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Introduction
Viroids are the smallest pathogens known to exist on Earth. They 

were found in the early 70s to be the causal agents responsible for the 
potato tubercle disease, which had been blamed so far on bacteria 
or viruses [1]. This pioneering study led to the discovery of a highly 
intriguing non coding RNA, which is able to infect a large panel of 
crop plants [2,3]. Unlike viruses, viroids are composed of free RNA 
without any envelope or capsid. They can occur in infected plant cells 
in two forms: in the positive polarity form, which is the most abundant, 
and the minus polarity one, which corresponds to a replication 
intermediate. They are circular, structured RNAs consisting of about 
250 to 400 nucleotides that replicate via an RNA-RNA copying process 
according to a “rolling-circle” mechanism [4]. Two families of viroids 
are known to exist so far, the Pospiviroidae, which include five genera 
(pospiviroids, hostuviroids, cocadviroids, apscaviroids and coleviroids) 
and the Avsunviroidae, which include three genera (avsunviroids, 
pelamoviroids and elaviroids). While the viroids belonging to the 
Pospiviroidae family replicate in the cell nucleus, replication of the 
members of the Avsunviroidae takes place in the chloroplasts of 
infected plants via a process involving a hammerhead ribozyme (HHR) 
on which the processing of the transcription products depends. During 
the replication of Avsunviroidae, oligomers are formed and cleaved 
to monomers, which are then ligated and generate the circular forms. 
Replication of viroids requires the presence of host factors. The DNA-
dependent RNA polymerase II has been found to replicate members 
of the Pospiviroidae family [5], while replication of members of the 
Avsunviroidae family is thought to depend on the nuclear-encoded 
DNA-dependent RNA polymerase present in the chloroplasts [6]. 

Several environmental factors are known to affect the replication 
of viroids in plants. Heat treatment has been found to increase the 
accumulation of mutations during the replication cycle of the Hop 
latent viroid, thus increasing the variability of these infectious RNAs 

[7]. The activity of the HHR of the Chrysanthemum chlorotic mottle 
viroid has been found to resist drastic environmental conditions such 
as high pressure [8]. In addition, self-cleavage-catalyzed reactions have 
been reported to occur in the HHR of the Avocado sunblotch viroid 
(ASBVd) exposed to high temperatures (of up to 60°C) [9]. The fact 
that potato spindle tuber viroid has been detected in potato seeds stored 
for 21 years shows that this molecule is endowed with remarkable 
longevity [10]. 

The structure of viroids, the catalytic activity of some of them, 
and their long-term persistence have been presented as arguments 
supporting the idea that they were involved at the beginning of the 
so-called “RNA world” [11]. We recently established that ASBVd 
replicates in the yeast Saccharomyces cerevisiae, which indicates that 
the ribozyme is able to sustain the cleavage/ligation reaction during 
the rolling circle replication process. Since ASBVd replication has 
continued for 25 generations of the yeast, the viroid replication process 
can be said to be surprisingly adaptable in this unconventional host 
[12]. 

Are Avsunviroidae able to replicate in a prokaryotic cell? The 
aim of the present study was to answer this question. It was therefore 
proposed to analyze the replication of ASBVd, a typical member of the 
Avsunviroidae family, in the cyanobacterium Nostoc PCC 7120. Since 
ASBVd replicates in chloroplasts, we predicted that cyanobacteria, 
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which are share their progenitors with chloroplasts, would be excellent 
candidates for this study.

Cyanobacteria are among the most diverse and widely distributed 
phyla of bacteria. In photosynthetic prokaryotes, they have the unique 
ability to perform oxygenic photosynthesis. They play key roles in the 
carbon and nitrogen cycles and constitute highly suitable organisms 
for investigating the evolution of photosynthetic eukaryotes, since the 
ancestry of the chloroplasts of all photosynthetic organisms can be 
traced back to cyanobacteria [13]. The authors of taxonomic studies 
have classified the cyanobacteria in five subsections based on their level 
of morphological complexity. Organisms in subsections IV (Nostocales) 
and V (Stigonematales) are diazotrophic bacteria that can differentiate 
specific cells called heterocysts, which are involved in nitrogen fixation 
processes [14]. Nostoc PCC 7120 (which will be referred to below as 
Nostoc) belongs to the Nostocales subsection. This strain was used here 
as an experimental model to determine whether ASBVd can replicate 
in cyanobacteria. This is the first time a viroid RNA replication process 
has been reported to occur in a prokaryote.

