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ABSTRACT

We describe the MusicMiner system for organizing large
collections of music with databionic mining techniques.
Low level audio features are extracted from the raw au-
dio data on short time windows during which the sound
is assumed to be stationary. Static and temporal statis-
tics were consistently and systematically used for aggre-
gation of low level features to form high level features.
A supervised feature selection targeted to model percep-
tual distance between different sounding music lead to a
small set of non-redundant sound features. Clustering and
visualization based on these feature vectors can discover
emergent structures in collections of music. Visualization
based on Emergent Self-Organizing Maps in particular en-
ables the unsupervised discovery of timbrally consistent
clusters that may or may not correspond to musical genres
and artists. We demonstrate the visualizations capabilities
of the U-Map, displaying local sound differences based
on the new audio features. An intuitive browsing of large
music collections is offered based on the paradigm of to-
pographic maps. The user can navigate the sound space
and interact with the maps to play music or show the con-
text of a song.

Keywords: audio features, music similarity, perception,
clustering, visualization

1 INTRODUCTION

Humans consider certain types of music as similar or dis-
similar. To teach a computer systems to learn and dis-
play this perceptual concept of similarity is a difficult task.
The raw audio data of polyphonic music is not suited for
direct analysis with data mining algorithms. High qual-
ity audio data contains various sound impressions that are
overlayed in a single (or a few correlated) time series. In
order to use machine learning and data mining algorithms
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for musical similarity, a numerical measure of perceptual
music similarity is needed. These time series cannot, how-
ever, be compared directly in a meaningful way. A com-
mon technique is to describe the sound by extracting audio
features, e.g. for the classification of music into musical
genre categories [1]. Many features are commonly ex-
tracted on short time windows during which the sound is
assumed to be stationary. This produces a down sampled
multivariate time series of sound descriptors. These low
level features are aggregated to form a high level feature
vector describing the sound of a song. Only few authors
have incorporated the temporal structure of the low level
feature time series when summarizing them to describe
the music [2]. We generalized many existing low level
features and evaluated a large set of temporal and non tem-
poral statistics for the high level description of sound [3].
This resulted in a huge set of candidate sound descriptors.
We describe a mathematical method to select a small set
of non-redundant sound features to represent perceptual
similarity based on a training set of manually labeled mu-
sic.

Clustering and visualization based on these feature
vectors can be used to discover emergent structures in
collections of music that correspond to the concept of
perceptual similarity. We demonstrate the clustering
and visualization capabilities of the new audio features
with the Emergent Self-organizing Map (ESOM) [4, 5].
The ESOM belongs the category of databionic mining
techniques, where information processing techniques are
transferred from nature to data processing. The ESOM
is motivated by the receptive fields in the human brain.
High dimensional data are projected in a self organizing
process onto a low dimensional grid analogous to sensory
input in a part of the brain. In order to visualize struc-
tures by emergence it is very important to use maps with
a large amount of neurons. Visualization based on U-Map
[6] displays in particular enables the unsupervised discov-
ery of timbrally consistent clusters that may or may not
correspond to musical genres and artists. Possible clusters
should correspond to different sounding music, indepen-
dently of what genre a musical expert would place it in.
The clusters, if there are any, can still correspond to some-
thing like a genre or a group of similar artists. Outliers can
be identified and transitions between overlapping clusters
will be visible. Both global and local structures in music
collections are successfully detected. The visualizations



based on the paradigm of topographic maps enables an in-
tuitive navigation of the high dimensional feature space.

First some related work is discussed in Section 2 in
order to motivate our approach. The datasets are briefly
described in Section 3. The method to generate and se-
lect the audio features we have used will be briefly ex-
plained in Section 4, including the results of a compari-
son to existing features. Visualization of music collections
with U-Map displays of Emergent SOMs are explored in
Section 5. Results and future research is discussed in Sec-
tion 6. The MusicMiner software implementing the result
of this research is outlined in Section 7, followed by a
brief summary in Section 8.

