 + 𝑓𝑘‖2
2/2 subject to ‖𝑝‖2 ≤ 𝛥. 
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Since the distribution that these points follow is not known in advance, a curve compari-

son algorithm is applied. More specifically, polynomials of various degrees are compared 

with respect to the Mean Squared Error (MSE) which includes a regularization term in order 

to avoid overfitting (Eldar et al., 2005) and to result in convergence. The MSE measures the 

average of the squares of the errors or deviations (Lehmann, and Casella, 2006). If �̂� is a 

vector of 𝑛 predictions and 𝑋 is the vector of observed values of the variable being predict-

ed, then the within-sample MSE of the predictor is the mean of the squared of errors and is 

computed as: 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑋𝑖 − 𝑋�̂�)

2
𝑛

𝑖=1

 

Consequently, the polynomial with the lowest MSE is selected as input to Curve Fitting. 

Based on the data points and the polynomial order, the refined action cost as a function of 

the implementation time is derived in order to be used at the same DMI the next time it will 

be triggered by a prediction event. However, the user is provided with the capability to se-

lect whether they prefer the use of the refined cost function or the use of their initial guess. 

This may be required in cases where the particular action has not been recommended sev-

eral times and therefore, there is not enough data for a reliable result of curve fitting. Con-

sequently, the user may prefer to be based on their domain knowledge. 
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7 Context-awareness in Proactive Decision   

Making  

In this Chapter, the context-awareness mechanism for proactive decision making is pre-

sented. More specifically, the proposed approach is able to deal with uncertainty in decision 

making, while it is able to be embedded in a real-time, event-driven computational eni-

ronment. Moreover, the proposed approach feeds into the proactive decision methods and 

is updated through SEF.  

7.1 Introduction and Motivation 

The emergence of the Internet of Things paves the way for enhancing the monitoring 

capabilities of enterprises by means of extensive use of physical and virtual sensors generat-

ing a multitude of data. The main driving concept in sensing enterprises is the use of multi-

dimensional data captured through sensors generating events and providing added value 

information that enhances context awareness (Engel et al., 2012; Camarinha-Matos et al., 

2013). The large amount of sensor-generated data leads to a strong demand for data-

driven, real-time systems capable of efficiently processing them, in order to get meaningful 

insights about potential problems. Proactive decision making requires context-awareness 

(Engel et al., 2011); however, the high frequency of the real-time events and the high uncer-

tainty pose challenges to the efficient handling of context-awareness. This Section presents 

an approach that aims to enhance proactive event-driven decision making, by taking into 

account contextual information.  

The proposed probabilistic model for context-aware proactive recommendations takes 

into account the cost risks according to the existing context and the prediction event re-

ceived. It utilizes context awareness when there is uncertainty about the values of contex-

tual elements in order to consider several contributing factors in the decision making pro-

cess and to provide optimal recommendations. To do this, it utilizes Bayesian Network (BN), 

in order to represent the (uncertain) causal relationships between contextual information 
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and cost functions, along with k-menas clustering for creating the values of the BN nodes. 

The proposed approach is embedded in a real-time, event-driven computational environ-

ment. Finally, data about the actual action implementation cost in different contexts, which 

are obtained through physical and virtual sensors during the actual execution of the rec-

ommended actions, are fed back to the context-aware model through SEF with the aim to 

close the loop and enable continuous learning. In this sense, the approach deals with prob-

abilistic context. The deterministic context deals with Logic Based Models for representation 

with facts, expressions and rules or with Ontology Based Models for formal specifications of 

knowledge in order to take into account the user receiving the recommendation and pa-

rameters that affect the decision method output but are not inserted as input parameters 

(e.g. the customer requirements, the current business goals, the existing resources, etc.). 

These parameters are taken into account in the form of constraints and Event-Condition-

Action (ECA) rules in the expected utility or loss maintenance function of the Decide phase. 

In the following sub-sections, the approach of context-awareness in proactive decision 

making and its instantiation to maintenance operations is described. The approach and the 

algorithm address two blocks of the conceptual architecture: the “DMI Configuration” (as 

far as the context-aware model configuration is concerned) block of the User Interaction 

Layer and the “Context-aware Model” block of the Real-time Processing Layer. These three 

blocks are highlighted with red color in the conceptual architecture in Figure 7-1. 

 

Figure 7-1: The context-awareness mechanism in the conceptual architecture. 
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7.2 State-of-the-Art Analysis 

   Context has been defined as “any information that can be used to characterize the sit-

uation of an entity. An entity is a person, place, or object that is considered relevant to the 

interaction between a user and an application, including the user and applications them-

selves” (Perera et al., 2014). Context-aware systems are adaptable to the existing and future 

possible environments without the interactions of users (Lee et al., 2013) and process the 

context models based on the context lifecycle steps: acquisition, modelling, reasoning and 

dissemination (Perera et al., 2014; Schmidt et al., 2016).  

The main driving concept in sensing enterprises is the use of multi-dimensional data cap-

tured through sensors generating events and providing added value information that en-

hances context awareness (Engel et al., 2012; Camarinha-Matos et al., 2013). The large 

amount of sensor-generated data leads to a strong demand for data-driven, real-time sys-

tems capable of efficiently processing them, in order to get meaningful insights about po-

tential problems. Proactive decision making requires context-awareness (Engel et al., 2011); 

however, the high frequency of the real-time events and the high uncertainty pose chal-

lenges to the efficient handling of context-awareness.  

Context-aware systems are adaptable to the existing and future possible environments 

without the interactions of users (Lee et al., 2013) and process the context models based on 

the context lifecycle steps: acquisition, modelling, reasoning and dissemination (Perera et 

al., 2014; Schmidt et al., 2016). However, research on con-text-aware systems has focused 

on reactive applications rather than proactive ones that could enrich proactive event-driven 

decision making. The ability to obtain, to process, to manage, and to provide relevant con-

text information describing the envi-ronment and situation has become one of the most 

important requirements for information systems (Zaplata et al., 2013; Da Rosa et al., 2016). 

In addition to that, the prediction of future context is another important step for enabling 

devices and applications to also proactively support the user or to enable the desired auto-

matic execution of his tasks even in dynamic environments (Mayrhofer, 2005; Zaplata et al., 

2013). 
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However, research on context-aware systems has focused on reactive applications ra-

ther than proactive ones that could enrich proactive event-driven decision making. The abil-

ity to obtain, to process, to manage, and to provide relevant context information describing 

the environment and situation has become one of the most important requirements for in-

formation systems (Zaplata et al., 2013; Da Rosa et al., 2016). In addition to that, the predic-

tion of future context is another important step for enabling devices and applications to also 

proactively support the user or to enable the desired automatic execution of his tasks even 

in dynamic environments (Mayrhofer, 2005; Zaplata et al., 2013). 

Moreover, context-awareness has been considered in detection (Detect phase) and pre-

diction (Predict phase) algorithms (Feng et al., 2009; Wan et al., 2014; Thaduri et al., 2014; 

Galar et al., 2015; Schmidt et al., 2016), but not in decision making algorithms and especially 

in proactive event-driven decision methods, where there is uncertainty about the future 

state of the system examined. Therefore, when a decision is required for a future situation, 

context is uncertain at this time. For this kind of problems, machine learning techniques are 

appropriate. Machine learning can be seen as a context modeling approach in terms of its 

objectives (Schmidt et al., 2016). It has been proved to be the best approach for intelligent 

context-aware systems (Thaduri et al., 2014), while it can be effectively coupled with rele-

vant context reasoning techniques for supervised learning along with fuzzy and probabilistic 

logic. In this way, the sensor-generated heterogeneous and noisy data processing as well as 

the future state are taken into account. 

Recently context awareness approaches is gaining focus of researchers from the field of 

CBM and predictive maintenance, however still at a conceptual level (Schmidt et al., 2016). 

This well-known concept in some other fields has not been investigated in Industry 4.0-

enabled maintenance operations although it could be beneficial or even indispensable 

(Schmidt et al., 2016). Concepts related to context-awareness have not been utilized by re-

searchers from predictive maintenance fields. This is also evident from various review and 

survey papers in the area where the term “context” in the frame of predictive maintenance 

is never directly mentioned (Schmidt, and Wang, 2015). 
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7.3 The probabilistic context-aware model for proactive deci-

sion making 

The proposed approach aims to enhance proactive event-driven decision making by uti-

lizing contextual information in the decision making process. Since proactive decision meth-

ods provide a recommendation about the optimal time of applying an action, the values of 

the contextual elements at the time when the system recommends the implementation of 

the action is subjected in high uncertainty, because it is not known in advance the recom-

mended optimal time. Contextual information is propagated through SEF and coupled with 

domain knowledge in order to continuously improve the cost-related parameters of the de-

cision methods and therefore, the generated action recommendations. At design time, dur-

ing User Interaction, the decision maker inserts domain knowledge with the aim to define 

and configure the various parameters of the context-aware model. In this way, the model is 

initialized. This knowledge can be also inserted by integrating the system with the manufac-

turing company’s own systems (e.g. ERP). The user inserts the context affecting the recom-

mendation, i.e. the context affecting the associated cost parameters. Moreover, the user 

defines the probability of a contextual element’s value occurrence, i.e. the prior probabili-

ties. This can be obtained either by historical data or by domain knowledge and should be 

done only once, at the configuration, for the initialization of the context-aware model. 

7.3.1 Context-aware Model Initialization  

Context-awareness is treated with the use of a machine learning technique in order to 

effectively deal with uncertainty in a future context. Future context is not known in advance 

for two reasons: First, the conditions under which the system examined will function cannot 

be predicted with certainty. Second, the proactive decision model is triggered after the con-

text-aware model and therefore, the recommended times of actions implementation are 

not known before the context prediction. 

The context-aware model is initialized after the equipment instance configuration. It in-

corporates a Bayesian Network (BN), which is a powerful tool for knowledge representation 

and reasoning under conditions of uncertainty identifying the probabilistic relationships 
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among a set of variables (Cheng et al., 2002). A BN has many advantages such as structural 

learning possibility, combination of different sources of knowledge, explicit treatment of 

uncertainty and support for decision analysis, and fast responses. The intensity of the de-

pendencies is quantified by conditional probability distributions associated with each node 

(Korb and Nicholson 2010). More formally, BNs are directed acyclic graphs whose nodes 

represent random variables from the domain of interest, in the Bayesian sense (Heckerman, 

1998). 

Therefore, the network is defined by a pair 𝐵 = 〈𝐺, 𝛩〉 where G is the directed acyclic 

graph whose nodes 𝑋1, 𝑋2, … , 𝑋𝑛 represent random variables, and whose edges represent 

the direct dependencies between these variables (Ben-Gal, 2007). The graph G encodes in-

dependence assumptions, by which each variable 𝑋𝑖 is independent of its nondescendents 

given its parents in G. The second component Θ denotes the set of parameters of the net-

work. This set contains the parameter 𝜃𝑥𝑖|𝜋𝑖
=𝑃𝐵(𝑥𝑖|𝜋𝑖) for each realization 𝑥𝑖  of 𝑋𝑖 condi-

tioned on 𝜋𝑖, the set of parents of 𝑋𝑖 in G. Accordingly, B defines a unique joint probability 

distribution over a set of random variables V, namely (Ben-Gal, 2007): 

𝑃𝐵(𝑋1, 𝑋2, … , 𝑋𝑛) = ∏ 𝑃𝐵(𝑋𝑖|𝜋𝑖)

𝑛

𝑖=1

= ∏ 𝜃𝑋𝑖|𝜋𝑖

𝑛

𝑖=1

 

Based on the domain knowledge or the analysis of available historical data, the struc-

ture, the contents of the cause and the effect nodes as well as the prior probabilities are 

initialized in order to be used at the first recommendation of the instance, on the basis of a 

prediction event trigger. The BN is created based on the derived cause-effect (causal) rela-

tionships between the contextual elements and the alternative costs along with their prior 

probabilities for the decision horizon defined for the specific equipment instance. In this 

case, the BN provides the probability that a specific cost is valid conditioned a specific con-

text expressed as cause nodes of contextual elements, according to the Bayes theorem, as 

shown in Figure 7-2. 

Then, the Bayesian cost risk functions are estimated in order to be inserted in the proac-

tive decision method instead of the cost functions themselves, when the DMI is enacted 

online. Cost risk indicates the probability of the occurrence of an event multiplied by its im-
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pact in cost (Hulett, 2016). A cost risk function is calculated by adding the products of each 

alternative value i of the cost function with the probability of having this cost function given 

m specific Contextual Elements (CE). Therefore, the cost risk functions (context-aware costs) 

are calculated based on the BN, according to Equation 7-1. The result feeds into the Reason-

ing sub-component of the Context-aware Model in order to be triggered by the next predic-

tion event of the specific DMI. 

 

 

Figure 7-2: The Bayesian Network for the calculation of n expected cost functions with k alternative values conditioned 

m contextual elements with k alternative values. 

Equation 7-1 

𝐶𝑛(𝑡) = ∑ 𝐶𝑛,𝑖(𝑡) ∗ 𝑃(𝐶𝑛(𝑡) = 𝐶𝑛,𝑖(𝑡)|𝐶𝐸1 ∩ … ∩ 𝐶𝐸𝑚)

𝑖=𝑘

𝑖=1

 

7.3.2 Context-aware Model Reasoning 

Based on the input of the initialized context-aware model, the DMIs provide context-

aware proactive recommendations. During the implementation of the recommended ac-

tions, the SEF mechanism is further utilized in order to update the structure of the BN, the 

content of its nodes as well as the associated conditional probabilities. The costs associated 

to future failures and mitigating actions are rarely simple to derive reliably by the user, dur-
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ing configuration, due to human subjectivity or unawareness of every aspect of the actual 

business situation. Moreover, reasoning of the context-aware model requires continuous 

learning and update. Therefore, incorporating a method for continuously improve the accu-

racy of proactive decision making input parameters is a critical aspect of the proposed mod-

el. After action implementation, the output of SEF feeds into the context-aware model rea-

soning in order to update the BN structure and to express the improved causal relationships 

between contextual elements (cause/ parent nodes) and alternative cost functions (effect/ 

child nodes) through Bayesian inference.  

However, each updated cost value of the effect nodes may not be more reliable compar-

ing to the previous one due to high inaccuracies in user’s configuration or in noisy sensor 

measurements which prolong the model’s learning duration. In addition, the rich infor-

mation provided by a real-time feedback mechanism cannot easily feed into a BN, the nodes 

of which handle discrete or discretized values. To overcome these challenges, each cost var-

iable in the effect nodes of the BN takes a cluster of values from the z last measurements 

along with their associated probabilities. The values are clustered to their relevant position 

and derive the most probable value (centroid) along with the associated centroid probability 

as a result of the X-means clustering algorithm (Pelleg, and Moore, 2000), an extension of k-

means clustering algorithm. Therefore, each cluster consists of the costs with respect to 

their probability. In this way, context-awareness affects the cost-related parameters with 

respect to which proactive decision making is highly sensitive (reference), and enables the 

provision of more reliable recommendations by further filtering uncertainty in user’s input, 

sensor measurements and event processing.  

K-means clustering aims to partition n observations into k clusters in which each obser-

vation belongs to the cluster with the nearest mean, serving as a prototype of the cluster. 

The problem is computationally difficult (NP-hard); however, there are efficient heuristic 

algorithms that are commonly employed and converge quickly to a local optimum, e.g. 

Lloyd’s algorithm (Kriegel et al., 2017). The X-means clustering algorithm is an extension of 

k-means clustering, which is a method for finding clusters and cluster centers in a set of un-

labeled data (Kanungo et al., 2002). K-means clustering algorithm suffers from three major 

shortcomings: it scales poorly computationally, the number of clusters K has to be supplied 

by the user, and the search is prone to local minima (Pelleg, and Moore, 2000). X-means 
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algorithm refines cluster assignments by repeatedly attempting subdivision, and keeping the 

best resulting splits, until some criterion is reached (Pelleg, and Moore, 2000).  

Figure 7-3 shows a BN in the effect nodes of which a X-means clustering algorithm is ap-

plied in order to create clusters of cost values. An example of the clusters in each effect 

node is shown in Figure 7-4, where the probabilities of the cost centroids should sum to 1. 

The context-awareness mechanism (BN incorporating X-means clustering in its effect nodes) 

has been developed as a generic method, in a modular way, in order to be able to be cou-

pled with any proactive decision method and real-time feedback mechanism. On the basis 

of the centroids, the context-aware costs are calculated and feed into the proactive event-

driven decision method. However, all the data including in each cluster along with the costs 

and the recommendations to which they lead are stored in the database and can be ex-

posed to the user upon request. 

 

Figure 7-3: An example of the context-aware model incorporating a X-means clustering algorithm in the effect nodes of 

the BN. 

 

Figure 7-4: An example of the X-means clustering algorithm with two clusters in an effect node of the BN. 
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7.3.2.1 The Context-aware Reasoning Algorithm 

Since sensor-generated big data require efficient and scalable real-time processing 

and the number of clusters may change as soon as the BN is updated, we take advantage of 

the use of X-means clustering, a method for dynamic determination of the number of clus-

ters. In this way, the proposed algorithm refines cluster assignments. It consists of two main 

operations: the parameters improvement, which runs k-means algorithm until convergence; 

and, the clustering structure improvement, which finds out if and where new centroids 

should appear based on the splitting decision according to the Bayesian information criteri-

on. In addition, a normalization equation for normalizing the probabilities of the clusters is 

embedded, while, after each loop, there is a control of convergence. This algorithm is shown 

in detail below. The steps of the algorithm are executed iteratively. 

Improve parameters  

It includes k-means clustering algorithm until convergence. According to the k-means 

clustering algorithm, given a set of observations (x1, x2, …, xn) where each observation is a d-

dimensional real vector, k-means clustering aims to partition the n observations into k (≤ n) 

sets S = {S1, S2, …, Sk} so as to minimize the Within-Cluster Sum of Squares (WCSS) (sum of 

distance functions of each point in the cluster to the k center). The algorithm is often pre-

sented as assigning objects to the nearest cluster by distance. The standard algorithm aims 

at minimizing the WCSS objective, and thus assigns by least sum of squares, which is exactly 

equivalent to assigning by the smallest Euclidean distance. 

Consequently, its objective is to find: 

argmin
𝑆

∑ ∑‖𝑥 − 𝜇𝑖‖
2

𝑥∈𝑆𝑖

𝑘

𝑖=1

= argmin
𝑆

∑|𝑆𝑖|𝑉𝑎𝑟𝑆𝑖

𝑘

𝑖=1

 

where μi is the mean of points in Si.  

Therefore, according to the k-means algorithm, given an initial set of k means 𝑚1
(1)

, 𝑚2
(1)

, …, 

𝑚𝑘
(1)

, the algorithm proceeds by alternating between two steps: 
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Assignment step: Assign each observation to the cluster whose mean yields the least WCSS. 

Since the sum of squares is the squared Euclidean distance, this is intuitively the nearest 

mean: 

𝑆𝑖
(𝑡)

= {𝑥𝑝: ‖𝑥𝑝 − 𝑚𝑖
(𝑡)

‖
2

≤ ‖𝑥𝑝 − 𝑚𝑗
(𝑡)

‖
2

∀𝑗, 1 ≤ 𝑗 ≤ 𝑘} 

Where each 𝑥𝑝 is assigned to exactly one 𝑆(𝑡), even if it could be assigned to two or more of 

them. 

Update step: Calculate the new means to be the centroids of the observations in the new 

clusters: 

𝑚𝑖
(𝑡+1)

=
1

|𝑆𝑖
(𝑡)

|
∑ 𝑥𝑗

𝑥𝑗∈𝑆
𝑖
(𝑡)

 

Improve structure  

It identifies if and where new centroids should appear by searching the space of clus-

ter locations and the number of clusters with the aim to optimize the Bayesian Information 

Criterion (BIC). The BIC scoring is used both globally (when the algorithm chooses the best 

model) and locally (in all the centroid split tests). Given the data D and a list of alternative 

solutions Mj with different values of k, the posterior probabilities 𝑃(𝑀𝑗|𝐷) are used to score 

the solutions. In order to approximate the posteriors, the following equation is used: 

𝐵𝐼𝐶(𝑀𝑗) = 𝑙𝑗(𝐷) −
𝑝𝑗

2
∗ log 𝑅 

Where 𝑙𝑗(𝐷) is the log-likelihood of the data according to the j-th solution and taken at the 

maximum-likelihood point, and 𝑝𝑗 is the number of parameters in 𝑀𝑗 which is derived from 

the sum of k-1 class probabilities, M*k centroid coordinates and one variance estimate. 

The maximum likelihood estimate for the variance is: 

�̂�2 =
1

𝑅 − 𝑘
∗ ∑(𝑥𝑖 − 𝜇𝑖)

2

𝑖

 

The point probabilities are: 
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�̂�(𝑥𝑖) =
𝑅(𝑖)

𝑅
∗

1

√2𝜋�̂�𝑀
∗ 𝑒

−
1

2�̂�2∗‖𝑥𝑖−𝜇(𝑖)‖
2

 

The log-likelihood of the data is: 

𝑙(𝐷𝑛) = −
𝑅𝑛

2
∗ log(2𝜋) −

𝑅𝑛 ∗ 𝑀

2
∗ log(�̂�2) −

𝑅𝑛 − 𝐾

2
+ 𝑅𝑛 ∗ log 𝑅𝑛 − 𝑅𝑛 ∗ log 𝑅 

Normalize cluster probabilities 

Due to the existing uncertainty in context-awareness, an additional equation is required to 

the system of equations that the algorithm solves. Specifically, a normalization equation is 

needed in each effect node with the aim to normalize the Bayesian probabilities assigned to 

the k cluster centroids so that they are summed to 1. Therefore, the equation is as follows: 

∑ 𝑃(𝐶𝑘(𝑡)|𝐶𝐸1 ∩ … ∩ 𝐶𝐸𝑚)

∀𝑘

= 1 

Consequently, the probability of a 𝐶𝑘(𝑡) given the 𝐶𝐸1 ∩ … ∩ 𝐶𝐸𝑚 is calculated as shown: 

𝑃(𝐶𝑘(𝑡)|𝐶𝐸1 ∩ … ∩ 𝐶𝐸𝑚)

∑ 𝑃(𝐶𝑘(𝑡)|𝐶𝐸1 ∩ … ∩ 𝐶𝐸𝑚)∀𝑘
 

Control convergence 

If k > kmax, stop and report the best-scoring model, else go to “Improve parameters”. 
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8 Information System 

In this Chapter, the developed proactive event-driven information system is ex-

plained. The developed information system is called ProActive seNsing enterprise Decision 

configurator DAshboard (PANDDA) and addresses the Decide phase of the Proactive 

Maintenance framework. It incorporates the functionalities presented in Chapter 5, Chapter 

6 and Chapter 7. It was integrated with systems addressing the various phases of Proactive 

Maintenance based on the framework presented in Chapter 4 in order to result in a unified 

information system for Proactive Maintenance. 

8.1 System architecture and implementation 

8.1.1 The Overall Proactive Maintenance Information System 

The overall information system for Proactive Maintenance is addressed through the in-

tegration and unification of different tools and services addressing the various phases of the 

framework for Proactive Maintenance. The Proactive Maintenance system is able to inte-

grate data provided by different sources, to evaluate the quantity and the quality of the da-

taset, to support efficient real-time data processing, to provide access to sensor data in a 

streaming context and this should be done in combination with huge past data and to take 

into account background knowledge. 