Material and Methods
Strains and growth conditions

Nostoc sp. PCC 7120 (Pasteur Institute collection, France) was 
grown in BG11 medium at a temperature of 30°C in air under 
continuous illumination (40 µE m-2s-1). Cyanobacterial growth was 
monitored by measuring the absorbance at 750 nm (OD750). Each 
experiment was performed in triplicate. Nostoc filaments were observed 
using the Optical microscope Nikon Eclipse E800.

Oligonucleotides

The oligonucleotides used in this study were obtained from 
Eurogentec (France). Their sequences are listed in Table 1. 

Construction of Nostoc/ASBVd recombinant strains 

The ASBVd dimer was extracted from the pCRII-TOPOdASBVd 
plasmid expressing the ASBVd DNA dimer [12], using the EcoRI 
enzyme. The resulting fragment was cloned under the control of the 
petE promoter of the pSKpetE plasmid [15]. Plasmids expressing 
dimeric (+) or (-) ASBVd were selected after the sequencing procedure 
(Millegen, France). The petEASBVd fragments were then subcloned 
into the pRL25 plasmid [15] after performing a linearization step using 
the NotI and KpnI enzymes. The resulting plasmids were sequenced 
in order to further confirm the (+) or (-) orientation of the viroid. 
The recombinant pRLASBVd(+) and pRLASBVd(-) obtained were 
conjugated into Nostoc, and exoconjugants were selected with 50 µg/
mL neomycin.

RNA extraction

RNA was extracted using TRizol reagent (Invitrogen, France) in 
line with the manufacturer’s instructions. Chromosomal DNA was 

removed by treating RNA preparations (50 µL) with 1 µL of DNase 
(Ambion at 2 U/µL) for 1 hour at 37°C. DNase treatment was checked 
by performing RT-PCR (see below), omitting the reverse transcription 
step. Only DNA-free RNAs were used in all our experiments. The 
concentration of the RNA was determined spectrophotometrically.

Strand-specific RT-PCR

One µg of total RNA was subjected to reverse transcription with 
ThermoScript reverse transcriptase (Invitrogen) using 2 pmol of 
LKASBV-O1 and LKASBV-O2 as primers to synthesize (+) and 
(-) cDNAs respectively. One-tenth of these reactions were used as 
templates for PCR. Amplifications were performed using the high 
fidelity Taq polymerase (Jena Biosciences, Germany) in line with the 
manufacturer’s instructions. ASBV-O1 and ASBV-O2 primers (10 
pmol) were used in each reaction. The standard program was: 5 min at 
94°C, followed by 35 cycles of 40 s at 94°C, 45 s at 50°C and 45 s at 72°C, 
followed by a final 5 min at 72°C. The products (247-nt corresponding 
to the ASBVd monomers) were separated on a 1.2% agarose gel.

Northern blot hybridization

Total RNA (5 µg) was separated on 6% polyacrylamide-7 M urea 
gels and electro-transferred (Biorad apparatus, USA) to Hybond N+ 

membranes (GE Healthcare, France). Hybridizations were performed 
in Church buffer [16] at 70°C and filters were washed in 4X SSC, 0.5% 
SDS at 65°C, before exposure to autoradiographic films.

