

Please quote as: Blohm, I.; Bretschneider, U.; Huber, J. M.; Leimeister, J. M. &
Krcmar, H. (2009): Collaborative Filtering in Ideenwettbewerben - Evaluation zweier
Skalen zur Teilnehmer-Bewertung in Ideenwettbewerben. In: GeNeMe 2009 -
Gemeinschaften in neuen Medien: Virtual Enterprises, Communities & Social
Networks. Hrsg./Editors: Engelien, M. & Homann, J. Verlag/Publisher: Joseph Eul
Verlag, Dresden, Germany. Erscheinungsjahr/Year: 2009. Seiten/Pages: 365-378.

Service Oriented Device Integration – An Analysis of SOA Design Patterns

Christian Mauro1 Jan Marco Leimeister2 Helmut Krcmar1
1Technische Universitaet Muenchen

Information Systems

Boltzmannstrasse 3

85748 Garching, Germany

{mauro, krcmar}@in.tum.de

2Universitaet Kassel

Information Systems

Nora-Platiel-Strasse 4

34127 Kassel, Germany

leimeister@uni-kassel.de

Abstract
Service oriented device architecture (SODA) is a

promising approach for overcoming interoperability

issues and especially for extending the IT support of

business processes to devices. It is based on the

encapsulation of devices as services, and therefore on

design principles of service oriented architectures

(SOA). However, there is a lack of generalized

concepts that resolve SODA-specific design problems.

This paper contributes to this research gap by a)

identifying a set of SODA-specific design problems, b)

analyzing existing SOA design patterns regarding their

applicability for SODA, and c) proposing a set of new

pattern candidates which resolve open SODA design

problems.

1. Introduction

Service oriented device integration (also known as

SODA – Service Oriented Device Architecture) is a

promising approach to overcome interoperability

issues, especially for extending the IT (Information

Technology) support of business processes to devices

[16] and therefore for a better alignment between IT

and business (cf. [18]).

By performing a literature analysis, we identified

26 relevant papers in the field of SODA [20]. Even if

these works achieved fundamental results by

demonstrating the technical feasibility as well as the

benefits of the concept, much room for further research

was identified by our analysis. The research gap we

address in this paper is the lack of generalized design

concepts for SODA. Presented architectures in existing

works are based on the specific requirements of the

given scenarios (e.g., [23]) or are too abstract for

resolving general SODA design problems (e.g., [5]).

The SODA concept is based on SOA (Service

Oriented Architecture) principles. Several SOA best

practices exist, concentrated in the form of SOA design

patterns [9]. From an integration point of view (as we

show in section 3), devices can be considered as

software systems with specific hardware

characteristics. Due to the fact that existing SOA

design patterns address software systems only, the

following procedure for identifying general SODA

design concepts is pursued in this paper:

 Step 1: Analysis of the characteristics of devices

in comparison to software systems.

 Step 2: Identification of specific SODA design

problems, based on step 1.

 Step 3: Analysis of existing SOA design patterns,

regarding their applicability for SODA.

 Step 4: Proposal of new SOA design pattern

candidates that address unsolved SODA design

problems.

This paper contributes to the SODA research field

in three ways by delivering the following outcomes:

a) A set of identified SODA design problems.

b) A set of existing SOA design patterns which

contribute to SODA or even resolve SODA

design problems.

c) A set of new SOA design pattern candidates for

the purpose of resolving open SODA design

problems.

The structure of this paper is based on the presented

procedure, each step having its own section. In

addition, the general concept of SODA as well as the

concept of patterns is presented in section 2. Section 7

summarizes the results and concludes with suggestions

for future research.

2. Fundamentals

2.1. Service oriented device integration

The basic idea behind the concept of SODA is the

encapsulation of devices as services, analogous to

enterprise services in service oriented architectures [5].

An enterprise service is a software component that

offers a business functionality on a highly semantical

mailto:krcmar%7d@in.tum.de

level by specifying the interface in a standardized way

(e.g., by the Webservice Description Language –

WSDL) [17]. Highly semantical level especially

means, that a service is self-descriptive in a way that it

can be consumed dynamically, and loosely coupled by

other components with a consistent understanding of

shared data.

As shown in Figure 1, three layers can be

distinguished (following concepts of [17]):

 Device Layer: This layer contains physical

devices.

 Device Service Layer: As services encapsulated

devices are placed on this layer, the device

services use physical devices of the device layer.