The real-time processing layer of the architecture has been implemented as a Storm to-

pology (https://storm.apache.org). Storm is a distributed data processing system which is 

based on elements organized in a topology and called spouts and bolts. Spouts, which are 

the entry points into the real-time processing layer, poll relevant data sources such as sen-

sors and distribute the data further in the topology. Bolts, which are the processing ele-

ments, implement the Proactive Maintenance information-processing services. Bolts are 

interconnected with an internal pub/sub mechanism and communicate through messages 

called tuples. All the integrated components of the real-time processing layer are Storm 

https://storm.apache.org/
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compatible in order to facilitate distributed processing of sensor-generated big data with 

high speed and velocity and to allow the whole system to scale. 

8.1.2 Overview of PANDDA 

PANDDA, which addresses the Decide phase of the Proactive Maintenance framework,  

is a Python web-application developed using the web2py10 framework. Web2py is an open-

source web framework (released under the LGPL version 3 license) for agile development of 

secure database-driven web applications, written also in Python. It follows the Model View 

Controller (MVC) software engineering pattern. This pattern aims to the separation of the 

data representation (the model) from the data presentation (the view) and also from the 

application logic and workflow (the controller).  The three-layered PANDDA system technical 

architecture is shown in Figure 8-1 and its main subcomponents are explained in detail in 

the following Sections. The presentation layer occupies the top level of the architecture and 

displays information related to services available on the web-based PANDDA configurator. 

Business analysts, who are the main users of the PANDDA Configurator GUI, access the sys-

tem through a web-browser, login with their personal accounts, and are exposed to services 

allowing them to create one or more instances of decision making methods, as well as con-

figure, monitor and assess their performance. The SEF functionality of PANDDA provides 

real-time feedback about the execution of (the recommended) actions by incorporating and 

processing data provided by sensors with respect to action execution costs. The default and 

most common behavior of web applications which rely only on the http/https protocol is to 

update the user interface (the web-page) by pulling data from the server when the user re-

quests information by clicking HTML elements of it like buttons or links. However, the real-

time feedback functionality of the new version of PANDDA requires real-time monitoring of 

events.  In order to achieve real-time update of the user interface (without the intervention 

of the user) we utilize the server-push and event-based publish/subscribe capabilities of the 

WAMP11 protocol. On the client-side (the web-browser) we use the Autobahn|JS12 JavaS-

cript implementation of the WAMP protocol and correspondingly, on the server side, we use 

                                                      
10

 http://web2py.com/books/default/reference/29/web2py  
11

 http://wamp-proto.org  
12

 http://autobahn.ws/js  

http://web2py.com/books/default/reference/29/web2py
http://wamp-proto.org/
http://autobahn.ws/js
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the Crossbar.io13 WAMP router. In order to incorporate better insight about the cost of the 

actions we send all cost-related data to a Graphite/Carbon server, a highly scalable real-time 

graphing system which is able to store thousands of time-series per second and compute 

metrics on them. The complexity of this infrastructure is not exposed to the end-user who 

can transparently access via a single web-page data coming from all the different sources 

(PANDDA, WAMP router, and Graphite Web-app) because an NGINX14 reverse proxy is con-

figured to intervene and translate all the URLs in order to make them appear as if they are 

coming from the same web-server.   

The logic layer controls application functionality by performing detailed processing. The 

services exposing the functionality of decision methods are decoupled from the PANDDA 

Bolt, which is part of the ProaSense Storm topology. The PANDDA system based on predic-

tions about future undesired events implements different proactive decision methods. 

Moreover, the system monitors the cost of recommended actions implementation through 

sensors by using the SEF mechanism in order to improve the recommendations it produces. 

In addition, the system provides real-time information to the user about the incoming cost 

data and the processed data the system computes based on them. Cost data (either base-

line or action-related ones) from sensors arrive to the PANDDA data processing services 

(which are implemented as RESTful web-services) from Apache Storm or other sources. 

PANDDA processes them (by applying different types of filters) and then stores the results 

to PANDDA RDBMS. Then it publishes the results to the WAMP router and sends them to 

the time-series analysis services of Graphite/Carbon. 

Finally, the data layer houses a relational database engine like MySQL, SQLite, Post-

greSQL or Oracle RDBMS where the information needed by the main algorithms of PANDDA 

is stored and retrieved. The Graphite server has its own internal time-series datastore which 

is used to store data and create graphs about them and their metrics on user-request. This 

service can run on a separate machine or a Virtual Machine without slowing down the data-

processing (e.g. Kalman filters and regression/curve fitting) performed in the main data pro-

cessing services of PANDDA.  

                                                      
13

 http://crossbar.io  
14

 https://www.nginx.com/  

http://crossbar.io/
https://www.nginx.com/
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PANDDA is an event-driven system that addresses the Decide phase of the ‘Detect- Pre-

dict- Decide- Act’ methodology according to the architecture presented in Section 4.1. It has 

been implemented as a Python web-application developed using the web2py framework 

(http://web2py.com/books/default/reference/29/web2py). It consists of four main sub-

components: the PANDDA GUI, the PANDDA Control spout, the PANDDA Bolt and the 

PANDDA Runtime Services. PANDDA GUI is referred to the User Interaction Layer of the ar-

chitecture, while PANDDA Control spout, PANDDA Bolt and PANDDA Runtime Services are 

referred to the Real-time Processing Layer. 

 

Figure 8-1: The PANDDA system technical architecture. 

8.1.3 Logic Layer 

The logic layer of Figure 8-1 implements the PANDDA Runtime Services which include 

the proactive decision making, the SEF and the context-awareness functionalities of 

PANDDA. These services and their runtime execution are presented in detail in the following 

http://web2py.com/books/default/reference/29/web2py
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sub-sections. A major architectural decision for PANDDA Runtime Services (Real-time Pro-

cessing layer) was to decouple the PANDDA Bolt, which is part of the ProaSense Storm to-

pology, from the services implementing the functionalities of context-aware decision man-

agement, depicted as PANDDA Runtime Services in Figure 8-1. 

8.1.3.1 Proactive Decision Making 

The main interactions among the sub-components of the PANDDA real-time processing 

layer are depicted in Figure 8-2. The PANDDA Bolt assumes the role of a proxy, as it for-

wards both the parameters of the decision methods defined by the business analysts (step 0 

of Figure 8-2) and the parameters of the predicted undesired event (step 1 of Figure 8-2) to 

the PANDDA Runtime Services (step 2 of Figure 8-2). The latter extract and parse parame-

ters from the received events, execute the functionality of the decision method instances 

(step 3 of Figure 8-2) and send the results back to the PANDDA Bolt (step 4 of Figure 8-2). 

The PANDDA Bolt generates in turn a recommendation message based on the results re-

ceived, which is further propagated within the Storm topology and the rest of the ProaSense 

architecture (step 5 of Figure 8-2). 

There are several distinct advantages of decoupling the PANDDA bolt from the service(s) 

implementing decision-making functionality, i.e. the PANDDA Runtime Services. First, the 

service(s) exposing the functionality of decision methods are decoupled from the implemen-

tation details of an Apache Bolt. In this way, the implementation flexibility is increased, as 

any technological platform, language and/or API can be used for the implementation of the 

various decision methods, allowing even the implementation of each one of them in differ-

ent technological platforms, languages and/or APIs.  

Second, there is no need to redeploy a PANDDA bolt and restart Apache Storm each 

time the configuration of some decision methods needs to be changed. On the contrary, the 

approach followed allows the PANDDA bolt to be configured at runtime through the 

PANDDA Control spout, as explained below. Third, implementation of decision-making 

methods as services allows their reusability in contexts different than a Storm topology, in-

creasing their exploitation potential. 
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Figure 8-2: Interactions among the sub-components of the PANDDA Real-time Processing Layer 

The PANDDA Control Spout is part of the ProaSense Storm topology of the Real time 

Processing Layer and is a component that assumes the role of a bridge between the 

PANDDA Decision Configurator Dashboard and the PANDDA Bolt, in the sense that it picks 

up the decision method configurations defined by business analysts through the former, and 

pushes them to the PANDDA bolt (step 0 of Figure 8-2). These two components can interact 

either during the initial setup and deployment of the Real time Processing Layer, during 

which the business analysts define decision method configurations, or during run-time, al-

lowing reconfiguration of decision method instances through the PANDDA bolt with no need 

for bolt redeployment. Communication between the PANDDA Decision Configurator Dash-

board and the PANDDA Control Spout is performed through Thrift messages, which are 

broadcasted to the broker by the former. Those messages are picked up by the PANDDA 

Control Spout, which deserializes and pushes them to the PANDDA bolt. 

The sequence diagram of Figure 8-3 illustrates the main interactions among the subcompo-

nents of the logic layer, as well as the interaction of the PANDDA decision making services 

and bolt with the other bolts of the ProaSense Storm topology. All depicted objects except 

of the PANDDA Decision Making Service reside inside an Apache Storm topology. The Online 

Decision Making (PANDDA) Bolt is a Storm Bolt that serves as a proxy between a Storm to-

pology and the PANDDA decision making services.   
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The decision making methods of the PANDDA system take as input probabilistic pre-

dictions about future undesired events. The Online Analytics ProaSense component produc-

es predictions about future events based on real-time events from sensors that may observe 

several different parameters of the environment (e.g. the temperature and the oil pressure 

of a motor or the utilization and the rate of errors in a network link). A prediction is encap-

sulated by Online Analytics in a PredictedEvent Apache Thrift object and emitted to the 

PANDDA Bolt as Storm a tuple. When a new tuple arrives to a PANDDA Bolt it must be dese-

rialized (operation deserilaze). Then the PANDDA Bolt extracts information from the Pre-

dictedEvent (eventName, subject, lambda) and calls the external PANDDA Decision Making 

Service by calling the operation getActionRecommendation. The operation getActionRec-

ommendation requires an additional field (named instanceID) which indicates the PANDDA 

decision making method instance that must be called. This information comes from the con-

figuration of the specific PANDDA Bolt instance. Multiple instances of PANDDA Bolt can be 

used in the same or in different topologies. 

The result of a call to getActionRecommendation is returned to the PANDDA Bolt. It 

contains information about a recommendation for an action that must be implemented at a 

specific time by a specific actor. All the information is encapsulated in a Recommendation-

Event Apache Thrift message by the method createRecommendationEvent. This event is 

then sent to the Storage Layer of the PANDDA platform and is also emitted as a tuple in the 

Apache Storm.  

 

Figure 8-3: “Proactive Decision Making” functionality sequence diagram 
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8.1.3.2 Context-aware Model 

The context-aware model incorporates the context modelling and context reasoning 

functionalities. Context modelling initialization is conducted at the presentation layer being 

triggered by the DMI configuration, while context reasoning is conducted at the logic layer 

being triggered by the SEF output. The contextual rules and constraints that are used at the 

expected maintenance utility or expected loss functions is modelled with an Ontology model 

based on the WWW SSN Ontology (Compton et al., 2012) according to an enterprise model 

that allows the consideration of the contextual elements affecting proactive decision mak-

ing by establishing appropriate relationships between the contextual elements and the pa-

rameter values (Petersen et al., 2016). The context-aware model of PANDDA retrieves the 

appropriate information in the form of constraints and rules. On the other hand, the uncera-

tin context is modelled with the use of BN and X-means clustering in order to catch uncer-

tain causal (cause- effect) relationships between the contextual elements and the alterna-

tive input parameter values (e.g. a different cost due to the probability of a different con-

text). In this case, context reasoning is conducted due to the Bayesian inference through 

SEF. 

8.1.3.3 Sensor-Enabled Feedback (SEF) 

The sequence diagram of Figure 8-4 illustrates the main interactions among the sub-

components of the logic layer, as well as the interaction of the PANDDA data processing ser-

vices with the associated (cost- related) sensors, the internal components of the PANDDA 

system that process action- related cost data and the user’s browser. It is complementary to 

the sequence diagram of Figure 8-3. SEF takes as input cost factor data derived from sensors 

related to the implementation of the (recommended) DMI action. The processing service of 

PANDDA retrieves action-related parameters from the RDBMS, applies different algorithms 

for action start/stop detection and cost factor noise filtering and then sends results to:  

(a) The Graphite/Carbon service in order to produce graphs and metrics about the input 

and output data  

(b) The WAMP router (implemented by Crossbar.io). The WAMP router publishes the 

results as events to all connected user browsers who have subscribed to listen for 

those events by visiting the page “View Real-time Action Cost”.  
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Figure 8-4: “SEF functionality” sequence diagram 

The SEF functionality of the PANDDA data processing services is described in more detail 

with the UML activity diagram of Figure 8-5. This diagram illustrates the building blocks of 

the logic-layer which implements the feedback-enabled action recommendation. There are 

three types of events that trigger the relevant parts of the algorithm: 

i. A cost event derived from a sensor related to a DMI action (events are related with 

action cost factors by a topic field). 

ii. An event that denotes the end of a decision epoch. It is a periodic event that, in the 

current implementation, is derived and triggered by the system automatically based 

on the DMI start time and the DMI period (days, hours, or seconds) parameters. 

iii. A prediction of an undesired event. 

All these types of events are processed by PANDDA in parallel.  

As can be seen in Figure 8-5, when a “Cost Sensor Event” arrives to PANDDA, the system 

calculates for each cost factor associated with the topic of this event the decision epoch pe-

riod that it belongs (task “Calculate Decision Epoch Period Start”) based on the timestamp 

of the event and the relevant DMI parameters (decision epoch start time, and decision 

epoch period).  

- If it has been detected that the implementation of an action has started before the 

timestamp of the event from the associated cost factor-related sensor, PANDDA 

performs noise filtering (with Kalman filters) and then subtracts the baseline cost 
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derived from this sensor. The baseline cost is the cost expected to be sent (periodi-

cally) when no action is performed (e.g. during normal operation, when no mainte-

nance action is performed). The estimated cost of the action (due a specific cost fac-

tor) is calculated as the filtered (corrected) cost minus the baseline cost. This cost is 

accumulated to the total action cost and the result is stored in PANDDA DB as the 

current estimated total cost of the action.  

-  

 

Figure 8-5: PANDDA data processing activity diagram 

- If no action start has been detected (in the decision epoch period that the cost event 

belongs) PANDDA uses the cost event to update the baseline cost of each related 

cost factor (with a moving average filter) and then the system performs action start 

detection (by calculating anomalies from the baseline value). 
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In either case, when the processing of a cost event finishes (for each cost factor), 

PANDDA sends the results to Graphite/Carbon (in order to produce graphs) and publishes 

the input and output (from the calculations) events to the WAMP router. The WAMP router 

publishes those events to all subscribed client web-browsers. 

When the time of an “end of decision epoch” event arrives, the system has already cal-

culated the total cost of the related action(s) in the specific decision epoch (because the 

total action cost is being calculated incrementally). If there are enough observations about 

the total action cost in different decision epochs and different action start times before the 

end of the decision epoch, the user (or the system), can trigger the recalculation of the cost 

function of the specific DMI action by performing curve fitting (e.g. linear regression). The 

output of this task is a new cost function stored in the PANDDA DB. In any case, the system 

publishes the end of decision epoch event to the WAMP router.  

As can be seen on the right side of Figure 8-5, when a new prediction of an undesired 

event arrives to the PANDDA system, it uses the stored DMI parameters to provide a rec-

ommendation by solving a MDP or one of the other two decision methods that are support-

ed. Every time, it uses the most recent version of the cost function of each action. If an up-

dated cost function has been calculated (by utilizing feedback during the previous steps) it 

uses it in the calculations. In this way, SEF contributes to the (automatic or semi-automatic) 

improvement of the accuracy and the efficiency (regarding to action cost minimization) of 

the provided proactive recommendations.   

8.1.4 Data Layer 

8.1.4.1 Proactive Decision Making 

Figure 8-6 depicts a UML class diagram of PANDDA’s “proactive decision making” 

functionality data model. It serves as a dictionary of the terms that are used in the applica-

tion and the relationships between them. The data model has been implemented using the 

Data Access Layer of the Web2py framework in combination with a relational database (the 

administrator can choose between MySQL, PostgreSQL, SQLite or other database engines). 

The main entities of the data model are briefly described in the next paragraphs. 
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Entity: auth_user. This entity holds the authentication and authorization data of PANDDA 

users. The schema of the entity is inherited from the Web2Py framework and for this reason 

it contains all the necessary fields to support many types of authentication methods.  

All the entities inherit from the framework the field id. The fields is_active, created_on, cre-

ated_by, modified_on, modified_by are also inherited from the web2py framework where 

they are needed and are maintained and updated transparently to the developer. The field 

created_by is used as the default filter in conjunction with the field id of the entity 

auth_user for all the entities containing it, in order to ensure that no user will be able to 

view data of other users. This mechanism is also implemented transparently to the software 

developer by the Web2py framework. 

Entity: dmm_instance. The entity dmm_instance holds the data about the various instances 

of the decision making methods. Every decision making method instance has a name and is 

linked to one decision method (entity dm_method). The field end_of_decision_epoch holds 

the latest point in time that a decision can be made (usually the time of the next planned 

maintenance). 

Entity: dm_method. The entity dm_method holds the information about the list of possible 

decision making methods and serves as a lookup table. 

Entity: mdp_instance_action. The entity mdp_instance_action holds information about the 

actions of a dmm_instance implementing a Markov Decision Process method. Every MDP 

instance can have multiple possible actions. Every MDP action has a name and a delay (in 

days). The field ttf_increase denotes how many days the time to failure is expected to in-

crease if the action is implemented. The cost of an action can be either fixed or daily (field 

cost_factor_type). In the first case, the field cost_factor contains the cost of the action, 

while in the second case the cost is calculated by the system as a function of cost_factor and 

the time that the action should be performed.  

Entity: mdp_instance_params. The entity mdp_instance_params holds information about a 

dmm_instance that are relevant only for instances implementing the Markov Decision Pro-

cess method. The field ue_cost contains the cost of the undesired event for the specific MDP 

decision making method. 

Entity: cbm_instance_action. The entity cbm_instance_action holds information about the 

actions of a dmm_instance implementing a Cost Matrix Optimization method. Every CMO 
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instance can have multiple possible actions. Every action has a name and a delay (in days). 

The field cm_cost refers to the corrective maintenance cost of a specific action.  

 

 

Figure 8-6: UML Diagram of the “Proactive Decision Making” functionality Data Model. 

Entity: cbm_instance_params. The entity cbm_instance_params holds information about a 

dmm_instance that are relevant only for instances implementing the Cost Matrix Optimiza-

tion method. The field pm_cost contains the cost of the planned maintenance. 

Entity: dmm_instance_integration. The entity dmm_instance_integration holds the UUID of 

each decision making instance for each client type. If the decision method receives predic-

tions from an Apache Storm topology the value of the field client type is “Apache Storm”.  
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Entity: prediction. The entity prediction holds historical data about all the predicted unde-

sired events arriving to PANDDA through the Apache Storm topology. It is linked with a spe-

cific dmm_instance. 

Entity: prediction_error. The entity prediction_error holds historical data about all the pre-

diction errors occurring during the processing of predicted events. It is linked with a specific 

dmm_instance and a specific prediction. 

Entity: recommendation. The entity recommendation holds historical data about all the 

recommendations generated by the subcomponents if the PANDDA logic layer. It is linked 

with a specific dmm_instance and a specific prediction. It contains information about the 

recommended action (field action_description) and the point in time that the specific action 

should be performed (field action_time). 

8.1.4.2 Sensor-Enabled Feedback (SEF) 

Figure 8-7 depicts the UML class diagram of the SEF functionality data model. Based 

on the collected action-related cost data, SEF estimates the action cost function relative to 

the specific point of time that the action is implemented after the prediction (or before the 

end of the decision epoch). The main entities of the updated part of the data model are de-

scribed in the next paragraphs. 

Entity: auth_user. This entity holds the authentication and authorization data of PANDDA 

users. The schema of the entity is inherited from the Web2Py framework and for this reason 

it contains all the necessary fields to support many types of authentication methods. This 

entity has not changed in PANDDA v2 but now it is related with an additional entity 

(cost_factor_topic). 

Entity: dm_method. The entity dm_method holds the information about the list of possible 

decision methods and serves as a lookup table. This entity has been populated with the 

name and the id of the new SEF-enabled method. 

Entity: dmm_instance. The entity dmm_instance holds the data about the various DMIs. 

Every DMI has a name and is linked to one decision method (entity dm_method). The field 

end_of_decision_epoch holds the latest point in time that a decision can be made (e.g. the 

time of the next planned maintenance). When field method_id points to the new SEF-
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enabled method the system retrieves action and method parameters from the entities 

fdbk_mdp_instance_params and fdbk_mdp_instance_action. 

Entity: fdbk_mdp_instance_params. The entity fdbk_mdp_instance_params holds infor-

mation about a dmm_instance relevant only for instances implementing the new SEF-

enabled method. The field ue_cost contains the cost of the undesired event for the specific 

method. 

Entity: fdbck_mdp_instance_action. The entity fdbk_mdp_instance_action holds infor-

mation about the actions of a dmm_instance implementing the new SEF-enabled method. 

Every MDP instance can have multiple possible actions. Every MDP action has a name and a 

delay (in days). The field ttf_increase denotes how many days the time to failure is expected 

to increase if the action is implemented. The cost of an action can be either fixed or a func-

tion of time and is coded with the coefficients a,b,c of the cost function 𝐶 (𝑡) = 𝑎2𝑡 + 𝑏𝑡 +

𝑐 . Variables a, b, c are stored in the fields var_a, var_b, var_c.  

Entity: cost_factor_topic. The entity cost_factor_topic holds the information about the list 

of topics of cost events derived from sensors. For each topic the user (or the administrator) 

has to provide two parameters, the process noise (kalman_q) and the sensor noise (kal-

man_r) which are parameters of the Kalman filter that will be applied for noise filtering.  

Entity: fdbck_mdp_instance_action_cost_factor. The entity 

fdbk_mdp_instance_action_cost_factor holds information about the cost factors of an ac-

tion. Each cost factor is related to a cost_factor_topic (field: topic) and it can have a textual 

description (field: descr). The field cf_type indicates the cost factor type (possible values on 

of the “Constant”, “First Degree Polynomial” or “Second Degree Polynomial”). The cost 

function of an action is coded with the coefficients of the function 𝐶 (𝑡) = 𝑎2𝑡 + 𝑏𝑡 + 𝑐 , 

where the coefficients a, b, c are stored in the fields var_a, var_b, var_c. Depended on the 

value of the field cf_type, the user is requested to provide (real number) values for the fields 

var_a, var_b, var_c. The field R is a parameter of the Kalman filter (sensor noise). The field 

bs_mean_events stores the (maximum) number of the cost events used to calculate the 

moving average.  

Entity: fdbck_mdp_instance_action_feedback. The entity 

fdbk_mdp_instance_action_feedback holds information about the timestamp (field: ts) of an 

action start (field: event_type=”START”) or action end event (field: event_type=”END”).  
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Entity: fdbck_mdp_instance_action_cost_func. The entity 

fdbk_mdp_instance_action_cost_func holds information about the total observed cost 

(field: total_cost) or the total estimated cost (field: total_est_cost) of an action instance in a 

specific decision epoch. The field action_start_ts holds the timestamp of an action start. 

Each action can occur in multiple decision epochs. The fields epoch_no, epoch_start, 

epoch_end_ts contain the corresponding information about the decision epoch when the 

specific action instance occurred.  

 
Figure 8-7: UML diagram of the SEF functionality Data Model. 

Entity: cost_factor_sensor_data. The entity cost_factor_sensor_data holds information 

about cost factor processing. The field cost_factor_id is a foreign key that links to an action 
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cost factor. The field topic contains the topic of a cost event. The field svalue contains the 

observed (noisy) value as it was reported by a sensor. The field svalue_ts contains the 

timestamp of the cost event derived from a sensor. The field fvalue contains the estimated 

(corrected) or filtered cost value based on the sensor data. The field fproba indicates how 

confident the system is about the estimation of the svalue. Finally the field baseline contains 

the baseline cost value the system has calculated for the specific cost factor at the specific 

timestamp (svalue_ts).  