Riboprobes were generated by performing in vitro transcription 
in the presence of [α-32P]CTP. Briefly, pBdASBVd DNA plasmid was 
linearized by PdiI enzyme (Thermofisher, France) and then 250 ng 
(2 µL) were incubated for 2 hours at 37°C in a reaction mixture (20 
µL) containing 2 µL reaction buffer 10X (Ambion, France), [α-32P]
CTP (5 µL); 10 µCi/mL ; 3000 Ci/mmol ; Perkin Elmer), a nucleotide-
triphosphate mixture (NTP: A, U and G; at final concentrations of 0.5 
mM each), CTP (10 µM final) and 20 U (2 µL) of T7 (for synthesizing 
the “-” riboprobe) or T3 (for synthesizing the “+” riboprobe) RNA 
polymerases (Ambion, France). After adding DNase (1 µL) for 15 min 
at 37°C, probes were purified using spin G50 columns (GE Healthcare, 
France) and denatured for 5 min at 100°C before being hybridized 
with the membranes. The rnpB gene encoding the RNaseP subunit B in 
Nostoc was used to perform the internal controls. It was first amplified 
by PCR using the rnpB forward and rnpB reverse primers (Table 1) and 
the PCR product was purified. Five purified picomoles (1 µg ; 10 vL) 
were then 5’ end-labeled by incubating the sample for 10 min at 37°C in 
a reaction mixture (25 µL) containing an exchange reaction buffer (5X; 
5 µL; Promega, France ), [γ-32P]ATP (5 µL ; 10 µCi/mL ; 3000 Ci/mmol 
; Perkin Elmer), T4 polynucleotide kinase (1 µL; 5 U; Promega, France). 
The reaction was stopped by adding EDTA 0.5 M (1 µL), and the probe 
was heated for 10 min at 65°C before hybridization with the previously 
dehybridized membranes. After the hybridization, the membranes 
were washed and exposed to autoradiography.

RNA marker (Thermofisher, France) co-migrated with total RNAs 
samples on the 6% polyacrylamide-urea gels and stained with ethidium 
bromide before northern blotting.

Results
Replication of negative and positive ASBVd strands in Nostoc 
assessed by strand-specific RT-PCR

Negative (-) and positive (+) dimeric ASBVd DNA were cloned 
under the control of the copper inducible petE promoter of the pRL25 
replicative plasmid (Material and Methods). Nostoc recombinant 

Oligonucleotides Sequence from 5’ to 3’
ASBV-O1 GTGAGGATATGATTAAACT
ASBV-O2 TTCTTGTTCTAATAAACAAG

LK ASBV-O1 gatctggagcacgaggacactgc GTGAGGATATGATTAAACT
LK ASBV-O2 gatctggagcacgaggacactgc TTCTTGTTCTAATAAACAAG

LK gatctggagcacgaggacactgc
rnpB  forward AGGGAGAGAGTAGGCGTTGG
rnpB reverse GGTTTACCGAGCCAGTACCTCT

Table 1: Sequence of primers used in this study.
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strains bearing either the empty pRL25 plasmid or pRLASBVd(+) or 
pRLASBVd(-) were grown up to the late exponential phase (OD750: 
1). RNAs were extracted and the replication of ASBVd strands 
was tested using the strand-specific RT-PCR assay, as described in 
Figure 1. Briefly, the reverse transcription reaction induced using the 
LKASBV-O1 primer results in the synthesis of the (+) cDNA and that 
of the LKASBV-O2 primer results in the synthesis of the (-) cDNA. An 
LK sequence was added to the 5’ end of each of these reverse-strand 
primers. The LK sequence alone was used with the strand-specific 
primer for the PCR (Figure 1 and Table 1). This procedure ensured 
that only DNA specifically synthesized during the RT step could be 
amplified during the PCR [17], thus making it possible after the PCR 
reaction to detect the RNA-RNA replication of the ASBVd (-) strand. 
The amplification of the rnpB gene encoding the RNase P subunit 
B was used to check the amount of RNA used in each assay (Figure 
2B, Lanes 1 and 2). The data presented in Figure 2A show that both 
negative and positive strands were replicated in Nostoc since DNA 
species of positive and negative polarities were detected, respectively 
(Figure 2, Lanes 3 and 5). The transcription, from the petE promoter, of 
ASBVd (of negative and positive polarities) yielded stronger products 
of negative and positive polarities, respectively (Figure 2, Lanes 2 and 
4). All the resulting PCR fragments were about 250 bp long, which is 
the expected size of the monomeric RNA form (Figure 2, Lane 6). No 
amplification of the ASBVd strands was observed when the RNAs were 
extracted from the strain bearing the empty pRL25 plasmid (Figure 2C, 
Lanes 1 and 2). This result confirms the specificity of the primers used 
and shows that the amplifications observed actually resulted from the 
replication of the ASBVd RNA strands. 