 Composition Layer: Services can be combined to

fulfill more complex logic, up to process logic

[7]. Thus, the composition layer uses services of

the device service layer.

This layer classification is used in the following

sections to categorize identified design problems.

Figure 1: Service oriented device integration

2.2. SOA patterns

The idea of patterns can be traced back to

Alexander [1] in the field of architecture and Gamma

[12] in the area of software engineering. Basically, a

pattern consists of the following elements [3] [22]: the

context of a given problem and its circumstances, the

description of the problem itself (also called forces),

the proposed solution for the problem and references to

related patterns.

Erl [9] extends this meta-definition of a pattern by

using:

 a Pattern Profile (consisting of a requirement

definition, an icon, a summary table, a problem

definition, a solution, an application description,

impacts, relationships and a case study example)

and

 a Pattern Notation (including specific symbols to

represent different kind of patterns as well as

different types of pattern figures to emphasize

specific aspects of the pattern).

Patterns “provide field-tested solutions to common

design problems” in a “standardized and easily

„referencable‟ format” [9]. In addition, they are

“generally repeatable” and “ensure consistency in how

systems are designed and built.” [9]. Thus, the

application of patterns to realize the SODA concept is

reasonable.

3. Characteristics of devices

Devices and software systems have common

characteristics. Both are a piece of software running on

a hardware platform. In addition, both are equipped

with interfaces for accessing specific functionality

(devices or software systems without such interfaces

are not relevant for this paper).

On the other hand, there is a major difference

between devices and software systems: the physical

aspect. For software systems the hardware platform is

just a means to an end. Without hardware, software

systems are not able to run. However, this aspect is in

general not relevant for users of software system

interfaces because the underlying hardware usually

does not affect the functional behavior of software.

For devices, the physical aspect is essential. In

contrast to software systems, the embedded software

(but not the hardware) is a means to an end. Software

ensures the operability of devices or enables the

communication to other systems. However, in general,

the user experiences the hardware, not the software.

Thus, the characteristics of devices are split into

two views:

 Devices as software systems

 Devices as physical objects

Considering devices as software systems, the first

two device characteristics (DC) are:

 DC1: Proprietary software interface

 DC2: Proprietary data model

This is due to the fact that embedded software on

devices is usually not designed to be interoperable

[19].

Physical objects can be moved, touched and

replaced. Moving an object influences its locality.

Touching an object can influence its behavior. In the

context of devices such physical influences can trigger

specific functions or enable/disable the whole device.

In addition, physical objects might not be concurrently

usable; thus, they can be reserved. Another aspect is

the hardware interface. Software systems as artificial

constructs are not equipped with hardware interfaces

themselves. The underlying hardware platform

typically provides a standardized network interface.

Devices are often equipped with serial or proprietary

hardware interfaces. Thus, when integrating devices,

the hardware interface is a relevant aspect. Another

characteristic of devices is the fact that embedded

software often cannot be changed or is not even

allowed to be changed (e.g., medical devices) [13].

In summary, following additional characteristics of

devices can be identified:

 DC3: Mobility

 DC4: Locality

 DC5: Manual influenceability

 DC6: Replaceability

 DC7: Devices as resource

 DC8: Hardware interfaces

 DC9: Software changeability

In the next section, these characteristics are

analyzed with regard to their impacts on the SODA

concept.

4. SODA design problems

The nine characteristics of devices identified in the

last section cause several SODA design problems on

and between the three layers. The Device Layer itself

is not affected because the integration of devices starts

between the Device Layer and the Device Service

Layer. The remaining layers and intermediate layers

are explored in the next sections. The identified SODA

design problems are expressed in the form of

questions. Figure 2 shows where the design problems

are located within the system of devices, device

service, service registry and service customers.

4.1. Intermediate layer 1

Intermediate Layer 1 identifies the layer between

the Device Layer and Device Service Layer. Within

this intermediate layer, the connection of devices to

device services is realized. This includes hardware as

well as software interfaces. Taking into consideration

the device characteristics DC1, DC8 and DC9, design

problem 1 arises.

Design problem 1: How can the connection of

devices to device services be realized?

