A New Species of Cyrtodactylus (Squamata: Gekkonidae) from the Karst Forests of Daweishan National Nature Reserve, Yunnan, China

Yinpeng ZHANG ${ }^{1,2,3}$, Xiaolong LIU ${ }^{2}$, Justin BERNSTEIN ${ }^{4}$, Jian WANG ${ }^{5}$ and Zhiyong YUAN ${ }^{1,2^{*}}$
${ }^{1}$ Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing 400715, China
${ }^{2}$ Key Laboratory of Conserving Wildlife with Small Populations in Yumnan, Southwest Forestry University, Kunming 650224, Yumnan, China
${ }^{3}$ Michigan State University, East Lansing 48825, MI, USA
${ }^{4}$ Rutgers University-Newark, Boyden Hall, 195 University Avenue, Newark 07102, NJ, USA
${ }^{5}$ College of Life Science and Technology, Honghe University, Mengzi 661199, Yumnan, China

Abstract

Cyrtodact ylus geckos are one of the most speciose and diverse groups of extant lizards known, distributed throughout the Asian and Pacific realms. Using molecular phylogenetic methods and supporting morphological data, we describe a new species of Cyrtodact ylus in Daweishan National Nature Reserve, Yunnan Province, China. Cyrtodact ylus hekouensis sp. nov. can be morphologically distinguished from its nearby congeners by the following characters: maximum SVL 92.3 mm and TL 98.5 mm ; 11-12 supralabials; 11-12 infralabials; 36-57 scale rows between the fifth supralabials; 10-13 dorsal tubercles rows; 3 postnasals on blunt and smooth front snout; precloacalfemoral pores in a continuous series of $33-39$ (females with pitted scales) located under vent/cloaca and thighs in both sexes; precloacal groove absent; $3 / 3$ postcloacal tubercles; subdigital lamellae under the fourth finger 21 or 22 , under the fourth toe 20-23; smooth midbody with smooth venter and tuberculate dorsal scale rows, tubercles from head to tail base; dorsal transverse patterns are generally large, bilaterally symmetrical. The results of the phylogenetic analysis recover specimens of this new species as sister to a clade containing C. wayakonei and C. martini. Uncorrected pairwise intraspecific distances were $<1 \%$, and distances between our new species and other Cyrtodactylus species from nearby countries ranged from 14.2% to 26.8%.

Keywords China-Vietnam border, Yunnan Province, Cyrtodactylus hekouensis sp. nov., Gekkonidae, molecular phylogeny, systematics, taxonomy

[^0]
1. Introduction

As one of the most diverse genera in the Gekkonidae, Cyrtodact ylus contains almost 300 recognized species (Uetz et al., 2020). New species are continuously being described each year through fieldwork in underexplored localities and the development of molecular techniques, especially DNA barcoding (Hebert et al, 2003). A significant number of Cyrtodactylus have been described from tropical karst forests in regions of Southeast Asia, including Myanmar, Malaysia, Laos, Vietnam, Thailand, Cambodia, Indonesia, Singapore, Timor Leste, Philippines, Brunei and China (e.g, Pauwels et al., 2016; Sitthivong et al., 2019; Grismer et al., 2020). Four species of Cyrtodactylus are currently recognized in China (Wang et al., 2020) including C. cayuensis (Li, 2007; Agarwal et al., 2018), C. tibetanus (Boulenger, 1905), C. zhaoermii (Shi and Zhao, 2010) and C. wayakonei (Nguyen et al, 2010). All of these species are in the Indo-Burma species group (Agarwal et al., 2014), with the exception of C. wayakonei (Nguyen et al, 2010). The IndoBurma species group, including three of the four Chinese species, may represent a radiation of Himalayan species; the diversity of species from Yunnan, China in the Southeast Asian group (Brennan et al, 2017; Nazarov et al., 2018). Cyrtodactylus wayakonei has only been recorded from Xishuangbanna (Yuan and Rao, 2011), a biodiversity hotspot area in the Yunnan Province border area of China. Excluding this record, the knowledge of Cyrtodactylus in Yunnan is lacking, despite the abundance of suitable limestone karst forests habitats along the country's border.

The China Vietnam border area is a well-known biodiversity hotspot, harboring a striking diversity of species and endemism (Myers et al., 2000). However, a majority of
this region is understudied, especially low latitudes, tropical evergreen forests, and broadleaved forests in southern Yunnan. Recently, several field expeditions were conducted by Chinese scholars, and several subsequent descriptions of new species or new country records were published, such as Paramesotriton deloustali (Zhang et al., 2017), Tylototriton ziegleri (Jiang et al., 2017), Amolops wenshanensis (Yuan et al., 2018) and Nidirana chapaensis (Yuan et al., 2019). It is likely that candidate new species might be found around the China-Vietnam border area. For example, the Daweishan National Nature Reserve in Hekou, China, near the border of Vietnam, contains well-preserved tropical forests, where herpetological research has been limited. In the past few years, we collected several specimens of Cyrtodactylus whose morphological characters were distinct from their congeners. We used molecular (COI) data and made a detailed morphological assessment to compare the Hekou specimens to described Cyrtodactylus species, especially species from nearby countries. Our results demonstrate that this species has a distinct morphology and high interspecific distances from its congeners; we describe this new species of Cyrtodactylus herein. Additionally, we use molecular data to taxonomically identify Cyrtodactylus from Xishuangbanna, Yunnan.

2. Materials and Methods

2.1. Sampling Fieldwork was conducted with permits in a karst limestone forest area of Daweishan National Nature Reserve, Yunnan Province, China, by Yinpeng Zhang, Xiaolong Liu, Jian Wang and Zhiyong Yuan in from 2016 to 2018. Thirteen specimens (3 males, 10 females) were collected. Specimens were fixed with 10% formalin solution and subsequently stored in 75% ethanol for voucher preservation. Prior to fixing, liver tissues were dissected out from the specimens and stored in 95% ethanol. All specimens were preserved in Southwest Forestry University, Kunming, Yunnan, China.
2.2. Morphology Measurements were taken by using a slide caliper from five well preserved samples (to the nearest 0.1 mm) due to 8 specimens were preserved in poor condition with some critical scalations missing, following the protocols of Nguyen et al., (2010). Eight specimens were not measured, as multiple scalation characters were missing due to poor preservation quality. Abbreviations are as follows: snout-vent length (SVL); tail length (TL); maximum head length (HL); maximum head width (HW); maximum head height (HH), from top of skull to underside of jaws; greatest diameter of orbits (OD); snout to eye distance (SE), from tip of snout to anterior corner of eye; eye to ear distance (EE), from anterior edge of ear opening to posterior corner of eye; axilla to groin distance (AG).

The following scale characters were counted: supralabials (SL); infralabials (IL); nasal scales surrounding nare, from rostral
to labial (excluding the rostral and labials), i.e. nasorostral, supranasal, postnasals (N); granular scales surrounding dorsal tubercles (GST); number of ventral scales within longitudinal rows at midbody (V); number of tubercles at dorsum of midbody (DTR); scales around midbody (MS); number of ocular scales around ocular area (OS); scale rows between fifth supralabials (SR5); numbers of continuous precloacal-femoral pores (females with pitted scales) (PP); postcloacal tubercles (PAT); subdigital lamellae under the fourth finger (LF4); subdigital lamellae under the fourth toe (LT4). Bilateral scale counts were given as left/right. Femoral and precloacal pores were counted with a digital microscope (Nikon SMZ800N).
2.3. Molecular analyses Four specimens of the gecko species with unique morphology were used for molecular analyses, and one sample of Cyrtodactylus collected from Xishuangbanna was also used to identify its taxonomic affilitation (Table 1). We sequenced a $\sim 650 \mathrm{bp}$ fragment of mitochondrial cytochrome c oxidase subunit 1 (COI) to assess if the Cyrtodactylus specimens from Daweishan National Nature Reserve are distinct from other known species in the genus. This approach has been successfully used before in delimiting Cyrtodactylus geckos (Brennan et al., 2017). The primers used were Chmf4: 5-TYT CWA CWA AYC AYA AAG AYA TCG G-3 and Chmr4: 5-ACY TCR GGR TGR CCR AAR AAT CA-3 (Che et al. 2012). Amplification of $25 \mu \mathrm{~L}$ polymerase chain reactions (PCR) were executed on an Eppendorf Master cycler gradient thermocycler. Amplification of genomic DNA began with an initial denaturation for 2 min at $95^{\circ} \mathrm{C}$ followed by $95^{\circ} \mathrm{C}$ for 35 s , annealing at $50^{\circ} \mathrm{C}$ for 35 s , and extension at $72^{\circ} \mathrm{C}$ for 150 s with 4 s added to the extension per cycle for 32 cycles for COI. Amplified products were sequenced using an ABI 3730 automated sequencer.