Replication of negative and positive ASBVd strands in Nostoc 
assessed by Northern blot technique

The replication of the ASBVd in Nostoc cells was further 
investigated using a Northern blot approach. For this purpose, total 
RNAs were extracted from Nostoc cells bearing the pRLASBVd(+) or 
pRLASBVd(-) plasmids, loaded onto a 6% polyacrylamide gel, and 
transferred to nitrocellulose membranes. The membranes were probed 
with riboprobes resulting from in vitro transcription of the (+) or (-) 
ASBVd dimer RNAs extracted from Nostoc harboring the empty pRL25 
plasmid were used to run negative controls. In the positive controls, 
we used total RNA extracted from avocado tree leaves infected with 
ASBVd. The level of rnpB transcripts served to monitor the loading 
control.

When RNAs extracted from Nostoc/pRLASBVd (-) were used as a 
template, linear form were observed when the negative strand was used 
as a riboprobe (Figure 3A, Lane 5). This confirms that the (-) strands 
were actually replicated and yielded the complementary (+) strands. 
Similar results were obtained when the RNAs extracted from Nostoc/
pRLASBVd (+) were loaded and when the positive strand was used as 
a riboprobe during Northern hybridization assays (Figure 3B, Lane 8), 
although the amount of negative strand was much lower than that of 
positive strand. In both cases, the form detected had the size expected 
for an ASBVd linear form. This could be assessed thanks to the use of 
an RNA molecular marker (Figure 3), and positive controls consisting 
in a linear ASBVd from synthesized in vitro and also in RNA extracted 
from avocado tree leaves infected with ASBVd (Figure 3). This 

Figure 1: Diagram of strand-specific RT-PCR for analyzing ASBVd replication in Nostoc. The pRLASBVd(-) and pRLASBVd(+) plasmids express the ASBVd(-) 
and ASBVd(+) DNA dimmers, respectively, from the petE promoter (grey boxes).  HH: hammerhead ribozyme.  During the first step, self-cleavage of the ASBVd 
dimeric form results in the linear monomeric form (lmASBVd) and the circular monomeric form (cmASBVd). During the second step, the RNA-dependent replication 
process generates linear oligomers (loASBVd), lmASBVd and cmASBVd having the opposite polarity. The primers used during the reverse transcription have a linker 
sequence at their 5’ extremity (LKASBV-O1 and LKASBV-O2). In order to prevent any amplification of DNA from the plasmid, the primers used during the PCR step 
are LK and ASBV-O2 for the replication of ASBVd(-)  and LK and ASBV-O1 for ASBVd(+), respectively, which makes it possible to discriminate between the RNAs 
resulting from plasmid transcription and those resulting from RNA-RNA replication.
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Figure 2: Detection of (-) and (+) forms of ASBVd in Nostoc using strand-specific RT-PCR. A. Strand-specific RT-PCR performed with RNAs extracted from 
pRLASBVd(-) or pRLASBVd(+) recombinant strains. For each reaction, the primer used in the reverse transcription step and the polarity of the corresponding 
amplified cDNAs are indicated at the bottom of the image. The “size control” line corresponds to the result of a PCR amplification step in which the ASBV-O1 and 
ASBV-O2 primers and the pCRII-topo ASBVd (-) plasmid were used. B. Amplification of the rnpB gene using RNAs extracted from pRLASBVd(-) versus pRLASBVd(+) 
recombinant strains. C. RT-PCR reactions performed using the LKASBV-O1 and LKASBV-O2 primers and RNAs extracted from a Nostoc strain harboring the empty 
pRL25 plasmid. This experiment was performed with five recombinant Nostoc strains obtained by performing five independent conjugations and similar results were 
obtained.