4.2. Device service layer

Services consist of a service contract and a service

implementation [8]. When defining the service

contract, the use of proprietary device interface

definitions (DC1) and data models (DC2) results in a

negative coupling of service consumers to devices. The

device interface and its data model will rarely change

(DC9), but the replacement of a device (DC6)

necessitates the adaptation of the service consumer

implementation, which is now faced with another

service contract. Thus, the following design problem

can be deduced:

Design problem 2: How can negative types of

coupling be avoided when defining contracts for device

services?

The service implementation realizes the service

contract. In addition, in the context of device services,

the handling of the connection to the device must be

implemented. Due to the fact that devices might switch

from one device service to another (DC3) or can be

replaced (DC6), device services are dynamically faced

with different devices and therefore different kinds of

interfaces. A standardization of device interfaces is in

general not possible (DC9). This aspect is summarized

in design problem 3:

Design problem 3: How can device services

dynamically handle different kinds of device

interfaces?

Device services differ from software services.

There might be a need to logical separate them from

software services within the service inventory. Thus,

the group of device services could be assigned to a

dedicated custodian. This aspect results in design

problem 4:

Design problem 4: How can device services be

separated from software services within the service

inventory?

The management of resources is not the purpose of

SODA. The integration of functionality into device

services for the purpose of booking devices is not

Figure 2: Location of SODA design problems

C
o

n
tr

a
c
t

Device Service

Consumers

Device B

D
e

v
ic

e
 A

P
I

Device D

D
e

v
ic

e
 A

P
I

Device A

D
e

v
ic

e
 A

P
I

Device C

D
e

v
ic

e
 A

P
I

Service

Logic

1
2

3

5

6

7

Service

Registry

4

reasonable, due to the fact that the needed device

service might be offline. On the one hand, SODA can

support a system that manages resources. For example,

an automatically generated list of all devices currently

available and not in use could be generated. Another

example would be the automated collection of device

status data for the purpose of maintenance. These

aspects do not result in design problems. On the other

hand, if a device only supports exclusive usage, but

more than one service customer requests access, this

conflict must be handled by the device service. Thus,

design problem 5 arises:

Design problem 5: How can device services

support the exclusive usage of devices?

The locality of a device cannot be provided by

SODA itself. The locality of a device is either entered

manually as a parameter of the device and accessible

over the device interface, or it must be dynamically

detected by a tracking and tracing system. In both

cases, the SODA concept is not directly involved.

SODA can enable a standardized access to positioning

data, for which purpose, the service contract could

contain appropriate interface definitions, e.g., a

getPosition function. The service implementation

decides whether the positioning data can be directly

accessed from the device or if other systems need to be

called. As a consequence, the service consumer does

not need to be concerned about the underlying tracking

and tracing mechanism. However, the device

characteristic Locality (DC4) does not result in a

SODA design problem.

4.3. Intermediate layer 2

Intermediate Layer 2 identifies the layer between

Device Service Layer and Composition Layer. Before

services can be combined to a composition, the

individual services have to be found. For this purpose,

services are published to a service registry [8]. Once

registered, services can be found by service consumers,

which get all necessary information from the service

registry for using the service. In general, services are

published manually once. Afterwards, the

corresponding registry entry remains unchanged until

the service is modified or shut down. Both possible

changes are usually well scheduled because service

consumer implementations are affected and may not be

executable any more. On the contrary, device services

can shut down at any time because their operability

directly depends on the device. Thus, if a device is out

of network coverage (DC3) or switched off (DC5,

DC6), the corresponding service immediately will not

work any longer. This results in design problem 6:

Design problem 6: How can the spontaneous

appearance and disappearance of device services

dynamically be published?

4.4. Composition layer

Service compositions use a set of services to realize

specific functionality. If one of the used services does

not work, the whole composition is not executable any

longer. As mentioned in the last section, the

appearance and disappearance of device services can

occur anytime (DC3, DC5, DC6); thus, compositions

using device services must keep track of the

accessibility of the respective services. This aspect is

addressed by design problem 7:

Design problem 7: How can service consumers

handle the spontaneous appearance and

disappearance of device services?

5. SOA pattern analysis

Several studies were analyzed with regard to SOA

design patterns ([3, 4, 9-12, 15]). It has been shown

that the SOA design pattern catalog published by Erl

[9], in conjunction with several candidate patterns

published on his website [10], is the most complete

collection of patterns currently available. All SOA-

relevant patterns found in other works, were also found

in his collection. As a result, 108 SOA design patterns

were analyzed in two ways:

a) Which patterns should be used in any case for

ensuring a consistent and well designed

architecture when realizing the SODA concept?