Entity: cost_factor_fiilter_state. The entity cost_factor_filter_state holds information about 

the current state of the (Kalman) filter of each cost factor.  

 

8.1.5 Presentation Layer 

Figure 8-8 and Figure 8-9 depict PANDDA’s information architecture. They describe 

how the different graphical elements and web pages of the PANDDA web-application relate 

to one another and provide an overview of how the information presented in the PANDDA 

web-application is organized, structured, and labelled. The boxes with red letters depict the 

web-pages added in the second version of PANDDA. 

 

 

 

Figure 8-8: PANDDA Information Architecture (a). 
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Figure 8-9: PANDDA Information Architecture (b). 

8.2 PANDDA User Interface and Walkthrough 

PANDDA (ProAseNse Decision configurator DAshboard) aims to enable business ana-

lysts embed the domain knowledge needed for generating recommendations of action-time 

pairs by using different decision methods. Specifically, PANDDA focuses on enabling busi-

ness analysts to create and configure decision method instances addressing the problem at 

hand, as it is predicted in terms of a future undesired event (e.g. breakdown of a specific 

manufacturing equipment). Decision method instances are specific instances of the decision 

methods supported by PANDDA. Each decision method instance corresponds to specific 

equipment or other subject of a predicted undesired event, which triggers during runtime 

the decision method that aims to mitigate it. Decision method instances are treated as first 

class citizens in the PANDDA configurator in the sense that the user interaction with the tool 

has been designed on the basis of them. 

Through the PANDDA GUI, business analysts can configure decision method instances 

by adding, removing or changing a mitigating action or a list of mitigating actions as well as 

other domain knowledge required by the method such as the cost of the undesired event, 

costs of mitigating actions, end of the decision epoch (e.g. time of next planned mainte-

nance), etc. Decision methods are then enacted by the online decision making component, 
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which, coupled to the ProaSense real-time architecture, generates timely and reliable miti-

gating action recommendations based on the predictions for undesirable situations derived 

on the basis of streaming data. PANDDA also focuses on improving the recommendations 

through a Sensor-Enabled Feedback (SEF) loop, which takes into account real-time data and 

improves the parameters of the underlying decision methods. Therefore, the role of SEF is 

twofold: (i) The user is informed online about the estimated cost of action during its imple-

mentation, and (ii) The updated cost function of the specific action is used in the next rec-

ommendation in which this action is involved. 

So, PANDDA is a tool that is used at design time by business analysts and allows them 

to define and configure, through the PANDDA Graphical User Interface (GUI), various pa-

rameters of the decision method instances. Decision method instances are treated as first 

class citizens in the PANDDA configurator in the sense that the user interaction with the tool 

has been designed on the basis of them. For example, the main screens of PANDDA configu-

rator allow the business analysts to create, view, search, manage and configure decision 

instances. The role of the various pages and other graphical elements of the PANDDA infor-

mation architecture are explained in the next sub-sections which present the PANDDA user 

interface by considering typical user interaction sequences. The URL of the PANDDA system 

is: https://snf-542682.vm.okeanos.grnet.gr/pandda_v2_2/default/index. 

8.2.1 Creating Decision Method Instances 

The initial screen that a user sees when accessing the PANDDA application is the one 

shown in Figure 8-10. In order to have access to the PANDDA system, they have to click on 

the ‘Enter your dashboard’ button of the initial screen.  

They can create a new decision method instance, which means that they can select a 

decision method for a specific part of equipment (e.g. gearbox) or other subject of a pre-

dicted undesired event as well as all the accompanied information required (list of actions, 

costs of actions, cost of the undesired event, end of the decision epoch, etc.). The user input 

is not identical for all the decision methods supported by PANDDA; therefore different 

knowledge needs to be embedded in the system according to the decision method selected. 

The users also insert the contextual information that is required by the context-aware mod-

https://snf-542682.vm.okeanos.grnet.gr/pandda_v2_2/default/index
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el functionality.The PANDDA system can show all the instances that have been created so 

that the users are able to choose one of them to apply or to see more details (e.g. about the 

activity of the last 30 days). The relevant screen ‘My instances’ is shown in Figure 8-11. 

 

 

Figure 8-10: The initial screen of PANDDA 

 

Figure 8-11: The ‘My instances’ screen of the PANDDA system 

By pressing the button ‘Create New Decision Making Method Instance’, they are guided 

to the screen of Figure 8-12 where they can select one proactive decision method and 

whether they need the context-aware model and the SEF functionalities. Moreover, in this 

screen, they can select the name of the current instance indicating the part of equipment or 

other subject of the predicted undesired event that it refers to. Finally, they can select the 

time of the next planned maintenance, or the end of the decision epoch in the general case 

(decision horizon), as shown in Figure 8-13. After having finished this procedure, the button 

‘Submit’ should be pressed in order to return to the ‘My instances’ screen, which has been 
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updated with the new instance that has been introduced. In the rest of this walkthrough, 

user interaction with the PANDDA GUI is explained for the Markov Decision Process with 

Action Feedback method, but a similar procedure can be followed for the other two meth-

ods. 

 

Figure 8-12: ‘Create New Decision Method Instance’ screen 

 

 

Figure 8-13: Selection of time of the next planned maintenance 

The same procedure is followed for each instance needed to be created and finally, a list 

of instances is shown. For example, in Figure 8-14, three decision method instances have 

been created for the Gearbox, and the Moulding and Lacquering machines. Each one of 

them corresponds to a specific decision method for a specific part of equipment. Each row 

of the list consists of the name of instance (e.g. Gearbox), the date of its creation, the time 

remaining until next planned maintenance and a summary of analytics regarding the activity 

of the last 30 days. Next to it, there is a ‘Manage’ button, which leads to the screen of Figure 

8-15, and a ‘Delete’ button. The screen of Figure 8-15 consists of four components, which 

will be further analysed: Analytics, Actions (Decision Alternatives), Integration / Test and 
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Decision Method Settings. The text in orange fond below Actions (Decision Alternatives) and 

Decision Method Settings components indicate that no actions and values of decision meth-

od parameters have been defined yet. 

 

 

Figure 8-14: List of three instances 

 

Figure 8-15: Instance management screen 
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8.2.2 Managing Decision Method Instances 

The Actions (Decision Alternatives) component of the instance management screen 

is used so that you embed domain knowledge regarding the alternative actions that can be 

recommended. In the “Edit Instance Action”, the user can add, edit and delete alternative 

actions. By pressing the ‘Edit’ button and then, by selecting the ‘Add action’ option, they are 

led to the Actions (Decision Alternatives) screen of Figure 8-16. Figure 8-16 shows an exam-

ple of editing an action. The users can write the name of the action (e.g. operate at reduced 

equipment load), the role of the person that must perform the action, the delay of the ac-

tion in hours (corresponding to the time period from its implementation until it starts taking 

effect) and the expected new time-to-failure after the implementation in hours. They can 

also insert the contextual elements affect the cost functions and their prior probabilities. In 

addition, they can edit the cost factors, the aggregation of which formulates the action cost 

function. To do this, they should click on the “Add Record” button (below “Edit Cost Factors) 

in order to add a cost factor or on the “Edit” button next to an existing cost factor. Moreo-

ver, you are able to see the details of each cost factor or to delete the ones that are not 

needed. In the example of Figure 8-16, the total action cost function is a linear function 

equal to 420 * t + 3100, since a, b and c are referred to the factors of an equation 

𝑎 ∗ 𝑡2 + 𝑏 ∗ 𝑡 + 𝑐.  

Figure 8-17 shows an example of a cost factor. In this case, the description of the 

cost factor inserted by the user is “Cost due to production loss” and the topic name that has 

been defined at the “Manage Topics” screen is “production loss”. This topic has been previ-

ously mapped to a specific sensor by the System Administrator. Then, the user inserts the 

“Cost Factor Type”, i.e. the polynomial order of the cost factor function, and the coefficients 

of the cost factor function. In the current example, the cost factor has been selected to be a 

first order polynomial and the coefficients b = 315 and c = 2325. Therefore, the cost factor 

function is 0*t^2+315*t+2325. Finally, the user confirms the sensor noise given during top-

ics management by System Administrator and click on the “Submit” button and then on the 

“Set action cost from cost factor initial a, b, c” button, so that the changes are applied. After 

following the same procedure for all the cost factors that correspond to the specific action 

cost function, the fields that show the coefficients of the action cost function are automati-
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cally completed. In this example, the action “Operate at reduced equipment load” consists 

of two cost factors and their aggregation gives an action cost function of 420 * t + 3100. 

 

 

Figure 8-16: The “Edit Instance Action” screen for a specific action.  

 

 

 

Figure 8-17: Edit Cost Factors.  
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The fourth component of the instance management screen is the ‘Decision Method Set-

tings’ component in which, the users can specify method parameters before using the in-

stance. After having editing all the alternative actions that correspond to the specific deci-

sion method instance, the users should click on the “Edit” button of the “Decision Method 

Settings” of the “Instance Management” screen. In this way, they are navigated to the “In-

stance Settings” screen, where they can modify the instance name and the instance expira-

tion time, that have been edited at the beginning of the decision method instance configu-

ration. Apart from this, they insert the cost of the undesired event that should be mitigated, 

the start date and time of the decision epoch and the duration of each decision epoch (e.g. 

time interval between two successive planned maintenances, shifts, etc.), as shown in Fig-

ure 8-18. After completing the associated parameters, click on the “Update decision method 

parameters” button so that the changes are applied. 

 

 

Figure 8-18: The “Instance Settings” screen.  

After having completed the embodiment of domain knowledge in the PANDDA system, 

the specific instance is ready for use, as shown in Figure 8-19, and the ‘My Instances’ screen 

will be as shown in Figure 8-20. If any changes are required, these can be done by pressing 

the ‘Manage’ button. In this screen, there is a search area, facilitating the users to locate a 

specific instance in case their number is very large, as well as some filters allowing the 

presentation of Active, Expired or Inactive instances only. 
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Figure 8-19: The updated instance management screen. 

 

 

Figure 8-20: ‘My Instances’ screen for three instances 

8.2.3 Providing a recommendation 

When a prediction event triggers PANDDA, a recommendation is provided. The rec-

ommendation can be seen if the users click on the “Test” button of the Integration / Test 

component of the instance management screen that is shown in Figure 8-21. Then, they are 

navigated to the screen of Figure 8-22 where they are able to view a list about the predic-
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tions that generated recommendations. By clicking on the “View” button next to each ele-

ment of this list, they can view the details for each provided recommendation. In the same 

screen, they are also able to simulate various prediction events.  

 

Figure 8-21: The “Test” button of the Integration / Test component of the instance management screen 

 

 

Figure 8-22: The “predictions that generated recommendations” list 



Proactive Computing in Industrial Maintenance Decision Making 

208 
 

8.2.4 Sensor-enabled online cost monitoring 

At any time, the users can monitor the cost of an action in real time based on sensor 

measurements, by clicking on the “View Real-time Action Cost” next to the name of the ac-

tion, at the “Actions (Decision Alternatives)” component of the “Instance Management” 

screen. In this way, they are led to the screen of Figure 8-23. They can view the baseline 

cost, i.e. the cost when the action has not been applied yet, or view the cost of the action 

during its implementation. The cost of the action is showed for all the decision epochs in-

volving the implementation of this specific action. More specifically, PANDDA shows the 

actual cost based on the raw sensor measurements for each cost factor which is part of the 

action cost function. Both the measured (noisy) and the estimated (corrected) costs are pre-

sented since PANDDA filters out sensor noise.  

 

 

Figure 8-23: The screen for “View Real-time Action Cost” 
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At the same screen, PANDDA shows the total cumulative action cost for each decision 

epoch based on the sensor measurements of the various cost factors. For example, for mon-

itoring the cost of the action “Operate at reduced equipment load”, PANDDA shows the raw 

cost measurements and estimations of two cost factors (cost due to production loss, cost 

due to not meeting demand) that are mapped to two topics – sensors (production_loss, un-

satisfied_orders), as shown in Figure 8-24 and in Figure 8-25 respectively. The cumulative 

total action cost for these two cost factors is shown in Figure 8-26. In this example, the ac-

tion has already been implemented twice (in two decision epochs) and it is currently being 

implemented for the third time. 

 

 

Figure 8-24: Real-time monitoring of the cost factor “Cost due to production loss”.  

 

 

Figure 8-25: Real-time monitoring of the cost factor “Cost due to not meeting demand”.  
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Figure 8-26:Real-time monitoring of the cumulative total action cost.  

8.2.5 Sensor-enabled cost function update 

At any time, the users can click on the “Feedback-based action cost calculation” but-

ton below the diagrams to be navigated to the “Calculate Action Cost from Feedback” 

screen of the specific action. The “Calculate Action Cost from Feedback” screen provides 

information about the action cost function and gives the possibility to calculate the refined 

cost function based on SEF. The first diagram of this screen is a 3-D diagram that presents 

the relationships among action cost, remaining time (until the end of decision epoch) and 

action start time, as shown in Figure 8-27. By moving the cursor on the points of the dia-

gram, the user can see the values of the three axes.  

At the same screen of PANDDA, below the diagram of Figure 8-27, there is the “Ac-

tion Cost vs Remaining Time” diagram, as shown in Figure 8-28. In this diagram, the user is 

able to see the total cumulative action cost for each decision epoch in which the specific 

action has been implemented. By moving the cursor on the points of the diagrams, the user 

can also see the exact cumulative total cost value for a specific decision epoch. For example, 

in the case shown in Figure 8-28, there are cost data for 6 decision epochs and in the 4th de-

cision epoch that this action was implemented, the prediction event was received approxi-

mately 160 hours before the end of decision epoch and costed 73873.84 euros. All the cost 

data can also be seen at the table existing below the “Action Cost vs Remaining Time” dia-
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gram and can be exported as a file as shown in Figure 8-29. In addition, there is a “Calculate 

Cost Function” button to see the estimated action cost function, as derived based on SEF. 

 

Figure 8-27: The “Action Cost vs Remaining Time vs Action Start Time” diagram.  

 

 

 

Figure 8-28: The “Action Cost vs Remaining Time” diagram.  
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Figure 8-29: The table presenting the action cost data for all the decision epochs.  

 

By clicking on the “Calculate Cost Function” button, the “Action Cost vs Remaining Time” 

diagram is updated in order to show the estimated cost function based on SEF in compari-

son to the previous cost function and to the observed data, as shown in Figure 8-30. Below 

that diagram, two cost functions appear: the refined and the previous one. Then, the users 

are able to select whether you prefer the previous or the refined cost function to be taken 

into consideration by the decision method instance the next time it is going to be enacted 

online, by clicking on the relevant button. For example, if they select to use the refined func-

tion, a confirmation message appears, as shown in Figure 8-31.  

If you do so, you will notice that the “Edit Instance Action” screen has also been updated 

and the coefficients of the action cost function have been changed according to the refined 

cost function derived from SEF. You can select to use the initial cost function at any time by 

clicking on the “Set action cost from cost factor, initial a, b, c” button. If you do so, the ac-

tion cost function will be the aggregation of the cost factor functions inserted during config-

uration.  You can always use the last refined cost function derived from SEF by clicking on 

the “Feedback-based action cost calculation” button. The aforementioned functionalities of 

PANDDA are shown in Figure 8-32. 
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Figure 8-30: The updated “Action Cost vs Remaining Time” diagram showing the previous and the refined cost function.  

 

 

Figure 8-31: The action cost function has changed and the refined one is used.  
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Figure 8-32: The “Edit Instance Action” screen after the selection of the refined action cost function.  

8.2.6 Testing Decision Method Instances 

The Analytics and the Integration / Test components of the instance management 

screen are addressed to the System Administrator. The Analytics component presents 

trends of the last 30 days for the predictions received, the recommendations provided, the 

errors and the latency. If the users want to see more details (e.g. about the results of predic-

tions, the actions recommended, etc.) and diagrams, they can enter the Analytics space by 

pressing the relevant ‘View’ button on the screen. 

The Integration / Test component of the instance management screen has a double 

role. First, the System Administrator integrates the specific decision method instance with 

the sensors that correspond to the cost factors of the action cost functions. Second, the Sys-

tem Administrator can test the decision method instance and see what the generated rec-

ommendation would be for various prediction events. In this way, they can test different 

scenarios by simulating different prediction events at the “Send Test Events” screen. The 

user navigates to this screen if he / she clicks on the “Test” button, next to “Apache 

STORM”, which is found in the Integration / Test” component of the “Instance Manage-

ment” screen. The results of all the conducted simulations are accessible at any time. Figure 

8-33 shows an example where the user simulates a prediction event that the most probable 

value of the time-to-undesired event (taking into account that the probability distribution 
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function of the occurrence of the undesired event is exponential) is in 222.2 hours, which 

corresponds to a λ value of 0.0045. This prediction event, in combination with all the other 

parameters of the decision method instance given by the user during configuration, leads to 

a recommendation, as shown in Figure 8-34. 

 

 

Figure 8-33: The “Send Test Even” screen.  

 

 

Figure 8-34: The resulting recommendation for a specific prediction event.  
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9 Deployment in Industrial Environment 

This Chapter presents the deployment of PANDDA as part of the overall Proactive 

Maintenance information system in a real industrial environment. More specifically, it pre-

sents the functionalities of PANDDA in the context of real industrial scenarios in two pilot 

companies: MHWirth from oil and gas industry and HELLA from automotive lighting equip-

ment industry. Based on the identified need of the companies to turn from reactive into 

proactive by adopting new technologies and systems in order to facilitate Proactive Mainte-

nance implementation, the platform was deployed in their premises.  

9.1 The MHWirth Business Case 

9.1.1 Description of the MHWirth Business Case 

Oil and gas projects are capital-intensive investments, with severe consequences in fi-

nancial and environmental terms in case of breakdown (Telford et al., 2011). Since a typical 

production rate for an oil and gas corresponds to USD 500,000, the reduction of downtime 

is of great significance in the oil and gas industry taking into account that one hour of down-

time costs around USD 20,000 (Telford et al., 2011). So, the business added value of proac-

tive maintenance event-driven decision making in oil and gas industry is huge since cost, 

efficiency and safety are crucial aspects in this kind of industry (Payne, 2010). Although 

comparable industries such as automotive and aviation have recently started exploiting big 

data by analyzing them and processing them in suitable information systems, the oil drilling 

industry has not reached to that level yet. 

MHWirth provides oilfield products, systems and services for customers in the oil and 

gas industry world-wide. The company's knowledge and technologies span from reservoir to 

drilling, production and through the life of a field. It brings together engineering and tech-

nologies for oil and gas drilling, field development and production. The company employs 

approximately 4,300 people in more than 20 countries. They apply the knowledge and cre-

ate and use technologies that deliver their customers' solutions. The annual revenue is ap-
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proximately EUR 1.1 billion (2013). The company is listed on the Oslo Stock Exchange. The 

company offers complete drilling packages, single drilling equipment and lifecycle services 

comprising installation and commissioning, maintenance and periodic overhaul of the in-

stalled base of machines around the world. Among the main customers are oil companies, 

rig owners and construction yards. Geographically, the main markets include the North Sea, 

Brazil and Asia, and project, sales and service organisations are located close to all main 

markets and customers. The main office is located in Kristiansand, Norway, and most of the 

drilling equipment is produced and assembled there. Figure 9-1 shows an oil rig owned by 

the pilot use case under consideration. 

 

Figure 9-1: An MHWirth oil rig. 

The Exploration and Production (E&P) cost within the oil and gas industry has had a con-

siderable increase the latest 15 years, which is a major concern of the industry by limiting 

the number of oil and gas fields that can be exploited economically. All major oil companies 

are striving to kick off initiatives to reduce the costs related to the drilling process. It is a 

paradox that alongside an increasing level of automation on-board latest generation drilling 

rigs, the drilling efficiency is reduced. The push towards greater ocean depths, harsher envi-

ronments and more advanced wells to be drilled has resulted in lower drilling efficiency. The 

average cost of drilling a well at the Norwegian continental shelf (NCS) exceeds EUR 58 mil-

lions; a number Statoil aims to reduce with 15-20%. 
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Cost focus and efficiency are the important topics for the drilling industry at the mo-

ment. To improve the understanding of the market situation within the sector, a high level 

review of the most usual process of ordering, building and operating a drilling rig might be 

appropriate. The process is initiated by a rig owner company, which puts forward a set of 

requirements for a new build to a construction yard. The yard is subsequently asking for 

quotes from sub suppliers for the drilling equipment package or single equipment. The main 

criterion for the yard when selecting sub suppliers is the equipment price, assuming that the 

prevailing customer requirements, standards and regulations are fulfilled. This lifecycle is 

shown in Figure 9-2.  

 

Figure 9-2: Typical drilling rig lifecycle with example stakeholders per phase. 

The oil drilling company under consideration is a partner in both the design and con-

struction phase and through the rig’s lifecycle. The company aims to improve service offer-

ing to increase involvement in the important operational phase, which is considerable long-

er, has higher margins and provides more steady cash flow due to being less affected by cy-

clic economic conditions than the construction phase. To succeed in such a transition, the 

strategy has to be adopted already during design of equipment to improve data collection 

possibilities. Currently, the utilization of condition monitoring technology is hindered by the 

high cost of implementation during operation. Proactive customers looking into new con-

tract regimes might speed up this process significantly. Requirements for machine availabil-

ity in operation provide incentives for equipment suppliers for the transition towards Proac-

tive Maintenance. In other words, the aim is a transition from reactive business and correc-

tive maintenance strategy towards proactivity and higher predictability in operation and 

maintenance needs.  

Riglogger™ is of particular importance as input source for data to the ProaSense sys-

tem infrastructure. The Riglogger™ system is an infrastructure developed by the company 
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for high speed, high capacity logging of operational data from the company’s installed base 

of drilling equipment. Its topology is depicted in Figure 9-3.The Riglogger™ system continu-

ously records up to 25,000 measuring points and captures events at a frequency of up to 50 

Hz, ensuring a high data density (OSIsoft). It consists of two main components, one ppropri-

etary solution for high capacity streaming of time series out of the equipment Programma-

ble Logic Controllers (PLC) including decoding capabilities of the data streams at the receiv-

ing side. Secondly is an adapted version of the OSIsoft PI historian handling data reduction 

and storage. The OSIsoft suite contains also a variety of available interfaces for communica-

tion (e.g. towards third party systems), satellite replication of data and tools for data struc-

turing and visualization. 

 

Figure 9-3: Riglogger high level topology and data flow. 

The potential of ProaSense towards minimizing the weaknesses and avoiding the threats 

of the oil drilling company is explained through the SWOT analysis of Table 9-1. By analysing 

both the strength and weaknesses with respect to opportunities and threats, we get the 

elements of a strategy presented in Table 9-2. Table 9-1 and Table 9-2 were created in con-

junction with the pilot company under examination. 

Based on extensive root cause analysis using Bow Tie diagrams for various parts of 

equipment, the most critical ones were selected. Therefore, two use cases were selected: 

the gearbox and the swivel monitoring case. The gearbox and the swivel are critical compo-

nents of the top drive, with severe consequences in terms of down time in case of damage. 
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It is therefore of interest to monitor these components in order to give early notifications if 

degradation or breakdown is expected in near future. As of today, the maintenance regime 

is inspection every 5 years. If a damage or unexpected wear should occur between the 5 

year inspections it would probably not be detected, and a major failure would be the conse-

quence. Figure 9-4 shows the motor and gearbox details. 

Table 9-1: SWOT Analysis for MHWirth. 

Strengths  Weaknesses 

The company is a producer of equipment and systems 
with a large installed base, and a lifecycle service 
organisation in place.  

Being small in size, with short lines of command, and 
top management based in our own country, they can 
quickly introduce differentiating technology to the 
marketplace.  

