Implementing Functional Languages in the Categorical
Abstract Machine

Michel Mauny Ascénder Suarez

INRIA
Domaine de Voluceau
Rocquencourt
B.P. 105
F-78153 Le Chesnay Cedex
France

ABSTRACT

We present an implementation of the Categorical Abstract Machine
(CAM) ([CouCurMa85]) leading to efficient implementations of func-
tional languages. We define eager and lazy semantics for a functional
programming language and give for each semantics a compilation to
CAM code. Several significant optimizations of CAM code are described.
This approach has been used to implement the ML Language.

1. Introduction

A formal approach to the compilation of typed A-calculus led ([CouCurMa85]) to
an abstract machine called Categorical Abstract Machine (CAM for short).

The ML language ([GorMilWa79]) is typechecked and statically scoped. As remarked
by Milner ([Milner78]), its code is free of type tests. Hence, CAM code appears to be a
good target language for compiling ML programs.

Two implementations of the ML language are developed at INRIA. An implemen-
tation of a strict ML has been realized by the second author. That implementation
has been used to implement a lazy variant of ML by the first author. A remarkabie
point is about these two implementations is that each of them uses features of the
other one.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

© 1986 ACM 0-89791-200-4/86/0800-0266 75¢ 266



We describe the implementation of the kernel of the ML language through the
CAM. Section 2 presents its syntax and gives two different semantics to it: call-by-
value (or strict evaluation) and lazy evaluation. We recall the definition of the CAM in
section 3 and give in sections 4 and 5 the compilation of the languages obtained.
Some optimizations are then described. Section 6 describes the expansion phase
from CAM code to machine code.

2. The language

We describe the kernel of a functional language for which we will give the compi-
lations in the following sections. This kernel is essentially composed of a typed A-
calculus with constants and a fix-point operator. Identifiers of this language are
statically scoped.

The language can be seen as the functional kernel of the ML language. The different
semantics presented here and their compilation have been eflectively extended to a
complete version of ML ([Suarez86]).

We first give a definition of the syntax of the language, and then two semantics: strict
evaluation and lazy evaluation. Semantics are given by inference systems following
Plotkin's formalism ([Plotkin81])).

2.1. Syntax

Its definition is given in a BNF style. We assume we have a set Var of variable
names, and a set C of constants, being the disjoint union of sets B of basic constants
(containing at least the boolean values true and false) and F of functional con-
stants.

The set Fzp of expressions of the language is defined by.

Exp :=C

| Var

| (Ezp ,Ezp) | fst(Exp) | snd(Exp) couples and projections
| (fun Var » Ezp) abstractions

| (Ezp Exp) applications

| (let Var=Ezp in Exp)
| (let rec Var=Exp in Exp)
| (if Exp then Exp else Exp)

One recognize here a A-calculus with explicit product and projections augmented
with constants, fix-point operator and conditional.
The expression
let z=e;ine,

is equivalent to

(Junz »ep) e,
Moreover, we will write

let f zx=e,ine,
for

let f=funz »e,ine,

267



We will take care only of expressions member of the subset of Fzp containing closed

and typabdle expressions, i.e.

- containing no free variable occurrence (each occurrence of a variable z is
bound to a fun z in the abstract syntax tree)

- there is a type that can be assigned to (using Milner's algorithm, for example)

Examples

let rec fact n =if n=0 then 1
else n*fact(n-1) in fact

2.2. Semantics

We give to Ezp expressions two different semantics- strict evaluation and lazy
evaluation. Each one is defined by an inference system.

B,
Each system is composed of a set of rules ™ where P, and C are instances

c
of the scheme ¢, —> e, (e; and e, denote expressions) which must be read "e;
reduces to e,". P; are called premisses and C the conclusion. A rule without premisses
is called an aziom. The inference rule above must be read as "if P, and ... and P,.
then C".

We do not recall the definition of the substitution operation in the A-calculus.

2.2.1. Stric¢t evaluation

Given an application (e; e,) to evaluate, strict evaluation or call-by-value essen-
tially consists in evaluation of e,, giving an abstraction (fun x -+ ¢’) (type-checking
insures that we get either a functional constant or an abstraction), evaluation of e
and thén evaluation of e, 1n which the result of evaluation of e; has been substi-
tuted to all free occurrences of the formal parameter z.

For the formal definition of strict evaluation we introduce a new syntactical category
Val s corresponding to the set of strict values of the language (the set of expressions
in normal form for the inference system below).

Val 5 is defined by :
Vals =0

| (fun Var -+ Exp)
| (Valg Valsg)

We will use v, v,,. as variables ranging over elements of Vals
The axioms are:

J vy —>vifv =f v, (where f € F) exists.