Figure 3: Detection of the (-) and (+) ASBVd forms in Nostoc using the Northern blot procedure. RNAs were extracted from a Nostoc strain harboring either the 
empty pRL25 plasmid or pRLASBVd(+) or pRLASBVd(-). They were separated on 6% polyacrylamide-urea gels and analyzed by hybridization using riboprobes 
corresponding to the ASBVd strands of (-) or (+) polarities. The hybridization using a probe corresponding to the rnpB gene served as RNA loading control. Lane 1 
corresponds to synthetic linear in vitro transcript of ASBVd. Molecular markers (in nucleotide) co-migrated on the 6% polyacrylamide-urea gels are stained by Ethidium 
bromide before autoradiography. The reference (lanes 2, 6, 10) refers to the total RNA extract from natural ASBVd infected plant. Lane 3 and 7: no product was 
detected by riboprobe (-) when RNAs extracted from Nostoc harboring the pRL25 empty plasmid were loaded. Lane 4: linear transcript form detected by riboprobe (-) 
when RNAs extracted from Nostoc harboring the pRLASBVd(+) plasmid were loaded. Lane 5: linear replicative form detected by riboprobe (-) when RNAs extracted 
from Nostoc/pRLASBVd(-) were loaded. Lane 8: linear replicative form detected by riboprobe (+) with RNAs extracted from Nostoc/pRLASBVd(+). Lane 9: linear 
transcript form to be detected by riboprobe (+) with RNAs extracted from Nostoc/pRLASBVd(-) was above the detection limit.
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indicates that the cellular machinery of Nostoc is able to replicate the 
negative and negative ASBVd forms; even though the replication and/
or stability of the strand of the minus seems more efficient than that of 
the positive form. Interestingly, “plus” strands were found to be present 
in significantly higher amounts in infected plant cells than “minus” 
strands, which suggests that a difference in replication efficiency and/
or stability may exist between the two forms of ASBVd having different 
polarities [18,19]. 

Impact of the replication of ASBVd on Nostoc physiology 

The replication of ASBVd in Nostoc did not impair the growth of 
the strain. The generation time of the ASBVd-expressing strains was 
similar to that of the wild type strain (Table 2). The filaments observed 
in the wild type strain and the ASBVd-expressing strains were similar 
(Figure 4). It was therefore concluded that replication of this viroid 
in Nostoc did not have any significant physiological effects on the 
bacterium, at least under the experimental conditions tested here.

Discussion
Only eukaryotic cells have been found so far to be able to copy 

viroids via an RNA-RNA replication mechanism. The replication of the 
ASBVd occurring in the yeast S. cerevisiae was an important finding, 
since it showed that replication of these RNA molecules is not strictly 
limited to plants and can occur in organisms devoid of chloroplasts 
[12]. The present study is a further step in this direction, since it shows 
that a prokaryotic possesses all the machinery required to copy ASBVd; 
both the (+) and (-) strands were copied in Nostoc recombinant cells 
bearing the dimeric replicative DNA of the ASBVd (Figures 2 and 3). 

In a previous study [12], it was reported that ASBVd transcripts with 
“plus” and “minus” polarities showed differences in electrophoretic 
mobility under native conditions and in their thermal denaturation 
profiles. The models obtained by performing RNA-selective 2’-hydroxyl 
acylation were analyzed using the primer extension (SHAPE) 
method [20], and the results showed that the two polarities fold into 
different structures. Structural differences in the regions neighboring 
the initiation sites of both ASBVd (−) and (+) may influence their 
respective interactions with the RNA polymerase and/or transcription 
factors, which might account for the difference observed in the levels 
of accumulation observed here between the negative and positive 
forms (Figure 3). In the Avsunviroidae family members, the “minus” 
circular forms have been found to accumulate less extensively than the 
(+) circular forms at the beginning of the replication process, probably 
because this form (-) is an intermediate replication form which cannot 

accumulate in high levels, contrary to the (+) circular form [18]. It was 
also recently established that in the other viroid family (Pospiviroidae), 
plant cell viroids are subject to decay [19].