Both the ProaSense project and the Riglogger™ are 
good examples of their ability to introduce modern IT 
technology to a conservative business.  

The Riglogger™ infrastructure is an enabler for offer-
ing next generation monitoring, analysis and decision 
support services. 

There is a defined will within their management to 
spend a higher fraction of our R&D budget on longer 
term, differentiating technologies. 

The workforce is highly skilled, capable of producing 
good quality, reliable designs and also with visionary 
abilities to make new, creative solutions that can be 
quickly introduced to the market.  

The reputation in the market is also good. 

We have over time established a base of loyal cus-
tomers. 

Modern IT concepts are not easy for the established sales force to 
sell to existing customers, who basically want one more unit 
similar to their existing installations.  

Understanding and utilizing the newly introduced concepts will 
require internal education of mid and top level management as 
well as the sales force. 

Because of the cost focus when bidding for new projects, it is 
difficult to introduce new and expanded instrumentation neces-
sary for improved monitoring. 

Patenting and IP protection is historically a weakness within our 
organization.  

Being small, it is easy to destroy a good reputation with a very 
few failures or badly performing new constructions, and thereaf-
ter it would take a long time to re-build the good reputation.  

They have different customers during construction and the life 
cycle of the rig. At construction time the focus is on keeping 
equipment cost at a minimum. 

Organisational changes require new working processes. We are a 
project organisation trying to become a product organisation, 
with standardized deliveries, this requires changes.  

All new products, including Riglogger™ and the notifications 
based on ProaSense require engineers to think about Return on 
Investment (ROI) and create a valid business model. 

Opportunities Threats 

The new emerging contract regime that calls for de-
livering equipment with guaranteed uptime, or even 
new business models such as leasing out equipment 
with free replacement in case of breakdown is a good 
opportunity to gain new contracts in the marketplace.  

Being able to offer modern differentiating technology 
that enables their customers to offer a better service 
to their end customers is a part of this new strategy.  

There is now a market pull for introducing improved 
condition monitoring (CM) and PHM of our equip-
ment, coming from our end customers. 

The new contract regime with guaranteed uptime means an 
increased risk if the failure rate of the equipment should rise 
above what is expected, or condition monitoring should fail to 
give correct early warnings of malfunction and wear.  

Even with their loyal customers, price is rapidly becoming more of 
an issue. 

As with most businesses, there are cycles in the market, and the 
recent sales boom will not last forever.  

Ownership of data is not clear. 

Other parties may harm their reputation by incorrectly analysing 
the data lacking our domain knowledge. 
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Table 9-2: Strategy derived from SWOT Analysis for MHWirth. 

 Opportunities Threats 

Strengths They aim to move forward based on their competency, 
good reputation and already established technological 
enablers, making use of the expressed will in top man-
agement to increase the percentage of R&D funding 
used for real differentiating technology that will ena-
ble their customers to perform better. 

They should use their agility (their comparatively 
small size) to deploy low cost solutions (low-
hanging fruit) and gain quick wins in CM/PHM. 

This strategy means to go for rapid deployment 
of low cost solutions based on making better use 
of already installed sensors and infrastructure. 

Weaknesses They should use the recent market pull to motivate the 
introduction of both simple and advanced monitoring 
and prognostics methods for enhancing equipment 
reliability. 

They should also strengthen their business mind set. 

They should try to strengthen their knowledge 
level with respect to IP protection and the use of 
IT in meeting the new contract requirements 
and minimizing risks, as well as securing man-
agement support for introducing more advanced 
monitoring techniques. 

 

 

Figure 9-4: Motor and Gearbox details. 

9.1.2 Deployment in MHWirth 

9.1.2.1 Use Case 1: Proactive Recommendation of Maintenance Action for the Gearbox 

Use Case 1 deals with the “Gearbox Breakdown” DMI and aims to provide proactive rec-

ommendations about maintenance actions. First, the user configures a DMI through the 

PANDDA GUI. The desired recommendation is about the optimal maintenance action and 

the optimal time for its implementation. Therefore, the proactive MDP method is selected 

and the relevant DMI for the gearbox breakdown mitigation is created through the PANDDA 

GUI. The input parameters inserted by the user are shown in Table 9-3 and Table 9-4. 

The Real-time Processing Layer of the platform receives in real-time readings of the oil 

temperature and Rounds Per Minute (RPM) of the drilling machine’s gearbox. Assume that 

abnormal friction losses are detected on the basis of the observed data through complex 

patterns of oil temperature and RPM events characterized by an abnormal oil temperature 

rise (10% above normal) measured over 30% of the drilling period when drilling RPM ex-
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ceeds a threshold. This pattern is a strong indication that the gearbox breakdown of the 

drilling equipment starts to occur.  

Table 9-3: Input by the user of actions parameters for gearbox breakdown instance 

Alternative actions Cost 
functions 
(in hours) 

Delays 

(in 
hours) 

Time-to-failure after 
implementation (in 

hours) 

a1: Lubrication of 
metal parts 

400*(T-t) 0.9 2400 

a2: Operate at re-
duced equipment 

load 

420*(T-t) 0.9 5550 

a3: Full onshore 
maintenance 

550*(T-t) 0.9 10000 

 

Table 9-4: Input by the user of gearbox breakdown instance 

Cost of undesired event 155,000 euros 

End of decision epoch  10 days 

 

Table 9-5: Real-time input and output of gearbox breakdown instance 

Predicted probability 

distribution 

Exponential with λ = 0.0045 

Recommended action a2: Operate at reduced 

equipment load  

Recommended 

implementation time 

in 124 hours 

 

The detection event triggers the prognostic model that generates a real-time prediction. 

Three hours after the start of decision epoch for the “gearbox breakdown” DMI, PANDDA is 

triggered by a prediction event that there is an exponential probability distribution function 

for the occurrence of gearbox breakdown with a most probable time-to-failure equal to 

222.2 hours, i.e. λ = 0.0045. The “gearbox breakdown” DMI is enacted online and provides a 

recommendation that the optimal action is “Operate at reduced equipment load” and the 
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corresponding optimal time for implementing this action is in 124 hours. This real-time input 

and output of PANDDA is shown in Table 9-5. This action at this time is the one that leads to 

the minimum expected loss, as shown in Figure 9-5. 

 

Figure 9-5: Output of proactive MDP for the oil and gas scenario 

9.1.2.2 Use Case 2: Proactive Recommendation of Maintenance Action for the Swivel  

Another DMI corresponds to the swivel of the oil and gas drilling equipment. The aim is 

to move dynamically swivel replacement according to the swivel health state. Therefore, the 

desired output of PANDDA is the optimal time for the implementation of a predefined ac-

tion. At design time, the user creates an appropriate DMI by selecting the Proactive Ex-

pected Loss Rate optimization method and by inserting the required domain knowledge 

shown in Table 9-6. 

Table 9-6: Input by the user of swivel breakdown instance 

Cost of undesired event 100,000 

euros 

Cost of swivel replacement 800 * ( T – t) 

End of decision epoch 280 hours 

 

Similarly to the previous scenario, 126.15 hours after the start of decision epoch for the 

“swivel breakdown” DMI, PANDDA is triggered by a prediction event that there is an expo-

nential probability distribution function for the occurrence of swivel breakdown with a most 



Deployment in Industrial Environment 

225  

probable time-to-failure equal to 153.84 hours, i.e. λ = 0.0065. The “swivel breakdown” de-

cision method instance is enacted online and provides a recommendation that the optimal 

time for swivel replacement is in 73.65 hours. This real-time input and output of PANDDA is 

shown in Table 9-7. At this time, this action leads to the minimum expected loss, as shown 

in Figure 9-6. 

Table 9-7: Real-time input and output of the decision method 

Predicted probability 

distribution 

Exponential with λ = 0.0065 

Recommended action Replace swivel  

Recommended 

implementation time 

in 73.65 hours 

 

 

Figure 9-6: Output of Expected Loss Optimization method for the oil and gas scenario 

9.1.2.3 Use Case 3: Proactive Recommendations of Joint Maintenance and Logistics Ac-

tions for the Gearbox 

For the machine’s gearbox DMI, friction losses are detected with the use of complex 

event patterns of lube oil temperature and RPM events characterized by an abnormal oil 

temperature rise measured over a percentage of the drilling period when drilling RPM ex-
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ceeds a threshold. This pattern, learned at the offline phase, is an indication that the gear-

box may be at a dangerous state. Therefore, the prognostic model generates a prediction 

about the reliability distribution function of the gearbox. This prediction triggers PANDDA 

which provides a proactive recommendation about the optimal maintenance action and the 

optimal time of applying it as well as the optimal order of spare parts along with the optimal 

time for their ordering.  

At design time, the user interaction is realized with a GUI of the web-based application 

enabling the user to insert the required domain knowledge per equipment instance. In the 

current scenario, there are four alternative maintenance actions (lubrication of metal parts, 

operate at reduced equipment load, offshore maintenance, full onshore maintenance) with 

different degrees of restoration and their associated orders of spare parts (lube oil, no or-

dering, gearbox, Derrick Drilling Machine- DDM), as shown in Table 9-8. The time-to-failure 

after the implementation of the maintenance action indicates the degree of restoration. The 

actions a1, a2 and a3 are implemented on the oil rig (offshore), while onshore maintenance, 

which corresponds to perfect (“good-as-new”) maintenance, requires its movement on-

shore. 

Table 9-8: The domain knowledge inserted during user configuration. 

 Cost of failure (Euro) 350,000 

Decision horizon (hours) 240 

Maintenance actions 

Time-to-failure 

after 

implementation 

(hours) 

a1: Lubrication of metal parts 1,240 

a2: Operate at reduced equipment load 2,050 

a3: Offshore maintenance  2,960 

a4: Onshore Maintenance  3,220 

Spare parts orders 

 

Lead time 

(hours) 

o1: Lube oil 5 

o2: Swivel hook 8 

o3: Gearbox 24 

o4: DDM 48 
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At some time, a prediction event about an exponential distribution function of the 

failure occurrence with a parameter λ = 0.045 triggers the decision algorithm. The joint 

maintenance and logistics proactive decision model are formulated for each alternative ac-

tion as shown below: 

𝐸𝐿𝑎𝑖(𝑡) = [1 − (1 − 𝑒−𝜆𝑡)] ∗ {𝐶𝑎𝑖
+ (1 − 𝑒−𝜆𝛥𝑡) ∗ 𝐶𝑓 + [1 − (1 − 𝑒−𝜆𝛥𝑡)] ∗ [𝐶𝑒𝑖

(𝑇 − 𝑡 −

𝛥𝑡) + (𝑒(𝑡+𝛥𝑡)(𝜆−𝜆′) − 𝑒−𝜆′𝑇+𝜆(𝑡+𝛥𝑡)) ∗ 𝐶𝑓]} + (1 − 𝑒−𝜆𝑡) ∗ 𝐶𝑓   

𝐸𝐿𝑜𝑖(𝑡) = [1 − (1 − 𝑒−𝜆(𝑡+𝐿))]

∗ {𝐶𝑠𝑝 + (1 − 𝑒−𝜆𝛥𝑡) ∗ 𝐶𝑠(𝑇 − 𝑡 − 𝐿) + [1 − (1 − 𝑒−𝜆𝛥𝑡)]

∗ (𝑒(𝑡+𝐿+𝛥𝑡)(𝜆−𝜆′) − 𝑒−𝜆′𝑇+𝜆(𝑡+𝐿+𝛥𝑡)) ∗ 𝐶𝑠(𝑇 − 𝑡 − 𝐿 − 𝛥𝑡)} + (1 − 𝑒−𝜆(𝑡+𝐿))

∗ 𝐶𝑠(𝑇) 

Although there is an indication of the most probable time-to-failure (parameter λ), 

the exponential degradation leads to high uncertainty in considering the deterministic value 

itself. Handling the PDF instead can lead to more accurate and reliable results. The Expected 

Loss Functions are shown in Figure 9-7 and their optimization results in the recommenda-

tion: Conduct offshore maintenance for gearbox replacement in 85.47 hours and order the 

Gearbox in 42.36 hours. These recommendations are exposed to the user through the GUI. 

 

Figure 9-7: The expected loss functions for (a) maintenance, and (b) logistics (ordering of spare parts). 

9.1.2.4 Use Case 4: Continuous Improvement of Proactive Recommendations about 

Gearbox 

The user creates a DMI about the gearbox through the PANDDA GUI. When a prediction 

event triggers PANDDA, a proactive recommendation that minimizes the expected loss for 

the manufacturing enterprise is provided. The scenario demonstration is presented in three 
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phases: (i) DMI configuration, (ii) proactive mitigation of gearbox breakdown and (iii) im-

provement of recommendations through SEF.  

DMI Configuration 

Senior engineers inserted the values of the input parameters shown in Table 9-9, Ta-

ble 9-10 and Table 9-11. Time is expressed in hours. Table 9-9 shows three alternative ac-

tions in our application scenario. The action cost functions have been defined by the users 

to be linear, all of them have the same delay and each one of them has a different time-to-

failure after its implementation (i.e. how much the action prolongs the gearbox lifetime). 

Each action consists of 2 cost factors, each one of which contributes to a different percent-

age to the total action cost as shown in Table 9-10. Table 9-11 shows additional parameters 

needed as input for the proactive decision methods. 

Table 9-9: Input of Action Parameters 

Alternative actions 
Cost functions 

(Euro) 

Delays  

(hours) 

Time-to-failure after 

implementation 

(hours) 

a1: Lubrication of metal parts 400*(T-t) 0.9 2400 

a2: Operate at reduced 

equipment load 

420*(T-t)+3100 0.9 5550 

a3: Full onshore maintenance 550*(T-t) 0.9 10000 

 

Table 9-10: Cost Factors for each Cost Function 

Alternative actions Cost Factors 

a1: Lubrication of met-

al parts 

Cost of lube oil Personnel cost 

a2: Operate at reduced 

equipment load 

Cost due to produc-

tion loss 

Cost due to not meet-

ing demand 

a3: Full onshore 

maintenance 

Cost due to produc-

tion loss 

Cost of transport 
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Table 9-11: Input of the Decision Method 

Parameter Value 

 Cost of undesired event 155,000 euros 

Start of decision epoch 01-06-2016 

Decision epoch period 10 days 

Instance expiration time 05-01-2017 

 

Proactive mitigation of gearbox breakdown 

   Three hours after the start of decision epoch for the “gearbox breakdown” DMI, 

PANDDA is triggered by a prediction event that there is an exponential probability distribu-

tion function for the occurrence of gearbox breakdown with a most probable time-to-failure 

equal to 222.2 hours, i.e. λ = 0.0045, as shown in Table 9-12. The “gearbox breakdown” DMI 

(which incorporates the proactive MDP decision method) is enacted online and provides a 

recommendation that the optimal action/time pair is to “Operate at reduced equipment 

load” after 124 hours, as shown in Table 9-12. This action timing pair is the one that leads to 

the minimum expected loss, as shown in Figure 9-8. 

 

 

Figure 9-8: The expected loss for the three alternative actions. 
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Table 9-12: Real-time Input and Output of the Decision Method 

Parameter Value 

Predicted probability distribution Exponential with λ = 0.0045 

Recommended action a2: Operate at reduced equipment load 

Recommended implementation time in 124 hours 

 

Improvement of recommendations through SEF 

In the current scenario, feedback from 2 sensors related to the following cost factors (the 

aggregation of which formulates the cost function of the action “a2: Operate at reduced 

equipment load”) is gathered: 

 Cost due to production loss: Cost factor function = 300*(T-t) +2100 

 Cost due to not meeting demand (penalty for unsatisfied orders): Cost factor function = 

120*(T-t) +1000 

“Cost due to production loss” cost factor is mapped to a flow monitoring sensor which 

measures the productivity i.e. the volume of oil gathering during oil drilling per time unit. 

This cost factor is calculated by multiplying productivity by the associated cost and adding 

the constant costs. In our example, production loss due to the action implementation is 600 

gallons per hour with a cost of 0.5 Euro per gallon (300 Euro per hour), while there is a fixed 

cost of 2100 Euro which corresponds to the production loss of the time required for chang-

ing the production process. According to IEC 60770, flow sensors have an accuracy of 99.5 % 

in terms of Full Scale Output (FSO), or equally, an uncertainty of 0.5 % FSO. FSO is the result-

ing output signal or displayed reading produced when the maximum measurement for a 

given device is applied (Aberer et al., 2007). When an instrument has an accuracy specified 

as % FSO, the error has a constant value no matter where the flow is in the flow range (in 

contrast to the percentage of reading where the error is always the same percentage of the 

actual flow). FSO is the resulting output signal or displayed reading produced when the max-

imum measurement for a given device is applied (Aberer et al., 2007).  

The “cost due to not meeting demand (penalty for unsatisfied orders)” cost factor repre-

sents the penalty per time unit because an order is not ready on time and is retrieved from 
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the ERP system. In the case examined and based on the historical data and the customer’s 

requirements, the cost due to not meeting demand is 120 Euro per hour, while there is an 

additional fixed penalty of 1000 Euro. In this case, the noise in cost is attributed to incorrect 

data entered in the ERP system (low data quality) which affects the cost function and is es-

timated by analyzing historical data associated with data entries. In the case examined, low 

data quality is caused by the percentage of incorrect entries for late orders in the ERP sys-

tem and by the percentage of actual orders from customers. 

After several iterations of breakdown predictions and mitigating action implementations, 

the user can see the refined cost function in comparison to the initial configuration. In this 

case, after 7 decision epochs in which action “a2: Operate at reduced equipment load” was 

recommended and implemented, the refined cost function (derived from the aggregation of 

the two cost factors) is 428*(T-t) + 3300, as shown in Figure 9-9. In other words, the cost 

function derived from SEF is higher than the one configured by the user and consequently, 

the recommended action and the recommended implementation time may be different. In 

a subsequent decision epoch and by using the a2 cost function derived from SEF, the opti-

mal action is now “a1: Lubrication of metal parts” and the optimal time is in 119 hours with 

a different resulting expected loss, since the global minimum is different, as shown in Figure 

9-10. 

 

 

Figure 9-9: The cost functions of a2 before and after feedback. 
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Figure 9-10: The expected loss of the alternative actions after SEF. 

9.1.2.5 Use Case 5: Context-aware Proactive Recommendation for a Maintenance Ac-

tion 

The user creates a DMI about the gearbox breakdown. They insert the time until the next 

planned replacement of the gearbox (which corresponds to the end of decision epoch). 

Furthermore, they insert the contextual elements that affect the cost functions, that is the 

location of the rig (L) and the availability of service engineer (A) on the rig. These contextual 

elements take binary values and, depending on the value, they correspond to different cost 

functions with a specific probability. The probabilities of the values of the contextual 

element “location of the rig” indicate the amount of time that the rig will be near shore or 

far from shore respectively, since the location of the rig may change until the next planned 

gearbox replacement (end of decision epoch). This information can be collected from the 

production plan. Similarly, the probabilities of the values of the contextual element 

“availability of service engineer” indicate the amount of time that the service engineer will 

be on the rig until the next planned gearbox replacement (end of decision epoch). This 

information can be collected from the resource plan. Both plans are available at the 

Enterprise Resource Planning (ERP) system of the company. The aforementioned contextual 

elements are probabilistic because they are used in order to enrich proactive decision 

making rather than reactive. Therefore, the user cannot be sure about the values of the 

contextual elements at the time when the system will recommend the implementation of 



Deployment in Industrial Environment 

233  

the action, i.e. the gearbox replacement, because they do not know in advance the 

recommended optimal time. 

The probabilities that the user inserts at the configuration stage are required for the 

initialization and are derived by historical data analysis. Moreover, the user inserts the 

alternative values for each cost function. The cost function of breakdown is a linear function 

of time (per week) and includes also the cost of corrective actions that are required in case 

of a breakdown, while the cost function of planned replacement is a constant function. In 

the first case, there is high uncertainty about the duration of the equipment being down 

and of the corrective actions, since it is an unexpected event. In the second case, the 

duration of the equipment being down and of the planned replacement is known, since it is 

a planned action. Table 9-13 shows the input of the user based on which the BN is created. 

The BN gives the probability of a specific cost conditioned the context given. The BN that is 

created according to the user’s input is shown in Figure 9-11. 

Table 9-13: User’s Input for Context and Costs 

Context Probability Cost function of 

breakdown 

Cost function of planned 

replacement 
Rig location     

Near shore 0.75 18,000*t 10,000 
Far from shore 0.25 27,000*t 21,000 

Availability of service  

engineer 

   

Available 0.83 18,000*t 10,000 
Non available 0.17 27,000*t 21,000 

 

 

Figure 9-11: The Bayesian Network created according to the user’s input. 
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Based on the result of the BN, the cost risk function gearbox breakdown and the cost risk 

function of planned gearbox replacement are calculated as shown below.  

𝐶𝑢𝑒 = 18000 ∗ 𝑡 ∗ 𝑃(𝐶𝑢𝑒 = 18000 ∗ 𝑡|𝐶𝐸1 = 𝐿 ∩ 𝐶𝐸2 = 𝐴) + 27000 ∗ 𝑡

∗ 𝑃(𝐶𝑢𝑒 = 27000 ∗ 𝑡|𝐶𝐸1 = 𝐿 ∩ 𝐶𝐸2 = 𝐴) 

𝐶𝑝𝑎 = 10000 ∗ 𝑃(𝐶𝑝𝑎 = 10000|𝐶𝐸1 = 𝐿 ∩ 𝐶𝐸2 = 𝐴) + 21000

∗ 𝑃(𝐶𝑝𝑎 = 21000|𝐶𝐸1 = 𝐿 ∩ 𝐶𝐸2 = 𝐴) 

 

So, the cost risk function of gearbox breakdown and the cost risk function of the planned 

gearbox replacement are calculated respectively: 

 

𝐶𝑢𝑒 = 18000 ∗ 𝑡 ∗ 0.745 + 27000 ∗ 𝑡 ∗ 0.255 = 20,295 ∗ 𝑡 

𝐶𝑝𝑎 = 10000 ∗ 0.733 + 21000 ∗ 0.227 = 12,097 

After having calculated the cost risk functions according to the probabilities of the 

context, this output feeds into the proactive event-driven decision method. In this case, 

since the user wants to know the optimal time of applying a pre-defined action, the system 

uses the equation that calculates the expected cost rate based on the prediction event, i. e. 

the probability distribution function of the occurrence of the gearbox breakdown. So, 3 

weeks before the end of decision epoch, a prediction event that the probability distribution 

function of the gearbox breakdown is exponential with the parameter λ = 1 / time-to-

breakdown equal to ½ is received and the Expected Loss Rate is formulated accordingly. 

 

       𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑  𝐿𝑜𝑠𝑠 𝑅𝑎𝑡𝑒 =
20295∗𝑡∗(1−𝑒−0.5∗𝑡)

2
+

12097∗𝑒−0.5∗𝑡

3
           

 

The equation is minimized by using the Brent’s method and provides the recommendation 

that the optimal time for gearbox replacement is in 0.19 weeks, that is in 1.33 days, with an 

expected cost rate of 3842 euros per week or 549 euros per day, as shown in Figure 9-12. 

When the action implementation is finished, the SEF functionality gathers and processes 

data from the ERP system (software sensor) containing the values of the associated cost 

function accompanied with the context within the action of gearbox replacement took 

place. Thus, at that time, the rig was situated near shore and the service engineer was 

available on the rig, while the cost of the action was 10,000 euros. Considering this 
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information, SEF updates the Bayesian cost risk calculation module (BN and cost risk 

functions) accordingly. 

 

Figure 9-12: The expected loss rate in the time period between the prediction event and the end of decision epoch. 