Considering our samples were collected near Vietnam and Laos, 40 COI sequences of Cyrtodactylus species (and one sequence of Cyrtopodion for our outgroup) from previous studies (Nguyen et al., 2013, 2014, 2015, 2017; Ziegler et al., 2013; Schendier et al., 2014; Le et al., 2016; Luu et al., 2016a, 2016b; Brennan et al., 2017; Connette et al., 2017; Nazarov et al., 2018; Pauwels, 2018) from Southeast Asian specimens were downloaded from Genbank (National Center for Biotechnology Information) to explore the relationships with other known species (Table 1). All 46 COI sequences were initially aligned by using Geneious Basic (Kearse et al., 2012), and then optimized by MEGA X (Kumar et al., 2018). Mean uncorrected genetic distances (p distances) between tested Cyrtodactylus species were calculated by MEGA X (Kumar et al., 2018). Phylogenetic trees were inferred by Maximum Likelihood (ML) and Bayesian inference (BI). JModelTest 2 (Guindon and Gascuel, 2003; Darriba et al., 2012) was used to build the model of sequence evolution that best fit each partition. The model $\mathrm{Tr} \mathrm{N}+\mathrm{I}+\mathrm{G}$ was selected as the best fit
model to the data. Metropolis coupled Markov Chain Monte Carlo (MCMCMC) analyses were run with 1 cold chain and 3 heated chains for 3000000 generations and sampled every 1000 generations. Four independent MCMCMC runs were performed as result and 1500 trees were discarded as burnin. The potential scale reduction factor (PSRF >1) and the average standard deviation of split frequencies (ASDSF < 0.01) statistics
generated by MrBayes were used to evaluate topological and branch-length convergence, respectively. Confidence of tree topology was assessed by posterior probability (PPr) (Huelsenbeck and Ronquist, 2001). Maximum Likelihood analyses were conducted through RAxML NG v0.9.0. (Kozlov et al., 2019) under a GTR+GAMMA model, the recommended model from RAxML authors. Branch supports (bootstrap

Table 1 Specimens used in the study, with respective voucher numbers, localities, and GenBank accession numbers for COI. "/" mean the locality is unknown.

No.	Species	Genbank No.	Locality	Voucher No.
1	C. badenensis	KF929505	Tay Ninh Province, Vietnam	KIZ13689
2	C. bichnganae	KT004372	Son La Town, Son La Province, Vietnam	TBU PAT. 250
3	C. bobrovi	KT004369	Ngoc Son-Ngo Luong, Hoa Binh Province, Vietnam:	VNMN:A.2015.61
4	C. chanquangensis	MF957261	/	NA2016.1
5	C. cryptus	KX064038	Khammuane Province, Laos	VNUF R.2014.69
6	C. elok	MF169914	/ (Captive Specimen)	JB 14
7	C. houaphanensis	KJ817428	Houaphan Province, Laos	IEBR A.2013.109
8	Cyrtodactylus hekouensis sp. nov.	MW067125	Hekou, Hong He, Yunnan, China	SWFU 002507
9	Cyrtodactylus hekouensis sp. nov.	MW067126	Hekou, Hong He, Yunnan, China	SWFU 002879
10	Cyrtodactylus hekouensis sp. nov.	MW067127	Hekou, Hong He, Yunnan, China	SWFU 002880
11	Cyrtodactylus hekouensis sp. nov.	MW067128	Hekou, Hong He, Yunnan, China	SWFU 002881
12	C. hontreensis	MF169917	Hon Tre Island, Kien Giang, Vietnam	LSUHC 8583
13	C. huongsonensis	KX430034	1	IEBR A.2011.3A
14	C. hinnamnoensis	KX064048	Khammuane Province, Laos	VNUF R.2015.3
15	C. interdigitalis	KX077901	Khammuane Province, Laos	VNUF R.2014.50
16	C. jaegeri	KT004365	Kha mmuane Province, Laos	NUOL-R.2013.1
17	C. khammounensis	HM888467	Khammuane Province, Laos	ZIN FN 191
18	C. khasiensis	KP199948	Kasi, Laos	ZMMU_R-13980-1
19	C. kingsadai	KF188432	Phu Yen Province, Vietnam	IEBR-A-2013.3
20	C. lenya	KY041659	Tanintharyi, Proposed Lenya National Park Extension, Myanmar	CAS:HERP:260233
21	C. lomyenensis	KJ817436	Kha mmuane Province, Laos	IEBR KM2012.54
22	C. loriae	MF169925	Mt. Simpson, Milne Bay, Papua New Guinea	FK 7709
23	C. martini	MF169929	Lai Chau Province, Vietnam	UNS 0471
24	C. oldhami	MF169932	/ (Captive Specimen)	JB 126
25	C. otai	MF957262	Na Bai Village, Son La Province, Vietnam	TBU 2017.2
26	C. pageli	KJ817431	Vientiane Province, Laos	ZFMK 91827
27	C. payarhtanensis	KY041664	Tanintharyi Region, Myanmar	USNM 587409
28	C. phongnhakebangensis	KF929526	Quang Binh Province, Vietnam	PNKB2011.30
29	C. puhuensis	KF929529	Thanh Hoa Province, Vietnam	KIZ11665
30	C. pulchellus	HQ967202	Malaysia	ZMMU R-12643-3
31	C. pseudoquadrivirgatus	KF169963	Hue Province, Vietnam	ITBCZ3001
32	C. quadrivirgatus	HM888466	Malaysia	ZMMU-RAN1989
33	C. rufford	KU175572	Kha mmuane Province, Laos	NUOL-R.2013.1
34	C. sommerladi	KX064041	Khammuane Province, Laos	VNUF R.2013.87
35	C. sonlaensis	MF957265	Son La Town, Son La Province, Vietnam	IEBR A.2017.2
36	C. soudthichaki	KX077904	Khammuane Province, Laos	NUOL-R.2015.5
37	C. sp. Xishuangbanna, China	MW067129	Xishuangbanna, Yunnan, China	SWFU 002882
38	C. sp. LuangPrabang, Laos	KJ817432	Luang Prabang Province, Laos	MDL 2014 LPB 62
39	C. sworderi	MF169946	Endau-Rompin, Johor, Malaysia	LSUHC 7700
40	C. taybacensis	MH997990	Dien Bien Province, Vietnam	IEBR 4379
41	C. teyniei	KJ817430	Kha mmuane Province, Laos	IEBR KM2012.77
42	C. thathomensis	MG791873	Xiangkhonang Province, Laos	ZMMU R-14919-1
43	C. tigroides	MF169948	Sai-Yok District, Kanchanaburi, Thailand	IRSNB 2380
44	C. triedrus	MF169951	Yakkunehela, Sri Lanka	Anslem de Silva 35 A
45	C. vilaphongi	KJ817435	Luang Prabang Province, Laos	IEBR A.2013.103
46	C. wayakonei	KJ817438	Luang Nam Tha Province, Laos	ZFMK 91016

supports [BS]) were determined based on 1000 bootstrap replicates. We consider relationships with $\operatorname{PPr} \geq 0.95$ and $\mathrm{BS} \geq$ 70 to be strongly supported.

