

RRT*-Smart: Rapid convergence implementation of

RRT* towards optimal solution

Fahad Islam
1,2

, Jauwairia Nasir
1,2

, Usman Malik
1
, Yasar Ayaz

1
 and Osman Hasan

2

1
Robotics & Intelligent Systems Engineering (RISE) Lab,

Department of Robotics and Artificial Intelligence,

School of Mechanical & Manufacturing Engg (SMME),

National University of Sciences and Technology (NUST),

H-12 Campus, Islamabad, Pakistan.

2
Department of Electrical Engineering,

School of Electrical Engg & Computer Sciences (SEECS),

National University of Sciences and Technology (NUST),

H-12 Campus, Islamabad, Pakistan.

{ 08beefahad, 08beejnasir }@seecs.edu.pk, { usman, yasar }@smme.nust.edu.pk, osman.hasan@seecs.edu.pk

Abstract—Rapidly Exploring Random Tree (RRT) is one of the

quickest and the most efficient obstacle free path finding

algorithm. However, it cannot guarantee finding the most

optimal path.. A recently proposed extension of RRT, known as

Rapidly Exploring Random Tree Star (RRT*), claims to achieve

convergence towards the optimal solution but has been proven

to take an infinite time to do so and with a slow convergence

rate. To overcome these limitations, we propose an extension of

RRT*, called RRT*-Smart, which aims to accelerate its rate of

convergence and to reach an optimum or near optimum solution

at a much faster rate and at a reduced execution time. Our novel

algorithm inculcates two new techniques in RRT*: these are

path optimization and intelligent sampling. Simulation results

presented in various obstacle cluttered environments confirm

the efficiency of RRT*-Smart.

I. INTRODUCTION

 The domain of Motion Planning involves finding a

feasible trajectory that connects the starting point to the goal

point while avoiding collision with the obstacles. The field of

Motion Planning and Navigation has gained immense

popularity and importance in the recent years due to the fact

that current trends in robotics research for both industrial and

domestic needs are focused towards intelligent automation.
 Since 1970s, many path planning algorithms including

geometric algorithms, grid-based algorithms, potential field
algorithms, neural networks, genetic algorithms and sampling
based algorithms, have been proposed for various static and
dynamic environments. Each of these algorithms has its own
advantages and shortcomings in finding the most efficient path
planning solution in terms of space and time complexity and
path optimization [1-6]. Sampling based algorithms are among
the latest and most popular path planning algorithms because
they are less computationally complex and have the ability to
find solutions without using explicit information about the
obstacles in the configuration space as compared to other
probabilistically complete algorithms. Instead, they rely on a

collision checking module and build a roadmap of feasible
trajectories made by connecting together a set of points
sampled from the obstacle-free space. Rapidly Exploring
Random Tree Star (RRT*) [7] is one of the recent sampling
based algorithms. Its major advantage over other algorithms is
that it finds an initial path very quickly and then later keeps on
optimizing it as the number of samples increases. Thus, apart
from probabilistic completeness it ensures asymptotic
optimality [7] unlike its predecessor algorithm RRT [7][8].

 Although RRT* claims to reach an optimal solution, it

never reaches that optimality in finite time [7]. Also, the rate

of convergence is slow. We address this problem by

introducing RRT*-Smart which instead of employing purely

random space exploration, performs an informed exploration

of search space. It uses the first path found by RRT* as an

intelligent guess to help in exploring the configuration space.

Moreover, it uses intelligent sampling to give an optimum or

near optimum path at a very fast rate of convergence and

reduced execution time. The solution obtained by RRT*-

Smart facilitates the robot to track the trajectory as it is

straighter and with less way points. Thus, it gives a more

efficient path planning solution as compared to RRT*. The

remainder of the paper is organized as follows. In Section II,

we discuss RRT*. RRT*-Smart is presented in Section III;

while Sections IV and V cover Results and Performance

Analysis, respectively. Section VI concludes the paper and

highlights future research avenues.

II. RRT* ALGORITHM

 As RRT*-Smart is an improved version of RRT*, so in

this section we briefly introduce motion planning using the

RRT* algorithm to build the background for understanding

RRT*-Smart. RRT* is an incremental sampling based

algorithm which finds an initial path very quickly and later

optimizes the path as the execution takes place[7][9].