9.1.2.6 Use Case 6: Context-aware Proactive Recommendation of Joint Maintenance 

and Logistics Actions 

User Configuration 

The domain knowledge is inserted at design time through the PANDDA GUI. This domain 

knowledge has to do with the input parameters of the proactive decision model for joint 

maintenance and logistics optimization as well as the contextual elements affecting the 

costs along with their prior probabilities. In the current scenario, there are four alternative 

maintenance actions (lubrication of metal parts, operate at reduced equipment load, off-

shore maintenance, full onshore maintenance) with different degrees of restoration and 

their associated orders of spare parts (lube oil, no ordering, gearbox, Derrick Drilling Ma-

chine- DDM), as shown in Table 9-14. The time-to-failure after the implementation of the 

maintenance action indicates the degree of restoration. The actions a1, a2 and a3 are im-

plemented on the oil rig (offshore), while onshore maintenance, which corresponds to per-

fect (“good-as-new”) maintenance, requires its movement onshore. 
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Table 9-14: The domain knowledge inserted during user configuration. 

Cost of failure (Euro) 350,000 

Decision horizon (hours) 240 

Maintenance actions 

Time-to-failure after 
implementation 

(hours) 

a1: Lubrication of metal parts 1,240 

a2: Operate at reduced equipment load 2,050 

a3: Offshore maintenance  2,960 

a4: Onshore Maintenance  3,220 

Spare parts orders 

 
Lead time 

(hours) 

o1: Lube oil 5 

o2: Swivel hook 8 

o3: Gearbox 24 

o4: DDM 48 

 

Context-aware Model Initialization 

Similarly to the previous use case, there are two contextual elements that are known 

to affect the specific equipment: the location of the rig and the availability of service engi-

neer on the rig. The historical data needed for extracting the prior probabilities of the BN 

exist in the production plan and in the resource plan respectively of the ERP system of the 

company. According to this knowledge, the context-aware model is initialized. Therefore, 

two BNs are created: the first one deals with maintenance costs while the second one deals 

with inventory costs, as shown in Figure 9-13 and in Figure 9-14.  

The context-aware costs that feed into the proactive decision model for joint 

maintenance and logistics optimization through Context-aware Reasoning are calculated 

according to the following equation:  

𝐶𝑛(𝑡) = ∑ 𝐶𝑛,𝑖(𝑡) ∗ 𝑃(𝐶𝑛(𝑡) = 𝐶𝑛,𝑖(𝑡)|𝐶𝐸1 ∩ 𝐶𝐸2)

𝑖=2

𝑖=1
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Figure 9-13: The initialization of the BN for the context-aware model for maintenance-related costs. 

 

 

 

 

Availability Of Service Engineer

Available
Non Available

83.0
17.0

Location of the Rig

Near Shore
Far From Shore

75.0
25.0

Cost Function of a2 Effect

Linear Cost 265 t Euro
Linear Cost 335 t Euro

54.6
45.4

Cost of a2 Implementation

Fixed Cost 1160 Euro
Fixed Cost 1345 Euro

67.6
32.4

Cost Function of a1 Effect

Linear Cost 96 t Euro
Linear Cost 110 t Euro

77.3
22.7

Cost of a1 Implementation

Fixed Cost 1100 Euro
Fixed Cost 1280 Euro

74.5
25.5

Cost of a3 Implementation

Fixed Cost 10000 Euro
Fixed Cost 11000 Euro

74.1
25.9

Cost Function of a3 Effect

Linear Cost 845 t Euro
Linear Cost 1010 t Euro

64.6
35.4

Cost Function of a4 Effect

Linear Cost 960 t Euro
Linear Cost 1215 t Euro

47.8
52.2

Cost of a4 Implementation

Fixed Cost 17900 Euro
Fixed Cost 19050 Euro

73.3
26.7
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Figure 9-14: The initialization of the BN for the context-aware model for logistics-related costs.

Cost of o3 Spare Parts

Fixed Cost 19100 Euro
Fixed Cost 22100 Euro

65.8
34.3

o3 Shortage Cost Function

Linear Cost 535 t Euro
Linear Cost 622 t Euro

59.0
41.0

Cost of o4 Spare Parts

Fixed Cost 28850 Euro
Fixed Cost 30140 Euro

64.5
35.5

Location of the Rig

Near Shore
Far From Shore

75.0
25.0

Customers Demand

High
Low

66.0
34.0

o4 Shortage Cost Function

Linear Cost 550 t Euro
Linear Cost 710 t Euro

24.5
75.5

Cost of o1 Spare Parts

Fixed Cost 965 Euro
Fixed Cost 998 Euro

53.8
46.3

o1 Shortage Cost Function

Linear Cost 105 t Euro
Linear Cost 165 t Euro

54.9
45.1

o2 Shortage Cost Function

Linear Cost 315 t Euro
Linear Cost 435 t Euro

33.7
66.3

Cost of o2 Spare Parts

Fixed Cost 7000 Euro
Fixed Cost 8370 Euro

63.5
36.5
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Proactive decision model for joint maintenance and logistics optimization 

At some time, a prediction event about an exponential distribution function of the 

failure occurrence with a parameter λ = 0.045 (i.e. expected time-to-failure is in 22 hours) 

triggers the decision algorithm. Taking into account the context-aware costs instead of the 

costs themselves, the joint maintenance and logistics proactive decision model are formu-

lated as shown below: 

𝐸𝐿𝑎𝑖(𝑡) = [1 − (1 − 𝑒−𝜆𝑡)] ∗ {𝐶𝑎𝑖
+ (1 − 𝑒−𝜆𝛥𝑡) ∗ 𝐶𝑓 + [1 − (1 − 𝑒−𝜆𝛥𝑡)] ∗ [𝐶𝑒𝑖

(𝑇 − 𝑡 −

𝛥𝑡) + (𝑒(𝑡+𝛥𝑡)(𝜆−𝜆′) − 𝑒−𝜆′𝑇+𝜆(𝑡+𝛥𝑡)) ∗ 𝐶𝑓]} + (1 − 𝑒−𝜆𝑡) ∗ 𝐶𝑓   

𝐸𝐿𝑜𝑖(𝑡) = [1 − (1 − 𝑒−𝜆(𝑡+𝐿))]

∗ {𝐶𝑠𝑝 + (1 − 𝑒−𝜆𝛥𝑡) ∗ 𝐶𝑠(𝑇 − 𝑡 − 𝐿) + [1 − (1 − 𝑒−𝜆𝛥𝑡)]

∗ (𝑒(𝑡+𝐿+𝛥𝑡)(𝜆−𝜆′) − 𝑒−𝜆′𝑇+𝜆(𝑡+𝐿+𝛥𝑡)) ∗ 𝐶𝑠(𝑇 − 𝑡 − 𝐿 − 𝛥𝑡)}

+ (1 − 𝑒−𝜆(𝑡+𝐿)) ∗ 𝐶𝑠(𝑇) 

Although there is an indication of the most probable time-to-failure (parameter λ), 

the exponential degradation leads to high uncertainty in considering the deterministic val-

ue itself. Handling the probability distribution functions instead can lead to more accurate 

and reliable results. The Expected Loss Functions are shown in Figure 9-15 and their opti-

mization results in the recommendation: Conduct offshore maintenance for gearbox re-

placement in 85.47 hours and order the Gearbox in 42.36 hours. These recommendations 

are exposed to the user through the GUI. 

 

Figure 9-15: The expected loss functions for (a) maintenance, and (b) logistics (ordering of spare parts). 
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Sensor-Enabled Feedback and Context-aware Model Reasoning 

As long as more executions of the proposed algorithm are conducted, more data 

are gathered through SEF in order to update the context-awareness mechanism and thus, 

to improve the generated recommendations. In each effect node, the X-means clustering 

algorithm creates clusters and separates the feedback values to them. In each algorithm 

trigger, the centroid of each cluster is taken into account. Figure 9-16 shows an example of 

an effect node (“Cost of a1 Implementation”) after 40 executions, where there are two 

clusters. The real-time cost information is exposed to the user through the GUI.  

This real-time update of visualization is achieved due to the server-push and event-

based publish/subscribe and a highly scalable real-time graphing system which is able to 

store thousands of time-series per second and compute metrics on them. After many exe-

cutions of the proposed model, the expected loss functions on the basis of the updated 

cluster centroids for the same prediction event are derived as shown in Figure 9-17. In this 

case, the recommendation is to conduct full, onshore maintenance in 98.26 hours and to 

order the DDM in 49.12 hours. This recommendation leads to a lower expected loss com-

pared to the recommendation shown in Figure 9-15, while it is more accurate since it is 

based on sensor data instead of human’s subjective estimations. 

 

Figure 9-16: An example of the BN effect node “Cost of a1 Implementation” after 40 executions. 
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Figure 9-17: The expected loss function after many executions for (a) maintenance, and (b) logistics. 

9.2 The HELLA Business Case 

9.2.1 Description of the HELLA Business Case 

HELLA Saturnus Slovenija is based in Ljubljana and is part of a corporate group, an in-

ternational headquartered in Germany. It is one of the biggest Slovenian exporters. Com-

pany’s core business is the development and production of a wide range of top-level light-

ing equipment products for motor vehicles: headlamps, auxiliary fog lamps, daytime run-

ning lamps and single- and multifunction lamps. It now employs approximately 1,900 peo-

ple and generates more than EUR 200 million of revenues. The work is organized in 3 daily 

shifts in approximately 300 days per year. The factory produces 2.5 million headlamps and 

6.5 million fog lamps annually.  

The production process includes different process steps from supplier deliveries, ware-

housing, plastics injection moulding, surface treatment, metalizing, preassembly of groups 

and finish goods assembly. There are several inline measurement processes involved that 

gather information of the quality of parts exiting particular phases. In addition data is also 

being collected at the particular process level. There are additional parameters influencing 

the effectiveness of the production line like ambient information, material structure infor-

mation, personnel working at the line etc. The installed monitoring functionality mainly 

shows the current status and some most important trends that are being influenced mainly 

by the tool wear and machine configuration. 
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The company has established fully automated plastic cover lens production facility in-

cluding injection moulding and lacquering. Following the path of innovation, it intends to 

deploy the ProaSense solution with the aim to lower the scrap rate and boost productivity 

on the same facility. It expects to directly benefit from ProaSense results with the expan-

sion to new markets and new products and new technologies (e.g., laser-based automotive 

lighting). By introducing new technologies that will complement the existing setup, it ex-

pects to gain significant competitive advantage against major competitors.  

The optimization of the manufacturing lines certainly tackles company's strategy for 

energy positive business and nature preservation policy. Integrating different data with the 

inline data will enable the company to understand better the dependencies between dif-

ferent factors that will lower the scrap rate, waste and energy consumption costs that are 

currently high because of intensive production. Furthermore, the implementation of a sen-

sor network on top of the existing infrastructure, as shown in Figure 9-18, will enable the 

company continue the company development towards intelligent manufacturing.  

 

Figure 9-18: The ProaSense system in HELLA. 

The potential of ProaSense towards minimizing the weaknesses and avoiding the 

threats of the automotive lighting equipment company is explained through the SWOT 

analysis of Table 9-15. By analysing both the strength and weaknesses with respect to op-
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portunities and threats, we get the elements of a strategy presented in Table 9-16. Table 

9-15 and Table 9-16 were created in conjunction with the pilot company under examina-

tion. 

Table 9-15: SWOT Analysis for HELLA. 

Strengths Weaknesses 

The company is a producer of high quality and high volume 
automotive lighting equipment in a very competitive mar-
ket segment. It has always been innovative and is therefore 
still a key player. It has operators that are experts in 
moulding and lens production. 

Part of the scrap production and downtime is due to the 
fact that our customers demand (norms) high quality, 
regarding functionality and appearance. Downtime ap-
pears during maintenance of complex production process-
es, which results in a lower overall equipment efficiency 
(OEE). 

Customers demand more complex products that will in-
crease the scrap rate and downtime. 

Currently they are not able to analyse the machines that 
are offline in the production process. They have only ag-
gregated data on, e.g., the scrap rate. 

Opportunities Threats 

Automotive lighting equipment is more and more ad-
vanced and new technologies are being introduced (i.e. 
LED, OLED, LASER, etc.). With their innovative approach, 
they could be one step in front of the competitors and 
offer their customers cutting edge products. They have the 
opportunity to put all of our production machines online, 
reduce cost and reduce downtime, so they deliver even 
better performance and keep their competitive advantage. 

Introducing new technologies into automotive lighting 
equipment also headlamp production process becomes 
even more complex. In the future, they might not be able 
to master the process with reasonable OEE. 

Other competitors that can produce more precise prod-
ucts, for lower costs. 

 

Table 9-16: Strategy derived from SWOT Analysis for HELLA. 

 Opportunities Threats 

Strengths 

Considering company’s innovative approach, the 
knowledge that is available on offline analysis of 
the moulding machine, it foresee that ProaSense 
is the logical next step. 

With the use of the experts on moulding in com-
bination with the new feedback ProaSense can 
give them, we will be able to deliver higher quali-
ty products with less scrap produced and less 
downtime. 

Weaknesses 

ProaSense will enable them to master even more 
complex production processes and improve OEE. 
Also ProaSense will enable to give more feedback 
that is not possible today. Even before a break-
down/downtime or scrap occurs. 

ProaSense will enable them to at least maintain 
current OEE value with introduction of even 
more complex products and production process-
es. 

 

Based on extensive root cause analysis using Bow Tie diagrams for various defects, the 

most critical ones were selected. Therefore, the automotive lighting equipment industry 

use case focuses on the cover lens component of the headlamp components. Headlamps 

consist of several components. The components are assembled during the assembly pro-
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cess. Workers first place components on a headlamp-specific stand and then the robots 

assemble and glue the headlamp. In order to enable semi-automated headlamp assembly 

process, a stable production process of components must be ensured. Next to headlamp 

assembly process, shown in Figure 9-19, the company also incorporates the production 

and treatment of all plastic components. It uses more than 60 different raw plastic materi-

als for component production, each with its own properties. Component treatment in-

cludes metalizing and lacquering. One of headlamp components is the cover lens. Cover 

lens production process consists of two main steps: moulding and lacquering. The mould-

ing process ensures the correct geometry of the lens while lacquering ensures the re-

sistance to outer vehicle environment. An example of a cover lens is shown in Figure 9-20. 

 

Figure 9-19: The headlamp assembly process. 

Cover lens is one of the most important components of headlamp for two reasons. The 

first reason is that cover lens completes the outer surface of the vehicle, which is very im-

portant to our customers. The customers spend a lot of effort in completing the outer sur-

face also for the best aerodynamic properties of the vehicle. Therefore only a small range 

of geometrical deviation for the cover lens is allowed according to the customer require-

ments. Additionally, the cover lens is during the assembly process glued to the housing. 

Since the headlamp must be watertight, the cover lens must fit into the housing’s gluing 

channel hence the geometry of the lens must be constant i.e. the production process must 
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be stable. The second reason for special focus on cover lens is that since it represents the 

outer surface it has to be free of all decorative defects. Decorative defects on injection 

moulding parts are not avoidable and result in scraped parts. Scrap rate depends on the 

stability of the production process. Scrap related expenses are to some extent also covered 

by the customers. Expenses that are not covered by the customers are naturally covered 

by the company.  

 

Figure 9-20: Example of a cover lens. 

9.2.2 Deployment in HELLA 

9.2.2.1 Use Case 1: Proactive Recommendation of Joint Maintenance and Logistics Ac-

tions and Supplier Selection 

The production process includes the production of the headlamps’ components and 

their assembly with automated transporting. The manufacturing process of cover lens col-

lects a multitude of data through sensors established in moulding and lacquering phase of 

the production line. The reliability of this manufacturing process is critical, due to the vol-

ume of production and the complexity of the products. These processes gather many data 

about the various production phases mostly through embedded quality assessment 

equipment using sensors and measuring devices. Since the volume of the production pro-

cess is high and the equipment for the production of complex parts is expensive, the im-

provement in detecting, predicting and eliminating failures or mitigating their impact can 
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be measured in tens of thousands of Euros. For example, a reduction of the scrap rate by 

just 1 %, would result in savings of the order of magnitude of 100,000 euros per year.  

One of headlamp components is the cover lens. Cover lens production process con-

sists of two main steps: moulding and lacquering. The moulding process ensures the cor-

rect geometry of the lens while lacquering ensures the resistance to outer vehicle envi-

ronment. The undesired event that should be mitigated is the level of scrap rate exceeding 

25%. The “as-is” situation of the company is a time-based maintenance strategy including 

cleaning of the moulding machine from dust and conducted every Monday and Thursday at 

9:00. The automotive lighting equipment company aims to turn from time-based cleaning 

of the moulding machine into condition-based and, at the same time, to be able to order 

the spare parts just-in-time and to decide proactively about the portfolio of its suppliers. In 

this way, the maintenance and inventory costs can be reduced by eliminating, at the same 

time, the risk of a high scrap rate and of a shortage cost of spare parts. 

First, the user configures a DMI through the PANDDA GUI. The desired recommenda-

tion is about the optimal time for cleaning (mitigating action) and the optimal time for or-

dering the spare parts (prerequisite action). Furthermore, the selection of maintenance 

spare parts suppliers is required. Therefore, the user inserts the available number of sup-

pliers and the budget dedicated to the purchasing department. Therefore, the Joint Ex-

pected Losses optimization method is selected along with the supplier selection method 

and the relevant DMI for the moulding machine scrap rate is created through the PANDDA 

GUI. The input parameters of the joint maintenance and logistics decision model inserted 

by the user are shown in Table 9-17. 

The planned maintenance cost is 325 euros and lasts for 1 hour, while the failure cost, 

that is the cost due to scrap rate (which also includes the cost of corrective actions), is 85 

euros per hour. So, there is a fixed planned maintenance cost equal to 325 euros and a lin-

ear increasing failure and corrective cost equal to 85*t. The shortage cost is 140 euros per 

hour, the holding cost is 65 euros per hour and the lead time L is equal to 2 hours. Next 

planned maintenance (cleaning of the moulding machine) is in 10 hours. 

Table 9-17: Input by the user of the moulding machine scrap rate instance 
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Corrective cost of mitigating action 85 euros / hour 

Planned cost for mitigating action 325 euros 

Cost due to early undesired event 140 euros / hour 

Cost due to undesired event not occurring 65 euros / hour 

Planned time for implementation 10 hours 

Lead time 2 hours 

 

At the Real-time Processing Layer of the platform, real-time smart sensing of dust level and 

environmental factors such as humidity and temperature is conducted. These factors are 

known to affect the operation of the moulding machine and thus, the level of cover lens 

scrap rate. At some time, abnormal levels of dust, humidity and temperature are detected 

on the basis of the observed data that indicate the deterioration of the moulding ma-

chine’s operation. Therefore, there is a real-time prediction about the scrap rate exceeding 

25% 5 hours after the start of the decision horizon. This prediction event that the remain-

ing life distribution is exponential with expected time-to-failure equal to 4 hours (λ=0.25) 

triggers PANDDA which is enacted online and provides the recommendation shown in Ta-

ble 9-18. Figure 9-21 shows the following resulting expected loss functions. 

𝐶𝑚(𝑡) = (85 ∗ 𝑡) ∗ (1 − 𝑒−0.25∗𝑡) + (85 ∗ 𝑡 + 325) ∗ (1 − 𝑒−0.25∗(5−𝑡)) +                  325 ∗

(𝑒−0.25∗𝑡 + 𝑒−0.25∗(5−𝑡) − 1)                                      

𝐶𝑜(𝑡) = (140 ∗ 𝑡) ∗ (1 − 𝑒−0.25∗(𝑡+2)) + 140 ∗ 𝑡 ∗ (1 − 𝑒−0.25∗(5−𝑡−2)) + 75 ∗                 𝑡 ∗

(𝑒−0.25∗(𝑡+2) + 𝑒−0.25∗(5−𝑡−2) − 1)                          

Table 9-18: Real-time input and output of the moulding machine scrap rate instance 

Predicted probability distribution Exponential with λ = 0.25 

Recommended mitigating action Clean the moulding machine  

Recommended prerequisite action Order spare parts (i.e. moulds) 

Recommended implementation time for the 

mitigating action 

In 3.54 hours 

Recommended implementation time for the 

prerequisite action 

In 1.32 hours 
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Figure 9-21: The result of the optimization algorithm for the optimal time for (a) mitigating action (moulding machine 

cleaning); (b) prerequisite action (ordering of spare parts). 

The optimization of the aforementioned equation gives a recommendation that the 

optimal time for maintenance (cleaning of the moulds) is in 3.54 hours with a cost of 348.8 

euros. The optimization of Equation 6 gives a recommendation that the optimal time for 

ordering the spare parts is in 1.32 hours with a cost of 616.6 euros. On the basis of this 

recommendation, the negotiation of the company with 4 suppliers, the available purchas-

ing budget and the last update of the prediction of spare parts’ prices (shown in Figure 

9-22), the optimal portfolio of suppliers can be recommended. This information along with 

suppliers-related data (inventory level, scheduled production plan, capacity, etc.) is contin-

uously updated in ERP through EDI.  

The proactive supplier selection method provides the ‘Markowitz bullet’ and its ‘ef-

ficient frontier’ shown in Figure 9-23. Based on this, the optimal portfolio of suppliers is 

recommended, as shown in Table 9-19. The recommended portfolio actually presents the 

percentages of the available purchasing budget that should be dedicated to each one out 

of the available suppliers in order to optimize the costs and to eliminate the risk of not de-

livering the spare parts or of their delivering late. Therefore, the 14 % of the approved pur-

chasing budget should be allocated to Supplier A, the 38 % to Supplier B, the 26 % to Sup-

plier C and the 22 % to Supplier D. 
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Figure 9-22: The prices prediction in the course of time until the decision horizon. 

 

Figure 9-23: The Markowitz bullet and its Efficient Frontier for the portfolios. 

Table 9-19: The optimal portfolio of suppliers. 

Supplier A Supplier B Supplier C Supplier D 

0.14 0.38 0.26 0.22 
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10 Evaluation  

In this Chapter, the evaluation results are presented. First, the PANDDA system is eval-

uated by industrial users through questionnaires and free text for expressing their views. In 

addition, the system performance is evaluated in order to prove its efficiency and scalabil-

ity. Moreover, results from extensive simulation experiments of the functionalities are pre-

sented. Due to the large timescales and manufacturing processes’ lifecycle, it is not usually 

possible to evaluate sufficiently new systems, algorithms, methods and approaches in the 

context of a real industrial environment, during the actual operation of manufacturing pro-

cesses. For this reason, a simulated computational environment was created in order to 

evaluate the proposed approach, system, algorithms and methods for cases that did not 

arise during the evaluation period. To this end, comparative and sensitivity analyses show 

the added value of the proposed approach. 

10.1 System Evaluation by Industrial Users 

The PANDDA system was evaluated by the users in the aforementioned manufacturing 

companies in two ways: first, through a web survey incorporating questionnaires about the 

usability, the usefulness and the installation of the system; second, in a qualitative way, by 

reporting their views, conclusions and lessons learned. The evaluation was conducted in 

two iterations in the context of an agile mode of software development. The results of the 

first round of evaluation were taken into account for improvements in the already existing 

functionalities and the development of new ones. Moreover, they were considered for im-

provements regarding systemsperformance and usability. 

10.1.1 Questionnaire-based Evaluation 

10.1.1.1 Methodology of Evaluation Results Analysis  

In order to enable evaluators to become familiar with the system before performing 

the evaluation, manuals and videos demonstrating typical user interactions with the com-

ponents were developed for each one of them. Moreover, scripting trials were described 
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for each component, so that the users are guided to the screens and functionalities. A web 

survey incorporating the questionnaires was developed. The questionnaire regarding 

PANDDA’s usefulness and usability is available at Appendix A: Questionnaire for Evaluation 

of PANDDA.  

