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Abstract—Rapidly Exploring Random Tree (RRT) is one of the 

quickest and the most efficient obstacle free path finding 

algorithm. However, it cannot guarantee finding the most 

optimal path.. A recently proposed extension of RRT, known as 

Rapidly Exploring Random Tree Star (RRT*), claims to achieve 

convergence towards the optimal solution but has been proven 

to take an infinite time to do so and with a slow convergence 

rate. To overcome these limitations, we propose an extension of 

RRT*, called RRT*-Smart, which aims to accelerate its rate of 

convergence and to reach an optimum or near optimum solution 

at a much faster rate and at a reduced execution time. Our novel 

algorithm inculcates two new techniques in RRT*: these are 

path optimization and intelligent sampling. Simulation results 

presented in various obstacle cluttered environments confirm 

the efficiency of RRT*-Smart. 

I. INTRODUCTION  

      The domain of Motion Planning involves finding a 

feasible trajectory that connects the starting point to the goal 

point while avoiding collision with the obstacles. The field of 

Motion Planning and Navigation has gained immense 

popularity and importance in the recent years due to the fact 

that current trends in robotics research for both industrial and 

domestic needs are focused towards intelligent automation. 
 Since 1970s, many path planning algorithms including 

geometric algorithms, grid-based algorithms, potential field 
algorithms, neural networks, genetic algorithms and sampling 
based algorithms,  have been proposed for various static and 
dynamic environments. Each of these algorithms has its own 
advantages and shortcomings in finding the most efficient path 
planning solution in terms of space and time complexity and 
path optimization [1-6]. Sampling based algorithms are among 
the latest and most popular path planning algorithms because 
they are less computationally complex and have the ability to 
find solutions without using explicit information about the 
obstacles in the configuration space as compared to other 
probabilistically complete algorithms. Instead, they rely on a 

collision checking module and build a roadmap of feasible 
trajectories made by connecting together a set of points 
sampled from the obstacle-free space. Rapidly Exploring 
Random Tree Star (RRT*) [7] is one of the recent sampling 
based algorithms. Its major advantage over other algorithms is 
that it finds an initial path very quickly and then later keeps on 
optimizing it as the number of samples increases. Thus, apart 
from probabilistic completeness it ensures asymptotic 
optimality [7] unlike its predecessor algorithm RRT [7][8]. 

    Although RRT* claims to reach an optimal solution, it 

never reaches that optimality in finite time [7]. Also, the rate 

of convergence is slow. We address this problem by 

introducing RRT*-Smart which instead of employing purely 

random space exploration, performs an informed exploration 

of search space. It uses the first path found by RRT* as an 

intelligent guess to help in exploring the configuration space. 

Moreover, it uses intelligent sampling to give an optimum or 

near optimum path at a very fast rate of convergence and 

reduced execution time. The solution obtained by RRT*-

Smart facilitates the robot to track the trajectory as it is 

straighter and with less way points. Thus, it gives a more 

efficient path planning solution as compared to RRT*. The 

remainder of the paper is organized as follows. In Section II, 

we discuss RRT*.  RRT*-Smart is presented in Section III; 

while Sections IV and V cover Results and Performance 

Analysis, respectively. Section VI concludes the paper and 

highlights future research avenues. 

II. RRT* ALGORITHM 

     As RRT*-Smart is an improved version of RRT*, so in 

this section we briefly introduce motion planning using the 

RRT* algorithm to build the background for understanding 

RRT*-Smart. RRT* is an incremental sampling based 

algorithm which finds an initial path very quickly and later 

optimizes the path as the execution takes place[7][9]. 