(section 5.1 – 5.4)

b) Which of the patterns identified in point a) are

able to resolve SODA-specific design problems?

(section 5.5)

The application of SODA results in a set of device

services which can be used by other services within a

SOA. Thus, every SOA design patterns is potentially

applicable, depending on the specific requirements.

However, a subset of SOA design patterns can be

identified, which should be considered in any SODA

project to ensure a consistent and well designed

architecture. The intended uses of these patterns are

described in the next four sections. Pattern names are

put in parentheses and italicized. Next, section 5.5

discusses the SODA design problems. Due to space

restrictions, only the results of the analysis are

presented and not the complete line of arguments.

5.1. Service inventory design patterns

As a first step towards the realization of SODA,

device services have to be identified and grouped into a

service inventory. Within a service inventory, services

are standardized and governed [9]. A service inventory

can range over the whole enterprise (Enterprise

Inventory) or be limited to a specific subdomain

(Domain Inventory). In the latter case, several

inventories can exist within an enterprise, which can be

independently managed.

To avoid redundant service logic, services should

be normalized (Service Normalization). In the context

of SODA, devices with similar functionality can be

consolidated to a single device service definition. To

separate device services from software services, the

inventory can be structured into service layers (Service

Layers). Three common layers are: the task layer, the

entity layer and the utility layer. Device services are

dedicated to the utility layer. They enable the access to

devices and therefore offer common utility functions

(Utility Abstraction). The realization of device service

logic within different entity services or task services

results in redundant implementation. To separate

device services from software services, the utility layer

can be further partitioned. When using domain

inventories, there might be a need for an enterprise

wide management of utility services to avoid redundant

service implementations. This can be realized by an

enterprise wide service layer (Cross-Domain Utility

Layer).

The standardization of services is useful to avoid

unnecessary transformations. For this purpose, uniform

data models (Canonical Schema) and communication

protocols (Canonical Protocol) should be introduced.

The standardization of data models can additionally be

supported by the use of shared schema definitions

(Schema Centralization). To enable a common

understanding of service capabilities and service

versions, conventions for service contracts (Canonical

Expression) and version information (Canonical

Versioning) should be introduced.

Service contracts have to be published to a service

registry (Metadata Centralization). In this way,

services can be found by both service consumers and

service developers who are interested in existing

services to avoid redundant implementation of service

logic.

5.2. Service design patterns

The basic idea of SODA is the encapsulation of

devices as services (Service Encapsulation). When

defining capabilities for a device service, reusability

should be taken into consideration to effectively design

consumable and composable services. For this purpose,

capabilities of a device service should not be designed

for a specific problem but for common concerns

(Agnostic Capability).

By decoupling the service contract from the service

implementation, the service implementation can be

debugged or optimized in future, without affecting the

service consumer (Decoupled Contract). If changes to

a service contract are necessary, version information

should be included into the contract to make

consumers aware of possible incompatibility issues

(Version Identification). In addition, the allowed access

to service logic should be limited to the contract

(Contract Centralization). If subsystems of a service

(like devices) can be directly accessed by service

consumers, the usage of the corresponding service

contract as entry point can be enforced by giving the

service exclusive access rights to its subsystems

(Trusted Subsystem).

The decoupling of device service consumers to

devices can be further supported by extracting device

specific information (data model, function names, error

codes, etc.) from the service contract (Legacy

Wrapper). In addition to error codes, internal

exceptions of the device service implementation should

not be transported to the service consumer and

replaced by standardized exceptions (Exception

Shielding).

5.3. Service composition design patterns

Being utility services, devices services are designed

to be used by other services (Capability Composition).

For this purpose, capabilities should be designed in a

way that enables a maximum of composability

(Capability Recomposition). In order to realize a loose

coupling, services communicate via messages instead

of persistent connections (Service Messaging). For

different purposes (e.g., state data), apart from the

message body, additional meta information are placed

into the message header (Messaging Metadata). In

addition, the realization of reliable messaging is

usually required (Reliable Messaging).

Devices may perform long running activities before

sending data back to the device service. Thus, service

consumers could be blocked while waiting for the

reply message. For this purpose, asynchronous

messaging can be used (Service Callback), supported

by messages queues (Asynchronous Queuing). If a

service consumer is interested in specific (device)

event (e.g., battery low), a subscribing mechanism can

be implemented (Event-Driven Messaging). If the

event occurs, the service informs the service consumer.