Most of the questions were formulated in the form of statements to which the partici-

pants were asked to specify their level of disagreement or agreement on a 5-point Likert 

scale from 1 (strongly disagree) to 5 (strongly agree), while there were also some yes/no 

and optional free text questions. As part of the methodology, a Positive Feedback Indicator 

(PFI) was defined for indicating positive/negative feedback on the level of question with 

respect to usability and usefulness.  

However, Likert scales produce ordinal data (i.e. data that can be ranked), which can-

not yield mean values. Therefore, A value of PFI less than 50% indicates a question that 

received more negative than positive feedback, since most of the responses were bad, and 

vice versa. A PFI value of 50% was also considered problematic. A similar approach was 

followed to calculate a PFI for yes/no questions.  

10.1.1.2 Analysis of Questionnaire-based Results 

Regarding the questionnaire about usefulness, with the exception of the question PP4 

which was a free text question, the rest of the aforementioned questions were formulated 

in the form of Likert scale statements. The evaluation results were positive, although the 

users’ level of expertise related to maintenance decision support applications was quite 

low, as a result of the fact the proactive decision making is an underexplored area in the 

academic and the industrial realms. Figure 10-1 shows the Positive Feedback Indicators for 

all questions, which are above the threshold (i.e. 50%).  

Regarding the questionnaire about usability, with the exception of the question PP4 

which was a free text question, the rest of the aforementioned questions were formulated 

in the form of Likert scale statements. Figure 10-2 shows the Positive Feedback Indicators 

for all the questions. The Positive Feedback Indicators of the questions PP1 (“My level of 

expertise related to maintenance decision support applications is high.”) and PP3 (“The 

meaning of decision method instance in the PANDDA system is understandable to me.”) 
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are the only ones below 50%. While the results of PP1 are not negative with respect to the 

Usability of PANDDA (since they are more general questions that aim to identify the cur-

rent status with respect to experience and expertise maintenance decision support in the 

organizations and to enable the explanation of the results), the results of PP3 show a lack 

of understanding for the ‘decision method instance’ concept.  

 

Figure 10-1: The PFI for the usefulness questions. 

 

Figure 10-2: The PFI for the usability questions. 

10.1.2 Qualitative Evaluation: The Pilots’ Views 

10.1.2.1 MHWirth 

The company’s goal was to utilize data stored in Riglogger™ to support the develop-

ment of new, value-adding services. This has been materialized by focusing on advanced 
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condition monitoring methods for critical machines and performance monitoring. Monitor-

ing methods for the Top Drive are essential for revealing degradation and upcoming issues. 

These techniques are also seen as major differentiators for the company compared to its 

competitors. Combined with the customer increasing interest in the field of condition mon-

itoring, patents proving new functionality and overall focus on Big Data are three consider-

able selling points for new MHWirth drilling equipment. Capabilities within decision sup-

port and cost optimization of both maintenance tasks and best time of execution are also 

highly relevant for company’s customers. Furthermore, the new infrastructure possesses 

cost optimization abilities which were not previously understood as relevant for the exploi-

tation of Riglogger™ data. Hence, a major effort was required to provide sufficient relevant 

contextual data covering cost scenarios for equipment failures to complete the proactivity 

principle. Still, overall maintenance optimizing functionality and integrated notification 

functionality has proven useful to comply with company’s overall target of reducing 

equipment’s downtime for critical machinery. The system provides accurate and reliable 

information about equipment condition to both improve and simplify the decision-making 

by drilling operators and maintenance planners. 

Hosting modern ICT solutions within an existing operating IT environment has proven a 

considerable undertaking throughout the development and testing. The fact that the infra-

structure is Linux based and build on open-source components have challenged company’s 

corporate privacy and security policies considerably. Combined with network and software 

operations outsourced to a third party vendor have made required granting processes for 

exceptions difficult and time consuming. However, the use of Docker and well documented 

the result become successful installation executed with only limited time delays. 

The system is perceived both flexible and robust to handle a wide range of applications. 

Outlining use cases across the phases of the proactivity principle has matured the organiza-

tion establishing new requirements for the collection of context data to be used in optimi-

zation of maintenance recommendations, both related to type of activity and timing to 

minimize equipment lifecycle cost. The company possesses considerable amount of Riglog-

ger™ data expected to have great value for both reactive and proactive service providing. 

Still, complete exploitation of the Proactive Maintenance system assumes high quality con-

textual information such as PDFs for top drive breakdowns. Getting hold of such kind of 
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information has proven highly challenging. Another challenge experienced through the 

project is documenting the results of reducing equipment downtime economically in busi-

ness KPIs. The recent customer interest into performance based contracts both for the 

drilling rig owners towards the oil companies and the contracts between the rig owner and 

the equipment supplier are highly interesting and need to be pursued. A shift in the con-

servative and traditional business model will greatly affect the pace, which the company 

needs to control equipment operational status to support future incentives for both rig 

owners and oil companies. 

The system development process facilitated through the outlining of use cases have re-

vealed new understanding internally of the challenge in cooperating across business do-

mains. Adopting key competency within both drilling equipment engineering and computer 

science is critical to succeed in big data analytics. MHWirth has through the work with 

Proasense acquired increased understanding of the complexity in system architecture and 

revealed the need of dedicated system users with both business optimization competency 

and technical equipment understanding to utilize the full potential of such analytical tools. 

Hence, the need of organizational development in the field of business analytics is provid-

ed as input to the company’s business development strategy aiming to exploit the full po-

tential of the real-time data currently collected in Riglogger™. 

10.1.2.2 HELLA 

“Zero defects” is one of the most important goals of every company that wants to be 

among the TOP3 in its industry. Defects in the company’s use case consist of downtimes 

and scrap rate. The production process includes different process steps from supplier de-

liveries, warehousing, plastics injection moulding, surface treatment, metalizing, preas-

sembly of groups and finish goods assembly. Several inline measurement processes are 

involved in gathering information of the quality of parts in exiting particular phases. In ad-

dition, data is collected at the particular process level. There are additional parameters 

influencing the effectiveness of the production line like ambient information, material 

structure information, personnel working at the line etc. This is why there is a clear need to 

understand the wider context and to be aware of the overall situation in the shop floor. In 

particular, the aim was to have a model that can be used for predicting potential errors 
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and to provide proactive solutions ahead. The installed monitoring functionality mainly 

shows the current status and some most important trends that are being influenced mainly 

by the tool wear and machine configuration. Before the Proactive Maintenance system, 

the company had never had the chance to work on a system to identify new correlations 

between different factors, which influence various defects. To cope with such huge 

amount of data, a configurable system is required. With the Proactive Maintenance sys-

tem, the company defined a use case and started to prove correlations between scrap rate 

and its root causes. The correlations identified will first hand allow us to avoid clear defect-

causing combinations (where applicable, e.g., never use certain set of machine-product) 

and, second-hand, allow us to adapt the process to avoid predicted defects (e.g., set differ-

ent injection moulding parameters for the night shift on moulding machine no. 2 for prod-

uct no. 23). 

Large enterprises usually have several small subsidiary companies all over the world. 

There are different kind of corporate governments, which can lead subsidiary companies 

from headquarter (centrally) or leave the subsidiary company to be guided by the local 

management. The company is becoming more and more centrally guided. Consequently, as 

a subsidiary, it has limitations due to central management decisions, but also through 

technology and new system implementations. The company’s headquarters are preparing 

guidelines on which system will be used for ERP, MES or SCADA and which the rest of the 

companies over the world need to follow.  

In case one of subsidiary company wants to implement a new system, it must first 

check with headquarters if the system in question has enough potential for first local and 

then worldwide distribution. This is where the company had a strong limitation. With the 

new perspective of Industrie 4.0 and the Internet of Things, there is a need for integration 

of new sensing equipment. Considering also the support for legacy equipment, investment 

is significant and has to be approved by the headquarters. For administration and further 

adaptation of big complex systems, the company has to create a new position in organisa-

tion. At least one person with certain competences has to be recruited and further trained. 

There are costs involved that need to be considered and approved. In order to build a reli-

able process model, there is a need for a big amount of historical data.  
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For deployment, the company had to stop the production process leading into down-

time. It chose the use case of thermoplastic cover lens production, which represented a 

huge challenge. The department is fully automated and is running on a four-shift model. 

The company also fully booked capacity on injection moulding machine, therefore addi-

tional downtimes are not acceptable. This is one of the key reasons why large enterprises 

are slowly adopting new technologies. Security of the corporate data is one of the most 

important requirements for new enterprises. This has to be considered when adopting new 

technologies.  

Reduction of costs in every corner, complex data analyzing, etc., are the guidance for 

every company that wants to survive on a market more aggressive every year. The compa-

ny can extend project on complete component production area. There are similar prob-

lems on injection moulding machines as well as on lacquering line and metallization. Next 

to the existing use cases from component production process and the data gathered there, 

the company intends to extend the use of the Proactive Maintenance system to final head-

lamp production. Final product (headlamp, rear lamp, fog lamp, etc.) consists of several 

components, some of them (optical system/group, e.g., reflector) being responsible for 

correct light distribution.  

Reflector is first being moulded, then it might be lacquered (depends on the material of 

reflector) and finally metalized. After the final product is assembled, it is automatically 

tested for optical properties (light intensity, position of cut-off line (COL), sharpness of COL, 

etc.) and evaluated as OK/NOK. NOK parts result as scrap. The main (non) quality contribu-

tors are moulding and lacquering processes (parameters) and should therefore be moni-

tored and adapted. In the future, the company aims to further increase the quality of the 

final product (average light intensity in photometric points reserve over legal values) 

and/or reduce the price of the product. 

10.2 System Performance Evaluation 

In order to properly test the PANDDA application, test cases simulating user interac-

tions with the web-based PANDDA application were developed. The data for this type of 

testing, has originated from testing scripts that simulate user interactions. Such scripts 
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have been developed with the use of the Selenium toolbox (www.selenium.org). Selenium 

script language provides many options for locating UI elements and comparing expected 

test results against actual application behavior, while it also allows executing the tests on 

multiple browser platforms and check for potential problems that may arise.  

The PANDDA test cases were developed and executed using the Selenium IDE (Inte-

grated Development Environment) in particular, which is implemented as Mozilla Firefox 

plugin. It has a recording feature, which records user actions as they are performed and 

then exports them as a reusable script in one of many programming languages that can be 

later executed. Additional verification commands can be added manually to the recorded 

scripts. A screenshot of Selenium IDE containing a PANDDA test suite (on the left panel) 

and a PANDDA test case (on the right panel) can be seen in Figure 10-3.  

The test suite has been executed many times from different platforms and browsers, 

revealing some bugs that were successfully resolved. Finally, the example test suite has 

been successfully executed, as can be seen in Figure 10-4. This means that the PANDDA 

configurator behaves as expected. Moreover, the PANDDA system performance was tested 

in terms of its latency with the following hardware specifications: Intel(R) Core(TM) i5-6400 

CPU @ 2.70GHz, Ubuntu 16.04, 4 Cores VM, 8GB RAM. As shown in Figure 10-5, the time 

needed to process the real-time data and information of actions is an almost linear func-

tion of their number.  

 

Figure 10-3: PANDDA Selenium test suite and test case 

http://www.selenium.org/
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Figure 10-4: An example of a successful PANDDA test suite execution. 

 

 

Figure 10-5: Latency of PANDDA 
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10.3 Sensitivity and Comparative Analysis of the Implemented 

Functionalities 

Due to the large timescales and manufacturing processes’ lifecycle, it is not usually pos-

sible to evaluate sufficiently new systems, algorithms, methods and approaches in the con-

text of a real industrial environment, during the actual operation of manufacturing pro-

cesses. For this reason, a simulated computational environment was created in order to 

evaluate the proposed approach, system, algorithms and methods for cases that did not 

arise during the evaluation period. To this end, comparative and sensitivity analyses show 

the added value of the proposed approach. 

10.3.1 Proactive Decision Making  

10.3.1.1 Sensitivity Analysis of Proactive Decision Making 

All the developed decision methods deal with uncertainty in order to provide real-

time, event-driven proactive recommendations. We conducted a sensitivity analysis that 

examines the output recommendations of the aforementioned proactive event-driven de-

cision methods for various input parameters. Sensitivity analysis with plots showing the 

output for various values of input parameters (e.g. under scenarios of various cost struc-

tures of costs of predictive and corrective actions) has been widely used for testing and 

validating decision models in the manufacturing domain (Wu et al., 2007; Elwany, and Ge-

braeel, 2008; Engel et al., 2012; de Almeida, et al., 2015; Wang et al., 2015). The advantage 

of this method is that it can also deal with arbitrary ranges of values (e.g. when there are 

not constraints about the minimum and maximum values of input parameters) and gives a 

direct visual indication of sensitivity (Hamby, 1994; Paruolo et al., 2013). For each method 

and each parameter we change, we keep all the other parameters required by the user 

constant and we plot two diagrams. The first one presents the optimal expected loss of the 

recommended action for various values of the input parameters examined as a function of 

the prediction event parameter for all the possible values of prediction event parameters. 

We assume that the prediction includes an exponential probability distribution function 

and thus, the prediction event parameter is λ = 1 / expected time-to-failure. Therefore, the 
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diagrams have a x-axis referring to expected time-to-failure. The second one presents the 

recommended (optimal) action implementation time as a function of the prediction event 

parameter for the various values of the examined input parameter. In the current sensitivi-

ty analysis, we examine various cost structures between the action costs and the cost of 

undesired event as well as all the input parameters with respect to the predictions in terms 

of the optimal expected loss as well as of the optimal implementation time of the recom-

mended action. All the diagrams were derived from the Python programming language. 

The functionalities of PANDDA were extracted from the web2py application and was used 

for the design of the simulation experiments described below. 

Figure 10-6 shows the results of sensitivity analysis for the Proactive ELR optimiza-

tion method. Figure 10-7 shows the results of sensitivity analysis for time-to-failure after 

the implementation of the action. For this input parameter, the output recommendation is 

sensitive when the prediction about the expected time-to-failure (for an exponential prob-

ability distribution function) is between 0 and 35. When a prediction is referred to a longer 

time period, they do not affect the output expected loss. Figure 10-8 shows the results of 

sensitivity analysis for action cost function. Both Figures correspond to the MDP for proac-

tive systems method for one action. Figure 10-9 shows the effect of sensitivity analysis in 

two alternative actions for the same method and how the recommendation is affected by 

different action cost functions. Figure 10-10 and Figure 10-11 show the results for the Joint 

Expected Losses optimization method. The mitigating action corresponds to the mainte-

nance action and the prerequisite action corresponds to the spare parts ordering. 

For some parameter values, the associated curves lay outside the optimal imple-

mentation time constraint of 68 days, which is the decision horizon (Figure 10-6, Figure 

10-9, Figure 10-10). This means that they are not going to be recommended because their 

implementation would lead to a loss greater that the cost of undesired event and thus, it is 

more worthy to run the equipment to failure. Our sensitivity analysis and simulation exper-

iments show also that input parameters related to cost are crucial for the recommenda-

tion. In other words, proactive decision making is highly sensitive with respect to its input 

parameters and especially, to the action cost-related input parameters. More specifically, 

costs have a major effect in all the proactive decision methods (Figure 10-6, Figure 10-10, 

Figure 10-11), although they do not significantly affect the prerequisite action of the Joint 
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Expected Losses optimization method (Figure 10-11). In addition, the time that the predic-

tion event is received is important since it also affects significantly the recommendation 

and the resulting expected loss, while the earlier it is received, the more time allows to the 

user to prepare the action implementation. Time-to-failure after action implementation 

affects proactive decision making much less, while changes in delays are slightly influence 

the resulting recommendations. 

 

Figure 10-6: Results of sensitivity analysis of action cost function for the “Proactive ELR” method 

 

Figure 10-7: Results of sensitivity analysis for time-to-failure for the “Proactive MDP” method. 
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Figure 10-8: Results of sensitivity analysis for action cost function for the “Proactive MDP” method. 

 

 

Figure 10-9: Results of sensitivity analysis of action cost function for 2 alternative actions for the “Proactive MDP” 

method. 
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Figure 10-10: Results of sensitivity analysis of mitigating action cost function 

 

Figure 10-11: Results of sensitivity analysis of prerequisite action cost function 

The sensitivity analysis regarding the joint maintenance and logistics decision model 

was conducted in two ways: (i) with respect to the prediction events; and (ii) with respect 
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to the costs.  As far as the (i) way is concerned, in the context of the sensitivity analysis, we 

simulated several prediction events for investigating the resulting recommendations and 

the associated expected loss. Table 10-1 shows some indicative results of the sensitivity 

analysis. It should be not-ed that, since the decision horizon is in 240 hours after the pre-

diction event trigger, the recommended time of 240 means that the action should be per-

formed as has been planned. According to the results, the recommendations can signifi-

cantly change according to the prediction events. In addition, the earlier a failure is pre-

dicted and the proactive decision model is triggered, the less the expected loss is, while the 

decision maker has more time at their disposal to be prepared and align other manufactur-

ing operations. This conclusion also means that there is a need for reliable and accurate 

predictive algorithms, with minimized false alarms (false positive and false negative) in or-

der to early predict upcoming undesired events (e.g. equipment failures). In this way, pro-

active decision models will be able to provide recommendations that lead to a more opti-

mized business performance. 

Table 10-1: Results of sensitivity analysis with respect to the prediction events. 

Parameter Maintenance Spare Parts Ordering  

Predicted 
time-to-
failure 

Recom-
mended 
action 

Recom-
mended 

time 

Resulting 
Expected 

Loss 

Recom-
mended 

order 

Recom-
mended 

time 

Resulting 
Expected 

Loss 

10 a1 2.03 335,434.84 o1 0.00 205,031.98 

20 a3 36.87 312,544.27 o3 15.12 199,433.39 

50 a3 77.92 234,124.91 o3 39.82 174,861.74 

100 a3 104.32 198,063.57 o3 87.87 126,523.99 

150 a2 135.22 181,133.28 o2 118,11 120,475.45 

200 a4 240.00 169,045.21 o4 189.34 101,366.56 

240 a4 240.00 156,217.91 o4 193.21 96,661.94 

 

As far as the (ii) way is concerned, in order to conduct sensitivity analysis of the proac-

tive decision model for joint maintenance and logistics optimization, we simulated four 

scenarios of cost struc-tures between the action cost and the failure cost as well as be-

tween the shortage cost and the spare parts costs given a specific prediction. Figure 10-12 

and Figure 10-13 show two indicative plots for the maintenance and logistics expected loss 

functions respectively (for one maintenance action and one spare parts order), while Table 

10-2 and Table 10-3 present the resulting optimal expected loss and the optimal imple-

mentation time for the specific action. Similarly to other proactive decision algorithms, this 
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proactive decision model is sensitive to its cost-related input parameters, since the ex-

pected loss functions are changed and they can lead to different recommendations. 

 
Figure 10-12: Four cost structures for the maintenance expected loss function. 

Table 10-2: Results of the cost structures for the maintenance expected loss function. 

Action Cost Action Expected 
Loss (Euro) 

Optimal Action Imple-
mentation Time (hours) 

0.01 * Failure Cost 117,211.42 87.78 

0.03 * Failure Cost 117,032.12 85.28 

0.1 * Failure Cost 115,146.47 73.65 

0.2 * Failure Cost 88,654.72 0 
 

 
Figure 10-13: Four cost structures for the spare parts ordering expected loss function. 
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Table 10-3: Results of the cost structures for the spare parts ordering expected loss function. 

Shortage Cost Action 
Expected Loss 

(Euro) 

Optimal Action 
Implementation Time 

(hours) 

0.01 * Spare Parts Cost 345,871.02 18.21 

0.03 * Spare Parts Cost 331,124.39 29.06 

0.1 * Spare Parts Cost 200,009.99 34.97 

0.2 * Spare Parts Cost 50,004.86 35.61 

 

As far as the proactive supplier selection method is concerned, extensive simulation exper-

iments were conducted with various simulated predictions about the spare parts’ prices. 

Moreover, the simulation experiments were conducted for various numbers of available 

suppliers and for various past portfolios according to simulated historical data. Figure 

10-14 shows some indicative examples of these simulation experiments. More specifically, 

it shows the Markowitz bullet and the efficient frontier when there are 200, 400, and 600 

past portfolios of suppliers based on historical data existing in the company’s information 

systems. Moreover, it shows the results when there are 4, 6 and 8 available suppliers. The 

corresponding portfolios of suppliers for these experiments are shown in Table 10-4. 
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Figure 10-14: The simulation experiments for various numbers of past portfolios and suppliers. 
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Table 10-4: The resulting portfolios of suppliers based on the experiments 

 Number of available suppliers 

4 6 8 

N
u

m
b

er
 o

f 
p

as
t 

p
o

rt
fo

lio
s 

2
0

0
 

 
 
Supplier A: 0.14 
Supplier B: 0.38 
Supplier C: 0.26 
Supplier D: 0.22 

 
Supplier A: 0.09 
Supplier B: 0.29 
Supplier C: 0.24 
Supplier D: 0.20 
Supplier E: 0.12 
Supplier F: 0.06 

Supplier A: 0.10 
Supplier B: 0.29 
Supplier C: 0.22 
Supplier D: 0.18 
Supplier E: 0.09 
Supplier F: 0.02 
Supplier G: 0.07 
Supplier H: 0.03    

4
0

0
 

 
 
Supplier A: 0.16 
Supplier B: 0.39 
Supplier C: 0.23 
Supplier D: 0.22 

 
Supplier A: 0.08 
Supplier B: 0.33 
Supplier C: 0.25 
Supplier D: 0.18 
Supplier E: 0.10 
Supplier F: 0.06 

Supplier A: 0.08 
Supplier B: 0.31 
Supplier C: 0.24 
Supplier D: 0.20 
Supplier E: 0.08 
Supplier F: 0.01 
Supplier G: 0.06 
Supplier H: 0.02 

6
0

0 

 
 
Supplier A: 0.17 
Supplier B: 0.41 
Supplier C: 0.21 
Supplier D: 0.21 

 
Supplier A: 0.07 
Supplier B: 0.36 
Supplier C: 0.28 
Supplier D: 0.15 
Supplier E: 0.09 
Supplier F: 0.05 

Supplier A: 0.07 
Supplier B: 0.32 
Supplier C: 0.25 
Supplier D: 0.21 
Supplier E: 0.07 
Supplier F: 0.01 
Supplier G: 0.05 
Supplier H: 0.02 

 

10.3.1.2 Comparative Analysis of Proactive Decision Making 

10.3.1.2.1 Proactive Decision Methods for Maintenance Actions 

In order to validate the effectiveness the Proactive MDP and the Proactive ELR decision 

methods, we conducted several executions and we compared the resulting expected losses 

of the Proactive MDP and the Proactive ELR decision methods with the results of two poli-

cies: a “no action” policy due to the lack of predictions and an “immediate action imple-

mentation” policy, when there are predictions but not automated decision making. We 

calculated the average cost and its standard deviation obtained over 100 executions. Each 

decision method was applied in the context of a different scenario according after interac-

tion with the users in the real industrial environment where we deployed our system. The 
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results are shown in Table 10-5. According to the results, our proposed approach for rec-

ommending and applying a proactive mitigating action leads always to a significantly lower 

loss compared to applying no mitigating action (and thus, applying corrective actions after 

the equipment breakdown) and to applying an immediate mitigating action (as soon as the 

user becomes aware of a prediction). 