2 RELATED WORK

Early approaches of musical similarity are [7] and [8].
Both use a large set of Mel Frequency Cepstral Coeffi-
cients (MFCC) feature vectors for the representation of
each song by mixture models. An architecture for large
scale evaluation of audio similarity based on these bag
of frames methods is described in [9]. The model based
representation makes distance calculations between songs
problematic. They cannot easily be used with data mining
algorithms requiring the calculation of a centroid. It also
scales badly with the number of songs.

The seminal work of Tzanetakis [1] is the foundation
for most research in musical genre classification. A single
feature vector is used to describe a song, opening the prob-
lem for many standard machine learning methods. The
classification accuracy reported is 66%. Misclassification
e.g. among sub-genres of jazz are explained due to similar
sounding pieces. Note, that when using clustering and vi-
sualization this will not be a problem. If pieces sound sim-
ilar, they should be close, no matter which sub genre they
belong to. The problem with genre classification is the
subjectivity and ambiguity of the categorization used for
training and validation [2]. Existing genre classifications
from popular websites were found to be not comparable
and the authors also gave up on creating their own genre
hierarchy. Classification approaches are criticized for su-
pervised learning with few and arbitrary prior classes. Of-
ten genre doesn’t even correspond to the sound of the mu-
sic but to the time and place where the music came up
or the culture of the musicians creating it. Some authors
try to explain the low performance of their classification
methods by the fuzzy and overlapping nature of genres
[1]. An analysis of musical similarity showed bad corre-
spondence with genres, again explained by their inconsis-
tency and ambiguity [10]. Similar problems are present
for artist similarity [11]. Many artists have created mu-
sic of various styles. A popular example is Queen, who
would generally considered to be a Rock band, but the
long row of albums covers a wide variety of genres. In [2]
the dataset is therefore chosen to be timbrally consistent
irrespectively of the genre.

Recently, interest in visualization of music collections
has been increasing. Some authors consider manual col-
laging [12] of albums, others visualize the similarity of
artists based on graph drawing [13] algorithms. Song
based visualizations offer a more detailed view into a mu-

sic collection. In [14] disc plots, rectangle plots and tree
maps are used to display the structures of a collection
defined by the meta information on the songs like genre
and artist. But the visualizations do not display similar-
ity of sound, the quality of the displays thus depends on
the quality of the meta data. In [15] FastMap and multi-
dimensional scaling are used to create a 2D projection of
complex descriptions of songs including audio features.
Principal component analysis is used in [16] to compress
intrinsic sound features to 3D displays.

In [17] it was already demonstrated, that SOMs are
capable of displaying music collections. Small maps were
used, however, resulting in a k-Means like procedure [18].
In these SOMs each neuron is typically interpreted as a
cluster. The topology preservation of the SOM projec-
tion is of little use when using small maps. For the emer-
gence of higher level structure, a larger, so called Emer-
gent SOM (ESOM) [4, 19] is needed. With larger maps a
single neuron does not represent a cluster anymore. It is
rather a pixel in a high resolution display of the projection
from the high dimensional data space to the low dimen-
sional map space. Clusters are now formed by connected
regions of neurons with similar properties. The structure
emerges from the large scale cooperation of thousands of
neurons during the ESOM training. Not only global clus-
ter structure is visualized, but also local inner cluster rela-
tions are preserved.

The Smoothed Data Histogram (SDH) visualization of
SOMs used in [17] represents an indirect estimation of the
high dimensional probability density. We use the P-Matrix
to display density information, based on the Pareto Den-
sity Estimation (PDE) [20], a more direct estimator using
information optimal sets. The U*Matrix [21] combines
distance and density information. Further, the feature vec-
tors used in [17, 22, 10] are very high dimensional. This
is problematic for distance calculations because these vec-
tors spaces are inherently empty [23]. Finally, in contrast
to [17], we use toroid maps [6] to avoid border effects.
On maps with a topology limited by borders the projected
data points are often concentrated on the borders of the
map and the central region is largely empty. With toroid
topologies the data points are distributed on the map in a
more uniform fashion.

