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Definition.

A stochastic process (Xt) is called Brownian motion if:

1. The map t 7→ Xt(ω) is continuous for every ω.

2. (Xt1 −Xt0), (Xt2 −Xt1), . . . , (Xtn −Xtn−1) are independent for any collection of times
t0 ≤ t1 ≤ . . . ≤ tn.

3. The distribution of Xt −Xs depends only on (t− s).

Property 1 is called continuity of sample paths. Property 2 is called independent increments.
Property 3 is called stationarity of increments.

Here are some immediate conclusions and comments:

• Property 2 and 3 imply that (Xt) is time-homogeneous (one may shift the time-axis)
and space-homogeneous (since distribution of increments does not depend on current
Xs).

• Property 2 and 3 also imply that (Xt) is Markov, since the future increments are
conditionally independent of the past given the present.

• Properties 2 and 3 are also satisfied by the Poisson process. However the Poisson
process certainly does not have continuous sample paths.

• It is not at all clear that such a process (Xt) exists, since the requirement of continuous
paths is very stringent.

• The underlying probability space here is Ω = {continuous functions on [0,∞)}.

Brownian Motion has Gaussian Marginals.

We have the following

Theorem 1. If (Xt) is a Brownian motion, then there exist constants µ, σ2 such that Xt −
Xs ∼ N ((t− s)/µ, (t− s)σ2).

Proof. Without loss of generality take s = 0 and pick some n ∈ Z and write

Xt −X0 = (Xt/n −X0) + (X2t/n −Xt/n) + . . . + (Xt −X(n−1)t/n).

Each term on the right hand side is independent and identically distributed. Letting n →∞,
by the central limit theorem, the right hand side must converge to some normally distributed
random variable (the continuity of (Xt) makes sure that one can apply the CLT, as the
increments must become smaller and smaller as n increases).
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We conclude that Xt−X0 ∼ N (a(t), b(t)) for some functions a, b. However, since Xt+s−
X0 = (Xt −X0) + (Xt+s −Xt) and the two are independent, we have that

Xt+s −X0 ∼ N (a(t), b(t)) +N (a(s), b(s))
d
= N (a(t) + a(s), b(t) + b(s)).

On the other hand, we directly have Xt+s − X0 ∼ N (a(t + s), b(t + s)). It follows that
a(t + s) = a(t) + a(s) and similarly for b. But this means that a, b are linear functions, i.e.
a(t) = µt, b(t) = σ2t (clearly b must have positive slope), for some µ, σ2.

The parameter µ is called drift of the Brownian motion and σ is called the volatility. To
summarize, if (Xt) is a BM then the marginal distribution is

Xt −X0 ∼ N (µt, σ2t).

Wiener Process

The special case µ = 0, σ2 = 1, X0 = 0 is called the Wiener process. We write (Wt) in that
case. Here are some computations for the Wiener process:

E[Wt] = 0.

V ar(Wt) = t.

Cov(Ws, Wt) = E[WsWt]− E[Ws]E[Wt] s < t

= E [Ws(Ws + Wt −Ws)]

= E[W 2
s ] + E[Ws]E[Wt −Ws]

= V ar(Ws) + 0 = s.

The last statement is written as Cov(Ws, Wt) = min(s, t).

Here is another important computation: we find the conditional distribution of Ws given
Wt = z, s < t:

P(Ws ∈ dx|Wt = z) =
P(Ws ∈ dx, Wt ∈ dz)

P(Wt ∈ dz)

=
P(Ws ∈ dx, (Wt −Ws) ∈ (dz − x))

P(Wt ∈ dz)

Using the Gaussian density and independent increments:

=

(
1√
2πs

e−x2/(2s)dx
) (

1√
2π(t−s)

e−(z−x)2/(2(t−s))dz

)
1√
2πt

e−z2/(2t)dz

= exp

(
−1

2

(
x2/s + (z − x)2/(t− s)− z2/t

))
· 1√

2πs(t− s)/t

= exp(−(x− s

t
z)2/(2s(t− s)/t)) · 1√

2πs(t− s)/t
.
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The last line is the density of a Gaussian random variable and we conclude that

Ws|Wt = z ∼ N
(s

t
z, s(t− s)/t

)
.

This is quite intuitive: E[Ws|Wt = z] = (s/t)z and V ar(Ws|Wt = z) = (s/t)2(t− s)2.

Constructing Brownian Motion.

Here is the “physicist’s” construction of BM. This idea was first advanced by Einstein in
1906 in connection with molecular/atomic forces.

