RRT*-Smart: Rapid convergence implementation of RRT* towards optimal solution

Fahad Islam ${ }^{1,2}$, Jauwairia Nasir ${ }^{1,2}$, Usman Malik ${ }^{1}$, Yasar Ayaz ${ }^{1}$ and Osman Hasan ${ }^{2}$
${ }^{1}$ Robotics \& Intelligent Systems Engineering (RISE) Lab, Department of Robotics and Artificial Intelligence, School of Mechanical \& Manufacturing Engg (SMME), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad, Pakistan.
${ }^{2}$ Department of Electrical Engineering, School of Electrical Engg \& Computer Sciences (SEECS), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad, Pakistan.
\{ 08beefahad, 08beejnasir \} @seecs.edu.pk, \{ usman, yasar \}@smme.nust.edu.pk, osman.hasan@seecs.edu.pk

Abstract

Rapidly Exploring Random Tree (RRT) is one of the quickest and the most efficient obstacle free path finding algorithm. However, it cannot guarantee finding the most optimal path.. A recently proposed extension of RRT, known as Rapidly Exploring Random Tree Star (RRT*), claims to achieve convergence towards the optimal solution but has been proven to take an infinite time to do so and with a slow convergence rate. To overcome these limitations, we propose an extension of RRT*, called RRT*-Smart, which aims to accelerate its rate of convergence and to reach an optimum or near optimum solution at a much faster rate and at a reduced execution time. Our novel algorithm inculcates two new techniques in RRT*: these are path optimization and intelligent sampling. Simulation results presented in various obstacle cluttered environments confirm the efficiency of RRT*-Smart.

I. INTRODUCTION

The domain of Motion Planning involves finding a feasible trajectory that connects the starting point to the goal point while avoiding collision with the obstacles. The field of Motion Planning and Navigation has gained immense popularity and importance in the recent years due to the fact that current trends in robotics research for both industrial and domestic needs are focused towards intelligent automation.

Since 1970s, many path planning algorithms including geometric algorithms, grid-based algorithms, potential field algorithms, neural networks, genetic algorithms and sampling based algorithms, have been proposed for various static and dynamic environments. Each of these algorithms has its own advantages and shortcomings in finding the most efficient path planning solution in terms of space and time complexity and path optimization [1-6]. Sampling based algorithms are among the latest and most popular path planning algorithms because they are less computationally complex and have the ability to find solutions without using explicit information about the obstacles in the configuration space as compared to other probabilistically complete algorithms. Instead, they rely on a
collision checking module and build a roadmap of feasible trajectories made by connecting together a set of points sampled from the obstacle-free space. Rapidly Exploring Random Tree Star (RRT*) [7] is one of the recent sampling based algorithms. Its major advantage over other algorithms is that it finds an initial path very quickly and then later keeps on optimizing it as the number of samples increases. Thus, apart from probabilistic completeness it ensures asymptotic optimality [7] unlike its predecessor algorithm RRT [7][8].

Although RRT* claims to reach an optimal solution, it never reaches that optimality in finite time [7]. Also, the rate of convergence is slow. We address this problem by introducing RRT*-Smart which instead of employing purely random space exploration, performs an informed exploration of search space. It uses the first path found by RRT* as an intelligent guess to help in exploring the configuration space. Moreover, it uses intelligent sampling to give an optimum or near optimum path at a very fast rate of convergence and reduced execution time. The solution obtained by RRT*Smart facilitates the robot to track the trajectory as it is straighter and with less way points. Thus, it gives a more efficient path planning solution as compared to RRT*. The remainder of the paper is organized as follows. In Section II, we discuss RRT*. RRT*-Smart is presented in Section III; while Sections IV and V cover Results and Performance Analysis, respectively. Section VI concludes the paper and highlights future research avenues.