The extraction of non-redundant map views from tiled
displays [6] of a toroid ESOM creates the island-like dis-
plays shown in Section 5. Note, that in contrast to the
Islands of music [17] where several islands corresponding
to density modes of the data space are displayed, we only
display a single island representing the complete ESOM.
The structures in the data space are visualized by the to-
pography on the island defined by the U-Map.

3 DATA

We have created two datasets to test the visualization of
music collections. Our motivation for composing the data
sets was to avoid genre classification and create clusters of
similar sounding pieces within each group, while achiev-
ing high perceptual distances between songs from differ-
ent groups. We selected 200 songs in five perceptually
consistent groups (Acoustic, Classic, Hiphop, Metal/Rock,
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Electronic) and will refer to this dataset as 5G. There are
pieces from a variety of so called genres in each group,
e.g. for Acoustic: Alternative (Beck), Blues (John Lee
Hooker), Country (Johnny Cash), Grunge (Stone Temple
Pilots), Rock (Bob Dylan, The Beatles, Lenny Kravitz),
and even Rap (Beastie Boys). The validation data was
created in a similar way as the training data. Eight in-
ternally consistent but group wise very different sound-
ing pieces totalling 140 songs were compiled: Alterna-
tive Rock, Stand-up Comedy, German Hiphop, Electronic,
Jazz, Oldies, Opera, Reggae. This dataset will be called
8G.

A third dataset is the Musical Audio Benchmark
(MAB) dataset collected from www . garageband. com
by Mierswa et al. '. There are 7 genre groups: Alterna-
tive, Blues, Electronic, Jazz, Pop, Rap, and Rock. This
dataset was chosen to check how well the perceptual fea-
tures can distinguish genres and to provide values for per-
formance comparison based on publically available data.

4 AUDIO FEATURES

We briefly present our method of generating a large set of
audio features and selecting a subset for modelling per-
ceptual distances. The full details are given in [3]. The
raw audio data was reduced to mono and a sampling fre-
quency of 22kHz. To reduce processing time and avoid
lead in and lead out effects, a 30s segment from the center
of each song was extracted. The window size was 23ms
(512 samples) with 50% overlap. Thus for each low level
feature, a time series with 2582 time points at a sampling
rate of 86Hz was produced.

We used more than 400 low level features, including
time series descriptions like volume or zerocrossings [24]
and spectral descriptions like spectral bandwidth, rolloff
[24], slope, and intercept [25]. Many features were gen-
eralized. The Mel frequency scale of the MFCC was re-
placed with the Bark, ERB, and Octave scales to create
BFCC, EFCC, and OFCC, respectively. Other low level
features include chroma strength [26] and the Bark/Sone
representation of [22] that performs sophisticated psy-
choacoustic preprocessing. A simple psychoacoustic vari-
ant was created for all low level spectral features by apply-
ing the Phon weighting to the short time spectrum prior to
further calculations. The aggregation of low level time se-
ries to high level features describing the sound of a song
with one or a few numbers was systematically performed.
Temporal statistics were consistently applied, discovering
the potential lurking in the behavior of low level features
over time. Standard and robust estimates of the first four
moments were obtained from the time series and the first
and second order differences. Features extracted from
the autocorrelation function and from the spectrum of the
low level time series provided more complex temporal
descriptions. Motivated by [25], aggregations based on
the reconstructed phase representations [27] of time series
were added. This non-linear analysis offers an alternative
way of describing temporal structure that is complemen-
tary to the analysis of linear correlation and spectral prop-
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erties. More than 150 static and temporal aggregations
were applied to each low level feature time series.

The cross product of the low level features and high
level aggregations resulted in a huge set of about 66.000
mostly new audio features. A feature selection was nec-
essary to avoid noisy and redundant attributes and select
features that model perceptual distance. We performed a
supervised selection based on the perceptually different
sounding musical pieces in the training data. Note, that
the aim of achieving large distances of feature vectors ex-
tracted from different sounding music is not equivalent to
that of having high classification accuracy. The ability of
a single feature to separate a group of music from the rest
was measured with a novel score based on Pareto Density
Estimation (PDE) [20] of the empirical probability densi-
ties. Figure 1 shows the estimated densities for a single
feature and the Electronic group vs. all other groups. It
can be seen that the values of this feature for songs from
the Acoustic group are likely to be different from other
songs, because there is few overlap of the two densities.
Using this feature as one component of a feature vector
describing each song will significantly contribute to large
distance of the Electronic group from the rest. This in-
tuition is formulated as the Separation score calculated as
one minus the area under the minimum of both probability
density estimates.