 

     Let X define the configuration space in which Xobs is the 

obstacle region, Xfree=X/Xobstacle is the obstacle-free region 

and Xgoal is the goal region. RRT* works to find out an input 

u: [0:T] ϵ U that yields a feasible path x(t) ϵ Xfree  that starts 

from x(0) = x-initial to x(T)= goal following the system 

constraints. While finding this solution, RRT* maintains a 

tree Ƭ= (V, E) of vertices V sampled from the obstacle-free 

state space Xfree and edges E that connect these vertices 

together. This algorithm makes use of a set of procedures 

which should be explained here before going into the details 

of RRT*-Smart. 

   Sampling: It randomly samples a state zrand ϵ Xfree from 

the obstacle-free configuration space. 

   Distance: This function returns the cost of the path between 

two states assuming the region between them is obstacle free. 

The cost is in terms of Euclidean distance. 

   Nearest Neighbor: The function Nearest (Ƭ, zrand) returns 

the nearest node from Ƭ=(V, E) in terms of the cost 

determined by the distance function.  

   Steer:  The function Steer (zrand, znearest) solves for a 

control input u[0,T] that drives the system from x(0)=zrand to 

x(T)=znearest along the path x: [0,T] → X giving znew at a 

distance ∆q from znearest towards zrand where ∆q is the 

incremental distance.  

   Collision Check: The function Obstaclefree(x) determines 

whether a path x:[0,T] lies in the obstacle-free region Xfree 

for all t=0 to t=T. 

   Near-by Vertices: The function Near(Ƭ, zrand, n) returns the 

nearby neighboring nodes that lie in a ball of volume (β 

(logn/n)) around zrand where β is a constant that depends on 

the planner. 

   Insert node: The function Insertnode(zparent, znew, Ƭ) adds 

a node znew to V in the tree Ƭ =(V, E) and connects it to an 

already existing node zparent as its parent, and adds this edge 

to E. A cost is assigned to znew which is equal to the cost of 

its parent plus the Euclidean cost returned by the Distance 

function between znew and its parent zparent. 
   A pseudo code describing RRT* is shown in Algorithm1.  

 

Algorithm 1: Ƭ = (V, E) ← RRT*(zinit) 

1 Ƭ ← InitializeTree(); 

2 Ƭ ← InsertNode(Ø, zinit, Ƭ); 

3 for i=0 to i=N do 

4      zrand ← Sample(i); 

5        znearest ← Nearest(Ƭ, zrand); 

6       (xnew, unew, Tnew) ← Steer (znearest, zrand); 

7     if Obstaclefree(xnew) then 

8         Znear ← Near(Ƭ, znew, |V|); 

9         zmin ← Chooseparent (Znear, znearest, znew, xnew); 

10         Ƭ ← InsertNode(zmin, znew, Ƭ); 

11         Ƭ ← Rewire (Ƭ, Znear, zmin, znew); 

12 return Ƭ 
  

     RRT* is a landmark sampling based algorithm as it has 

made it possible to approach an optimal solution thus 

ensuring asymptotic optimality apart from probabilistic 

completeness as opposed to its predecessor RRT. Although it 

tends to approach an optimal solution but it has been proven 

mathematically that it reaches the said solution in infinite 

time [7]. To overcome these limitations, we propose a rapid 

convergence version of RRT* known as RRT*-Smart which 

moves towards an optimal solution at a significantly faster 

rate. 

III. THE RRT*-SMART ALGORITHM 

    This section describes the RRT*-Smart Algorithm and 

introduces the two new key concepts: Intelligent Sampling 

and Path Optimization. Initially, RRT*-Smart works in the 

same way as RRT*. Once the first path is found it then 

optimizes this path by interconnecting the directly visible 

nodes. This optimized path yields biasing points for 

intelligent sampling. This process continues as the algorithm 

progresses and the path keeps on being optimized rapidly. 

Whenever a shorter path is found, the biasing shifts towards 

the new path.  This process is outlined in Algorithm 2. 