II. RRT* ALGORITHM

As RRT*-Smart is an improved version of RRT*, so in this section we briefly introduce motion planning using the RRT* algorithm to build the background for understanding RRT*-Smart. RRT* is an incremental sampling based algorithm which finds an initial path very quickly and later optimizes the path as the execution takes place[7][9].

Let X define the configuration space in which $\mathrm{X}_{\mathrm{obs}}$ is the obstacle region, $X_{\text {free }}=X / X_{\text {obstacle }}$ is the obstacle-free region and $\mathrm{X}_{\text {goal }}$ is the goal region. RRT* works to find out an input $\mathrm{u}:[0: T] \in \mathrm{U}$ that yields a feasible path $\mathrm{x}(\mathrm{t}) \in \mathrm{X}_{\text {free }}$ that starts from $\mathrm{x}(0)=\mathrm{x}$-initial to $\mathrm{x}(\mathrm{T})=$ goal following the system constraints. While finding this solution, RRT* maintains a tree $\mathcal{T}=(\mathrm{V}, \mathrm{E})$ of vertices V sampled from the obstacle-free state space $\mathrm{X}_{\text {free }}$ and edges E that connect these vertices together. This algorithm makes use of a set of procedures which should be explained here before going into the details of RRT*-Smart.
Sampling: It randomly samples a state $\mathrm{Z}_{\text {rand }} \in \mathrm{X}_{\text {free }}$ from the obstacle-free configuration space.
Distance: This function returns the cost of the path between two states assuming the region between them is obstacle free. The cost is in terms of Euclidean distance.
Nearest Neighbor: The function Nearest ($\mathcal{T}, \mathrm{Z}_{\text {rand }}$) returns the nearest node from $\mathcal{T}=(\mathrm{V}, \mathrm{E})$ in terms of the cost determined by the distance function.
Steer: The function Steer ($\mathrm{Z}_{\text {rand }}, \mathrm{Z}_{\text {nearest }}$) solves for a control input $u[0, T]$ that drives the system from $x(0)=Z_{\text {rand }}$ to $\mathrm{x}(\mathrm{T})=\mathrm{Z}_{\text {nearest }}$ along the path $\mathrm{x}:[0, \mathrm{~T}] \longrightarrow \mathrm{X}$ giving $\mathrm{Z}_{\text {new }}$ at a distance $\Delta \mathrm{q}$ from $\mathrm{Z}_{\text {nearest }}$ towards $\mathrm{Z}_{\text {rand }}$ where $\Delta \mathrm{q}$ is the incremental distance.