 Let X define the configuration space in which Xobs is the

obstacle region, Xfree=X/Xobstacle is the obstacle-free region

and Xgoal is the goal region. RRT* works to find out an input

u: [0:T] ϵ U that yields a feasible path x(t) ϵ Xfree that starts

from x(0) = x-initial to x(T)= goal following the system

constraints. While finding this solution, RRT* maintains a

tree Ƭ= (V, E) of vertices V sampled from the obstacle-free

state space Xfree and edges E that connect these vertices

together. This algorithm makes use of a set of procedures

which should be explained here before going into the details

of RRT*-Smart.

 Sampling: It randomly samples a state zrand ϵ Xfree from

the obstacle-free configuration space.

 Distance: This function returns the cost of the path between

two states assuming the region between them is obstacle free.

The cost is in terms of Euclidean distance.

 Nearest Neighbor: The function Nearest (Ƭ, zrand) returns

the nearest node from Ƭ=(V, E) in terms of the cost

determined by the distance function.

 Steer: The function Steer (zrand, znearest) solves for a

control input u[0,T] that drives the system from x(0)=zrand to

x(T)=znearest along the path x: [0,T] → X giving znew at a

distance ∆q from znearest towards zrand where ∆q is the

incremental distance.

 Collision Check: The function Obstaclefree(x) determines

whether a path x:[0,T] lies in the obstacle-free region Xfree

for all t=0 to t=T.

 Near-by Vertices: The function Near(Ƭ, zrand, n) returns the

nearby neighboring nodes that lie in a ball of volume (β

(logn/n)) around zrand where β is a constant that depends on

the planner.

 Insert node: The function Insertnode(zparent, znew, Ƭ) adds

a node znew to V in the tree Ƭ =(V, E) and connects it to an

already existing node zparent as its parent, and adds this edge

to E. A cost is assigned to znew which is equal to the cost of

its parent plus the Euclidean cost returned by the Distance

function between znew and its parent zparent.
 A pseudo code describing RRT* is shown in Algorithm1.

Algorithm 1: Ƭ = (V, E) ← RRT*(zinit)

1 Ƭ ← InitializeTree();

2 Ƭ ← InsertNode(Ø, zinit, Ƭ);

3 for i=0 to i=N do

4 zrand ← Sample(i);

5 znearest ← Nearest(Ƭ, zrand);

6 (xnew, unew, Tnew) ← Steer (znearest, zrand);

7 if Obstaclefree(xnew) then

8 Znear ← Near(Ƭ, znew, |V|);

9 zmin ← Chooseparent (Znear, znearest, znew, xnew);

10 Ƭ ← InsertNode(zmin, znew, Ƭ);

11 Ƭ ← Rewire (Ƭ, Znear, zmin, znew);

12 return Ƭ

 RRT* is a landmark sampling based algorithm as it has

made it possible to approach an optimal solution thus

ensuring asymptotic optimality apart from probabilistic

completeness as opposed to its predecessor RRT. Although it

tends to approach an optimal solution but it has been proven

mathematically that it reaches the said solution in infinite

time [7]. To overcome these limitations, we propose a rapid

convergence version of RRT* known as RRT*-Smart which

moves towards an optimal solution at a significantly faster

rate.

III. THE RRT*-SMART ALGORITHM

 This section describes the RRT*-Smart Algorithm and

introduces the two new key concepts: Intelligent Sampling

and Path Optimization. Initially, RRT*-Smart works in the

same way as RRT*. Once the first path is found it then

optimizes this path by interconnecting the directly visible

nodes. This optimized path yields biasing points for

intelligent sampling. This process continues as the algorithm

progresses and the path keeps on being optimized rapidly.

Whenever a shorter path is found, the biasing shifts towards

the new path. This process is outlined in Algorithm 2.

Algorithm 2: Ƭ = (V,E) ← RRT*Smart(zinit)

1 Ƭ ← InitializeTree();

2 Ƭ ← InsertNode(Ø, zinit, Ƭ);

3 for i=0 to i=N do

4 if i=n+b, n+2b, n+3b…. then

5 zrand ← Sample(i, zbeacons);

6 else

7 zrand ← Sample(i);

8 znearest ← Nearest(Ƭ, zrand);

9 (xnew, unew, Tnew) ← Steer (znearest, zrand);

10 if Obstaclefree(xnew) then

11 Znear ← Near(Ƭ, znew, |V|);

12 zmin ← Chooseparent (Znear, znearest, znew, xnew);

13 Ƭ ← InsertNode(zmin, znew, Ƭ);

14 Ƭ ← Rewire (Ƭ, Znear, zmin, znew);