3. Results

Genetic Differentiation

Five new generated COI sequences of Cyrtodactylus including four specimens from Daweishan National Nature Reserve and one unknown Cyrtodactylus collected from Xishuangbanna, Yunnan, China were obtained (GenBank ID: MW067125, MW067126, MW067127, MW067128, MW067129). The final alignments of the examined mtDNA COI gene fragment consisted of ~ 650 sites without any gaps. The ML and BI analyses recovered similar topologies at strongly supported species relationship; conflicting topologies were found between relationships that received low support ($\mathrm{BS}<70 \%, \mathrm{PPr}<0.95$). Some clades in both trees were recovered with low support by both analyses, which is most likely due to COI having fewer informative sites than other mitochondrial genes, such as the commonly used NADH dehydrogenase 2 (ND2; Brennen et al., 2017). More relationships in the BI analysis were recovered with strong support than in the ML analysis, and both analyses strongly recover the same sister relationships between species or pairs of species (Figure 1). Our sample collected from Xishuangbanna was sister to C. martini from Vietnam, with an uncorrected pairwise distance of 2.8%. The new samples from Hekou form a strongly supported clade with an uncertain phylogenetic placement with regards to the C. wayakonei and C. pulchellus groups (BI analysis). In the ML analysis, the Hekou specimens are recovered as reciprocally monophyletic to the clade containing C. wayakonei + C. sp. Xishuangbanna + C. martini with poor support. Uncorrected pairwise distance between the new samples from Hekou and other Cyrtodactylus species ranged from 14.2% (with C. martini) to 26.8% (with C. badenensis) (Table S1). However, though we find support of the new species as a distinct clade, the relationships of these species in the analyses are poorly supported and require more data.

Cyrtodactylus hekouensis sp. nov.

Hekou Bent-Toed Gecko (Figures 2-5)
Holotype: SWFU002507, adult male, collected by Yinpeng ZHANG, 07/24/2018, from Daweishan National Nature Reserve, Hekou County, Honghe Autonomous Prefecture, Yunnan Province, China. (N 22.673459, E 103.943534ㅇ, ~160 m). Paratypes: SWFU001578, adult male collected by Zhiyong YUAN; SWFU002879, SWFU002880, SWFU002881, all gravid female adults collected by Zhiyong YUAN and Yinpeng ZHANG, 07.24.2018. Collected from Daweishan National Nature Reserve, Honghe Autonomous Prefecture, Yunnan Province, China (N 22.673459°, E 103.943534ㅇ, $\sim 160 \mathrm{~m}$).

Figure 1 Bayesian phylogenetic tree of Cyrtodactylus inferred from mitochondrial COI. Numbers above and below branches indicate bootstrap support values ($\mathrm{BS} \geq 70 \%$) and Bayesian posterior probabilities (PPr $\geq 95 \%$), respectively; low support values are denoted by "-".

Diagnosis

A moderate sized Cyrtodactylus, with a slender trunk and bent toes, C. hekouensis is distinguished from other described Cyrtodactylus species by the combined characteristics: maximum SVL 92.3 mm and TL 98.5 mm ; 11-12 supralabials; 11-12 infralabials; 36-57 scale rows between the fifth supralabials; 10-13 dorsal tubercles rows; 3 postnasals on blunt and smooth front snout; precloacal-femoral pores in a continuous series of 33-39 (females with pitted scales) located under vent/cloaca and each side of thigh in both sexes; precloacal groove absent; $3 / 3$ postcloacal tubercles; subdigital lamellae under the fourth finger 21 or 22 , under the fourth toe $20-23$; smooth midbody with smooth venter and tuberculate dorsal scale rows, tubercles from head to tail base; dorsal transverse patterns are generally large, bilaterally symmetrical.

Holotype Description

Male collected from Daweishan National Nature Reserve, Honghe Autonomous Prefecture, Yunnan Province, China, with total length 149.8 mm (SVL 77.0 mm , TL 72.8 mm with

Figure 2 Holotype of Cyrtodactylus hekouensis sp. nov. (SFU002507): Dorsum (A); precloacal region (B); subdigital lamellae under left hindfeet toes (C); pair of chin-shields under dentary (D). Photo credit: Yinpeng ZHANG.

Figure 3 Dorsal color variations of Cyrtodactylus hekouensis sp. nov. Photo credit: Xiaolong LIU.
tail tip regenerated), slender, elongate trunk.
Head with short and smooth snout, some tuberculate scales start to regularly distribute into scales rows behind end of ocular scale to the tail base; nasal surrounded by 3 postnasals and connected with one large rectangular front lip scale; 11 supralabials; 12 infralabials; 43 scale rows behind fifth supralabials; $1^{\text {st }}$ infralabials connect with a large pair of chin shields; elongated supralabials reach to the end of ocular, $5^{\text {th }}$ and $6^{\text {th }}$ supralabials enlarged in middle; a narrow row of scales separating the supralabials from the infraoculars; always one wide dark brown band with yellow granular scales starts from nasal and crosses eye; external ears located below the dark brown band behind eyes.

Dorsal scales from head to tail base, flat and smooth, with irregularly located tuberculate scales around trunk of body and above venter mostly around black dorsum patterns; the greatest diameter of the orbits is $12.2 \mathrm{~mm} ; 129$ scales around the midbody; wrinkles slightly developed until the gular scale; lateral skin fold with no tubercles; 10 rows of dorsum tubercles; 9 granular scales surrounding dorsal tubercles; 71 ventral scale
rows, smooth, subimbricated round, larger than dorsal scales; three rows of enlarged scales presented in front of region of precloacal pores; 37 precloacal femoral pores series located in enlarged precloacal scales (9 precloacal pores plus in $14+14$ femoral pores on each side under thighs), continuous; precloacal groove absent.

Fore and hind limbs stout and slender; small scales covered dorsum; small scales covered dorsum fore and hind limbs, with some tubercles; scales on ventral fore and hind limbs rectangular; fingers and toes with no webbing; subdigital lamellae: finger I with 15 , finger II with 18 , finger III with 19 , finger IV with 21, and finger V with 21 subdigital scales (left measured); toe I with 16 , toe II with 18 , toe III with 18 , toe IV with 22, and toe V with 22 subdigital scales covered (left measured); relative length of fingers (right and left) is IV $>$ III $>$ V $>$ II $>$ I; relative length of toes (right and left) is IV $>\mathrm{V}>\mathrm{III}>$ II $>$ I.

Tail regenerated at tip; 3 postcloacal tubercles on each side of the tail base; tubercles concentrated in dorsum tail base in 6-8 scale rows; 5 dark dorsum tail bands.

Holotype, fixed with 10% formalin solution and transferred to 75% ethanol, light brown dorsally and dark gray ventrally. Coloration in live animals can be described as follows: light, yellow brown coloration with large blotches on dorsal surface of head, neck, dorsal, extremities and tail, head color slightly lighter; wide dark brown band starts from nasal and crosses eye; five irregular bands on dorsal, patterns on dorsal are generally large, and bilaterally symmetrical; some small irregular dorsal patterns present in between those bands, closed to belly; light whitish pink belly; five dark brown irregular transversal bands on tail completely encircled, with regenerated tail tip; light whitish gray tail venter.

Variation

Paratypes are similar to the holotype in morphological characteristics. For measurements and scalations variations see Table 2. Individuals show variation in color and blotch pattern at dorsal tail bases, dorsal limb surfaces, and midbody dorsal surfaces. The dark dorsal tail bands vary in numbers but are lost in the regenerated tails of the type specimens. Dark blotches on midbody dorsal surfaces less or more symmetrical and meet near spine (Figure 3). Dark blotches on dorsal head surfaces variable in position and size, with blotch size variable between and within specimens. Background coloration of specimens ranges from light tan to a moderate to dark brown, with darker blotches. The number of precloacal femoral pores show variation between different specimens, ranging from 33 to 39 . For measurements and scalations, see Table 2.

Distribution

C. hekouensis only known from the type locality, Daweishan National Nature Reserve, Honghe Autonomous Prefecture,

Yunnan Province, China.

Etymology

The species is named after the county of the type locality ("Hekou" = 河口 in Chinese).

Natural history

All specimens were found and collected in a karst (i.e., limestone) river valley with low density of vegetation near a stream at night from 20: 00 to 24: 00 . Specifically, all C. hekouensis in this study were found on karst edges near a road side of Daweishan National Nature Reserve, about 1.0-1.5 m height from the ground (Figure 5). Geckos were observed on the cliff sides or limestone burrow edges within high moisture. All collected females were gravid with two large, developed eggs, both $\sim 10 \mathrm{~mm}$ in length and $7-8 \mathrm{~mm}$ in diameter.