Consider a particle of pollen suspended in liquid. The particle is rather large but light and
is subject to being hit at random by the liquid molecules (which are small but very many).
Let us focus on the movement of the particle along the x−axis, and record its position at
time t as Xε

t . Each time a particle is hit on the left, it moves to the right by a distance
ε, and each time it is hit on the right, it moves left by an ε. Let Lt, Mt be the number of
hits by time t on the left and right respectively. Then Xε

t = εLt − εMt (for simplicity we
took X0 = 0). It is natural to assume that Lt, Mt are two independent stationary Markov
processes with iid increments. That is, Lt, Mt are two Poisson processes with same intensity
λε. We immediately get E[Xε

t ] = 0 and

V ar(Xε
t ) = ε2E[(Lt −Mt)

2] = ε2(2(λεt + (λεt)
2)− 2E[LtMt] = 2ε2λεt.

So far ε was a dummy parameter and of course we are planning on taking ε → 0. To obtain
an interesting (Xt) in the limit, we should make sure that the variance above converges
to some non-zero finite limit. This would happen if we take λε = C/(2ε2). Thus, as the
displacement of the pollen particle from each hit is diminished we naturally increase the
frequency of hits (and the correct scaling is quadratic).

To figure out what is the limiting (Xt) we compute the mgf (recall the mgf of Poisson(λ)
is eλ(es−1)):

E[esXε
t ] = exp (λεt(e

sε − 1)) · exp
(
λεt(e

−sε − 1)
)

= etC/(2ε2)(esε+e−sε−2).

Since by L’Hopital rule

lim
ε→0

esε + e−sε − 2

ε2
= lim

ε→0

sesε − se−sε

2ε

= lim
ε→0

s2esε + s2e−sε

2
= s2

we have
lim
ε→0

E[esXε
t ] = etCs2/2.

The latter is the moment generating function of a N (0, tC) random variable. Since for every
ε > 0, (Xε

t ) had stationary and independent increments (because Lt, Mt do), so does the
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limiting (Xt). Moreover, since the displacement ε → 0, (Xt) should be continuous. Putting
it all together we conclude that (Xt) is a Brownian motion with zero drift and volatility C.
If C = 1 then we get the Wiener process.

The name Brownian motion comes from the botanist Robert Brown who first observed
the irregular motion of pollen particles suspended in water in 1828. As you can see it took
80 years until Einstein could provide a good mathematical model for these observations.
Einstein’s model was a crucial step in convincing physicists that molecules really exist and
move around randomly when in liquid or gaseous form. Since then, this model has indicated
to physicists that any random movement in physics should be based on Brownian motion,
at least on the atomic/molecular level where external forces, such as gravity, are minimal.

Remark : note that (Xε
t ) above is a scaled simple birth-and-death process.

Recognizing Brownian Motion.

We first observe that if (Xt) is a Brownian motion with µ = 0 then (Xt) is a martingale with
respect to itself. Indeed, let Ft = {Xu : 0 ≤ u ≤ t} be the history of X up to time t. Then
for s > t

E[Xs|Ft] = E[(Xs −Xt) + Xt|Ft] = E[Xs −Xt] + Xt = Xt,

since the expected value of any increment is zero. More generally, Yt = Xt−µt is a martingale
for any Brownian motion with drift µ.

The above property has far-reaching consequences. In fact, it turns out that the Wiener
process is the canonical continuous martingale. This fact forms the basis for stochastic
calculus and underlines the importance of understanding the behavior of BM. One basic
application is the following Levy characterization of Wiener process:

Theorem 2. Suppose that (Zt) is a continuous-time stochastic process such that:

• The paths of Z are continuous.

• (Zt) is a martingale with respect to its own history.

• V ar(Zt − Zs) = (t− s) for any t > s > 0.

Then (Zt − Z0) is a Wiener process.

As a corollary, if (Zt) is a continuous process such that Zt − µt is a martingale and
V ar(Zt) = σ2t then (Zt) is a Brownian motion with drift µ and volatility σ.

From Random Walk to Brownian Motion.

Here is another construction of Brownian motion. Let (Sδ
t ) be a simple symmetric random

walk that makes steps of size ±δ at times t = 1/n, 2/n, . . .. We know that S(δ
t ) is a time- and

space-stationary discrete-time martingale. In particular, E[Sδ
t ] = 0, and V ar(Sδ

t ) = δ2bntc.
To pass to the limit δ → 0 we therefore select n = 1/δ2. As δ → 0, we obtain a continuous-
time, continuous-space stochastic process that has stationary and independent increments,
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continuous-paths and the martingale property. Moreover, V ar(S0
t ) = t, so (S0

t ) must be the
Wiener process.