15 if InitialPathFound then

16 n ← i;

17 (Ƭ, directcost) ← PathOptimization(Ƭ, zinit, zgoal);

18 if (directcostnew < directcostold)

19 zbeacons ← PathOptimization(Ƭ, zinit, zgoal);

20 return Ƭ

 The lines 1, 2, 3 and 7 to 14 execute in the same way as

RRT* does. Once the initial path is found in line 15, the

function InitialPathFound returns the iteration number n at

which this path is found. This n is used to inform the

algorithm when to start the biased sampling and b is the

biasing ratio that depends upon the planner. The function

(Ƭ, directcost) ← PathOptimization(Ƭ, zinit, zgoal) determines

an optimized path by directly connecting the nodes in the

path that are visible to each other and returns its cost (line

17). In lines 18-19 beacons (the nodes which form the basis

for intelligent sampling) are being formed from the function

zbeacons ← PathOptimization(Ƭ, zinit, zgoal) if the new cost is

less than the old cost; otherwise the old beacons keep on

biasing the tree. In lines 4-5, zrand ← Sample (i, zbeacons),

samples are being spawned at the beacons within a ball of

radius Rbeacons centered at zbeacons. After the initial beacons

are found, intelligent sampling takes place with a certain

percentage; i.e. after every few samples that are placed in the

normal way as for RRT* (lines 7-9), one sample is spawned

in the vicinity of the beacons.

A. Path Optimization

 Once RRT* gives an initial path, the nodes in the path x:

[zinit, zgoal] → X that are visible to each other are directly

connected. An iterative process starts from zgoal and moves

towards zinit checking for direct connections with successive

parents of each node until the collision free condition fails.

By the end of this process, no more directly connectable

nodes are present. Hence the path is optimized based on the

concept of Triangular Inequality as illustrated in Fig. 1.

According to Triangular Inequality, c is always less than the

sum of a and b.

 At each visibility check between two nodes, the collision

free checking is required. For this purpose, we have utilized

interpolation which does not need explicit information about

obstacles as required in other collision checking methods; for

example considering obstacles as axis aligned rectangles and

checking intersection points [13]. Hence, this method of

interpolation for collision free checking is independent of the

shape of the obstacles and is computationally less expensive.

 The number of nodes present in this path is now very less

as compared to the original path found by RRT*. These nodes

are termed as Beacons zbeacons which form the basis for

intelligent sampling.

B. Intelligent Sampling

 The idea behind intelligent sampling is to approach

optimality by generating the nodes as close as possible to

obstacle vertices following the idea of visibility graph

technique. However visibility graph techniques require

complex environmental modeling and explicit information

about obstacles [2]. Furthermore they may not reach a

solution in environments containing obstacles with complex

geometries (concave, polygonal, circular etc).

 Once the initial path has been found, intelligent sampling

starts with a certain number of samples being directly

spawned (lines 4-5) in a ball of radius Rbeacons centered at

zbeacons. The reason why sampling is biased towards these

beacons is that these beacons give a clue regarding the

position of obstacle vertices (or periphery in case of circular

obstacles). Therefore, these beacons need to be surrounded by

maximum nodes to optimize the path at these turns. Hence,

optimality is reached at much lesser number of iterations as

compared to RRT* which reaches a close to optimal solution

only as the samples approach infinity.

 As the algorithm iterates, each time a new RRT* path with

smaller cost as compared to the previous path is found, an

optimized path is calculated. The cost of this optimized

Fig. 1 Path Optimization based on Triangular Inequality.

 Fig. 2 (a) First Path given by RRT* at n=650.
(b) An optimized path (in blue) is shown after the Path

Optimization technique is applied on the path shown in (a).

(c) shows clustered samples as a result of biasing towards the
beacons (in green) at n=2500

 (d) shows the optimum path at n=4200

path is compared with the previous optimized path. If the cost

is shorter, new beacons zbeacons are generated and thus new

biasing points are formed. These newly formed beacons are

closer to the vertices. This process continues until the

required iterations are completed.

 Though the obstacles are not being explicitly defined

keeping the beneficial property of sampling based algorithms

intact, yet by using intelligent guessing and biasing beacons,

the proposed algorithm finds a way to spawn the tree nearer

to the vertices which eventually leads us towards an optimal/

near optimal path x:[zinit,zgoal] →optimal X. This path also

has a very few number of samples which is shown in Section

V. Hence RRT*-Smart algorithm works to provide a much

more optimal solution at a faster rate of convergence and an

easier path for the mobile robots to follow in any kind of

environment as the number of waypoints are less.