= Electronic

= =+ Different music
== ML Decision
[ Error

Likelihood

015 02 025 03 035 04 045 05
2nd CC 7th Sone Band

Figure 1: Probability densities for feature with high sepa-
ration score of Electronic music vs. different music

Based on this score a feature selection is performed in-
cluding a correlation filter to avoid redundancies. To give
an example, the best feature was the mean of the distances
in the 2 dimensional phase space representation with de-
lay 2 of the square root of the 22nd Bark/Sone loudness.
The top 20 features are used for clustering and visualiza-
tion in the next section. This feature set shows low re-
dundancy and separates perceptually different music. It
also has a high potential for explaining clusters of similar
music, because each feature has a high separation score
individually.

We compared our feature set to seven sets of features
previously proposed for musical genre classification or
clustering: MFCC (mean and standard deviation of the
first 20 MFCC and the first order differences) [28], McK-
inney (modulation energy in four frequency bands for the
first 13 MFCC) [29], Tzanetakis [1], Mierswa [25], Spec-



Table 1: Distance scores for different feature sets on train-
ing (5G), validation (8G), and genre data (MAB)

Features Datasets

5G 8G MAB | 5G
MusicMiner | 0.41 | 0.42 | 0.18 [ ]
MFCC 0.16 | 0.20 | 0.11 I
McKinney 0.26 | 0.30 | 0.13 |
Tzanetakis 0.18 | 0.20 | 0.10 ]
Mierswa 0.12 | 0.16 | 0.03 [
FP 0.10 | 0.04 | 0.08 [
PH 0.07 | 0.07 | 0.02 |
SH 0.05 | 0.09 | 0.04 [ |

trum Histogram (SH), Periodicity Histograms (PH), and
Fluctuation Patterns (FP) [10]. The comparison of the
feature sets for their ability of clustering and visualizing
different sounding music was performed using a measure
independent from the ranking scores: the ratio of the me-
dian of all inner cluster distances to the median of all pair-
wise distances, similar to [10]. One minus this ratio is
called the distance score, listed in Table 1 for all feature
sets.

The MusicMiner features perform best by large mar-
gins on all three datasets. The best of the other feature sets
is McKinney, followed by MFCC and Tzanetakis. The
fact that McKinney is the best among the rest, might be
due to the incorporation of the temporal behavior of the
MFCC in form of modulation energies. The worst per-
forming feature sets in this experiment were Spectrum
Histograms and Periodicity Histograms. This is surpris-
ing, because SH was found to be the best in the evalu-
ation of [10]. In summary, our feature sets showed su-
perior behavior in creating small inner cluster and large
between cluster distances in the training and validation
dataset. Any data mining algorithms for visualization or
clustering will profit from this. The distance scores for
the genre data (MAB) were in general much worse than
for the two hand selected datasets created by us. All fea-
ture sets perform much worse than for the training and
validation datasets. The best score of 0.18 is achieved by
the MusicMiner features. Performing the feature selec-
tion based on the groups of the MAB dataset improved
the distance score slightly to 0.22, but the performance of
these MAB optimized features scored only 0.27 on the 5G
data compared to 0.41 by the MusicMiner features. This
indicates that the genre labeling of the datasets probably
does not correspond to timbrally consistent groups. We
checked this assumption by listening to parts of the collec-
tion. While songs from different genres usually are very
different, we also observed large inconsistencies within
the groups. The feature sets Mierswa, PH, and SH per-
form very poorly with scores close to zero.