5.4. Pattern candidates

The usage of a common data format for all message

contents is reasonable (Canonical Data Format). A

specific format is often introduced together with a

specific technology (as XML, the Extensible Markup

Language, for web services [25]). However, devices

often produce data which have other formats (e.g.,

pictures) that cannot be transformed. Thus, the support

of additional formats (apart from the canonical data

format) is necessary (Alternative Format). For

example, in the case of web services, this can be

realized by WS-Attachments [6].

5.5. Reflection of SODA design problems

The results of the pattern analysis are summarized

in Table 1. Compound patterns are not listed in the

table because all individual patterns of compound

patterns are included in the table. In the following, we

reflect on the SODA design problems.

Design problem 1. No pattern could be identified

that contributes to this problem. This is due to the fact

that existing patterns do not consider devices.

Design problem 2. This problem can be resolved by

the application of the Legacy Wrapper pattern. This

pattern advocates the wrapping of proprietary functions

and data models by a standardized service contract. It

is supported by several other patterns, e.g., Canonical

Schema.

Design problem 3. Services that access underlying

resources with dynamically changing interfaces are

highly unusual. As a consequence, no pattern could be

identified that contributes to this problem.

Design problem 4. The separation of device

services and software services can be realized by the

use of the Service Layers pattern and the Utility

Abstraction pattern. As a result, all device services are

assigned to the utility layer. The further portioning of

this layer separates device services from software

utility services (cf 5.1).

Design problem 5. For exclusive usage of devices,

the direct access of service consumers to devices must

be avoided. This can be realized by the Contract

Centralization pattern and the Trusted Subsystem

pattern. Subsequently, two scenarios can be

distinguished: a) parallel access to the device is

desirable, but not supported by the device, b) parallel

access is undesirable or not reasonable for the specific

device. In the former scenario, the device service

manages incoming requests and realizes a quasi-

parallel access to the device (analogous to CPU-

Scheduling [24]). In the latter scenario, the device

service denies requests if the device is occupied.

Alternatively, requests are accepted and processed

sequentially (analogous to batch processing [24]). To

avoid the blocking of service consumers, the Service

Callback pattern and Asynchronous Queuing pattern

can be applied. If the service consumer is only

interested in specific events, continuous polling can be

avoided by the Event-Driven Messaging pattern.

Design problem 6. The spontaneous appearance

and disappearance of services is highly unusual. As a

consequence, no pattern could be identified that

contributes to this problem.

Design problem 7. For the same reason as with

design problem 6, as well as for design problem 7, no

pattern could be identified.

Table 1: SOA pattern analysis with respect to SODA

Pattern Name and Contributor(s)
Obligatory

for SODA

Addressed Design

Problem Nr.

Service Inventory Design Patterns

Enterprise Inventory (Erl) 

Domain Inventory (Erl) 

Service Normalization (Erl) 

Logic Centralization (Erl)

Service Layers (Erl)  4

Canonical Protocol (Erl) 

Canonical Schema (Erl) 

Utility Abstraction (Erl)  4

Entity Abstraction (Erl)

Process Abstraction (Erl)

Process Centralization (Erl)

Schema Centralization (Erl) 

Policy Centralization (Erl)

Rules Centralization (Erl)

Dual Protocols (Erl)

Canonical Resources (Erl)

State Repository (Erl)

Stateful Services (Erl)

Service Grid (Chappell)

Inventory Endpoint (Erl)

Cross-Domain Utility Layer (Erl) 

Canonical Expression (Erl) 

Metadata Centralization (Erl) 

Canonical Versioning (Erl) 

Service Design Patterns

Functional Decomposition (Erl)

Service Encapsulation (Erl) 

Agnostic Context (Erl)

Non-Agnostic Context (Erl)

Agnostic Capability (Erl) 

Service Facade (Erl)

Redundant Implementation (Erl)

Service Data Replication (Erl)

Partial State Deferral (Erl)

Partial Validation (Orchard, Riley)

UI Mediator (Utschig, Maier, Trops, Normann, Winterberg)

Exception Shielding (Hogg, Smith, Chong, Hollander, Kozaczynski,

Brader, Delgado, Taylor, Wall, Slater, Imran, Cibraro, Cunningham)