Collision Check: The function Obstaclefree(x) determines whether a path $\mathrm{x}:[0, \mathrm{~T}]$ lies in the obstacle-free region $\mathrm{X}_{\text {free }}$ for all $\mathrm{t}=0$ to $\mathrm{t}=\mathrm{T}$.
Near-by Vertices: The function $\operatorname{Near}\left(\mathcal{T}, \mathrm{Z}_{\text {rand }}, \mathrm{n}\right)$ returns the nearby neighboring nodes that lie in a ball of volume (β $(\operatorname{logn} / \mathrm{n})$) around $\mathrm{Z}_{\text {rand }}$ where β is a constant that depends on the planner.
Insert node: The function Insertnode $\left(\mathrm{Z}_{\text {parent }}, \mathrm{Z}_{\text {new }}, \mathcal{T}\right)$ adds a node $\mathrm{Z}_{\text {new }}$ to V in the tree $\mathcal{T}=(\mathrm{V}, \mathrm{E})$ and connects it to an already existing node $\mathrm{Z}_{\text {parent }}$ as its parent, and adds this edge to E . A cost is assigned to $\mathrm{Z}_{\text {new }}$ which is equal to the cost of its parent plus the Euclidean cost returned by the Distance function between $\mathrm{Z}_{\text {new }}$ and its parent $\mathrm{Z}_{\text {parent }}$.
A pseudo code describing RRT* is shown in Algorithm1.

```
Algorithm 1: \(\mathcal{T}=(V, E) \leftarrow \mathbf{R R T}^{*}\left(\mathrm{z}_{\text {init }}\right)\)
\(1 \mathcal{T} \leftarrow\) InitializeTree();
\(2 \mathcal{T} \leftarrow \operatorname{InsertNode}\left(\emptyset, \mathrm{Z}_{\text {init }}, \mathcal{T}\right)\);
3 for \(\mathrm{i}=0\) to \(\mathrm{i}=\mathrm{N}\) do
    \(\mathrm{Z}_{\text {rand }} \leftarrow\) Sample(i);
        \(\mathrm{Z}_{\text {nearest }} \leftarrow \operatorname{Nearest}\left(\mathcal{T}, \mathrm{Z}_{\text {rand }}\right)\);
        \(\left(\mathrm{X}_{\text {new }}, \mathrm{u}_{\text {new }}, \mathrm{T}_{\text {new }}\right) \leftarrow\) Steer \(\left(\mathrm{Z}_{\text {nearest }}, \mathrm{Z}_{\text {rand }}\right)\);
        if Obstaclefree \(\left(\mathrm{X}_{\text {new }}\right)\) then
            \(\mathrm{Z}_{\text {near }} \leftarrow \operatorname{Near}\left(\mathcal{T}, \mathrm{Z}_{\text {new }},|\mathrm{V}|\right)\);
\(9 \quad \mathrm{Z}_{\text {min }} \leftarrow\) Chooseparent \(\left(\mathrm{Z}_{\text {near }}, \mathrm{Z}_{\text {nearest }}, \mathrm{Z}_{\text {new }}, \mathrm{X}_{\text {new }}\right)\);
\(10 \quad \mathcal{T} \leftarrow \operatorname{InsertNode}\left(\mathrm{Z}_{\text {min }}, \mathrm{Z}_{\text {new }}, \mathcal{T}\right)\);
```