       

Algorithm 2: Ƭ = (V,E) ← RRT*Smart(zinit) 

 

1 Ƭ ← InitializeTree(); 

2 Ƭ ← InsertNode(Ø, zinit, Ƭ); 

3 for i=0 to i=N do 

4     if i=n+b, n+2b, n+3b…. then 

5         zrand ← Sample(i, zbeacons); 

6     else 

7        zrand ← Sample(i); 

8        znearest ← Nearest(Ƭ, zrand); 

9       (xnew, unew, Tnew) ← Steer (znearest, zrand); 

10     if Obstaclefree(xnew) then 

11         Znear ← Near(Ƭ, znew, |V|); 

12         zmin ← Chooseparent (Znear, znearest, znew, xnew); 

13         Ƭ ← InsertNode(zmin, znew, Ƭ); 

14         Ƭ ← Rewire (Ƭ, Znear, zmin, znew); 

15         if InitialPathFound then 

16              n ← i;  

17         (Ƭ, directcost) ← PathOptimization(Ƭ, zinit, zgoal); 

18         if (directcostnew < directcostold) 

19             zbeacons ← PathOptimization(Ƭ, zinit, zgoal); 

20 return Ƭ 

 



 

      
   The lines 1, 2, 3 and 7 to 14 execute in the same way as 

RRT* does. Once the initial path is found in line 15, the 

function InitialPathFound returns the iteration number n at 

which this path is found. This n is used to inform the 

algorithm when to start the biased sampling and b is the 

biasing ratio that depends upon the planner. The function    

(Ƭ, directcost) ← PathOptimization(Ƭ, zinit, zgoal) determines 

an optimized path by directly connecting the nodes in the 

path that are visible to each other and returns its cost (line 

17). In lines 18-19 beacons (the nodes which form the basis 

for intelligent sampling) are being formed from the function 

zbeacons ← PathOptimization(Ƭ, zinit, zgoal) if the new cost is 

less than the old cost; otherwise the old beacons keep on 

biasing the tree. In lines 4-5, zrand ← Sample (i, zbeacons), 

samples are being spawned at the beacons within a ball of 

radius Rbeacons centered at zbeacons.  After the initial beacons 

are found, intelligent sampling takes place with a certain 

percentage; i.e. after every few samples that are placed in the 

normal way as for RRT* (lines 7-9), one sample is spawned 

in the vicinity of the beacons.  

A. Path Optimization 

   Once RRT* gives an initial path, the nodes in the path x: 

[zinit, zgoal] → X that are visible to each other are directly 

connected. An iterative process starts from zgoal and moves 

towards zinit checking for direct connections with successive 

parents of each node until the collision free condition fails. 

By the end of this process, no more directly connectable 

nodes are present. Hence the path is optimized based on the 

concept of Triangular Inequality as illustrated in Fig. 1. 

According to Triangular Inequality, c is always less than the 

sum of a and b. 

   At each visibility check between two nodes, the collision 

free checking is required. For this purpose, we have utilized 

interpolation which does not need explicit information about 

obstacles as required in other collision checking methods; for 

example considering obstacles as axis aligned rectangles and 

checking intersection points [13]. Hence, this method of 

interpolation for collision free checking is independent of the 

shape of the obstacles and is computationally less expensive. 

     The number of nodes present in this path is now very less 

as compared to the original path found by RRT*. These nodes 

are termed as Beacons zbeacons which form the basis for 

intelligent sampling. 

B. Intelligent Sampling 

     The idea behind intelligent sampling is to approach 

optimality by generating the nodes as close as possible to 

obstacle vertices following the idea of visibility graph 

technique. However visibility graph techniques require 

complex environmental modeling and explicit information 

about obstacles [2]. Furthermore they may not reach a 

solution in environments containing obstacles with complex 

geometries (concave, polygonal, circular etc). 