Table 10-5: Average Loss Comparison for 2 scenarios 

Scenario No action Immediate 
action 

Proactive 
action  

1 
Proactive MDP 

155000 ±  350 
euros 

103540 ± 850 
euros 

96880 ± 70 
euros 

2 
Proactive Expected Loss 

750 ± 15 
euros 

630 ± 10 
euros 

535 ± 20 
euros 

 

10.3.1.2.2 Proactive joint maintenance and logistics decision models 

I conducted a comparative analysis for the proactive joint replacement and logistics de-

cision method in the context of the industrial scenario that was validated. We compare the 

expected losses of this method with those obtained in two scenarios: a reactive scenario of 

having no prediction (with corrective actions and emergency ordering of spare parts when 

the failure occurs) and another one where there is a prediction algorithm but not a deci-

sion making algorithm. In the first case, corrective maintenance actions last for 5 hours due 

to the lack of root causes knowledge, while emergency, unplanned ordering of spare parts 

requires a lead time of 3 hours and a fixed extra cost of 200 euros.  

In the second case, due to the failure prediction, either corrective actions are imple-

mented when the failure actually occurs, or immediate preventive actions are applied with 

a maintenance cost of 325 euros and an inventory cost of 420 euros (due to the lead time 

of 3 hours and the extra cost), that is a total cost of 945 euros. These values of cost derive 

from expert knowledge or historical data.  However, this deterministic estimation is not 

realistic due to the stochastic nature of degradation and therefore, the uncertainty at the 

decision making process. So, a more accurate estimation for this scenario could be ob-

tained if we used the equations of the proposed decision model for t=0, which results in a 

cost of 1323.8 euros (probabilistic estimation). These results are shown in Table 10-6. In 
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order to further validate our proposed approach, we conducted sensitivity analysis through 

simulations of prediction events for 5 different manufacturing scenarios. We calculated the 

average total cost and its standard deviation obtained over 100 executions for the “no 

prediction”, the “only prediction (probabilistic estimation)” and the “proposed approach” 

policies, as shown in Table 10-7. 

The results show that this method can significantly reduce downtime and costs related 

to maintenance and inventory of spare parts by enabling the transformation of the com-

pany from reactive to proactive. More specifically, the “as-is” situation of the company is 

that it conducts a time-based maintenance, while, if a failure occurs in the interval be-

tween two successive time-based maintenances, the appropriate corrective actions are 

applied, based on breakdown maintenance principles.  

Our approach eliminates the probability of an unexpected failure occurring and there-

fore, it contributes to costs minimization and to the change of company’s maintenance 

management strategy. The company can select either to adopt a Proactive Maintenance 

strategy (by abolishing the time-based maintenance) or to combine Proactive Maintenance 

and time-based maintenance principles, e.g. by enlarging the time intervals. 

 

Table 10-6: Results of comparisons. 

Approach Maintenance 

Loss (Euro) 

Inventory 

Loss (Euro) 

Total Loss 

(Euro) 

No prediction 425 620 1045 

Only prediction  

Deterministic estimation 325 620 945 

Probabilistic estimation 625.5 698.3 1323.8 

Proactive approach 348.8 616.6 965.4 

 

I also conducted a comparative analysis for the proactive joint maintenance and logistics 

decision method in the context of the industrial scenario that was validated. We compared 

the results of the proposed decision model for the aforementioned scenario with three 
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cases: (i) the case of not having a prediction and therefore, of applying corrective mainte-

nance and inventory-related actions (reactive approach), (ii) the case of having a preven-

tive policy with time-based maintenance and scheduled ordering, and (iii) the case of hav-

ing prediction but not proactive recommendations and therefore, of applying a preventive 

action immediately when the prediction is provided (myopic approach).  

 

Table 10-7: Results of extensive comparative analysis. 

 

Scenario 

Total Cost (Euro) 

No prediction Only prediction Proposed approach 

1 1,286 ± 95 1,494 ± 112 1,015 ± 92 

2 823 ± 46 796 ± 44 608 ± 39 

3 3,674 ± 115 3,293 ± 124 2,686 ± 122 

4 534 ± 32 512 ± 34 371 ± 28 

5 50,000 ± 365 48,950 ± 632 28,733 ± 347 

 

Table 10-8: Results of comparative analysis for the joint maintenance and logistics decision model.  

Approach Maintenance Action 

 
Logistics Action 

Total Expected 
Loss 

(maintenance and 
inventory) 

Reactive 
Onshore maintenance 

after oil rig moving 

Immediate emergent 
ordering of DDM  

1,492,000 Euro 

Preventive 
Onshore maintenance 

after oil rig moving 

Scheduled ordering 
of DDM 48 hours 

before maintenance 
action 

1,021,430 Euro 

Myopic 

Operate at reduced 
equipment load when 

spare part arrives 

Immediate ordering 
of swivel hook 

825,000 Euro 

Proactive 
Offshore maintenance in 

85.47 hours 
Ordering of gearbox 

in 42.36 hours 
356,850 Euro 

 

In the first case, corrective maintenance actions last more than planned ones due to the 

lack of root causes knowledge, while emergency, unplanned ordering of spare parts re-
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quires a higher lead time along with a cost penalty due to the unplanned distribution. In 

the second case, there is the cost for time-based maintenance along with the risk of an 

unexpected failure between time intervals. In the third case, due to the failure prediction, 

immediate orders of spare parts are applied and preventive maintenance actions are im-

plemented after the required lead time. However, there is the probability of a failure oc-

curring before the spare parts arrived. The cost values for the comparative analysis have 

been derived from expert knowledge in combination with historical data analysis. The re-

sults are shown in Table 10-8. 

Moreover, we conducted simulations of prediction events in the context of 5 real case 

studies, based on the configuration of 5 associated equipment instances by the users in the 

oil drilling company. For each scenario, we simulated 100 executions by sending prediction 

events. In all the scenarios, the expected loss of the proposed approach is significantly 

lower comparing to the reactive, preventive and the myopic approach leading to optimized 

business performance, as shown in Table 10-9. In the case of myopic policy, actions may be 

applied at some time according to domain knowledge, something which is not quantifiable 

and is constrained by the subjectivity of human decision making process. 

Table 10-9: Results of comparative analysis for several executions in five scenarios. 

 Total Expected Loss for each approach (Euro) 

Scenario Reactive Preventive Myopic Proactive 

1 1,491,360 ± 185,150 
1,019,344 ± 

143,229 

827,635  ± 

93,234 

346,355 ± 71,566 

2 874,362 ± 41,275 705,627 ± 39,631 596,122 ± 46,988 333,245 ± 37,461 

3 122,644 ± 12,476 104,497 ± 9,762 93,532 ± 11,855 50,769 ± 11,450 

4 30,550 ± 3,122 24,566 ± 3,099 22,550 ± 3,044 12,915 ± 2,988 

5 446,500 ± 23,110 411,433 ± 20,087 315,000 ± 19,750 191,235 ± 16,814 

 

10.3.1.2.3 Proactive Decision Method for Supplier Selection 

We compared our approach with two scenarios under several executions: a reactive 

scenario, having no prediction (with corrective actions and emergency spare parts ordering 
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when the failure occurs) and one where there is a prediction algorithm but not automated 

decision making. In the first case, corrective maintenance actions last more than predictive 

ones due to the lack of root causes knowledge, while emergency, unplanned ordering of 

spare parts requires a longer lead time and leads to a penalty cost due to unplanned distri-

bution. In the second case, due to the failure prediction, either corrective actions are im-

plemented when the failure actually occurs (with the previously referred costs and lead 

time), or immediate preventive actions are applied, according to a cost-benefit analysis. 

These results are shown in Table 10-10.  

Table 10-10: Results of comparative analysis. 

Approach Maintenance 

Loss  

Inventory 

Loss  

Supplies 

Loss  

Total Loss  

No prediction 1,466 ± 58 1,013 ± 27 1,195 ± 34 3,674 ± 119 

Only prediction 1,355 ± 112 905 ± 89 1,069 ± 121 3,329 ± 322 

Proposed Approach 823 ± 46 708 ± 38 802 ± 44 2,333 ± 128 

10.3.2 Continuous Improvement of Proactive Decision Making  

   We created a computational environment that simulates baseline and action-related cost 

data from a number of sensors related to cost factors. The computational environment 

generates and sends to PANDDA cost events derived from simulated sensors, which can 

have either uniform (i.e. measurement provided at regular intervals) or non-uniform (i.e 

measurement provided at irregular intervals) sampling. Associated costs are generated 

according to the normal (Gaussian) distribution based on a mean value and a standard de-

viation derived from the configured sensor noise, since typical industrial sensor noise is 

Gaussian (Abramovich et al., 2016). Each sensor is mapped to a specific cost factor as it has 

been defined during the DMI configuration. The simulation-based evaluation was required 

due to the long life-times of oil and gas industry’s equipment and the long maintenance 

intervals. 

10.3.2.1 Assessing the impact of user input inaccuracies 

In this Section, we present the results of SEF with respect to the action cost functions es-

timations. More specifically, based on the aforementioned industrial pilot case, we con-
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ducted simulation experiments in order to compare a “true” action cost function (i.e. the 

one guiding the simulation) with the (i) cost function initially configured by the user 

through the PANDDA GUI (“initial estimate”), (ii) cost function estimated by a partial SEF 

approach, i.e. by excluding noise filtering and (iii) cost function derived from our full SEF 

approach. For the “initial estimate”, the input of the users was used, while the simulated 

cost functions were derived from a generator that considers the probabilistic nature of 

noise on the basis of 100 enactments. The comparison among the methods was done in 

terms of curve fitting evaluation metrics (Vohnout, 2003). We used the coefficient of de-

termination R2 (i.e. the proportion of the variance in the dependent variable that is pre-

dictable from the independent variable) and the standard error of the estimate (measuring 

the accuracy of predictions). For each method, we calculated the mean and the standard 

deviation of each case. The results are presented in Table 10-11 and show that SEF lead to 

more accurate estimations of action cost functions. 

Table 10-11: Comparative Analysis of Action Cost Function Estimation 

 

Cost function 

 

R2 

 

Standard Error 

True 1 ± 0 0 ± 0 

Initial estimate  0.783 ± 0.081 1.872 ± 0.115 

Based on noisy data 0.911 ± 0.022 1.387 ± 0.108 

Based on SEF 0.996 ± 0.003 0.163 ± 0.021 

10.3.2.2 Assessing the impact of SEF on user input inaccuracies 

In this section, we show the impact of the SEF approach on the generated action-time 

pair recommendations and the corresponding expected loss. We do so, by comparing the 

aforementioned outputs of a DMI when considering the cost function derived by user es-

timations versus by SEF, without considering sensor noise. Table 10-12 shows the compar-

ative results for eight different cases, each one corresponding to the receipt of the predic-

tion event at different times compared to the end of decision epoch, i.e. the decision hori-

zon after which there is no reason of taking a decision about the specific DMI (e.g. next 

planned maintenance). The results show that SEF has a big impact on the generated proac-

tive recommendations, since user subjectivity is eliminated.  
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Table 10-12: Comparative Results before and after SEF for One DMI 

Parameter Results Before SEF Results After SEF 

Remaining 

Time 

(hours) 

Recom-

mended 

action 

Recom-

mended time 

(hours) 

Resulting Ex-

pected Loss 

(Euro) 

Recom-

mended 

action 

Recom-

mended 

time (hours) 

Resulting 

Expected 

Loss 

(Euro) 

170 a1 48.43 55,466.18 a1 48.43 55,466.18 

180 a1 52.36 57,648.39 a1 61.92 71,822.44 

190 a2 63.45 63,766.41 a2 69.27 81,979.28 

200 a2 78.47 70,653.91 a1 89.95 92.874.56 

210 a2 88.11 76,497.62 a1 103.86 94,837.29 

220 a2 104.79 85,447.32 a3 134.15 107,248.66 

230 a2 118.85 98,226.65 a3 169.21 123,217.98 

240 a3 154.88 114,378.54 a3 178.74 125,191.63 

 

In the current experiment, the user has underestimated the input action cost, something 

which las led to a significantly lower expected loss with respect to the one derived by ap-

plying the SEF approach and therefore, to wrong recommendations about the optimal ac-

tion and the optimal time of its implementation. The refined by SEF cost function, leads to 

a more reliable expected loss and therefore to a better recommendation. The benefit of 

our approach with respect to inaccuracies in user’s cost function estimations is multiplied 

taking into account that modern industries own a large amount of complex equipment, 

each part of which corresponds to a different DMI. By applying our approach, each one is 

maintained according to the associated proactive recommendations instead of by conduct-

ing time-based full equipment maintenance. To demonstrate the multiplication effect, we 

followed the same procedure with extensive number of prediction events for 10 DMIs cor-

responding to the most crucial parts of the oil rig’s equipment. The results are presented in 

an aggregated form in Table 10-13. The results show that the industry underestimates the 

expected maintenance losses, something which causes obstacles to an efficient overall op-

erational planning and business performance. In other words, without SEF, resources that 

have been allocated in other operations will need to be used to maintenance operations in 
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order to cover the difference between the user’s expectation and the actual losses. SEF 

leads to more accurate cost estimations and thus, to more reliable recommendations ena-

bling business performance planning and optimization. 

Table 10-13: Aggregated Results of SEF Impact for Ten DMIs 

DMI 

% changes in 

recommended 

action 

% changes in 

recommended 

time 

% changes in 

expected loss 

Average difference 

in expected loss 

(Euro) 

1 55.67 % 63.33 % 63.33 % 1,235.44 

2 71.16 % 86.75 % 83.37 % 5,689.85 

3 43.15 % 45.73 % 40.45 % 692.57 

4 64.33 % 82.78 % 80.92 % 4,327.68 

5 77.49 % 81.66 % 81.66 % 8,478.14 

6 69.33 % 85.18 % 89.91 % 11,265.49 

7 61.11 % 65.33% 65.33 % 852.86 

8 36.55 % 41.93 % 46.27 % 502.89 

9 80.22 % 92.61 % 92.61 % 22,105.76 

10 67.93 % 70.08 % 72.12 % 2,937.16 

10.3.2.3 Assessing the impact of SEF on sensor inaccuracies 

We have conducted extensive simulations in order to examine the output of SEF for vari-

ous sensor noise levels, to compare these results among them and to those derived based 

on user estimated cost function and to discuss their difference with the ‘true’ action cost 

function. In addition, we compare the MSE of the derived points of the cost function with 

and without noise removal. Moreover, we examine the impact of the different action cost 

functions to the proactive recommendations. Figure 10-15 shows the improvement of MSE 

when using noise filtering for different cost functions and levels of sensor noise. 

In each diagram, the X axis represents the Cost Noise, i.e. the part of cost attributed to 

the sensor noise. The Cost Noise is directly derived from sensor noise and, at the same 

time, indicates the sensitivity of proactive decision making with respect to its input cost 

parameters. The range of Cost Noise has been derived from the sensor accuracy in terms 
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of FSO. The Y axis shows the MSEs of both the noisy cost function and the cost function 

calculated by our approach, compared to the true one. For each cost function, we also 

show the value of the ratio derived from the MSE of corrected data to the MSE of noisy 

data, i.e. the Corrected-to-Noisy Data Ratio (CNDR) for indicative Cost Noise levels. For ex-

ample, a CNDR of 0.3922 means that the MSE of corrected data is equal to the 39.22% of 

the MSE of noisy data.  

 

Figure 10-15: Results of simulation experiments showing the impact of noise in SEF. 

According to the experimental results shown in Figure 10-15, MSE of the noisy cost func-

tion, i.e. of that derived on the basis of noisy measurements is significantly higher than the 

one of the cost function calculated by our approach, for various cost functions and levels of 

sensor noise. We show six indicative cost functions in order to investigate the impact of 
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sensor noise to different cost functions. Although the MSEs of the cost functions calculated 

by our approach increases with the sensor noise, that increase is significantly smaller in 

relative terms than the one observed to the MSE of the noisy cost functions. In addition, 

higher Cost Noise levels lead to a lower CNDR, since the MSE of corrected data becomes 

significantly lower than the MSE of noisy data and thus, the added value of our approach 

increases. 

A large noise level causes less accurate action cost function estimation and therefore, a 

less reliable recommendation provided by the proactive decision algorithm. In each point 

of Figure 10-15, for both the noisy and the corrected data, an action-time pair was recom-

mended based on the particular cost function used in the proactive decision method. Table 

10-14 shows the percentages of the cases where the recommended action-time pairs 

changed when the noise was filtered from the data points shown in Figure 10-15. Especial-

ly sensitive to sensor noise are the recommended times leading to deviations of several 

hours regarding the optimal implementation time. Moreover, Table 10-14 shows the aver-

age CNDR for each cost function. The results of the right column show that higher cost val-

ues lead to more noisy data (since the MSE of the noisy data is significantly higher) and 

therefore, the added value of noise filtering increases. 

Table 10-14: Comparative Results between Noisy and Corrected Data  

a2 cost function 
(Euro) 

% changes in rec-
ommended action 

% changes in rec-
ommended time 

Average CNDR 

20 * ( T – t ) 12.37% 100% 0.2676 

100 * ( T – t ) 19.18% 100% 0.2312 

300 * ( T – t ) 42.91% 100% 0.2060 

500 * ( T – t ) 64.45% 100% 0.1881 

550 * ( T – t ) + 1500 69.27% 100% 0.1787 

1000 * ( T – t ) + 3000 78.49% 100% 0.1173 

 

10.3.2.4 Evaluation of Proactive Maintenance decisions after SEF 

Although proactive decision methods for maintenance lead to less expected losses, they 

are subjected to high uncertainty due to their dependence on the stochastic degradation 

process (Van Horenbeek et al., 2013). SEF improves the generated recommendations and 

provides more reliable results through more accurate cost estimations. Therefore, in this 
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section, we conduct a comparative analysis with the aim to evaluate the results of these 

decision methods when they incorporate the proposed SEF mechanism. More specifically, 

we compare the expected losses of a proactive policy after their improvement from SEF 

with the results of Breakdown Maintenance (BM), Time-Based Maintenance (TBM), CBM 

with a myopic policy (decision making based on expert knowledge) and with a proactive 

policy without SEF. We calculated the average expected loss and its standard deviation 

obtained over 100 executions for 4 scenarios each one of which corresponds to a different 

part of equipment and decision method. The results are presented in Table 10-15. Based 

on them, the costs of the Scenarios 1 and 2 have been underestimated, while those of the 

Scenarios 3 and 4 have been overestimated.  

Table 10-15: Comparative Analysis of Maintenance Expected Losses  

Maintenance 

Strategy 

Scenario 1 

(Euro) 

Scenario 2 

(Euro) 

Scenario 3 

(Euro) 

Scenario 4 

(Euro) 

BM 155,000 ±  967 1,000,000 ± 7,345 13,955 ± 209 28,565 ± 209 

TBM 128,731 ±  565 829,274 ± 7,345 12,142 ± 181 22,882 ± 190 

Myopic policy 112,540 ± 850 738,936 ± 7,114 10,127 ± 272 19,931 ± 182 

Proactive policy 69,179 ± 341 494,638 ± 5,697 8,938 ± 610 16,798 ± 326 

Proactive policy 

with SEF 

78,213 ± 293 522,214 ± 4,815 8,059 ± 591 15,989 ± 202 

10.3.3 Context-Awareness in Proactive Decision Making and Action Implementa-

tion 

For the current experiments, the context-aware model was applied on the basis of the 

joint maintenance and logistics decision model. We compared the results of our approach 

for the oil and gas industry scenario with three cases: (i) the case of not having a prediction 

and therefore, of applying corrective maintenance and inventory-related actions (reactive 

approach), (ii) the case of having prediction but not proactive recommendations and there-

fore, of applying a preventive action immediately when the prediction is provided (myopic 

approach), (iii) the case of having the proactive joint maintenance and logistics decision 

model without the context-awareness mechanism (proactive approach) and (iv) the case of 
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having the full proposed methodology (context-aware proactive approach). In the first 

case, corrective maintenance actions last more than planned ones due to the lack of root 

causes knowledge, while emergency, unplanned ordering of spare parts requires a higher 

lead time along with a cost penalty due to the unplanned distribution. In the second case, 

due to the failure prediction, immediate orders of spare parts are applied and preventive 

maintenance actions are implemented after the required lead time. However, there is the 

probability of a failure occurring before the spare parts arrived. The comparison with the 

third case supports the argument that context-awareness can enable business perfor-

mance optimization. The cost values for the comparative analysis have been derived from 

expert knowledge in combination with historical data analysis. The results are shown in 

Table 10-16. 

Table 10-16: Results of comparative analysis for the aforementioned scenario 

Approach 
Maintenance 

Action 

 
Logistics Action 

Total Expected Loss 
(maintenance, 

inventory and supplies 
cost) 

Reactive 
Onshore 

maintenance after 
oil rig moving 

Immediate 
ordering of DDM  

1,492,000 Euro 

Myopic 
Gearbox 

replacement when 
spare part arrives 

Immediate 
ordering of 

gearbox 

825,000 Euro 

Proactive 
Operate at reduced 
equipment load in 

95.22 hours 

Ordering of swivel 
hook in 84.23 

hours 

482,355 Euro 

Context-aware 
proactive  

Offshore 
maintenance in 

85.47 hours 

Ordering of 
gearbox or gears 

in 42.36 hours 

376,850 Euro 

 

Moreover, we conducted simulations of prediction events in the context of 5 real 

case studies, based on the configuration of 5 associated equipment instances by the users 

in the oil drilling company. For each scenario, we simulated 100 executions by sending 

prediction events. In all the scenarios, the expected loss of the proposed approach is signif-

icantly lower, as shown in Table 10-17.  
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Table 10-17: Results of comparative analysis for several executions in five scenarios 

 Total Expected Loss for each approach (Euro) 

Scenario Reactive 
 

Myopic 
 

Proactive 
Context-aware 

proactive  

1 
1,491,360 ± 

185,150 

827,635  ± 93,234 482,355 ± 
71,566 

376,810 ± 
53,392 

2 874,362 ± 41,275 596,122 ± 46,988 333,245 ± 
37,461 

281,245 ± 
31,711 3 122,644 ± 12,476 93,532 ± 11,855 50,769 ± 11,450 42,712 ± 8,120 

4 30,550 ± 3,122 22,550 ± 3,044 12,915 ± 2,988 9,675 ± 2,336 

5 446,500 ± 23,110 315,000 ± 19,750 191,235 ± 
16,814 

122,651 ± 
15,912  

Table 10-18: Results of sensitivity analysis with respect to the context-aware model after reasoning 

Parameter User-defined Costs  Context-aware Costs 

Predicted 

time-to-

failure 

(hours) 

Recom-

mended 

actions 

Recommend-

ed times 

(hours) 

Total Ex-

pected 

Loss  

(Euro) 

Recom-

mended 

actions 

Recom-

mended 

times (hours) 

Total Ex-

pected Loss 

(Euro) 

10 a1, o1 0.00, 2.03 502,493 a1, o1 0.00, 4.01 491,249 

20 a1, o1 15.12, 36.87 486,278 a2, o2 15.12, 39.66 379,116 

50 a2, o2 39.82, 77.92 414,351 a2, o2 47.12, 91.23 322,735 

100 a3, o3 87.87, 104.32 305,742 a2, o2 66.34, 89.91 224,927 

150 a4, o4 118,11, 

135.22 

261,318 a3, o3 107.83, 

128.45 

181,429 

200 a4, o4 189.34, 

240.00 

245,633 a4, o4 198.88, 

240.00 

169,658 

240 a4, o4 193.21, 

240.00 

244,773 a4, o4 199.31, 

240.00 

167,945 

 

Moreover, the results show that even when a prediction exists, the myopic approach 

does not always result in lower expected losses comparing to the reactive one. So, in this 

case, actions may be applied at some time according to domain knowledge, something 

which is not quantifiable and is subjected in the subjectivity of human decision making 

process. On the other hand, a proactive approach results always in lower expected losses 
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comparing to the reactive and the myopic approach, while the implementation of the pro-

posed approach can lead in an even more optimized business performance in terms of 

maintenance and spare parts inventory. 