Message Screening (Hogg, Smith, Chong, Hollander, Kozaczynski,

Brader, Delgado, Taylor, Wall, Slater, Imran, Cibraro, Cunningham)

Trusted Subsystem (Hogg, Smith, Chong, Hollander, Kozaczynski,

Brader, Delgado, Taylor, Wall, Slater, Imran, Cibraro, Cunningham)
 5

Service Perimeter Guard (Hogg, Smith, Chong, Hollander, Kozaczynski,

Brader, Delgado, Taylor, Wall, Slater, Imran, Cibraro, Cunningham)

Decoupled Contract (Erl) 

Contract Centralization (Erl)  5

Contract Denormalization (Erl)

Concurrent Contracts (Erl)

Validation Abstraction (Erl)

Legacy Wrapper (Erl, Roy)  2

Multi-Channel Endpoint (Roy)

File Gateway (Roy)

Compatible Change (Orchard, Riley)

Version Identification (Orchard, Riley) 

Termination Notification (Orchard, Riley)

Service Refactoring (Erl)

Service Decomposition (Erl)

Proxy Capability (Erl)

Decomposed Capability (Erl)

Distributed Capability (Erl)

Service Composition Design Patterns

Capability Composition (Erl) 

Capability Recomposition (Erl) 

Service Messaging (Erl) 

Messaging Metadata (Erl) 

Service Agent (Erl)

Intermediate Routing (Little, Rischbeck, Simon)

State Messaging (Karmarkar)

Service Callback (Karmarkar)  5

Service Instance Routing (Karmarkar)

Asynchronous Queuing (Little, Rischbeck, Simon)  5

Reliable Messaging (Little, Rischbeck, Simon) 

Event-Driven Messaging (Little, Rischbeck, Simon)  5

Agnostic Sub-Controller (Erl)

Composition Autonomy (Erl)

Atomic Service Transaction (Erl)

Compensating Service Transaction (Utschig, Maier, Trops, Normann,

Winterberg, Loesgen, Little)

Data Confidentiality (Hogg, Smith, Chong, Hollander, Kozaczynski,

Brader, Delgado, Taylor, Wall, Slater, Imran, Cibraro, Cunningham)

Data Origin Authentication (Hogg, Smith, Chong, Hollander,

Kozaczynski, Brader, Delgado, Taylor, Wall, Slater, Imran, Cibraro,

Cunningham)

Direct Authentication (Hogg, Smith, Chong, Hollander, Kozaczynski,

Brader, Delgado, Taylor, Wall, Slater, Imran, Cibraro, Cunningham)

Brokered Authentication (Hogg, Smith, Chong, Hollander, Kozaczynski,

Brader, Delgado, Taylor, Wall, Slater, Imran, Cibraro, Cunningham)

Data Model Transformation (Erl)

Data Format Transformation (Little, Rischbeck, Simon)

Protocol Bridging (Little, Rischbeck, Simon)

Pattern Candidates

Alternative Format (Balasubramanian, Webber, Erl, Booth, Riley) 

Blind Messaging Routing (Erl)

Canonical Data Format (Erl) 

Canonical Policy Vocabulary (Erl)

Composition Endpoints (Erl)

Composition Extension (Erl)

Enterprise Domain Repository (Lind)

Entity Data Abstraction (Erl)

Entity Linking (Balasubramanian, Webber, Erl, Booth)

Federated Identity (Wilhelmsen, Rischbeck)

Forwards Compatibility (Orchard)

Idempotent Capability (Wilhelmsen, Pautasso)

In-Memory Fault-tolerant Collection (Chappell)

In-Memory Fault-tolerant Stateful Services (Chappell)

Layered Redirect (Balasubramanian, Webber, Erl, Booth)

Load Balanced Stateful Services (Chappell)

Policy Enforcement (Little, Rischbeck, Simon, Erl)

Relaxed Service Implementation (Wilhelmsen)

Service Virtualization (Roy)

Transport Caching (Balasubramanian, Webber, Erl, Booth)

UI Agnostic Service (Roy)

Uniform Contract (Balasubramanian, Webber, Erl, Booth)

Validation by Projection (Orchard)

6. New SOA design pattern candidates for

SODA

For the purpose of resolving remaining SODA

design problems identified in the last section, we

propose seven new SOA design patterns. A detailed

description of the new patterns is out of the scope of

this paper, and is the objective of further publications.