The results obtained in this study on the replication of a viroid 
belonging to the Avsunviroidae family in a cyanobacterium were also 
highly informative from the evolutionary point of view. The nuclear-
encoded DNA-dependent RNA polymerase (NEP) was previously 
found to fulfill this function [6]. It has been also reported that the RNA 
polymerase of the enterobacterium Escherichia coli was able to replicate 
the Peach latent mosaic viroid, which belongs to the same family as 
ASBVd [20]. The ability of the Nostoc RNA polymerase to replicate 
ASBVd further supports the idea that bacterial polymerases are able 
to replicate viroids. The second replication step, which involves the 
cleavage of the oligomeric RNA intermediates, must be achieved by the 
HHR, as extensively described in the case of the viroids belonging to the 
Avsunviroidae family in their natural hosts [21-23]. The hammerhead-
mediated self-cleavage of the multimeric ASBVd transcripts has been 
found to be facilitated by the chloroplastic RNA chaperones PARBP33 
and PARBP35 [24]. These proteins are RNA-binding proteins involved 
in the editing and stabilization of transcripts [25,26]. A survey of the 
Nostoc genome has shown the presence of six open reading frames 
(alr0741, alr2311, alr2087, all2928, alr4683, all277) with approximately 
48% amino acid identity with PARBP33. The question as to whether 
one or several of these proteins interact with the ASBVd transcripts in 
Nostoc and assist the ribozyme in its cleaving function would be well 
worth investigating.

The self-cleavage of the oligomeric RNAs is followed by the 
circularization of the resulting monomeric linear viroid RNAs with 
(+) and (-) polarities, both harboring 5′-hydroxyl and 2′,3′-cyclic 
phosphodiester termini [27]. This step has been reported to be 
performed by the chloroplastic isoform of the plant tRNA ligase, 
which is involved in pre-tRNA splicing and naturally recognizes 
5′-hydroxyl and 2′,3′-cyclic phosphodiester termini [28]. A Blast 
search using several plant tRNA ligases as seeds did not result in the 
detection of any significant homologues in the Nostoc genome or in 
any of the 127 cyanobacterial genomes sequenced so far [14]. It is 
therefore possible that RNA ligases showing no homology with plants 
or other eukaryotic enzymes may exist in cyanobacteria. This would 
explain the circularization of the RNA occurring during the replication 
of the ASBVd in Nostoc. Discovering these putative enzymes and 
understanding their natural function is an exciting perspective. 

The replication of ASBVd in Nostoc had no physiological effects 
on this bacterium (Table 2 and Figure 4). Replication of this viroid in 
S. cerevisiae has also been reported to be asymptomatic [12]. All in all, 
these results raise the question as to whether other RNAs may exist 
in the living kingdoms, where they may replicate via an RNA-RNA 
process. In this scenario, the viroids could be said to be the submerged 
part of the iceberg; if they were avirulent against their host plant, as 
occurs in the case of Eggplant latent viroid [29], their replication would 
have never been discovered. Do many non-infectious RNAs therefore 
exist and replicate in living organisms? What might their origin be? 
Answering these questions constitutes an important challenge for 
improving our knowledge of the non-coding genome.
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Nostoc strains Generation time (hours)
WT 25 ± 3

pRLASBVd(+) 25 ± 5
pRLASBVd(-) 26 ± 4

Table 2: Growth of the Nostoc wild type strain in comparison with the ASBVd 
expressing strains. Generation time corresponds to the population doubling time.

Figure 4: Analysis of the physiological effects of ASBVd replication on Nostoc. 
Light transmission micrographs of the Nostoc wild type strain (WT) and either 
pRLASBVd(-) or pRLASBVd(+) recombinant strains.
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