S VISUALIZATION

Equipped with a numerical description of sound that cor-
responds to perceptual similarity, our goal was to find a
visualization method, that fits the needs and constraints of
browsing a music collection. A 20 dimensional space is

hard to grasp. Clustering can be used reveal groups of sim-
ilar music within a collection in an unsupervised process.
Classification can be used to train a model that reproduces
a given categorization of music on new data. In both cases
the result will still be a strict partition of music in form of
text labels. Projection methods can be used to visualize
the structures in the high dimensional data space and offer
the user an additional interface to a music collection apart
from traditional text based lists and trees.

There are many methods that offer a two dimen-
sional projection w.r.t. some quality measure. Most com-
monly used are principal component analysis preserving
total variance and multidimensional scaling preserving
distances as good as possible. The output of these meth-
ods are, however, merely coordinates in a two dimensional
plane. Unless there are clearly separated clusters in a
dataset it will be hard to recognize groups, see [3] for
examples. Music collections in particular, often contain
overlapping clusters, if any, which can not be clearly sep-
arated. Often there will be clumps of similar music cor-
responding to a certain type of music the user likes. But
the transition from one coherent type of music to differ-
ent sounding artists will not always be sharp, but rather
be characterized by smooth transitions. Clear clusters are
only to be expected if there is, e.g. some classical music
in a collection of mostly modern music.

Emergent SOMs offer more visualization capabilities
than simple low dimensional projections. In addition to
a low dimensional projection preserving the topology of
the input space, the original high dimensional distances
can be visualized with the canonical U-Matrix [4] display.
For each map position the local distances to the imme-
diate neighbors are averaged to calculate a height value
representing the local distance relations. Recently, addi-
tional methods have been developed to display the den-
sity in the high dimensional space with the P-Matrix [6].
Density information can be used to discover areas with
many similar songs. All these visualizations can be inter-
preted as height values on top of the usually two dimen-
sional grid of the ESOM, leading to an intuitive paradigm
of a landscape. With proper coloring, the data space can
be displayed in form of topographical maps, intuitively
understandable also by users without scientific education.
Clearly defined borders between clusters, where large dis-
tances in data space are present, are visualized in the form
of high mountains. Smaller intra cluster distances or bor-
ders of overlapping clusters form smaller hills. Homoge-
neous regions of data space are placed in flat valleys. To
remove the redundancy present in a tiled display of the
U-Matrix, a non-rectangular U-map was created [6].

5.1 TRAINING DATA

For the 5G data set used in the feature selection method,
we trained a toroid 50 x 80 ESOM with the MusicMiner
features using the Databionics ESOM Tools[19]?. Fig-
ure 2 shows the U-Map. Dark shades represent large
distances in the original data space (mountaints), bright
shades imply similarity w.r.t. the extracted features (val-
leys). The songs from the five groups are depicted by the

http://databionic-esom.sf.net
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first letter of the group name. In the following paragraphs
we analyze the performance of this map.

Inter cluster relations: The Classical music is placed
in the upper right corner. It is well separated from the
other groups. But at the border to the Acoustic group,
neighboring to the lower left, the mountains range is a lit-
tle lower. This means, that there is a slow transition from
one group to the other. Songs at the borderline will be
somewhat similar to the other group. The Metal group
is placed in the center part of the map. The border to
the Acoustic group is much more emphasized, thus songs
from these groups differ more than between Acoustic and
Classic. The Electronic and Hiphop groups resides in the
upper and lower left parts of the map, respectively. The
distinction of both these groups from Metal is again rather
strong. The Electronic group is clearly recognized as the
least homogeneous one, because the background is gen-
erally much darker. All other groups have a central area
with white background, representing high similarity. This
can be seen as the core of the group with the most typical
pieces. In summary, a successfully global organization
of the different styles of music was achieved. The pre-
viously known groups of perceptually different music are
displayed in contiguous regions on the map and the in-
ter cluster similarity of these groups is visible due to the
topology preservation of the ESOM.