In addition, different implementation strategies for

realizing the patterns are currently analyzed. Thus, in

the following only the general abstracted solution ideas

are presented.

Integrated Adapter. The first three pattern

candidates address design problem 1. They are

deduced from several existing studies on SODA. The

Integrated Adapter pattern integrates adapter logic into

the device itself. Thus, the device offers its

functionality as service, e.g., as realized with the

Devices Profile for Web Services (DPWS) in [2].

However, in most cases the manipulation of embedded

software is not possible (DC9). Thus, the next two

patterns suggest solutions without affecting the device

software.

External Adapter. The External Adapter plugs a

hardware adapter onto the device, which a) exports the

device functionality as service, and b) enables the

networkability of the device (e.g., if the device is

equipped with a serial hardware interface only). This

was successfully realized by using a XPORT adapter in

[14].

Server Adapter. Small hardware adapters are often

restricted in their processing power and memory

capacity. Thus, the implementation has to be realized

in low level programming languages. The Server

Adapter pattern realizes the device integration by

plugging the device into a server (directly or over

network). Thus, high level programming languages can

be used and several devices can be managed by one

server. This way of integrating devices was chosen in

[23] by using web service technologies.

Dynamical Adapter. This pattern addresses design

problem 3. It introduces additional adapter logic, which

a) identifies the specific devices and b) selects an

appropriate adapter. As a consequence, the service

logic doesn‟t have to be adapted to specific integration

scenarios. It communicates with the adapter logic in

the same way in all scenarios.

Auto-Publishing. This pattern addresses design

problem 6. It advocates the introduction of a

mechanism into the service logic, which automatically

publishes and unpublishes the device service to the

service registry. When using a UDDI registry

(Universal Description, Discovery and Integration),

service consumers can be informed about changes by

using the UDDI subscriber mechanism [21].

Standardized Device Service. This pattern is a

compound pattern, i.e., it is comprised of combinations

of design patterns [9]. Two established and two new

patterns are included:

 Service Encapsulation

 Legacy Wrapper

 Dynamical Adapter

 Auto-Publishing

This pattern combines all patterns necessary for

realizing device services. The three integration adapter

patterns create adapters, which are selected and used

by the device service or may be part of the adapter

logic, but do not affect the design of the device service.

The Device Concentrator pattern also does not affect

the device service design. Thus, these patterns are not

included into the Standardized Device Service pattern.

Device Concentrator. This pattern addresses design

problem 7. It advocates the establishment of a service,

which monitors the availability of devices that meet

specific criteria. For example, in hospitals a device

concentrator service could monitor all infusion pumps

assigned to a specific patient. This consists of a)

recognizing new pumps, b) recognizing pumps that are

no longer available, and c) collecting data of all

available pumps. Thus, service consumers do not need

to implement these functionalities themselves. This

avoids redundant service logic by extracting common

utility logic, as advocated by the Utility Abstraction

pattern.

7. Conclusion and future research

This paper has presented seven specific SODA

design problems. Several existing SOA design patterns

were analyzed for their applicability for SODA, and

especially for their ability to resolve the identified

design problems. Three design problems could be

resolved by existing SOA design patterns, and for the

remaining design problems, seven new candidate

patterns were proposed.

The collection of the identified SOA design

patterns suitable for SODA in combination with the

new candidate patterns could be seen as a pattern

language for SODA [1]. However, only the vocabulary

(the patterns), and not the grammar (interrelations

between patterns and useful pattern sequences) has

been defined up to now. Thus, the new pattern

candidates need to be discussed, reviewed, practically

tested, evaluated and improved. There is undoubtedly

much room for further research concerning SOA

design patterns for SODA. For this reason, our

research agenda contains following points:

 Practical application of the patterns on a real

scenario

 Exploration of different implementation strategies

for realizing the patterns

 Detailed publication of the new candidate patterns

for scientific discussion

 Evaluation and improvement of the new

candidate patterns

 If necessary, development of additional design

patterns

The SODA concept is a promising approach, and

the next logical step in the SOA field after software

services. Hopefully, research about SODA-specific

patterns will enable practical applications of the

concept by providing proven solutions for specific

design problems.

8. References

[1] C. Alexander, The timeless way of building. New York:

Oxford University Press, 1979.