$11 \quad \mathcal{T} \leftarrow$ Rewire $\left(T, \mathrm{Z}_{\text {near }}, \mathrm{Z}_{\text {min }}, \mathrm{Z}_{\text {new }}\right)$; 12 return T

RRT* is a landmark sampling based algorithm as it has made it possible to approach an optimal solution thus ensuring asymptotic optimality apart from probabilistic completeness as opposed to its predecessor RRT. Although it tends to approach an optimal solution but it has been proven mathematically that it reaches the said solution in infinite time [7]. To overcome these limitations, we propose a rapid convergence version of RRT* known as RRT*-Smart which moves towards an optimal solution at a significantly faster rate.

III. THE RRT*-SMART ALGORITHM

This section describes the RRT*-Smart Algorithm and introduces the two new key concepts: Intelligent Sampling and Path Optimization. Initially, RRT*-Smart works in the same way as RRT*. Once the first path is found it then optimizes this path by interconnecting the directly visible nodes. This optimized path yields biasing points for intelligent sampling. This process continues as the algorithm progresses and the path keeps on being optimized rapidly. Whenever a shorter path is found, the biasing shifts towards the new path. This process is outlined in Algorithm 2.

```
Algorithm 2: \(\mathcal{T}=(V, E) \leftarrow \mathbf{R R T} * \operatorname{Smart}\left(\mathrm{z}_{\text {init }}\right)\)
\(1 \mathcal{T} \leftarrow\) InitializeTree();
\(2 \mathcal{T} \leftarrow \operatorname{InsertNode}\left(\emptyset, \mathrm{z}_{\text {init }}, \mathcal{T}\right)\);
3 for \(i=0\) to \(i=N\) do
    if \(i=n+b, n+2 b, n+3 b \ldots\) then
    \(\mathrm{Z}_{\text {rand }} \leftarrow \operatorname{Sample}\left(\mathrm{i}, \mathrm{Z}_{\text {beacons }}\right)\);
    else
        \(\mathrm{Z}_{\text {rand }} \leftarrow\) Sample(i);
\(8 \quad Z_{\text {nearest }} \leftarrow \operatorname{Nearest}\left(\mathcal{T}, \mathrm{Z}_{\text {rand }}\right)\);
\(\left(\mathrm{X}_{\text {new }}, \mathrm{U}_{\text {new }}, \mathrm{T}_{\text {new }}\right) \leftarrow \operatorname{Steer}\left(\mathrm{Z}_{\text {nearest }}, \mathrm{Z}_{\text {rand }}\right)\);
10 if Obstaclefree \(\left(\mathrm{X}_{\text {new }}\right)\) then
        \(\mathrm{Z}_{\text {near }} \leftarrow \operatorname{Near}\left(\mathcal{T}, \mathrm{Z}_{\text {new }},|\mathrm{V}|\right)\);
        \(\mathrm{Z}_{\text {min }} \leftarrow\) Chooseparent \(\left(\mathrm{Z}_{\text {near }}, \mathrm{Z}_{\text {nearest }}, \mathrm{Z}_{\text {new }}, \mathrm{X}_{\text {new }}\right)\);
        \(\mathcal{T} \leftarrow \operatorname{InsertNode}\left(\mathrm{Z}_{\text {min }}, \mathrm{Z}_{\text {new }}, \mathcal{T}\right)\);
        \(\mathcal{T} \leftarrow\) Rewire \(\left(T, Z_{\text {near }}, \mathrm{Z}_{\text {min }}, \mathrm{Z}_{\text {new }}\right)\);
        if InitialPathFound then
            \(\mathrm{n} \leftarrow \mathrm{i}\);
        \((\mathcal{T}\), directcost \() \leftarrow \operatorname{PathOptimization}\left(\mathcal{T}, \mathrm{Z}_{\text {init }}, \mathrm{Z}_{\text {goal }}\right)\);
        if (directcost \(_{\text {new }}<\) directcost \(_{\text {old }}\) )
            \(\mathrm{Z}_{\text {beacons }} \leftarrow\) PathOptimization \(\left(\mathcal{T}, \mathrm{Z}_{\text {init }}, \mathrm{Z}_{\text {goal }}\right)\);
20 return \(T\)
```


Fig. 1 Path Optimization based on Triangular Inequality.

The lines $1,2,3$ and 7 to 14 execute in the same way as RRT* does. Once the initial path is found in line 15, the function InitialPathFound returns the iteration number n at which this path is found. This n is used to inform the algorithm when to start the biased sampling and b is the biasing ratio that depends upon the planner. The function $(\mathcal{T}$, directcost $) \leftarrow$ PathOptimization $\left(\mathcal{T}, z_{\text {init }}, z_{\text {goal }}\right)$ determines an optimized path by directly connecting the nodes in the path that are visible to each other and returns its cost (line 17). In lines 18-19 beacons (the nodes which form the basis for intelligent sampling) are being formed from the function
$z_{\text {beacons }} \leftarrow \operatorname{PathOptimization}\left(\mathcal{T}, z_{\text {init }}, z_{\text {goal }}\right)$ if the new cost is less than the old cost; otherwise the old beacons keep on biasing the tree. In lines $4-5, z_{\text {rand }} \leftarrow$ Sample ($i, z_{\text {beacons }}$), samples are being spawned at the beacons within a ball of radius $\mathrm{R}_{\text {beacons }}$ centered at $\mathrm{Z}_{\text {beacons. }}$. After the initial beacons are found, intelligent sampling takes place with a certain percentage; i.e. after every few samples that are placed in the normal way as for RRT* (lines 7-9), one sample is spawned in the vicinity of the beacons.