The specimens of C. hekouensis were collected from a tropical broadleaf evergreen forest. The locality is located next to the Nanxi River (part of the Red River system), close to the ChinaVietnam border. Day time temperatures generally rises in the range of 34-41 degrees centigrade in one day and the limestone
surfaces are typically dry during the daytime from June to August; night temperatures drops to around 28-30 degrees centigrade, on average. Limestone surfaces show moisture by condensation of water vapor from groundwater, the Nanxi River, plant transpiration and other sources.

Comparisons

Species of Cyrtodactylus endemic to tropical karst forest are often limited to small areas. Thus, rather than compare C. hekouensis with all species of Cyrtodactylus, we mainly focused on species from north and central regions of Laos, Vietnam, and Myanmar, which distribute geographically near China, as this is where C. hekouensis been found.
C. hekouensis sp. nov. can be differentiated from C. huongsonensis (Luu, Nguyen, Do and Ziegler, 2011) by having more ventral scale rows (68-72 vs. 41-48), and having more continuous precloacal-femoral pores (continuous 33-39 vs. 6-8 precloacal plus in 15-17 femoral pores in separate).
C. hekouensis sp. nov. can be distinguished from C. sonlaensis (Nguyen, Pham, Ziegler, Ngo and Le, 2017) by having

Table 2 Morphological measurements and scalation from holotype and paratypes of Cyrtodactylus hekouensis sp. nov. specimens. Only the maximum value was given for continuous data (i.e., distances). M: males; F: females; *: regenerated or broken tails; ${ }^{* *}$: snout broken, no scales of sufficient quality to measure or count; m: mean; min: minimum; max: maximum; s : standard deviation.

	SWFU002507	SWFU001578	SWFU002879	SWFU002880	SWFU002881	$\min -\max (\mathrm{m} \pm \mathrm{s})$
SEX	M	M	F	F	F	
SVL (mm)	77	84.3	80.8	92.3	91.8	max. 92.3
TL	72.8	98.6	80.9	99.2*	75.9*	max. 99.2
HL	26.4	24.5	24.9	28.4	28.6	max. 28.6
HW	15.5	14.7	14.2	17.6	17.3	max. 17.6
HH	8.7	8.6	9.7	10.7	10.8	max. 10.8
OD	12.2	11.9	11.7	15.8	17	max. 17.0
SE	6.5	8.4	7.2	8.2	8.5	max. 8.5
EE	6.2	6.6	5.6	6.7	7.2	max. 7.2
AG	42.5	47.6	44.5	54.5	50.3	max. 54.5
SL	11	10	11	12	11	$11-12(10.9 \pm 0.7)$
IL	12	11	12	11	11	$11-12(11.4 \pm 0.5)$
N	3	3	/**	3	3	3
V	71	70	72	69	68	$68-72(70.4 \pm 1.6)$
OS	33	32	24	29	33	$24-33(28 \pm 3.8)$
SR5	43	52	36	57	50	$36-57(46.4 \pm 8.2)$
GST	9	9	9	10	9	9-10 (9.2 $\pm 0.4)$
MS	129	125	132	153	137	$125-153(134.9 \pm 10.9)$
DTR	10	12	13	12	13	$10-13(11.9 \pm 1.2)$
PP	37	35	33	35	39	$33-39(35.2 \pm 2.3)$
PAT	3/3	3/3	3/3	3/3	3/3	3/3
LF4	21	22	22	21	22	$21-22(21.4 \pm 0.5)$
LT4	22	23	20	23	22	$20-23(21.3 \pm 1.2)$

Figure 4 Dorsal view of live C. hekouensis sp. nov. from Yunnan, China. Photo credit: Zhiyong YUAN.

Figure 5 Type locality of Cyrtodactylus hekouensis sp. nov., Daweishan National Nature Reserve, Hekou County, Honghe Autonomous Prefecture, Yunnan Province, China. Photo credit: Yinpeng ZHANG.
presenting precloacal-femoral pores in females (absent in C. sonlaensis).
C. hekouensis sp. nov. can be distinguished from C. otai (Nguyen, Le, Pham, Ngo, Hoang, Pham and Ziegler, 2015) by having presenting femoral pores (absent in C. otai).
C. hekouensis sp. nov. can be distinguished from C. bobrovi (Nguyen, Le, Pham, Ngo, Hoang, Pham and Ziegler, 2015) by having more precloacal-femoral pores (33-39 vs. 5 in males and absent in females), and numbers of postcloacal tubercles ($3 / 3 \mathrm{vs}$. $1 / 1+2 / 3$).
C. hekouensis sp. nov. can be differentiated from C. jaegeri (Luu, Calame, Bonkowski, Nguen and Ziegler, 2014) by having fewer postcloacal tubercles ($3 / 3$ vs. male $5 / 6$), and dorsal patterns (bilaterally symmetrical patterns vs. wide bands).
C. hekouensis sp. nov. can be differentiated from C. puhuensis (Nguyen, Yang, Le, Nguyen, Orlov, Hoang, Nguyen, Jin, Rao, Hoang, Che, Murphy and Zhang, 2014) by having more ventral scale rows (68-72 vs. 36), and having femoral pores (absent in C. puhuensis).
C. hekouensis sp. nov. can be differentiated from C. soudthichaki (Luu, Calame, Nguyen, Bonkowski and Ziegler, 2015) by having fewer postcloacal tubercles (3/3 vs. 4/4-5/5);
more precloacal-femoral pores (33-39 vs. 29); and dorsal body patterns (bilaterally symmetrical patterns vs. 5 transverse bands).
C. hekouensis sp. nov. can be distinguished from C. soni (Le, Nguyen, Le and Ziegler, 2016) by different formations of precloacal-femoral pores (continuous 33-39 vs. males 6/7 precloacal+6-8 femoral, separate).
C. hekouensis sp. nov. can be distinguished from C. taybacensis (Pham, Le, Ngo, Ziegler and Nguyen, 2019) by having more ventral scale rows ($68-72$ vs. $30-38$), and more precloacalfemoral pores (33-39 vs. males 11-13+females 5/15 pitted+femoral absent).
C. hekouensis sp. nov. can be differentiated from C. houaphanensis (Schneider, Luu, Sitthivong, Teynié, Le, Nguyen and Ziegler, 2020) by having more ventral scale rows (68-72 vs. 35); more precloacal-femoral pores (33-39 vs. 6+femoral absent); and more postcloacal tubercles ($3 / 3$ vs. $2 / 2$).
C. hekouensis sp. nov. can be differentiated from C. ngoiensis (Schneider, Luu, Sitthivong, Teynié, Le, Nguyen and Ziegler, 2020) by having more precloacal-femoral pores (33-39 vs. males 7 precloacal+14 femoral+female absent).
C. hekouensis sp. nov. can be distinguished from C. vilaphongi (Schneider, Nguyen, Le, Nophaseud, Bonkowski and Ziegler, 2014) by having more ventral scale rows (68-72 vs. 34-36); more postcloacal tubercles ($3 / 3$ vs. $2 / 2$); existence of precloacal-femoral pores (continuous pores 33-39 vs. precloacal pore unknown in male and absent in female).
C. hekouensis sp. nov. can be distinguished from C. martini (Tri, 2011) by having more postcloacal tubercles ($3 / 3 \mathrm{vs} .2 / 2$); more ventral scale rows (68-72 vs. 39-43); and more precloacalfemoral pores (continuous pores 33-39 vs. 4 precloacal pores and femoral absent).
C. hekouensis sp. nov. can be distinguished from C. wayakonei (Nguyen, Kingsada, Rösler, Auer and Ziegler, 2010) by having more precloacal-femoral pores (continuous pores 33-39 vs. 6-8); more postcloacal tubercles ($3 / 3$ vs. $2 / 2$); and by having different dorsal banded patterns (bilaterally symmetrical vs. reticulated).