[2] H. Bohn, A. Bobek, and F. Golatowski, "SIRENA -

Service Infrastructure for Real-time Embedded Networked

Devices: A service oriented framework for different

domains," in International Conference on Networking,

International Conference on Systems and International

Conference on Mobile Communications and Learning

Technologies (ICN/ICONS/MCL 2006), 2006.

[3] F. Buschmann, Pattern-orientierte Software-Architektur:

Ein Pattern-System. Bonn: Addison-Wesley.Longmann

Verlag, 1998.

[4] S. Conrad, W. Hasselbring, A. Koschel, and R. Tritsch,

Enterprise Application Integration - Grundlagen, Konzepte,

Entwurfsmuster, Praxisbeispiele. München: Elsevier GmbH,

2006.

[5] S. de Deugd, R. Carroll, K. E. Kelly, B. Millett, and J.

Ricker, "SODA: Service Oriented Device Architecture,"

Pervasive Computing, IEEE, vol. 5, pp. 94-96, 2006.

[6] T. Erl, Servoce-Oriented Architecture - A Field Guide to

Integrating XML and Web Services. New Jersey: Pearson

Education, 2004.

[7] T. Erl, SOA Principles of Service Design. Boston:

Prentice Hall International, 2007.

[8] T. Erl, Web Service Contract Design and Versioning for

SOA. Boston: Prentice Hall International, 2008.

[9] T. Erl, SOA Design Patterns. Boston: Prentice Hall

International, 2009.

[10] T. Erl, "SOA Patterns - Candidate Pattern List," 2009.

[11] M. Fowler, Patterns of Enterprise Application

Integration. Boston: Pearson Education, 2003.

[12] E. Gamma, Design Patterns: Elements of Reusable

Object-Oriented Software. Massachusetts: Addison-Wesley

Publishing Company, 1995.

[13] A. Gärtner, Medizinproduktesicherheit - Band 1:

Medizinproduktegesetzgebung und Regelwerk. Köln: TÜV

Media, 2008.

[14] V. Gilart-Iglesias, F. Maciá-Pérez, F. José Mora-

Gimeno, and J. V. Berná-Martínez, "Normalization of

Industrial Machinery with Embedded Devices and SOA," in

Conference on Emerging Technologies and Factory

Automation (ETFA '06), 2006.

[15] G. Hohpe and B. Woolf, Enterprise Integration Patterns

- Designing, Building, and Deploying Messaging Solutions.

Boston: Pearson Education, Inc., 2004.

[16] F. Jammes, H. Smit, J. L. M. Lastra, and I. M. Delamer,

"Orchestration of service-oriented manufacturing processes,"

in 10th IEEE Conference on Emerging Technologies and

Factory Automation (ETFA 2005), 2005, pp. 617-624.

[17] D. Krafzik, K. Banke, and D. Slama, Enterprise SOA -

Service-Oriented Architecture Best Practices. Indiana, USA:

Pearson Education, 2006.

[18] H. Krcmar, Informationsmanagement: Springer Berlin

Heidelberg New York, 2005.

[19] K. Lesh, S. Weininger, J. M. Goldman, B. Wilson, and

G. Himes, "Medical Device Interoperability – Assessing the

Environment," in Joint Workshop on High Confidence

Medical Devices, Software, and Systems and Medical Device

Plug-and-Play Interoperability, 2007.

[20] C. Mauro, A. Sunyaev, J. M. Leimeister, and H. Krcmar,

"Service-orientierte Integration medizinischer Geräte - eine

State of the Art Analyse," in Wirtschaftsinformatik 2009 -

Business Services: Konzepte, Technologien und

Anwendungen Wien, 2009, pp. 119-128.

[21] OASIS, "UDDI Version 3.0.2." vol. 2009, 2004.

[22] M. Schumacher, Security engineering with patterns:

origins, theoretical models, and new applications. Berlin:

Springer, 2003.

[23] M. Strähle, M. Ehlbeck, V. Prapavat, K. Kück, F. Franz,

and J.-U. Meyer, "Towards a Service-Oriented Architecture

for Interconnecting Medical Devices and Applications," in

Joint Workshop on High Confidence Medical Devices,

Software, and Systems and Medical Device Plug-and-Play

Interoperability, 2007.

[24] A. S. Tanenbaum, Moderne Betriebssysteme. München:

Pearson Studium, 2009.

[25] W3C, "XML Schema Part 0: Primer Second Edition -

W3C Recommendation," 2004.

	Please quote as 141
	JML_141.pdf