One can also pick other random walks to make the convergence faster. For example a
good choice is to take the step distribution as

Xn =


+δ with prob. 1/6
0 with prob. 2/3
−δ with prob. 1/6

and n = 3/δ2. The corresponding random walk Sn = X1 + . . . + Xn can go up, go down, or
stay at the same level.

It is often helpful to think of Brownian motion as the limit of symmetric random walks. As
we will see, most of the general results about random walks (including recurrence, reflection
principle, ballot theorem, ruin probabilities) carry over nicely to Brownian motion.

Hitting Time Distribution.

Let (Wt) be the Wiener process and

Tb(ω) = min{t ≥ 0 : Wt(ω) = b}

be the first time (Wt) hits level b. We are interested in computing the distribution of Tb.
Since the behavior of the Wiener process is symmetric about the x-axis, we take b > 0.

Define Ŵt = WTb+t−WTb
to be the future of W after time Tb. Note that Tb is random, so

it is not clear how Ŵ looks like. However, it is possible to verify all the conditions of Levy’s
Theorem and conclude that Ŵ is again a Wiener process. This is because (Wt) is a strong
Markov process, meaning that the Markov property of (Wt) continues to hold when applied
at random (stopping!) times, such as Tb. Thus, the future of (Wt) after Tb is independent of
its history up to Tb.

From this fact we obtain

P(Wt > b|Tb < t) = P(Ŵt−Tb
> 0) = 1/2,

since P(Ŵs > 0) = 1/2 for any time s by symmetry. However, the LHS above can also be
written as

P(Wt > b|Tb < t) =
P(Wt > b, Tb < t)

P(Tb < t)
=

P(Wt > b)

P(Tb < t)
,

since the only way that W is above b at t is if the hitting time of b has already occurred.
Comparing we conclude that

P(Tb < t) = 2P(Wt > b) = 2

∫ ∞

b/
√

t

1√
2π

e−x2/2dx.

An immediate corollary is that if we take t →∞ then the RHS goes to 2
∫∞

0
1√
2π

e−x2/2dx = 1,

which means that P(Tb < ∞) = 1, irrespective of value of b. Therefore, the Wiener process
hits any level b with probability 1.
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Furthermore, differentiating the above with respect to t we find that the density of Tb is
given by:

P(Tb ∈ dt) =
|b|e−b2/(2t)

√
2πt3

, b ∈ R. (1)

The latter belongs to the family of stable (or inverse Gamma) distributions (we say that
Tb has stable(1/2)-distribution). In fact, here is a curious connection: let Z ∼ N (0, 1) and
Y = b2/Z2. Then Tb ∼ Y . Indeed,

P(Y ≤ t) = P(b2/Z2 ≤ t) = P(|Z| ≥ |b|/
√

t) = 2P(Z ≥ |b|/
√

t).

Differentiating,

P(Y ∈ dt) = 2
|b|

2t3/2

1√
2π

e−(b/
√

t)2/2

which matches with (1).

Using (1) one also shows that E[Tb] = +∞ for any b. So the conclusion is:

No matter how large b is, P(Tb < ∞) = 1.

No matter how small |b| is, E[Tb] = ∞.

Maximum Process.

Let Mt = max0≤s≤t Ws be the running maximum of Wiener process W . Then (Mt) is a
non-decreasing process that goes to +∞ since we know that (Wt) will eventually hit any
positive level. Moreover,

P(Mt > x) = P(Tx < t)

= 2P(Wt > x) = P(
√

t|Z| > x)

based on properties of normal r.v.’s. We conclude that the marginal distribution of Mt is
the same as that of an absolute value of a Gaussian random variable. In particular,

E[Mt] =
√

2t/π, V ar(Mt) = (1− 2/π)t.

Note that while (Mt) is increasing, it does so in an imperceptible creep: for any fixed t,
(Mt) is flat in the neighborhood of t with probability 1. If you draw a typical path of (Mt)
on an interval of say [0, 1], the length of flat areas will add up to 1 (even though M1 > M0

with probability 1). For those of you who know some analysis, the set of points where (Mt)
icnreases is a Cantor set of measure zero.

By symmetry the minimum mt = min0≤s≤t Ws has the same distribution as −Mt. Since
both mt → −∞, Mt → +∞ it must be that (Wt) recrosses zero an infinite number of times.
Thus, the zero level (and by space-homogeneity, any level) is recurrent for (Wt).

The next computation shows that much more is true:
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Probability of a Zero.

We are interested in computing the probability that the Wiener process W hits zero on the
time interval [s, t]. Observe that if Ws = a, then the probability that W hits zero on [s, t] is
just

P(Ta < (t− s)) =

∫ t−s

0

|a|√
2πy3

e−a2/(2y) dy.