A. Path Optimization

Once RRT* gives an initial path, the nodes in the path x : $\left[\mathrm{Z}_{\text {init }}, \mathrm{Z}_{\text {goal }}\right] \longrightarrow \mathrm{X}$ that are visible to each other are directly connected. An iterative process starts from $Z_{\text {goal }}$ and moves towards $\mathrm{Z}_{\text {init }}$ checking for direct connections with successive parents of each node until the collision free condition fails. By the end of this process, no more directly connectable nodes are present. Hence the path is optimized based on the concept of Triangular Inequality as illustrated in Fig. 1. According to Triangular Inequality, c is always less than the sum of a and b.
At each visibility check between two nodes, the collision free checking is required. For this purpose, we have utilized interpolation which does not need explicit information about obstacles as required in other collision checking methods; for example considering obstacles as axis aligned rectangles and checking intersection points [13]. Hence, this method of interpolation for collision free checking is independent of the shape of the obstacles and is computationally less expensive.

The number of nodes present in this path is now very less as compared to the original path found by RRT*. These nodes

Fig. 2 (a) First Path given by RRT* at $\mathrm{n}=650$.
(b) An optimized path (in blue) is shown after the Path Optimization technique is applied on the path shown in (a).
(c) shows clustered samples as a result of biasing towards the beacons (in green) at $\mathrm{n}=2500$
(d) shows the optimum path at $\mathrm{n}=4200$
are termed as Beacons $\mathrm{Z}_{\text {beacons }}$ which form the basis for intelligent sampling.

B. Intelligent Sampling

The idea behind intelligent sampling is to approach optimality by generating the nodes as close as possible to obstacle vertices following the idea of visibility graph technique. However visibility graph techniques require complex environmental modeling and explicit information about obstacles [2]. Furthermore they may not reach a solution in environments containing obstacles with complex geometries (concave, polygonal, circular etc).

Once the initial path has been found, intelligent sampling starts with a certain number of samples being directly spawned (lines 4-5) in a ball of radius $\mathrm{R}_{\text {beacons }}$ centered at $\mathrm{Z}_{\text {beacons. }}$ The reason why sampling is biased towards these beacons is that these beacons give a clue regarding the position of obstacle vertices (or periphery in case of circular obstacles). Therefore, these beacons need to be surrounded by maximum nodes to optimize the path at these turns. Hence, optimality is reached at much lesser number of iterations as compared to RRT* which reaches a close to optimal solution only as the samples approach infinity.

As the algorithm iterates, each time a new RRT* path with smaller cost as compared to the previous path is found, an optimized path is calculated. The cost of this optimized

Fig.3. RRT*-Smart in different obstacle Environments
path is compared with the previous optimized path. If the cost is shorter, new beacons $\mathrm{Z}_{\text {beacons }}$ are generated and thus new biasing points are formed. These newly formed beacons are closer to the vertices. This process continues until the required iterations are completed.

Though the obstacles are not being explicitly defined keeping the beneficial property of sampling based algorithms intact, yet by using intelligent guessing and biasing beacons, the proposed algorithm finds a way to spawn the tree nearer to the vertices which eventually leads us towards an optimal/ near optimal path $\mathrm{x}:\left[\mathrm{Z}_{\text {init }}, \mathrm{Z}_{\text {goal }}\right] \rightarrow$ optimal X . This path also has a very few number of samples which is shown in Section V. Hence RRT*-Smart algorithm works to provide a much more optimal solution at a faster rate of convergence and an easier path for the mobile robots to follow in any kind of environment as the number of waypoints are less.

Fig. 2 demonstrates the effectiveness and working of RRT*-Smart algorithm. An initial path is found in (a) at $\mathrm{n}=650$. In (b), Path Optimization yields an optimized path shown in blue. The green dots are the beacons that are formed for this initial path. After $\mathrm{n}=2500$, Clustered samples are formed around the beacons as shown in (c). Finally after an iterative process, an optimized path is found for this obstacle scenario at $\mathrm{n}=4200$.