4. Discussion

Cyrtodactylus wayakonei might be misidentified in China based on our phylogeny result of a Crytodactylus specimen from Xishuangbanna. However, while C. wayakonei in China is only known from Yunnan (Yuan and Rao, 2011), previous records of Xishuangbanna's C. wayakonei were established by morphological comparison only. According to our phylogenetic results, the sample from Xishuangbanna county (C. sp. Xishuangbanna in our gene tree) is sister to C. martini, and the two former specimens together are the sister group to C. wayakonei by ML analysis ($\mathrm{BS}>70 \%$), which is consistent
with the study of Brennan et al. (2017) who also identified a Cyrtodactylus specimen from Xishuangbanna as C. aff. martini. Additionally, the uncorrected p distance results (Table S1) suggest that the samples from Xishuangbanna have a smaller genetic divergence from C. martini than to C. wayakonei (C. sp. Xishuangbanna and C. martini: 2.8\%; C. sp. Xishuangbanna and C. wayakonei: 6.8%). This result also corresponds with a study from Nazarov et al. (2018), which acknowledged a Cyrtodactylus specimen from Xishuangbanna as C. cf. martini. Moreover, the morphological characters identified by Yuan and Rao (2011) from four specimens (male 2011R0010; females KIZ201101, KIZ201102, KIZ201103) may be inaccurate or represent variation. For example, precloacal-femoral pores data as a sexual character of lizards (Mayerl et al., 2015) from both genders are not provided; supralabials and infralabials differed from the holotype description (males/females supralabials and infralabials 9-10 in Yuan and Rao's [2011] study vs. supralabials 7-8 and infralabials 9-10 in type specimens description). The evaluation of C. wayakonei and distribution of C. martini in China should be discussed and supplemented with further morphological data by more specimens from these localities in future studies.

The karstic habitats of southwestern China represent the world's largest karst habitat system, and harbor an extraordinary diverse endemic flora and vertebrate fauna, which are in danger to anthropogenic threats (National Bureau Statistics of China, 2011; Luo et al., 2016). Fieldwork in these areas since 2015 has discovered eight amphibians and reptiles as new species or new locality records (Böhme, 2003; Nicodemo and Bain, 2007; Wang et al., 2015; Chen et al., 2018; Ren et al., 2018; Wang et al., 2018; Zhang et al., 2018; Yuan et al., 2019). Although these recent discoveries provide a greater understanding of the reptilian biodiversity in this region, it also indicates that there is likely much biodiversity that has yet to be discovered. Most of these works were conducted in Yunnan Province of China near the international boundary with Vietnam, and there is a lack of survey and collecting work in other areas of this hotspot, such as the areas between northern Hanoi, Vietnam and Guangxi Province, China. Extensive collaboration between China and Vietnam to conduct comprehensive fieldworks on amphibians and reptiles will be crucial to discovering cryptic species and understanding the full diversity of this region, which is critical in the current time during which global extinction rates have increased (Pimm et al., 2014).

Acknowledgement We thank Guiliang ZHANG and Guisheng ZHANG from the Hekou forestry department and Daweishan National Nature Reserve for their support in the processing of our sampling collection and their longtermed collaboration, respectively. We also thank Yanhong HE and Yixin XING for editing photographs. This work was
supported by grants from the Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0501), National Natural Science Foundation of China (31702008), Young talent project of China Association for Science and Technology (2019-2021QNRC001) and Yunnan Fundamental Research Project (202001AW070016, 202005AC160046), Biodiversity Investigation, Observation and Assessment Program (20192023) of Ministry of Ecology and Environment of China to Z. Y. Y. and J. W.

References

Agarwal I., Mahony S., Giri V. B., Chaitanya R., Bauer A. M. 2018. Two new species of bent toed geckos, Cyrtodactylus Gray, 1827 (Squamata: Gekkonidae) from northeast India with comments on name-bearing types from the region. Zootaxa, 4420 (3): 334-356
Böhme W. 2003. Checklist of the living monitor lizards of the world (family Varanidae). Zool Verh, 341: 3-43
Boulenger G. A. 1905. On some batrachians and reptiles from Tibet. Ann Mag Nat Hist, 15(7): 378-379
Brennan I. G., Bauer A. M., Tri N. V., Wang Y., Wang W., Zhang Y., Murphy R. W. 2017. Barcoding utility in a mega-diverse, crosscontinental genus: keeping pace with Cyrtodactylus geckos. Sci Rep, 7: 5592
Che J., Chen H., Yang J., Jin J., Jiang K., Yuan Z., Murphy R. W., Zhang Y. 2012. Universal COI primers for DNA barcoding amphibians. Mol Ecol Res, 12: 247-258
Chen J., Poyarkov N. A., Suwannapoom C., Lathrop A., Wu Y., Zhou W., Yuan Z., Jin J., Chen H., Liu H., Nguyen T. Q., Nguyen S. N., Duong T. V., Eto K., Nishikawa K., Matsui M., Orlov N. L., Stuart B. L., Brown R. M., Rowley J. J., Murphy R. W., Wang Y., Che J. 2018. Large-scale phylogenetic a nalyses provide insights into unrecognized diversity and historical biogeography of Asian leaf-litter frogs, genus Leptolalax (Anura: Megophryidae). Mol Phylogenetics Evol, 124: 162-171
Connette G. M., Oswald P., Thura M. K., Connette K. J. L., Grindley M. E., Songer M., Zug G. R., Mulcahy D. G. 2017. Rapid forest clearing in a Myanmar proposed national park threatens two newly discovered species of geckos (Gekkonidae: Cyrtodactylus). PLoS One, 12(4): e0174432
Darriba D., Taboada G. L., Doallo R., Posada D. 2012. jModelTest 2: More models, new heuristics and parallel computing. Nat Methods, 9(8): 772
David P., Nguyen T. Q., Schneider N., Ziegler T. 2011. A new species of the genus Cyrtodactylus Gray, 1827 from central Laos (Squamata: Gekkonidae). Zootaxa, 2833: 29-40
Grismer L. L., Wood Jr P. L., Thura M. K., Quah E. S. H., Murdoch M. L., Grismer M. S., Herr M. W., Lin A., Kyaw H. 2018. Three more new species of Cyrtodactylus (Squamata: Gekkonidae) from the Salween basin of eastern Myanmar underscore the urgent need for the conservation of karst habitats. J Nat Hist, 52: 1243-1294
Grismer L. L., Wood P. L. J., Quah E. S., Grismer M. S., Thura M. K., Oaks J. R., Lin A. 2020. Two new species of Cyrtodactylus Gray, 1827 (Squamata: Gekkonidae) from a karstic archipelago in the Salween basin of southern Myanmar (Burma). Zootaxa, 4718(2): 151-183
Guindon S., Gascuel O. 2003. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol, 52: 696-704
Hebert P. D., Cywinska A., Ball S. L., Dewaard J. R. 2003. Biological
identifications through DNA barcodes. Proc R Soc Lond B, 270(1512): 313-321
Huelsenbeck J. P., Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinfomatics, 17: 754-755
Jackman T. R., Bauer A. M., Greenbaum E., Glaw, F., Vences M. 2008. Molecular phylogenetic relationships among species of the MalagasyComoran gecko genus Paroedura (Squamata: Gekkonidae). Mol Phylogenet Evol, 46 (1): 74-81
Kozlov A., Darriba D., Flouri T., Morel B., Stamatakis A. 2019. RAxMLNG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics, 35: 4453-4455
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 35: 1547-1549
Le D. T., Nguyen T. Q., Le M. D., Ziegler T. 2016. A new species of Cyrtodactylus (Squamata: Gekkonidae) from Ninh Binh Province, Vietnam. Zootaxa, 4162(2): 268-282
Li P. 2007. Description of a new subspecies of Cyrtodactylus khasiensis from China. Acta Zootax sin, 32(3): 733-737
Luo Z., Tang S., Jiang Z., Chen J., Fang H., Li C. 2016. Conservation of terrestrial vertebrates in a global hotspot of karst area in southwestern China. Sci Rep, 6 (1): 1-12
Luu V. Q., Bonkowski M., Nguyen T. Q., Le M. D., Schneider N., Ngo H. T., Ziegler T. 2016a. Evolution in karst massifs: cryptic diversity among bent-toed geckos along the Truong Son Range with descriptions of three new species and one new country record from Laos. Zootaxa, 4107(2): 101-140
Luu V. Q., Calame T,, Bonkwoski M., Nguyen T. Q., Ziegler T. 2014. A new species of Cyrtodactylus (Squamata: Gekkonidae) from Khammouane Province, Laos. Zootaxa, 3760(1): 54-66
Luu V. Q., Calame T, Nguyen T. Q., Bonkwoski M., Ziegler T. 2015. A new species of Cyrtodactylus (Squamata: Gekkonidae) from the limestone forest of Khammouane Province, central Laos. Zootaxa, 4058(3): 388402
Luu V. Q., Nguyen T. Q., Do H. Q., Ziegler T. 2011. A new Cyrtodactylus (Squamata: Gekkonidae) from Huong Son limestone forest, Hanoi, northern Vietnam. Zootaxa, 3129: 39-50
Luu V. Q., Nguyen T. Q., Le M. D., Bonkowski M., Ziegler T. 2016b. A new species of karst-dwelling bent-toed gecko (Squamata: Gekkonidae) from Khammouane Province, central Laos. Zootaxa, 4079(1): 87-102
Mayerl C., Baeckens S., Damme R. V. 2015. Evolution and role of the follicular epidermal gland system innon-ophidian squamates. Amphibia-Reptilia, 36: 185-206
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., Thierer T., Ashton B., Meintjes P., Drummond A. 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12): 1647-1649
Myers N., Mittermeier R. A., Mittermeier C. G., da Fonseca G. A. B., Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403: 854-858
National Bureau of Statistics of China. 2011. The report of the sixth national population census of China. Retrieved from http://www. stats.gov.cn/ zgrkpc/dlc/
Nazarov R. A., Pauwels O. S. G., Konstantinov E. L., Chulisov A. S., Orlov N. L., Poryakov N. A. 2018. A new karst-dwelling bent-toed gecko (Squamata: Gekkonidae: Cyrtodactylus) from Xiangkhoang Province, northeastern Laos. Zool Res, 39(3): 197-213