 Fig. 2 demonstrates the effectiveness and working of

RRT*-Smart algorithm. An initial path is found in (a) at

n=650. In (b), Path Optimization yields an optimized path

shown in blue. The green dots are the beacons that are formed

for this initial path. After n=2500, Clustered samples are

formed around the beacons as shown in (c). Finally after an

iterative process, an optimized path is found for this obstacle

scenario at n=4200.

 The Space and Time complexity for RRT* are given by

O(n) and O(nlogn), respectively [7]. Mathematical analysis of

RRT*-Smart shows that the space and time complexity is the

same as that of RRT* but the value of n is significantly

reduced in case of RRT*-Smart. Thus, O(n) and O(nlogn) for

RRT*Smart yields much better performance. However, as

the performance improves and the biasing ratio increases, the

randomness in the exploration of the tree decreases as a

number of nodes are now used to optimize the path in a

particular region. Therefore, there is a tradeoff between

intelligent sampling and space exploration rate.

IV. RESULTS

 In this section, we show the optimized results for RRT*-

Smart in three environments with different obstacle scenarios.

The red box represents the goal region while the trajectory is

shown by a black line. It provides an optimal/ near optimal

solution in the circular, local minima and cluttered

environment. It can be observed that the path optimization

and intelligent sampling techniques that this algorithm

employs to provide a feasible path planning trajectory is

independent of the obstacle shape as highlighted in the

previous section.

V. PERFORMANCE COMPARISON

 Here we present an experimental performance comparison

between RRT*-Smart and RRT* by analyzing their

performance from various perspectives. First we make use of

the results of the two algorithms in Fig. 4 to illustrate their

comparative differences.

 We see in Fig. 4(d) that RRT*-Smart uses the RRT* path

with a cost of 630.18 at iteration number n =800 shown in

Fig. 4(a) and finds a more optimal path with a cost of 584.02

at equal number of iterations using the Path Optimization

technique. With Intelligent Sampling and further path

optimization, the cost in Fig. 4(e) has further reduced to

557.478 at n=1200 while RRT* converging with its original

rate manages to reach a cost of 624.95 at the same number of

n in Fig. 4(b). Finally, RRT*- Smart gives an optimal/ near

optimal solution at n=4200 with a cost of 540.12 as shown in

Fig. 4(f). At the same number of iterations, RRT* converges

to a path with a cost of 574.009 in Fig. 4(c). The efficiency in

terms of path cost is evident from this comparison.

 Next, we present a statistical comparison between the two

algorithms using graphical results for the experiment shown

in Fig. 4. In Fig. 5 the convergence pattern of the costs of

RRT* and RRT*-Smart is shown. It can be seen that RRT*-

Smart not only has a much faster rate of convergence but also

approaches the optimum cost after finite iterations whereas

RRT* is still in the process of reaching an optimal solution

with relatively slower rate of convergence.

Fig.3. RRT*-Smart in different obstacle Environments

 In Fig. 6, iterations are plotted against different fixed costs.

It can be observed that for approaching the same cost as the

algorithms iterate towards finding an optimal solution, the

number of iterations for RRT* is far greater than RRT*-

Smart. The cost of 540 is achieved by the latter algorithm at

4200 iterations whereas RRT* fails to achieve this cost even

at very large number of iterations as shown in the same

graph. Fig. 7 shows path cost versus time comparison for our

implementation of the two algorithms.

 For reaching the same cost, it is observed that RRT* takes

significantly greater time than RRT*-Smart. The system

specifications are 2.1 GHz Intel corei3 processor and a 4GB

RAM.

 Fig. 8 highlights the running time ratio of RRT* to RRT*-

Smart. The graph shows that the ratio is always greater than 1

for our implementation proving the time efficiency of RRT*-

Smart over RRT*.

 Fig. 9 demonstrates the behavior of RRT* and RRT*-Smart

in ten different obstacle environments. For each environment,

the cost is plotted for a fixed number of iterations n. It can be

seen that the graph of RRT*-Smart consistently stays below

the graph of RRT*, showing that in all these environments

the path costs found by RRT*-Smart remains less than the

path costs of RRT*, hence proving the efficiency of RRT*-

Smart.

 Analyzing the performance comparison results it can be

concluded that RRT*-Smart is more efficient than RRT* not

only with respect to path optimization but also in terms of

computational time.