The Space and Time complexity for RRT* are given by $O(n)$ and $O($ nlogn $)$, respectively [7]. Mathematical analysis of RRT*-Smart shows that the space and time complexity is the same as that of RRT* but the value of n is significantly reduced in case of RRT*-Smart. Thus, $O(n)$ and $O(n \log n)$ for RRT*Smart yields much better performance. However, as the performance improves and the biasing ratio increases, the randomness in the exploration of the tree decreases as a number of nodes are now used to optimize the path in a particular region. Therefore, there is a tradeoff between intelligent sampling and space exploration rate.

IV. RESULTS

In this section, we show the optimized results for RRT*Smart in three environments with different obstacle scenarios.

The red box represents the goal region while the trajectory is shown by a black line. It provides an optimal/ near optimal solution in the circular, local minima and cluttered environment. It can be observed that the path optimization and intelligent sampling techniques that this algorithm employs to provide a feasible path planning trajectory is independent of the obstacle shape as highlighted in the previous section.

V. PERFORMANCE COMPARISON

Here we present an experimental performance comparison between RRT*-Smart and RRT* by analyzing their performance from various perspectives. First we make use of the results of the two algorithms in Fig. 4 to illustrate their comparative differences.
We see in Fig. 4(d) that RRT*-Smart uses the RRT* path with a cost of 630.18 at iteration number $n=800$ shown in Fig. 4(a) and finds a more optimal path with a cost of 584.02 at equal number of iterations using the Path Optimization technique. With Intelligent Sampling and further path optimization, the cost in Fig. 4(e) has further reduced to 557.478 at $\mathrm{n}=1200$ while RRT* converging with its original rate manages to reach a cost of 624.95 at the same number of n in Fig. 4(b). Finally, RRT*- Smart gives an optimal/ near optimal solution at $\mathrm{n}=4200$ with a cost of 540.12 as shown in Fig. 4(f). At the same number of iterations, RRT* converges to a path with a cost of 574.009 in Fig. 4(c). The efficiency in terms of path cost is evident from this comparison.

Next, we present a statistical comparison between the two algorithms using graphical results for the experiment shown in Fig. 4. In Fig. 5 the convergence pattern of the costs of RRT* and RRT*-Smart is shown. It can be seen that RRT*Smart not only has a much faster rate of convergence but also approaches the optimum cost after finite iterations whereas RRT* is still in the process of reaching an optimal solution with relatively slower rate of convergence.

Fig. 4 A comparison of RRT* and RRT^{*}-Smart using simulation results at 800, 1200 and 4200 iterations.

Fig. 5 Costs are plotted against iterations showing the rate of convergence of both RRT* and RRT*-Smart.

In Fig. 6, iterations are plotted against different fixed costs. It can be observed that for approaching the same cost as the algorithms iterate towards finding an optimal solution, the number of iterations for RRT* is far greater than RRT*Smart. The cost of 540 is achieved by the latter algorithm at 4200 iterations whereas RRT* fails to achieve this cost even at very large number of iterations as shown in the same graph. Fig. 7 shows path cost versus time comparison for our implementation of the two algorithms.
For reaching the same cost, it is observed that RRT* takes significantly greater time than RRT*-Smart. The system specifications are 2.1 GHz Intel corei3 processor and a 4GB RAM.

Fig. 6 Iterations are plotted against different fixed costs.
Fig. 8 highlights the running time ratio of RRT* to RRT*Smart. The graph shows that the ratio is always greater than 1 for our implementation proving the time efficiency of RRT*Smart over RRT*.
Fig. 9 demonstrates the behavior of RRT* and RRT*-Smart in ten different obstacle environments. For each environment, the cost is plotted for a fixed number of iterations n. It can be seen that the graph of RRT*-Smart consistently stays below the graph of RRT*, showing that in all these environments the path costs found by RRT*-Smart remains less than the path costs of RRT*, hence proving the efficiency of RRT*Smart.
Analyzing the performance comparison results it can be concluded that RRT*-Smart is more efficient than RRT* not only with respect to path optimization but also in terms of computational time.

Fig. 7 Time comparison against fixed costs. Bias ratio b is taken as 2 for RRT*-Smart.