Intra cluster relations: The ESOM/U-Map visualiza-
tion offers more than many clustering algorithms. We can
also inspect the relations of songs within a valley of simi-
lar music. In the Metal/Rock region on the map two very
similar songs Boys Sets Fire - After the Eulogy and At The
Drive In - One Armed Scissor are arranged next to each
other on a plane (see Figure 3). These two songs are typ-
ical American hard rock songs of the recent years. They
are similar in fast drums, fast guitar, and loud singing, but
both have slow and quiet parts, too. The song Bodycount
- Bodycount in the House is influenced by the Hiphop
genre. The singing is more spoken style and therefore
it is placed closer to the Hiphop area and in a markable
distance to the former two songs.

Bodycount
M< o M

At trM\DArive-ln |

Figure 3: Detailed view of map region show inner cluster
relations between Metal/Rock songs

Suspected outliers: The Electronic group also con-
tains some outliers, both within areas of electronic mu-
sic as well as in regions populated by other music. The
lonely song center of the map, surrounded by a black
mountain ranges is Aphrodite - Heat Haze, the only Drum
& Bass song. The Electronic song placed in the Clas-
sical group at the far right is Leftfield - Song Of Life.
Note, that this song isn’t really that far from "home’, be-
cause of the toroid topology of the ESOM. The left end
of the map is immediately neighboring to the right side
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and the top originally connected to the bottom. The song
contains spheric synthesizer sounds, sounding similar to
background strings with only a few variations. The Elec-
tronic song in the Acoustic group is Moloko - Ho Humm.
The song is a rather quiet piece with few beats and a fe-
male singer. Twenty seconds of the extracted segment
happened to consist only of singing and background pi-
ano. The two Metal songs placed between the Hiphop
and the Electronic group in the upper left corner are In-
cubus - Redefine and Filter - Under. The former has a
strong break beat, synthesizer effects and scratches, more
typically found in Hiphop pieces. The latter happens to
have several periods of quietness between the aggressive
refrains. This probably ’confused’ the temporal feature
extractors and created a rather random outcome.

In summary, most of the songs presumably placed in
the wrong regions of the map really did sound similar to
their neighbors and were in a way bad examples for the
groups we placed them in. This highlights the difficul-
ties in creating a ground truth for musical similarity, be
it genre or timbre. Visualization and clustering with U-
Maps can help in detecting outliers and timbrally consis-
tent groups of music in unlabeled datasets.

5.2 VALIDATION DATA

For the 8G validation dataset, the U-Map of a toroid
ESOM trained with the MusicMiner features is shown in
Figure 4. Even though this musical collection contains
groups of music which are significantly different from
those of our training data (e.g. Jazz, Reggae, Oldies), the
global organization of the different styles works very well.
Songs from the known groups of music are almost always
displayed immediately neighboring each other. Again,
cluster similarity is shown by the global topology. For
example Comedy, placed in the upper left, neighbors the
Hiphop region, probably because both contain a lot of
spoken (German) word. Similar to the 5G data, Hiphop
blends into Electronic, what can be explained by similar
beats. There is a total of five suspected outliers, most
of which can again be explained by a not so well cate-
gorization of the particular songs on our behalf. Note,
that contrary to our expectations, there is not a complete
high mountain range around each group of different mu-
sic. While there is a wall between Alternative Rock and
Electronic, there is also a gate in the lower center part of
the map where these two groups blend into one another.
With real life music collections this effect will be even
stronger, stressing the need for visualization that can dis-
play these relations rather than applying strict categoriza-
tions.

To get a visual impression of the superiority of the
MusicMiner features over the features previously used in
SOM visualizations of music collections, we also trained
an ESOM on the validation data with the Spectrum His-
togram features from [10]. Figure 5 show the U-Map.
The map display of this collection does not show a high
correspondence with the perceptually different groups of
music. The groups Jazz, Comedy, and Electronic are dis-
tributed all over the map. Opera and Alternative Rock are
the only groups where the songs somewhat stick together.