Fig. 6 Iterations are plotted against different fixed costs.

Fig. 5 Costs are plotted against iterations showing the rate of

convergence of both RRT* and RRT*-Smart.

Fig. 4 A comparison of RRT* and RRT*-Smart using simulation results at 800, 1200 and 4200 iterations.

VI. CONCLUSION

 Incremental sampling based algorithms have been widely in

use because of their advantages over other motion planners.

RRT* unlike RRT is asymptotically optimal apart from being

probabilistically complete. But the rate of convergence to this

close-to optimal solution is slow.

 This paper presents a rapid convergence implementation of

RRT* known as RRT*-Smart which helps approaching an

optimal/ near optimal solution by introducing Intelligent

Sampling and Path Optimization techniques. Simulation

results have demonstrated that RRT*-Smart converges to

relatively optimal solutions at very few iterations and at an

accelerated rate. Performance comparison proved the

efficiency of RRT*-Smart with respect to both time and cost.

We expect to provide hardware results on Pioneer 3AT

Mobile Robotic platform in the near future and then precede

this work to dynamic environments.

REFERENCES

[1] M. Kanehara, S. Kagami, J.J. Kuffner, S. Thompson, H. Mizoguhi,
"Path shortening and smoothing of grid-based path planning with
consideration of obstacles," IEEE International Conference on Systems,
Man and Cybernetics, 2007 (ISIC) , pp.991-996, 7-10 Oct. 2007.

[2] I. Petrovic and M. Brezak, “A visibility graph based method for path
planning in dynamic environments”, in proceedings of 34th
International Convention on Information and Commuincation
Technology, Electronics and Microelectronics (MIPRO), pp.711-
716,2011.

[3] N.H. Sleumer, N. Tschichold-Grman, “Exact cell decomposition of
arrangements used for path planning in robotics” Technical report.
Switzerland: Institute of Theoretical Computer Science Swiss Federal
Institute of Technology Zurich; 1999.

[4] Y.K.Hwang, N. Ahuja , "A potential field approach to path planning,"
IEEE Transactions on Robotics and Automation,, vol.8, no. 1, pp.23-
32, Feb 1992.

[5] A. Ghorbani, S, Shiry, and A. Nodehi,”Using Genetic Algorithm for a
Mobile Robot Path Planning”, Proceedings of the 2009 International
Conference on Future Computer and Communication ICFCC '09.

[6] S.X. Yang, C. Luo , "A neural network approach to complete coverage
path planning," IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics, vol. 34, no. 1, pp. 718- 724, Feb. 2004.

[7] S. Keraman and E. Farazolli, “Sampling-based Algorithms for Optimal
Motion Planning” , International Jouranl of Robotics Research,2010.

[8] S. M. Lavalle and J.J. Kuffner, “Rapidly Exploring Random Trees:
Progress and Prospects”, In Proceedings Workshop on the Algorithmic
Foundations of Robotics, 2000.

[9] S. Karaman, Matthew R. Walter, A. Parez, E. Farazolli and S.
Teller,”Anytime Motion Planning using the RRT”, in proceedings of
International Conference on Robotic and Automation, pp. 1478-1483,
2011.

[10] M. Zucker, J. Kuffner and M. Branicky, “Multipartite RRTs for Rapid
Replanning in Dynamic Environments”, in Proc. Of Internation
Conference on Robotics and Automation, pp. 1603-160, 2007.

[11] DAB de Oliveira Vaz, Roberto S. Inoue and V. Grassi Jr,
“Kinodynamic Motion Planning of a Skid-Steering Mobile RobotUsing
RRTs”, in proceedings of Symposium on Artificial Intelligence,2010.

[12] A. Parez, S. Karaman, A. Shkolnik, E. Farazolli, Seth Teller and
Matthew R. Walter “Asymptotically-optimal path planning for
manipulation usin incremental sampling based algorithms”, in
proceedings of International Conference on Intelligent Robots and
Systems , pp. 4307-4313, 2011.

[13] Bialkowski, Karaman, and Frazzoli, “Massively Parallelizing the RRT
and the RRT*,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2011.

Fig. 8 Running Time Ratio of RRT* over RRT*-Smart is plotted
against iterations. Bias ratio b is taken as 2 for RRT*-Smart.

Fig. 9 Costs of path in ten different environments for 2000 iterations.

Fig. 7 Time comparison against fixed costs. Bias ratio b is taken as 2

for RRT*-Smart.