Fig. 8 Running Time Ratio of RRT* over RRT*-Smart is plotted against iterations. Bias ratio b is taken as 2 for RRT*-Smart.

VI. CONCLUSION

Incremental sampling based algorithms have been widely in use because of their advantages over other motion planners. RRT* unlike RRT is asymptotically optimal apart from being probabilistically complete. But the rate of convergence to this close-to optimal solution is slow.
This paper presents a rapid convergence implementation of RRT* known as RRT*-Smart which helps approaching an optimal/ near optimal solution by introducing Intelligent Sampling and Path Optimization techniques. Simulation results have demonstrated that RRT*-Smart converges to relatively optimal solutions at very few iterations and at an accelerated rate. Performance comparison proved the efficiency of RRT*-Smart with respect to both time and cost. We expect to provide hardware results on Pioneer 3AT Mobile Robotic platform in the near future and then precede this work to dynamic environments.

Fig. 9 Costs of path in ten different environments for 2000 iterations.

REFERENCES

[1] M. Kanehara, S. Kagami, J.J. Kuffner, S. Thompson, H. Mizoguhi, "Path shortening and smoothing of grid-based path planning with consideration of obstacles," IEEE International Conference on Systems, Man and Cybernetics, 2007 (ISIC), pp.991-996, 7-10 Oct. 2007.
[2] I. Petrovic and M. Brezak, "A visibility graph based method for path planning in dynamic environments", in proceedings of $34^{\text {th }}$ International Convention on Information and Commuincation Technology, Electronics and Microelectronics (MIPRO), pp.711716,2011.
[3] N.H. Sleumer, N. Tschichold-Grman, "Exact cell decomposition of arrangements used for path planning in robotics" Technical report. Switzerland: Institute of Theoretical Computer Science Swiss Federal Institute of Technology Zurich; 1999.
[4] Y.K.Hwang, N. Ahuja, "A potential field approach to path planning," IEEE Transactions on Robotics and Automation,, vol.8, no. 1, pp.2332, Feb 1992.
[5] A. Ghorbani, S, Shiry, and A. Nodehi,"Using Genetic Algorithm for a Mobile Robot Path Planning", Proceedings of the 2009 International Conference on Future Computer and Communication ICFCC '09.
[6] S.X. Yang, C. Luo, "A neural network approach to complete coverage path planning," IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 34, no. 1, pp. 718-724, Feb. 2004.
[7] S. Keraman and E. Farazolli, "Sampling-based Algorithms for Optimal Motion Planning", International Jouranl of Robotics Research,2010.
[8] S. M. Lavalle and J.J. Kuffner, "Rapidly Exploring Random Trees: Progress and Prospects", In Proceedings Workshop on the Algorithmic Foundations of Robotics, 2000.
[9] S. Karaman, Matthew R. Walter, A. Parez, E. Farazolli and S. Teller,"Anytime Motion Planning using the RRT", in proceedings of International Conference on Robotic and Automation, pp. 1478-1483, 2011.
[10] M. Zucker, J. Kuffner and M. Branicky, "Multipartite RRTs for Rapid Replanning in Dynamic Environments", in Proc. Of Internation Conference on Robotics and Automation, pp. 1603-160, 2007.
[11] DAB de Oliveira Vaz, Roberto S. Inoue and V. Grassi Jr, "Kinodynamic Motion Planning of a Skid-Steering Mobile RobotUsing RRTs", in proceedings of Symposium on Artificial Intelligence,2010.
[12] A. Parez, S. Karaman, A. Shkolnik, E. Farazolli, Seth Teller and Matthew R. Walter "Asymptotically-optimal path planning for manipulation usin incremental sampling based algorithms", in proceedings of International Conference on Intelligent Robots and Systems, pp. 4307-4313, 2011.
[13] Bialkowski, Karaman, and Frazzoli, "Massively Parallelizing the RRT and the RRT*," in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2011.