Nazarov R. A., Poyarkov Jr N. A., Orlov N. L., Nguyen N. S., Milto K. D., Martynov A. A., Konstantinov E. L., Chulisov A. S. 2014. A review of genus Cyrtodactylus (Reptilia: Sauria: Gekkonidae) in fauna of Laos with description of four new species. Proceedings ZIN, 318(4): 391-423
Nguyen S. N., Le T. N. T., Tran T. A. D., Orlov N. L., Lathrop A., Macculloch R. D., Le T. D. T., Jin J. Q., Nguyen L. T., Nguyen T. T., Hoang D. D., Che J., Murphy R. W., Zhang Y. P. 2013. Phylogeny of the Cyrtodactylus irregularis species complex (Squamata: Gekkonidae) from Vietnam with the description of two new species. Zootaxa, 3737(4): 399-414
Nguyen S. N., Yang J., Le T. T., Nguyen L. T., Orlov N. L., Hoang C. V., Nguyen T. Q., Jin J., Rao D., Hoang T. N., Che J., Murphy R. W., Zhang Y. 2014. DNA barcoding of Vietnamese bent-toed geckos (Squamata: Gekkonidae: Cyrtodactylus) and the description of a new species. Zootaxa, 3784(1): 48-66
Nguyen T. Q., Kingsada P., Rösler H., Auer M., Ziegler T. 2010. A new species of Cyrtodact ylus (Squamata: Gekkonidae) from northern Laos. Zootaxa, 2652: 1-16
Nguyen T. Q., Le M. D., Pham A. V., Ngo H. N., Hoang C. V., Pham C. T., Ziegler T. 2015. Two new species of Cyrtodactylus (Squamata: Gekkonidae) from the karst forest of Hoa Binh Province, Vietnam. Zootaxa, 3985(3): 375-390
Nguyen T. Q., Pham A.V., Ziegler T., Ngo H. T., Le M. D. 2017. A new species of Cyrtodactylus (Squamata: Gekkonidae) and the first record of C. otai from Son La Province, Vietnam. Zootaxa, 4341 (1): 25-40

Nicodemo P., Bain R. H. 2007. Geographic distribution note on Dendrelaphis ngansonensis in China. Herpetol Rev, 38: 355
Pauwels O. S. G., Nazarov R. A., Bobrov V. V., Poyarkov N. A. 2018. Taxonomic status of two populations of bent-toed geckos of the Cyrtodactylus irregularis complex (Squamata: Gekkonidae) with description of a new species from Nui Chua National Park, southern Vietnam. Zootaxa, 4403(2): 307-335
Pauwels O. S., Sumontha M., Bauer A. M. 2016. A new bent-toed gecko (Squamata: Gekkonidae: Cyrtodactylus) from Phetchaburi Province, Thailand. Zootaxa, 4088(3), 409-419
Pham A. V., Le M. D., Ngo H. T., Ziegler T., Nguyen T. Q. 2019. A new species of Cyrtodactylus (Squamata: Gekkonidae) from northwestern Vietnam. Zootaxa, 4544(3): 360-380
Pimm S. L., Jenkins C. N., Abell R., Brooks T. M., Gittleman J. L., Joppa L. N., Raven P. H., Roberts C. M., Sexton J. O. 2014. The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344: 1246752
Ren J., Wang K., Nguyen T. T., Hoang C. V., Zhong G. H., Jiang K., Guo P., Li J. 2018. Taxonomic re-evaluation of the monotypic genus Pararhabdophis Bourret, 1934 (Squamata: Colubridae: Natricinae) with discovery of its type species, P. chapaensis, from China. Zootaxa, 4486: 31-56
Schneider N., Nguyen T. Q., Le M. D., Nophaseud L., Bonkwoski M., Ziegler T. 2014. A new species of Cyrtodactylus (Squamata: Gekkonidae) from the karst forest of northern Laos. Zootaxa, 3835(1): 80-96
Schneider N., Luu V. Q., Sitthivong, S., Teynié A., Le M. D., Nguyen T. Q., Ziegler T. 2020. Two new species of Cyrtodactylus (Squamata: Gekkonidae) from northern Laos, including new finding and expanded diagnosis of C. bansocesis. Zootaxa, 4822(4): 503-530
Shi L., Zhao H. 2010. A new species of Cyrtodactylus (Reptilia: Squamata: Geckkonidae) from Xizang Autonomous Region, China. Zootaxa, 2336: 51-60
Sitthivong S., Luu V. Q., Ha N. V., Nguyen T. Q., Ziegler T. 2019. A new
species of Cyrtodactylus (Squamata: Gekkonidae) from Vientiane Province, northern Laos. Zootaxa, 4701(3): 257-275
Uetz P., Freed P., Hošek J. (eds.) 2020. The Reptile Database. Retrieved from http://www.reptile-database.org
Wang K., Jiang K., Wang Y., Poyarkov N. A. J., Che J., Siler C. D. 2018. Rediscovery of Japalura chapaensis Bourret, 1937 (Reptilia: Squamata: Agamidae) from Southeast Yunnan Province, China. Zool Res, 39, 105-113
Wang K., Ren J., Chen H., Lyu Z., Guo X., Jiang K., Chen J., Li, J., Guo P., Wang Y., Che J. 2020. The updated checklists of amphibians and reptiles of China. Biodivers Sci, 28 (2): 189-218
Wang Y., Lau M., Yang J., Chen G., Liu Z., Pang H., Liu Y. 2015. A new species of the genus Odorrana (Amphibia: Ranidae) and the first record of Odorrana bacboensis from China. Zootaxa, 3999: 235-254
Weisrock D. W., Macey J. R., Ugurtas I. H., Larson A., Papenfuss T. J. 2001. Molecular phylogenetics and historical biogeography among Salamandrids of the "true" Salamander Clade: rapid branching of numerous highly divergent lineages in Mertensiella luschani associated
with the rise of Anatolia. Mol Phylogenet Evol, 18(3): 434-448
Yuan S., Rao D. 2011. A new record of a Gekkonid (Cyrtodactylus wayakonei) from Yunnan, China. Zool Res, 32(6): 684-688
Yuan Z., Jin J., Li J., Stuart B. L., Wu J. 2018. A new species of cascade frog (Amphibia: Ranidae) in the Amolops monticola group from China. Zootaxa, 4415(3): 498-512
Yuan Z., Liu X., Wang K., Wang J., Chen J., Jin J., Wei P., Zhou J., Che J. 2019. Nidirana chapaensis (Bourret, 1937), one additional anuran species for the amphibian fauna of China. Zootaxa, 4571: 580-588
Ziegler T., Phung T. M., Le M. D., Nguyen T. Q. 2013. A new Cyrtodactylus (Squamata: Gekkonidae) from Phu Yen Province, southern Vietnam. Zootaxa, 3686(4): 432-446
Zhao E., Zhao K., Zhou K. 1999. Editorial committee of fauna sinica, fauna sinica, Reptilia, Squamata, Lacertilia. Beijing, China: Science Press
Zhang M., Han F., Ye J., Ni Q., Li Y., Yao Y., Xu H. 2018. The entire mitochondrial genome of Vietnam warty newt Paramesotriton deloustali (Salamandridae: Paramesotriton) with a new distribution record from China. Conserv Genet Resour, 10: 551-554