In order to conduct sensitivity analysis of the context-aware model, we simulated sev-

eral prediction events and we compared the resulting recommendations and their associ-

ated expected losses between the case of not considering context-awareness (user- de-

fined costs) and the case of considering context-awareness (context-aware costs). The re-

sults are shown in Table 10-18.  

10.4 Discussion of Evaluation Results 

Proactive Maintenance was proved to lead to optimized expected losses in mainte-

nance operations and thus, to an improvement of an overall business performance. The 

large amounts of real-time data generated by sensors are exploited with the use of event-

driven information systems. These information systems incorporate complex algorithms 

and technologies with the aim to combine these real-time data with historical records and 

expert knowledge in order to provide menaninful insights about potential problems in a 

proactive manner. In this way, manufacturing enterprises are able to take advantage of the 

full potential of big data in an IoT-based industrial environment. Moreover, Proactive 

Maintenance contributes to the Industry 4.0 concept and RAMI 4.0 with respect to 

maintenance operations. The holistic view of Proactive Maintenance requires the integra-

tion of scalable and efficient event-driven information systems incorporating detection/ 

giagnostic, prediction and proactive decision making algorithms in the Real-time Processing 

layer as well as legacy data analytics and FMECA in the Batch Processing layer. Since the 

least explored area in this information pipeline is “Proactive Decision Making”, the current 

thesis focused on developing approaches, methods, algorithms and an associated infor-

mation system to enable data analytics maturity going a step further. 

Proactive decision making leads always to a significantly lower loss compared to reac-

tive (breakdown maintenance: corrective actions after a failure occurs) and preventive pol-

icies (time-based maintenance: a certain set of actions are apllied in specific time intervals) 

as well as to myopic policies (according to which a real-time prediction is available, but the 
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type and the time of actions are decided by the expert according to their domain 

knowledge). The latter often includes immediate implementation of actions as soon as the 

user becomes aware of the prediction. In addition, the proactive recommendations can 

significantly change according to the prediction events. The earlier a failure is predicted 

and the proactive decision model is triggered, the less the expected loss is, while the deci-

sion maker has more time at their disposal to be prepared and align other manufacturing 

operations. The evaluation results show that proactive decision making in the context of 

Proactive Maintenance leads to lower losses by 29% to 77% with respect to breakdown 

maintenance policy, by 22% to 65% with respect to time-based maintenance policy and by 

7% to 61% with respect to myopic policy. The reason why the range of the latter compari-

son is so wide is that expert knowledge and estimates vary in each case and is totally sub-

jective. These amounts become even more important for high-revenue, capital-intensive 

industries. 

Although proactive decision methods for maintenance lead to less expected losses, 

they are subjected to high uncertainty due to their dependence on the stochastic degrada-

tion process. Moreover, proactive decision making is highly sensitive with respect to its 

input parameters and especially to those related to cost. In this sense, input parameters 

related to cost are crucial for the reliability of proactive recommendations. The SEF mech-

anism enables the continuous improvement of proactive decision making by providing 

more accurate estimations of proactive decision methods’ input parameters and thus, to 

more reliable recommendations. To do this, it eliminates the inaccuracies derived from the 

user, from the sensors (due to sensor noise) and from the legacy data systems (due to low 

data quality). The evaluation results show that the Standard Error of SEF is 91% lower than 

the expert initial estimate and 88% lower than the incorporation of sensor-driven ap-

proaches without noise filtering techniques. Moreover, the proposed SEF mechanism re-

sults in more reliable proactive recommendations in terms of both the recommended ac-

tion and the recommended time, something which leads to a more accurate estimate of 

the maintenance expected losses by 9% to 88%, depending on the noise level and the cost 

function that is used as input parameter to the proactive decision method. This fact is also 

important for the reliability of the comparison of Proactive Maintenance with the other 

maintenance strategies. 
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Context-awareness in proactive decision making results in lower expected losses due 

to the higher accuracy in proactive decision methods’ input parameters leading to an even 

more optimized business performance. However, context-awareness increases the sensi-

tivity of proactive decision making. To this end, the SEF mechanism acquires even higher 

importance, since not only it leads to more reliable context-aware proactive recommenda-

tions, but also it support continuous learning of the context-aware model. In this way, the 

context-aware model is able to handle uncertainty, while it eliminates the impact of inac-

curacies to the reliability of proactive recommendations due to high sensitivity of proactive 

decision making. The evaluation results show that the proposed approach for context-

awareness in proactive decision making leads to differences in expected losses with re-

spect to proactive decision making without context by 12% to 37%, while the context-

aware proactive approach still leads to much lower losses comparing to breakdown 

maintenance policy, time-based maintenance policy and myopic policy. Moreover, context-

aware proactive decision making is sensitive to the time window between the time that a 

prediction is received and the time of the predicted future failure. 
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11 Lessons Learned and Managerial                 

Implications 

The adoption of the Proactive Maintenance strategy and the deployment of the Proac-

tive Maintenance system allows manufacturing companies to gain a strong competitive 

advantage based on reduced downtimes and optimized performance. The intense em-

ployment of IoT technology and cyber-physical systems across the industrial value chain 

leads to huge amounts of heterogeneous data comprising, for example, product model 

data from engineering, machine sensor data from manufacturing as well as telemetry data 

from product usage (Kemper et al., 2013). Extracting business insights and knowledge from 

these data is one of the major challenges in Industry 4.0 (Golzer et al., 2015; Groger et al., 

2016; Groger, 2018). Apart from the IT technical aspects, managerial and organizational 

aspects have also to be taken into account for a successful implementation.  Since sensor-

driven information systems for maintenance operations in the context of Industry 4.0 have 

just started to emerge, managerial implications of their adoption are not widely investigat-

ed yet due to the lack or complexity of practical applications. 

There is a large debate about whether Industry 4.0 is a revolution or an evolution with 

contradictory arguments: “The light bulb wasn’t invented by continuously improving the 

candle. It was about understanding what the job was and looking for solutions” and “Tech-

nological innovation is continuous and the concept of a "revolution" in technology innova-

tion is based on a lack of knowledge of the details”. It is actually a clash of two worlds with 

two different cultures, as shown in Figure 11-1: the “world of business and manufacturing” 

with a long-term way of thinking meets the “world of IT and data analytics” with a contin-

uous way of thinking. Therefore there is the need for building bridges between these two 

worlds. To this end, during the very last years, there is some consensus in the sense that 

Industry 4.0 is considered to be a revolution on a business level and an evolution on a 

technological level. 

In order to reap the rewards of Proactive Maintenance in both the short and the long 

term, companies will have to create an organisational support structure aligned to the 
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technological solution implemented. Successful implementation can take place and be sus-

tained within organisations that are capable of change, fostering a digital culture and de-

veloping and attracting the right capabilities. In PwC’s Global Industry 4.0 Survey 2016, re-

spondents said their biggest implementation challenge isn’t the right technology, but a lack 

of digital culture and digital skills in their organisations (PwC, 2016b). Therefore, apart from 

the right technologies, several people-related factors should be taken into account of pre-

dictive maintenance implementation. The most important ones are:  a maintenance im-

plementation strategy, a digital culture, employee enablement, data analytics capabilities 

and the organizational structure. 

 

Figure 11-1: Approach for developing a strategic digital culture. 

Defining a maintenance implementation strategy 

The good functioning of Proactive Maintenance requires the use of data that have to 

be retrieved in real-time. Therefore, if one or more machines of a production system are 

unable to provide the required information, because they are technologically obsolete (i.e. 

the production environment is characterized by "smart" and "non-smart" machines), Pro-

active Maintenance can be implemented involving “smart” machines and can be further 
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extended as soon as new technologically innovated equipment are introduced. This is a 

matter of corporate strategy since it deals, on the one hand, with the time and amount of 

investment for new equipment and, on the other hand, with the adoption of step-by-step 

logic according to several criteria (e.g. the most critical machines, etc.). For the deployment 

of modern complex solutions, manufacturing companies may need to stop the production 

processes and to fully book capacity on machines. This fact was a great challenge and such 

aspects are some of the key reasons why large enterprises are slowly adopting new tech-

nologies. 

Similar aspects should be taken into account for the external environment of the manu-

facturing companies (e.g. suppliers, customers, etc.). To realize the aforementioned strate-

gic goals, a clearly new orientation to change by the organization is needed. Far-reaching 

change is not always comfortable for the people who make it happen, so change manage-

ment will also be critical. Thus, a strategic digital culture is of outmost importance. There 

are different kinds of corporate governments, which can lead subsidiary companies from 

headquarter (centrally) or leave the subsidiary company to be guided by the local man-

agement. Modern manufacturing companies are becoming more and more centrally guid-

ed. This fact provides capabilities but also may pose limitations with respect to the adop-

tion of new technologies (e.g. for approving the investment of new sensing equipment). 

Building a digital culture 

Proactive Maintenance cannot be implemented in complete isolation within the 

maintenance organisation. It should be embedded into an overall digital manufacturing 

strategy that is owned and fully supported by top management. This is important not only 

because the implementation of Proactive Maintenance requires significant resources and 

capital investments, but also because it needs clear vision and a change management ap-

proach from company leaders who understand the power of new digital technologies. In-

volvement from the boardroom is also needed because the implementation of Proactive 

Maintenance can have wide-ranging effects within the organisation. It requires cross-

functional expert teams with reliability engineers, operators, process technologists, data 

scientists and IT specialists who together develop new ways of working and communi-
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cating. Moreover, Proactive Maintenance is likely to shape new relationships with suppliers 

and customers with whom data could be exchanged.  

These aspects of Proactive Maintenance implementation require a robust a digital cul-

ture. This means a culture that stimulates experimentation with new technologies and new 

ways of working; a culture that stimulates cross-functional cooperation and a culture that 

is comfortable with data-driven decision-making, even if this goes against human experi-

ences. Such a digital-minded environment can only be cultivated with committed leader-

ship from the top. 

Cultivating employee engagement 

A major managerial implication has been identified to be employee engagement, i.e. 

how to empower business domain specialists to get involved with advanced analytics. In 

the course of several advanced analytics projects, there is a clash of cultures between dif-

ferent groups of employees (Groger, 2018). These projects are typically organized accord-

ing to the cross-industry standard process for data mining (CRISP-DM) (Han et al., 2012) 

and require interdisciplinary teams comprising, in particular, business domain specialists 

and computer scientists. An important goal of designing a Proactive Maintenance govern-

ance structure is to create an environment in which IT professionals (e.g. data scientists) 

and business domain experts (e.g. reliability engineers) can interact and complement each 

other.  

A reliability engineer’s insights in how and why assets fail should be paired with, chal-

lenged by and harmonised with the insights a data scientist extracts from the data, and 

vice versa. This type of cross-functional interaction is key to successfully applying data ana-

lytics in maintenance and asset management. Business domain specialists, e.g. manufac-

turing engineers, have comprehensive knowledge about their business domain, its pro-

cesses and data sources. For instance, they may have detailed know-how on certain ma-

chines and manufacturing processes as well as initial ideas for promising data analytics use 

cases. Yet, they typically have only basic knowledge on data analytics tools and techniques 

especially regarding advanced analytics. Computer scientists, e.g. data scientists, have a 

profound know-how on advanced analytics. They typically have a thorough algorithm and 
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tool expertise for the implementation of advanced analytics use cases, but only basic busi-

ness domain knowledge. 

These structural differences between business domain specialists and computer scien-

tists frequently cause inefficiency and ineffectiveness in advanced analytics projects and 

increase the complexity of collaboration, e.g. having a different educational background, 

using different terminology (Groger, 2018). Moreover, missing advanced analytics 

knowledge of business domain specialists prevents data-driven decision making and slows 

down the development of a data-driven company culture (McAfee and Brynjolfsson, 2012, 

Groger, 2018). 

Building data analytics capabilities 

Success with Proactive Maintenance will depend on skills and knowledge. In the afore-

mentioned 2016 Industry 4.0 report (PwC, 2016b), lack of data analytics skills or compe-

tencies in the company’s workforce is the biggest challenge. Only 27% of survey’s respond-

ents currently employ reliability engineers in predictive maintenance, and even fewer (8%) 

employ data scientists. Consequently, companies’ biggest obstacle is their ability to recruit 

the people needed to put Proactive Maintenance in place. Companies generally under-

stand that it is critical to have in-house data analytics capabilities in order to successfully 

drive Industry 4.0 applications. Building these capabilities requires not only talented staff 

but also a holistic and consistent organisation and governance (Groger, 2018). 

The system development process revealed a new understanding of the challenge in co-

operating across business domains. Adopting key competency within both production pro-

cess and computer science is critical to succeed in big data analytics. The involved costs 

need to be considered and approved. Hence, the need of organizational development in 

the field of business analytics is provided as input to the company’s business development 

strategy. A good first step for companies considering how to best arrange their data analyt-

ics could be cross-functional expert teams. Companies may need to introduce new roles 

like that of data scientist, update existing job profiles to take into account new digital skills, 

or establish a digital council that oversees the development and further deployment of 

analytics capabilities throughout the organisation (PwC, 2016b).  
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Changing the organizational structure 

The adoption of the Proactive Maintenance concept and technology requires new skills 

and competences. People needed for Proactive Maintenance will not want to stay if the 

company culture does not suit their talents. Hence, the challenge is to empower business 

domain specialists to get involved with advanced analytics. To tackle this challenge, a new 

role in the company’s organizational structure, the citizen data scientist, is necessary. Citi-

zen data scientists combine business domain knowledge with advanced analytics and com-

puter skills in order to bridge the gap between the world of business and the world of data 

science (Burton, and Walker, 2015; Morgan, 2015; Davenport, and Harris, 2017; Thomp-

son, and Rogers, 2017; Groger, 2018).  

To do this, both technical and organizational aspects should be considered. Technical 

aspects refer to appropriate tools for citizen data scientists making advanced analytics 

techniques.Organizational aspects refer to concepts and methodologies to systematically 

identify and qualify business domain specialists as citizen data scientists as well as to de-

fine their organizational integration. Qualification of citizen data scientists particularly re-

quires the development of interdisciplinary educational plans combining knowledge on 

databases, data engineering and statistics with knowledge on advanced analytics algo-

rithms and suitable tools. Organizational integration comprises the definition of collabora-

tion models between expert data scientists and citizen data scientists especially in large 

global enterprises. 

However, the citizen data scientist role goes beyond just training the business domain 

expert with data analytics skills. There is the need for a multidisciplinary educational back-

ground, combining manufacturing engineering, industrial management and computer sci-

ence.  Strong project management skills are also needed to get Proactive Maintenance “up 

and running” (PwC, 2017). The citizen data scientist should also have leadership and hu-

man resources management skills in order to lead the aforementioned cross-functional 

teams. In this sense, they should be able to cope with the clash of the two worlds by incor-

porating the strategic digital culture during the evolution and control of a Proactive 

Maintenance project. In other words, the citizen data scientist is the link between the top-
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down strategic decisions and the bottom-up operational data, information, knowledge and 

experience. 
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12 Conclusions and Future Work 

In this Chapter, the conclusions and the contribution of the thesis are summarized. 

Moreover, the limitations and the potential extensions of the research are highlighted. Fi-

nally, directions for future work are outlined. 

12.1 Conclusions 

In the current thesis, a new maintenance strategy along with appropriate approaches, 

methods, models, algorithms and systems were presented in order to answer the research 

questions posed in Section 3. This maintenance strategy, i.e. Proactive Maintenance, is 

able to be implemented in the frame of Industry 4.0, in a sensor-driven big data-rich indus-

trial environment.  The current thesis also proposes new approaches, methods and models 

for tackling the challenges arisen in an IoT-based industrial environment along with novel 

technological solutions. 

The current thesis was realized based on the research methodology presented in Sec-

tion 1. From the literature review of the background concepts: Industry 4.0, Maintenance 

Management and Proactive Enterprise, the research area and focus was identified. Moreo-

ver, the literature review formed the basis for the development of a framework for Proac-

tive Maintenance. A more focused state-of-the-art analysis for each phase of the afore-

mentioned framework revealed the existing research gaps. Specifically, the Decide phase 

of the framework for Proactive Maintenance is still unexplored research field.  To this end, 

the rest three research questions have to do with this phase and specifically, with proac-

tive decision making, continuous improvement of proactive decision making and context-

awareness in proactive decision making. In addition, in the context of the current thesis, an 

information system incorporating the aforementioned functionalities was implemented, 

deployed in a real industrial environment and evaluated. 

The contribution of the thesis is located to two dimensions: First, it presents a frame-

work for Proactive Maintenance in order to enable the implementation of a new mainte-
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nance strategy in a sensor-driven industrial environment. In this way, the thesis answers 

the first research question. Second, on the basis of the aforementioned framework, the 

Decide phase is addressed. More specifically, the thesis presented an approach for proac-

tive decision making as well as appropriate proactive event-driven decision methods and 

models for maintenance and maintenance-driven manufacturing operations in Industry 

4.0, which overcome issues of efficiency and scalability of previous approaches. To this 

end, it proposed two proactive event-driven decision methods for recommendations of 

maintenance actions, two for recommendations of joint maintenance and logistics actions 

and one for the recommendation of selection of maintenance spare parts’ suppliers. In this 

way, the second research question was answered.   

Then, the thesis presented the SEF approach which constitutes an adaptation mecha-

nism in the sense that it gathers sensor and legacy data before and during actions imple-

mentation and processes them in order continuously to improve the generated proactive 

recommendations. The SEF approach answers the third research question of the thesis.  

Finally, the thesis presented a context-awareness mechanism based on a machine 

learning approach capable of being applied in proactive decision making algorithms, since 

it can handle uncertainty. The context-awareness mechanism learns from the sensor-

generated data during actions implementation and is reasoned through the SEF mecha-

nism. In this way, the fourth research question of the current thesis is answered.  

All the aforementioned approaches, methods and algorithms were embedded in an 

event-driven computational environment in order to ensure efficiency and scalability in a 

sensor-driven real-time industrial environment according to the Industry 4.0 principles. 

They take into account the proactive event processing principles and challenges and the 

most recent advancements in maintenance management as well as the challenges arisen 

from the increasing use of sensor and communication technologies. 

12.2 Limitations and Potential Extensions 

Dealing with the research questions posed in the current thesis required the use of a 

set of assumptions that led to respective limitations. These limitations allowed the re-
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search focus on specific methods or techniques as well as on the information system im-

plementation. Potential extensions have to do with these limitations. 

The current thesis focused on the Decide phase of the framework for Proactive 

Maintenance. In this sense, the other phases were not examined in terms of the develop-

ment of new methods, algorithms and information systems. Since they are well-studied 

areas, existing methods, algorithms and systems were used for the evaluation of the 

framework for Proactive Maintenance. In this direction, potential extensions could deal 

with new algorithms addressing the rest of the phases, capable of being embedded in a 

real-time, event-driven computational environment and integrated with the proposed sys-

tem for the Decide phase. Accuracy and reliability of such algorithms will be criteria of 

outmost importance in this direction.  

The current thesis focused on proactive event-driven decision methods dealing with 

maintenance operations as well as with spare parts ordering and supplier selection driven 

by maintenance. More manufacturing operations depending on maintenance can be inves-

tigated. On this basis one holistic and configurable proactive decision model for mainte-

nance-driven operational decision making could be developed.  Finally, in this thesis, the 

gathering of legacy data from manufacturing companies for deriving the parameter values 

of the decision methods are not examined. 

Moreover, the current thesis focused on continuous improvement of proactive decision 

making. This is addressed through an adaptation mechanism, the SEF mechanism. The SEF 

does not consider the challenges existing when integrating a new solution to the manufac-

turing company’s sensors and legacy data systems. Moreover, additional methods and al-

gorithms could be used in order to provide estimation of the proactive decision methods’ 

input parameters. Continuous improvement of proactive decision making can further be 

investigated based on more business, system and technical requirements for the adoption 

of a proactive event-driven information system in manufacturing enterprises. The algo-

rithms to be used also depend on the availability of sensors and their relationships with the 

proactive decision methods’ input parameters. To this end, sensor fusion approaches may 

be required.  
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Finally, the context-awareness mechanism is incorporated to the Decide phase for ena-

bling context-aware proactive recommendations and is reasoned through the SEF. A gener-

ic context-aware model being able to feed into in all the phases of the proactivity principle 

in order to overcome the challenges due to the difference of such models for the different 

phases would be one further direction. Finally, further evaluation in real industrial cases 

would be highly beneficial. Since the manufacturing domain requires long validation peri-

ods of new projects, further improvements will potentially be done from the new experi-

ence gained. 

12.3 Future Work 

In this Section, directions for further research based upon the current thesis are pro-

posed. Future work could focus on the following directions: 

 Maintenance decision making in the frame of Industry 4.0 can significantly benefit 

from proactive event-driven computing. Therefore, more proactive event-driven 

decision methods can be developed in order to tackle with decision making in vari-

ous manufacturing operations. A more in-depth research on prescriptive analytics, 

which is considered to be the next business analytics frontier, will significantly con-

tribute to this direction. 

 In the current thesis, the proactive decision methods embedded in the information 

system require the configuration of their parameters by the user (e.g. business ana-

lyst). A valuable future direction will be gathering all the data and information nec-

essary from various data sources (e.g. sensor, legacy data systems, etc.) so that the 

decision models are configured automatically. The use of rules representing the 

business logic could solve these issues. 

 Continuous improvement of proactive decision making can further be investigated 

based on more business, system and technical requirements for the adoption of a 

proactive event-driven information system in manufacturing enterprises. To this 

end, feedback from FMECA analysis as well as legacy data analysis on a batch mode 

will be researched in order to take into account the most update information. 
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 A generic context-aware model being able to feed into in all the phases of the pro-

activity principle would be an interesting further direction. Moreover, additional 

approaches and algorithms can be researched for handling context-awareness un-

der uncertainty. 

 Finally, a generic mechanism for considering the context affecting the decisions in 

the form of rules and constraints will be useful. This mechanism could create con-

straints in the objective functions under optimization (e.g. maintenance expected 

loss functions) in order to take into account the company’s policies, regulations, 

demand, etc.). 
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Appendix A: Questionnaire for Evaluation of 

PANDDA 

Usefulness 

Question ID Question 

PPUs1  I find it useful to get condition-based maintenance action recommendations 

PPUs2  I find it useful to use PANDDA to monitor the actual cost of maintenance-related 

action implementation on the basis of sensor-enabled feedback 

PPUs3  I find it useful to use PANDDA to update my initial estimation of maintenance-

related action cost function on the basis of sensor-enabled feedback 

PP9  I think that PANDDA is capable of improving my overall working experience 

PP4  Do you have any comments or suggestions 

Usability 

Question ID Question 

PP1  My level of expertise related to maintenance decision support applications is 

high 

PP2  I find it useful to use a graphical user interface to configure decision methods 

PP3  The meaning of decision method instance in the PANDDA system is understand-

able to me 

PP4  Do you have any comments or suggestions? 

PP5  I can easily understand how to create a decision method instance 

PP6  I can easily locate information about decision method instances (e.g. actions, 

costs) 

PP7  I find the time needed to create a decision method instance reasonable 

PP8  The PANDDA system provides me with an easy-to-use interface for creating deci-

sion method instances 

PP9  I think that PANDDA is capable of improving my overall working experience 

PP10  The PANDDA GUI behaves as the users expect 

PP11  The use of the PANDDA GUI is easy and intuitive 
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PP12  I can easily understand the messages displayed by the system (e.g. error mes-

sages) 

PP13  Navigation in the system’s functions is simple and easy 

PP14  The appearance of the system (design, aesthetics, colours) is attractive to the 

user 

PP15  The response time of the system is acceptable 

PP16  The system requires a lot of memory 
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