However, Ws ∼ N (0, s), so putting it together (ie conditioning on Ws) we have:∫ ∞

−∞
P(Ta < (t− s))

1√
2πs

e−a2/(2s) da =

∫ ∞

−∞

∫ t−s

0

|a|√
2πy3

e−a2/(2y) dy
1√
2πs

e−a2/(2s) da

=

∫ t−s

0

1

2πs1/2y3/2

(∫ ∞

−∞
|a|e−a2/(2y)−a2/(2s)da

)
dy

=

∫ t−s

0

1

πs1/2y3/2

(∫ ∞

0

|a|e−a2∗(y+s)/(2sy)da

)
dy

=

∫ t−s

0

1

πs1/2y3/2

sy

s + y
dy

=

√
s

π

∫ t−s

0

dy

(s + y)
√

y

=
2

π

∫ √
(t−s)/s

0

dx

1 + x2
by substitution y = sx2

=
2

π
arctan(

√
(t− s)/s) =

2

π
arccos

√
s

t
.

Corollary: if s = 0 then probability of a zero on [0, t] is 2
π

arccos 0 = 1 for any t. Therefore,
W returns to zero immediately after t = 0. After some thinking and using the strong Markov
property of W , it follows that W has infinitely many zeros on any interval [0, t]. This is quite
counterintuitive given that E[Tε] = +∞ even for very small ε. Thus W really oscillates wildly
around zero. This is one indication that W is nowhere differentiable: it oscillates around
every point and the scale of oscillations over time interval of length h is on the order of
O(
√

h), which means that limh→0
Wt+h−Wt

h
cannot exist.

Time of Last Zero.

Let Lt be the time of last zero of W before time t. Let Dt be the time of first zero of W
after time t. We observe that {Lt < s} = {Ds > t} = {W has no zeros on [s, t]}. From the
last section, we therefore find that

P(Lt < s) = 1− 2

π
arccos

√
s

t
=

2

π
arcsin

√
s

t
,

meaning that the density of Lt is:

P(Lt ∈ ds) =
1

π
√

s(t− s)
, 0 ≤ s ≤ t.
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These facts are known as the Arc-sine Law and show that the last zero of W is likely to be
either close to zero or to t.

Here is another derivation of the same result using the Gaussian-Gamma connection.
Note that conditional on Wt = a, the distribution of Dt is Dt ∼ t + T−a ∼ t + a2

γ0
where

γ0 ∼ Gamma(1/2, 1/2). Therefore,

P(Dt ≤ (t + u)) =

∫ ∞

−∞
P(Dt − t ≤ u|Wt = a)fWt(a) da

=

∫ ∞

−∞
P(a2/γ0 ≤ u)fWt(a) da

= P(W 2
t /γ0 ≤ u)

= P(tγ1/γ0 ≤ u)

= P
(

tγ1

γ0

≤ u

)
,

where γ1 ∼ Gamma(1/2, 1/2) is another Gamma rv, independent of γ0 (since Ta is indep
of W0). So distribution of Dt − t is same as tγ1

γ0
ie distribution of Dt is equal to that of

t(1 + γ1/γ0) = t/ γ0

γ0+γ1
. The latter expression β = γ0

γ0+γ1
is known to have a Beta(1/2, 1/2)

distribution with density fβ(u) = 1

π
√

u(1−u)
, 0 ≤ u ≤ 1. So P(Dt < (t + u)) = P(t/β <

(t + u)) = P(β > t/(t + u)).

However, as mentioned before,

P(Lt < s) = P(Ds > s + (t− s)) = P(β < s/t) =

∫ s/t

0

1

π
√

u(1− u)
du =

2

π
arcsin

√
s

t
,

using the substitution x =
√

u. In particular note that the distribution of L1 is Beta(1/2, 1/2).

Planar BM

Let (W 1, W 2) be two independent Wiener processes, and take Xt = X0 +W 1
t , Yt = Y0 +W 2

t .
Then viewing (Xt, Yt) as the (x, y)-coordinates of a moving particle, we obtain what is called
a planar Brownian motion, starting at the initial location (X0, Y0). Here is one curious
computation:

Suppose (X0, Y0) = (0, b) so the particle starts somewhere on the positive y-axis. Let T
be the first time that Yt = 0 the particle hits the x-axis. We are interested in the distribution
of XT . Recall that from the remark after (1), T ∼ b2/Z2. It follows that XT ∼

√
TZ0 where

(Z0, Z) are two independent standard normal random variables. In other words, XT ∼ bZ0

Z

which we recall has a Cauchy distribution, namely

P(XT ∈ dx) =
b

(b2 + x2)π
.

Like the one-dimensional case, two-dimensional Brownian motion is recurrent and will hit
every point in the plane with probability 1.
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