Handling Editor: Chen YANG

How to cite this article:

Zhang Y. P., Liu X. L., Bernstein J., Wang J., Yuan Z. Y. A New Species of Cyrtodactylus (Squamata: Gekkonidae) from the Karst Forests of Daweishan National Nature Reserve, Yunnan, China. Asian Herpetol Res, 2021, 12(3): 261-270. DOI: 10.16373/j.cnki.ahr. 200090
Table S1 Uncorrected (" p ") distance matrix showing uncorrected pairwise divergences from COI fragments of Cyrtodactylus species used in this study. The minimum genetic diverge between Cyrtodactylus hekouensis sp. nov. and selected species ranges from 14.2% to 26.8%.

Speces	CenBank $^{\text {a }}$	1	2	3	4	5	6	7	8	,	${ }_{10}$	11	12	13	14	15	16	17	18	19	20	21	22	${ }^{23}$	24	${ }^{25}$	26	${ }^{27}$	28	29	${ }^{30}$	${ }^{31}$	32	${ }^{33}$	${ }^{4}$	${ }^{35}$	36	${ }^{37}$	38	${ }^{39}$	${ }_{40}$	${ }^{41}$	${ }^{42}$	${ }^{43}$	44	45
9 9racesthus hamremsis	MFFi6917																																													
C lortae	MFI6925	0.218																																												
$C^{\text {cigrou}}$ (es	MFIF9978	0.23	0.32																																											
c.uciongane	kToos37	0.247	0.186	0.177																																										
$\mathrm{c}_{\text {n wopuene }}$	${ }^{\text {k817438 }}$	0.23	0.288	0.158	0.165																																									
c.mation	MFI6929	0.24	0.23	0.162	0.175	0.972																																								
Cloma	kroutis9	0.223	0.227	0.214	0.202	0.188	0.190																																							
$c_{\text {mucherluss }}$	не967202	0.22	0.237	0.28	0.240	0.217	0.203	0.25																																						
$c_{\text {marorder }}$	MFI69\% 6	0.245	0.25	0.215	0.24	0.202	0.201	0.245	${ }_{0} 0.23$																																					
colthemi	M Fl 19932	0.243	0.230	0.195	0.202	0.200	0.183	0.193	0.220	0.249																																				
$C_{\text {cevaminemensis }}$	kरV41664	0.250	0.22	0.202	0.179	0.214	0.207	0.194	0.211	0.261	0.136																																			
C.s. Lung Prameng Las	k817432	0.23	0.197	0.184	0.166	0.170	0.163	0.213	0.207	0.240	0.198	0.200																																		
$c^{\text {c chmoneasensmis }}$	MTr95761	0.207	0.197	0.161	0.158	0.69	0.152	0.191	0.210	0.22	0.185	${ }^{0.183}$	${ }^{0.125}$																																	
c. whequonge	${ }^{\text {k817/435 }}$	0.218	0.207	0.179	0.177	0.179	0.164	0.185	0.24	0.22	0.181	0.183	0.142	0.886																																
c. Musisensis	${ }^{\text {KP1 } 19948}$	0.232	0.36	0.181	0.172	0.182	0.167	0.214	0.219	0.231	0.29	0.192	0.148	0.125	0.126																															
caff cuphmagemes	${ }^{\text {kJ171728 }}$	0.213	0.203	0.184	0.188	0.194	0.174	0.188	0.229	0.230	0.181	0.200	0.14	0.098	0.087	${ }^{0.116}$																														
Coata	Mr957262	0.214	0.211	0.192	0.181	0.207	0.178	0.206	0.225	0.22	0.186	0.211	0.14	0.098	0.101	0.119	0.065																													
c aborow	kT00369	0.210	0.206	0.186	0.187	0.188	0.169	0.205	0.220	0.21	0.184	0.207	${ }^{0.135}$	0.098	0.097	0.108	0.065	${ }_{0}^{0.39}$																												
Chmonsonemes	Kגх35034	0.248	0.198	0.199	0.162	0.188	0.169	0.204	0.195	0.23	0.214	0.200	0.158	0.164	0.12	0.188	0.181	0.174	0.17																											
Cs.soluensis	mp9s726S	0.24	0.36	0.203	0.175	0.179	0.163	0.227	0.192	0.245	0.220	0.202	0.176	0.193	0.198	0.179	0.275	0.199	0.188	0.149																										
celok	MFIL6914	0.31	0.227	0.238	0.222	0.219	0.196	0.265	0.208	0.210	0.246	0.235	0.225	0.221	0.228	0.221	0.331	0.337	0.23	0.24	0.227																									
$c^{\text {cappocensis }}$	ми99790	0.269	0.198	0.167	0.062	0.176	0.164	0.205	0.230	0.245	0.197	0.179	0.175	0.159	0.178	0.19	0.182	0.188	0.181	0.169	0.188	${ }_{0}^{2216}$																								
c.imeragigilas	кх07790\|	0.24	0.238	0.219	0.222	0.211	0.212	0.254	0.271	0.235	0.22	0.233	0.238	0.226	0.229	0.240	0.241	0.388	0.237	${ }^{0.241}$	$0^{0.245}$	0.175	0.212																							
C.Memmmenensis	Hms88467	0.242	0.222	0.251	0.236	0.237	0.234	0.259	0.24	0.258	0.249	0.246	0.222	0.226	0.256	0.258	0.257	0.243	0.235	0.246	0.226	0.249	0.250	0.271																						
$c_{\text {nifurd }}$	ku17s572	0.260	0.25	0.23	0.219	0.239	0.224	0.258	0.226	0.261	0.240	0.24	0.220	0.211	0.254	0.230	0.243	0.232	0.230	0.240	0.24	0.264	0.228	0.288	${ }^{0.130}$																					
c. southichewt	${ }^{\text {kx }} 77904$	0.264	0.24	0.242	0.228	0.247	0.235	0.262	0.251	0.278	0.288	0.252	0.242	0.238	0.243	0.247	0.235	0.24	0.247	0.251	0.24	0.266	0.242	${ }_{0} 2.25$	0.147	0.159																				
$c_{\text {chager }}$	kT00936s	0.257	0.29	0.258	0.236	0.250	0.228	0.238	0.206	0.24	0.37	0.24	${ }_{0} 0.22$	0.237	0.262	0.222	0.259	0.275	0.272	0.264	${ }_{0}^{0.265}$	0.243	0.248	0.288	0.16	${ }^{0.164}$	${ }^{0.154}$																			
c. smomeralal	${ }^{1 \times 066044}$	0.241	0.21	0.288	0.23	0.24	0.228	0.267	0.266	0.256	0.232	0.228	0.24	0.227	0.230	0.235	0.24	0.241	0.252	0.248	0.216	0.283	0.238	0.234	0.189	0.196	0.174	0.178																		
chimammosis	${ }^{106064948}$	0.272	${ }^{0.366}$	0.22	0.235	0.31	0.238	0.270	0.257	0.263	0.260	0.248	0.232	0.217	0.288	${ }^{0.259}$	0.248	0.252	0.257	0.230	0.229	0.248	0.232	0.268	0.186	0.216	0.217	0.205	0.185																	