     Once the initial path has been found, intelligent sampling 

starts with a certain number of samples being directly 

spawned (lines 4-5) in a ball of radius Rbeacons centered at 

zbeacons. The reason why sampling is biased towards these 

beacons is that these beacons give a clue regarding the 

position of obstacle vertices (or periphery in case of circular 

obstacles). Therefore, these beacons need to be surrounded by 

maximum nodes to optimize the path at these turns. Hence, 

optimality is reached at much lesser number of iterations as 

compared to RRT* which reaches a close to optimal solution 

only as the samples approach infinity. 

     As the algorithm iterates, each time a new RRT* path with 

smaller cost as compared to the previous path is found, an 

optimized path is calculated. The cost of this optimized  

 
Fig. 1 Path Optimization based on Triangular Inequality. 

 

 
 

 Fig. 2  (a) First Path given by RRT* at n=650.  
(b) An optimized path (in blue) is shown after the Path 

Optimization technique is applied on the path shown in (a).  

(c) shows clustered samples as a result of biasing towards the 
beacons (in green) at n=2500 

 (d) shows the optimum path at n=4200 

 



 

path is compared with the previous optimized path. If the cost 

is shorter, new beacons zbeacons are generated and thus new 

biasing points are formed. These newly formed beacons are 

closer to the vertices. This process continues until the 

required iterations are completed. 

     Though the obstacles are not being explicitly defined 

keeping the beneficial property of sampling based algorithms 

intact, yet by using intelligent guessing and biasing beacons, 

the proposed algorithm finds a way to spawn the tree nearer 

to the vertices which eventually leads us towards an optimal/ 

near optimal path x:[zinit,zgoal] →optimal X. This path also 

has a very few number of samples which is shown in Section 

V. Hence RRT*-Smart algorithm works to provide a much 

more optimal solution at a faster rate of convergence and an 

easier path for the mobile robots to follow in any kind of 

environment as the number of waypoints are less. 

      Fig. 2 demonstrates the effectiveness and working of 

RRT*-Smart algorithm. An initial path is found in (a) at 

n=650. In (b), Path Optimization yields an optimized path 

shown in blue. The green dots are the beacons that are formed 

for this initial path. After n=2500, Clustered samples are 

formed around the beacons as shown in (c). Finally after an 

iterative process, an optimized path is found for this obstacle 

scenario at n=4200. 

     The Space and Time complexity for RRT* are given by 

O(n) and O(nlogn), respectively [7]. Mathematical analysis of 

RRT*-Smart shows that the space and time complexity is the 

same as that of RRT* but the value of n is significantly 

reduced in case of RRT*-Smart. Thus, O(n) and O(nlogn) for 

RRT*Smart yields much better performance.  However, as 

the performance improves and the biasing ratio increases,  the 

randomness in the exploration of the tree decreases as a 

number of nodes are now used to optimize the path in a 

particular region. Therefore, there is a tradeoff between 

intelligent sampling and space exploration rate. 

IV. RESULTS 

   In this section, we show the optimized results for RRT*-

Smart in three environments with different obstacle scenarios.         

The red box represents the goal region while the trajectory is 

shown by a black line. It provides an optimal/ near optimal 

solution in the circular, local minima and cluttered 

environment. It can be observed that the path optimization 

and intelligent sampling techniques that this algorithm 

employs to provide a feasible path planning trajectory is 

independent of the obstacle shape as highlighted in the 

previous section. 

V. PERFORMANCE COMPARISON 

    Here we present an experimental performance comparison 

between RRT*-Smart and RRT* by analyzing their 

performance from various perspectives. First we make use of 

the results of the two algorithms in Fig. 4 to illustrate their 

comparative differences. 

    We see in Fig. 4(d) that RRT*-Smart uses the RRT* path 

with a cost of 630.18 at iteration number n =800 shown in 

Fig. 4(a) and finds a more optimal path with a cost of 584.02 

at equal number of iterations using the Path Optimization 

technique. With Intelligent Sampling and further path 

optimization, the cost in Fig. 4(e) has further reduced to 

557.478 at n=1200 while RRT* converging with its original 

rate manages to reach a cost of 624.95 at the same number of 

n in Fig. 4(b). Finally, RRT*- Smart gives an optimal/ near 

optimal solution at n=4200 with a cost of 540.12 as shown in 

Fig. 4(f). At the same number of iterations, RRT* converges 

to a path with a cost of 574.009 in Fig. 4(c). The efficiency in 

terms of path cost is evident from this comparison. 