Figure 2: U-Map of the 5G data and the MusicMiner features with successful global organization of known groups
M=Metal/Rock, A=Acoustic, C=Classical, H=HipHop, E=Electronic

Figure 4: U-Map of the 8G validation data and the MusicMiner features
A=Alternative Rock, O=Opera, G=Oldies, J=Jazz, E=Electronic, H=Hiphop, C=Comedy, R=Reggae

High mountain ranges appear around many of the Elec-
tronic songs. This indicates that they are extreme outliers
to the surrounding songs w.r.t. the feature set used. They
are thus recognized to be different from the surrounding
music, but the map fails to group them together according
to our perception of similarity.

6 DISCUSSION

Clustering and visualization of music collections with the
perceptually motivated MusicMiner features worked suc-
cessfully on the training data and the validation data. The
visualization based on topographical maps enables end
users to navigate the high dimensional space of sound de-

scriptors in an intuitive way. The global organization of a
music collection worked, timbrally consistent groups are
often shown as valleys surrounded by mountains. In con-
trast to the strict notion of genre categories, soft transi-
tion between groups of somewhat similar sounding music
can be seen. Most songs in the training data that were
not placed close to the other songs of their timbre groups
turned out to be timbrally inconsistent after all.

In comparison to the Islands of Music [17], the first
SOM visualization of music collection, we have used less
but more powerful features, larger maps for a higher reso-
lution view of the data space, toroid topologies to avoid
border effects, and distance based visualizations. The
Spectrum Histogram features did not show good cluster-
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Figure 5: Map of the 8G validation dataset and the Spectrum Histogram features
A=Alternative Rock, O=Opera, G=O0Oldies, J=Jazz, E=Electronic,H=Hiphop, C=Comedy, R=Reggae

ing and visualization performance.

The MusicMiner audio features are surely somewhat
biased towards the training data we have used for the se-
lection of features. Also, the perceptual ground truth we
used is of course in a way subjective. But at this small
scale we have succeeded at creating features that model
human perception of the sound, not only on the training
data but also on different music. The results of this re-
search should not be interpreted as the best audio features
ever, but rather as a methodology that can be repeated with
different candidate features, different training data sets,
and perceptual ground truth agreed upon by more people.
Performing listening tests with the MAB dataset might be
a way to create a publically available dataset including
timbre ground truth information.

The datasets we used were necessarily small, because
a ground truth on timbre similarity was needed. The meth-
ods itself scales up to much larger collections, however.
The ESOM training is linear in the number of songs and
the number of neurons, the U-Matrix calculation is linear
in the number of neurons and constant w.r.t. the collection
size. Note, that this is not true for density based visualiza-
tions like SDH.

7 MUSICMINER

In order to make the results of our research available to
music fans we started the MusicMiner? project. The goal
is to enable users to extract features for timbre discrimina-
tion from their personal music collections. The software
can be used to create maps of a playlist or the whole music
collection with a few mouse clicks. The audio features are
extracted and a toroid ESOM is trained to create a map of
the personal sound space. The ESOMs are visualized with
U-Matrix and U-Map displays in form of a topographic
map with small dots for the songs. The user may inter-
act with the map in different ways. Songs can be played

*http://musicminer.sf.net
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directly off the map. Artist and genre information can be
displayed as a coloring of the songs. New music cate-
gories can be created by selecting regions on the map with
the mouse. Playlists can be created from regions and paths
on the map. New songs can be automatically placed on ex-
isting maps according to their similarity to give the user a
visual hint of their sound. The innovative map views are
complemented by traditional tree and list views of songs
to display and edit the meta information. The MusicMiner
is based on the Databionics ESOM Tools for training and
visualization of the maps and the Yale[30]* software for
the extraction of audio features. All relevant data is stored
in an SQL database. The software is written in Java and is
freely available under the GNU Public Licence (GPL)’.

8 SUMMARY

We described the MusicMiner method for clustering and
visualization of music collections. A large scale evalua-
tion lead to features that capture the notion of perceptual
sound similarity. Clustering and visualization based on
these features with the U-Map offers an added value com-
pared to other low dimensional projections that is particu-
larly useful for music data with no or few clearly separated
clusters. The displays in form of topographical maps of-
fer an intuitive way to navigate the complex sound space.
The results of the study are put to use in the MusicMiner
software for the organization and exploration of personal
music collections.
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