	${ }_{\text {kr92922 }}$	0.252	0.22	0.218	0.24	0.236	0.217	0.242	0.266	0.252	0.250	0.238	0.219	0.220	0.24	0.24	0.251	0.239	0.258	0.238	0.22	0.245	0.239	0.24	0.174	0200	${ }_{0}^{023}$	0.190	0.183	0.998																
$C^{\text {compmensis }}$	${ }^{18177436}$	0.246	${ }^{0.233}$	0.238	0.239	0.246	0.24	0.242	${ }_{0} 0.27$	0.242	0.24	0.231	${ }_{0} 0.36$	0.222	0.249	0.273	0.248	${ }_{0} 0.261$	0.261	${ }_{0} 2.24$	${ }_{0}^{0246}$	0.260	0.249	0.274	0.185	0.205	0.214	0.191	0.204	0.166	${ }^{0.164}$															
Chintiomensis	MC79187	0.254	0.226	0.22	0.30	0.249	0.239	0.42	0.264	0.246	0.248	0.223	0.257	0.237	0.22	0.276	0.259	0.257	0.253	0.251	0.255	0.266	0.250	0.27	0200	0.216	0.209	0.205	${ }^{0.195}$	0.190	0.182	0.178														
Cupned	ks17430	0.237	0.24	0.22	0.235	0.252	0.24	0.251	0.233	0.250	0.227	0.223	0.250	0.31	0.211	0.238	0.242	0.240	0.238	0.279	0.247	0.258	0.268	0.271	0.187	${ }_{0} 206$	0.193	0.203	0.205	0.172	0.172	0.162	0.104													
$c_{\text {progech }}$	${ }^{1817431}$	0.258	0.236	0.230	0.236	0.242	0.221	0.37	0.237	0.265	0.322	0.228	${ }_{0} 024$	0.217	0.288	0.238	0.228	0.232	0.22	0.24	0.229	0.250	0.24	0.273	0.213	${ }_{0} 218$	0.21	0.221	0.187	0.22	0.204	0.200	0.209	0.02												
C crppus	${ }^{\text {KXO60438 }}$	0.235	0.22	0.219	0.203	0.212	0.202	0.218	${ }_{0} 0.238$	0.22	0.215	0.206	0.231	0.228	0.22	0.233	0.22	0.224	0.224	0.229	0.230	0.22	0.24	0.232	0.250	0.259	0267	0.25	0.243	0.263	0.236	0.30	0.236	0.246	0229											
$\mathrm{c}_{\text {chingelai }}$	${ }_{\text {KF7 } 18843}$	0.267	0.196	0.22	0.229	0.228	0.213	0.234	0.227	0.21	0.207	0.206	${ }^{0.231}$	0.223	0.226	${ }^{0.239}$	0.235	0.247	0.237	0.205	0.220	0.331	0.224	0.24	0.235	${ }_{0} 2.23$	0.257	0.219	0.322	0.243	0.217	0.238	0.37	0.388	${ }_{0} 2.36$	${ }_{0}^{0.41}$										
	${ }_{\text {KFF F99\%3 }}$	0.242	0.219	0.24	0.220	0.207	0.206	0.204	0.24	0.214	0.216	0.210	0.255	0.211	0.215	0.227	0.206	0.211	0.212	0.218	${ }^{0.230}$	0.232	0.203	0.248	0.243	${ }^{0.299}$	0.262	${ }^{0.256}$	0.273	0.240	0.37	0.261	0.246	0.37	0.252	0.149	0.156									
C Madesments	${ }_{\text {krFosas }}$	0.271	0.267	0.252	0.227	0.24	0.236	0.228	0.226	0.23	0.24	0.233	${ }_{0} 0.261$	0.264	0.355	0.280	0.257	0.270	0.260	0.24	0.276	0.261	0.237	0.266	${ }_{0}^{0.256}$	0.267	0.22	${ }^{0267}$	0.293	0.274	0.285	0.27	0.306	0.295	0262	${ }_{0} 2.25$	0.199	0.187								
$C_{\text {quabisimaus }}$		0.270	0.337	0.24	0.205	0.236	0.235	0.234	0.248	0.205	0.233	0.226	0.240	0.212	0.34	0.24	0.240	0.226	0.229	0.242	${ }^{0.241}$	0.230	0.299	0.229	${ }_{0}^{0.24}$	${ }^{0.24}$	0.237	${ }^{0.235}$	0.240	0.354	0.24	0.260	0.264	0.36	${ }^{0263}$	${ }_{0}^{0218}$	0.212	${ }_{0}^{0213}$	${ }^{0.257}$							
$c_{\text {mphenens }}$	${ }_{\text {kr } 29929}$	0.22	0.205	0.197	0.219	0.211	0.183	0.189	0.223	0.233	0.200	0.211	0.173	0.115	0.111	0.121	0.031	0.078	0.078	0.212	0.224	0.246	0.29	0.265	0.272	0.238	0.23	0.260	0.247	0.275	0.267	0.259	0.274	0.35	0.244	0.237	0.238	${ }_{0}^{025}$	${ }_{0}^{0267}$	0.256						
chentousks s. . .ov.	Mwo67125	0.252	0.217	0.172	0.171	0.164	0.142	0.212	0.206	${ }^{0.238}$	0.211	0.199	0.183	${ }^{0.190}$	0.199	0.194	0.195	0.197	0.206	0.167	0.170	0.24	${ }^{0.186}$	0.246	0.331	0.229	${ }^{0.237}$	0.225	0.236	0.29	0.32	0.249	0.248	0.242	${ }_{0} 025$	${ }_{0}^{1225}$	0.23	${ }^{0.245}$	${ }^{0268}$	0.24	${ }^{0.208}$					
	Mw6\%726	0.252	0.217	0.172	0.71	0.164	0.142	0.212	0.206	0.238	0.211	0.199	0.183	0.190	0.199	0.194	0.195	0.197	0.206	0.167	0.170	0.24	0.186	0.246	0.331	0.229	0.237	0.225	0.236	0.22	0.232	0.249	0.249	0.22	0225	${ }_{0} 225$	0.233	${ }_{0} 2.24$	${ }^{0268}$	${ }^{0.34}$	${ }_{0} 208$	0.000				
C Mrotousisis p. mov.	Mw667127	0.255	0.217	0.172	0.171	0.164	0.143	0.210	0.206	0.236	0.211	0.200	0.183	0.190	0.199	0.194	0.195	${ }^{0.195}$	0.206	0.167	0.171	0.23	${ }^{0.186}$	0.24	${ }^{0.231}$	0.229	${ }_{0} 2.23$	0.225	0.236	0.28	0.232	0.250	0.249	0.242	${ }_{0} 025$	${ }_{0}^{026}$	0.234	${ }^{0.245}$	${ }^{0268}$	0.24	${ }_{0}^{0208}$	0.000	0.000			
Chatousers sp. mov.	Mw6\%728	0.250	0.23	0.173	0.178	0.75	0.154	0.214	0.206	0.245	0.225	0.201	0.194	0.193	0.202	0.199	0.200	0.203	0.218	0.176	0.173	${ }^{0.237}$	0.191	${ }^{0.233}$	0.239	${ }^{0.237}$	${ }^{0.248}$	0.228	0.245	0.227	0.32	0.239	0.235	0.245	${ }^{0230}$	${ }^{0233}$	0229	${ }^{2046}$	${ }^{12266}$	0.24	0.211	${ }^{0.008}$	${ }^{0.008}$	0.008		
$c_{\text {c.p. Xistumughamm, China }}$	м 1 v67129	${ }^{0.241}$	0.201	0.61	0.174	0.068	0.028	${ }^{0.195}$	0.212	0.194	0.195	0.218	0.166	0.156	0.176	0.166	0.77	0.181	0.175	0.172	0.164	0.203	0.159	0.215	0.246	${ }^{0.231}$	${ }_{0} 2.24$	0.232	0.229	0.238	0.26	0.257	0.23	0.32	0.216	0209	0218	0.206	${ }_{0} 249$	0.24	0.19	${ }_{0} .150$	0.150	0.150	${ }^{0.161}$	

[^0]: *Corresponding author: Dr. Zhiyong YUAN, from Southwest Forestry University, China, with his research focusing on taxonomy, speciation, and biogeography of the herpetofauna.
 E-mail: yuanzhiyongkiz@126.com
 Received: 29 July 2020 Accepted: 18 November 2020