    Next, we present a statistical comparison between the two 

algorithms using graphical results for the experiment shown 

in Fig. 4. In Fig. 5 the convergence pattern of the costs of 

RRT* and RRT*-Smart is shown. It can be seen that RRT*-

Smart not only has a much faster rate of convergence but also 

approaches the optimum cost after finite iterations whereas 

RRT* is still in the process of reaching an optimal solution 

with relatively slower rate of convergence. 

 

Fig.3. RRT*-Smart in different obstacle Environments 

 



 

 

   In Fig. 6, iterations are plotted against different fixed costs. 

It can be observed that  for approaching the same cost as the 

algorithms iterate towards finding an optimal solution, the 

number of iterations for RRT* is far greater than RRT*-

Smart. The cost of 540 is achieved by the latter algorithm at 

4200 iterations whereas RRT* fails to achieve this cost even 

at very large number of iterations as shown in the same 

graph. Fig. 7 shows path cost versus time comparison for our 

implementation of the two algorithms.  

   For reaching the same cost, it is observed that RRT* takes 

significantly greater time than RRT*-Smart. The system 

specifications are 2.1 GHz Intel corei3 processor and a 4GB 

RAM. 

 

   Fig. 8 highlights the running time ratio of RRT* to RRT*-

Smart. The graph shows that the ratio is always greater than 1 

for our implementation proving the time efficiency of RRT*-

Smart over RRT*. 

   Fig. 9 demonstrates the behavior of RRT* and RRT*-Smart 

in ten different obstacle environments. For each environment, 

the cost is plotted for a fixed number of iterations n. It can be 

seen that the graph of RRT*-Smart consistently stays below 

the graph of RRT*, showing that in all these environments 

the path costs found by RRT*-Smart remains less than the 

path costs of RRT*, hence proving the efficiency of RRT*-

Smart. 

   Analyzing the performance comparison results it can be 

concluded that RRT*-Smart is more efficient than RRT* not 

only with respect to path optimization but also in terms of 

computational time. 

 
 

Fig. 6 Iterations are plotted against different fixed costs. 
 

Fig. 5 Costs are plotted against iterations showing the rate of 

convergence of both RRT* and RRT*-Smart. 

 

 
 

Fig. 4 A comparison of RRT* and RRT*-Smart using simulation results at 800, 1200 and 4200 iterations. 



 

 

 

VI. CONCLUSION 

   Incremental sampling based algorithms have been widely in 

use because of their advantages over other motion planners. 

RRT* unlike RRT is asymptotically optimal apart from being 

probabilistically complete. But the rate of convergence to this 

close-to optimal solution is slow.  

   This paper presents a rapid convergence implementation of 

RRT* known as RRT*-Smart which helps approaching an 

optimal/ near optimal solution by introducing Intelligent 

Sampling and Path Optimization techniques. Simulation 

results have demonstrated that RRT*-Smart converges to 

relatively optimal solutions at very few iterations and at an 

accelerated rate. Performance comparison proved the 

efficiency of RRT*-Smart with respect to both time and cost. 

We expect to provide hardware results on Pioneer 3AT 

Mobile Robotic platform in the near future and then precede 

this work to dynamic environments. 
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Fig. 8 Running Time Ratio of RRT* over RRT*-Smart is plotted 
against iterations. Bias ratio b is taken as 2 for RRT*-Smart. 

 

 
Fig. 9 Costs of path in ten different environments for 2000 iterations. 

 
 

Fig. 7 Time comparison against fixed costs. Bias ratio b is taken as 2 

for RRT*-Smart. 