Jst(v,vp) > v,

snd (v, v,) —> v,

(funz »e)v —> e[z+v]

letz =vine —> ef[z+v]

letrecz =vine —>e[z+(t =v[zt])]

tf irue then e, elsee, —> e,

268



if false then e, elsee; —> e,

The substitution operation realized while applying sixth axiom is in fact the substitu-
tion of an infinite tree to free occurrences of 2. We can see this tree as a cyclic
graph, the cycle being defined by the recursive equation contained in the right
member of the axiom.
The reduction relation —>pgy,  is the smallest relation containing the above set of
axioms and such that:

e gy, e’ e —>mps €’
Ist(e) =gy, fst(e’) snd(e) —> gy, sSnd(e’)

e, -—>Ezpse1' e '—aaps 22’
(e1.e2) —>pmp, (€)' e2)  (vy1.e3) gy, (vy.e3)

el "')Ezpsel' ez -_>&PS 32'
(eye2) g (e €2)  (vye3) gy, (v e2)

€y > mps €1
letz =e,ine; g letz =e,'ine;

el—ahpsel'
letrecz =e;ine; —>p, letrecz =e, ine,

€ —>gp, €’
ife thene,else e; —>p, if e’ then e else e;

The relation —>g;,  defines a partial function. Strict evaluation of an expression e
is given by the unreducible expression (if it exists) ending a chain of reductions of e.

Axioms indicate how to reduce an expression and inference rules specify in which
context a reduction is possible. Axioms impose some reductions being realized only
when some parts of the expression are values. Furthermore, inference rules specify
the order of evaluation of applications and couples components.

2.2.2. Lazy evaluation

Unlike strict evaluation, lazy evaluation impose (8-) reducing an application
without having evaluated the argument of the function. Moreover, components of
structures (couples here) are evaluated only if we access them. So the result of an
evaluation is (if it exists) a constant, an abstraction or a couple composed of possibly
unevaluated expressions. This feature makes possible the manipulation of infinite
objects, and one can get them as a result in a finite time, assuming we do not try to
access all their components.

The set Val, of lazy values is defined by:
Val, = C
| (fun Var » Ezp)
| (Ezp .Ezp)

269



We will use v, v,,.. as variables ranging over elements of Val,.

For simplicity’s sake, we will consider every primitive function to be strict and its
domain to be a basic type, we otherwise would need special reduction and inference
rules to treat correctly each primitive.
The axioms are:

Jb—>vifv=0f> (where f € F, b € B) exists.

Ist(e,ez) —>e,

snd(eq.ez3) —=> ez

(funz +e,)e; —>e,[ze;)

letz =e;iney; —> ey(zve,]

letrecz =e,iney; —> e [z«(t = e[z+t])]

if true them e elsee; —> e,

tf false then e, elseey; —> e

The reduction relation —>pg,,, is Lthe smallest relation containing the above set of
axioms and such that:

e —>pp, e, f €F
f e "">Ezp,_f e’
e —>gp, € e ~>n, e
Ist(e) >, fst(e’) snd(e) —>py, snd(e)

e, "'9%‘ e,'
(e e2) —>prp, (€)' €2)

e “)mbe'
ife thene,elsee; —>gp, ife’ thene, elsee;

The relation —>gy,, defines a partiai function. Lazy evaluation of an expression e is
given by the unreducible expression (if it exists) ending a chain of reductions of e.

In this case, axioms indicate that projections and applications are reducible without
having reduced neither components of couples nor sub-expressions of applications
which are in argument position. Inference rules give sub-expressions of applications
that are in function position. arguments of projections and tests of conditional
expressions as sole available contexts of reduction.

3. The Categorical Abstract Machine

The CAM is a virtual machine based on the translation of typed A-calculus terms
into Categorical Combinators. It can also be seen as a successor of the SECD machine
([Landin65]) in the sense that it is a “closure machine".

A first version of the CAM will be used for the strict language and some extensions will
be done when compiling the lazy language.

270



The CAM is composed of three registers: the accurnulator, the code and the stack.
The set ns of instructions of the machine is defined by:
Ins ::= Insp (instructions associated to the primitives in F)
| push | swap | cons | car | cdr | app
| cur(Code) | quote(Val) | branch (Code ., Code)

where Code denotes lists of elements of ins, and Val is the set of values defined by:

Val := C constants
| (Ins list:Env) closures
| (Val.Val)

The states of the machine belong to the set:
{Val # Ins list § (Val  Ins list) list].
The transitions of the machine are given by:
{s .ins;:C ., S} —>cau [t . C.S] where ins; is the instruction associated
to the primitive f € F, s is the representation of an expected value (say
v,) for this primitive and ¢ 1s the representation of v = f v;.
{s ,push::C, S} —>cau Is.C ., s:5}
{t . swap..C,s..S5} >y Is.C,t:S]
{t ,cons:C,s:S] —>cau (s.t),C, 5}
f(s.it) ,car:C, S} —>yy Is.C .S
f(sit) ,cdr:C.S5] >y t.C.5)
{s ,cur(Cy):C.,S{ —=>cau (Cys).C, S}
{(Cys)t) . app:C . S} —>cuu Usit). Gy, C:S§
{s , quote(t):C, S} —>cay {t.C .S}
ftrue , branch(C,.Cp)::C ,s:.S} —>cuy s, Cy, C::S}
{false ,branch(C,,C,)::C ,s:S} —>cay s .Cy, C:SY
{s . []1.C:S| = Is.C.S§

The final state of the machine is {s . {].[]] and the result of the evaluationiss.

4. Compilation of the strict language

We define a first version of the compiler for the strict language, it takes as argu-
ments an expression and a formal environment p and produces CAM code. The formal
environment is used to compile accesses to local values in the environment. The
main difference between this compilation and the original one (presented in
[CouCurMa85]) is the treatment of recursion.

Following A-calculus, we can define recursion using the fix-point combinator Y
defined as YM = M(YM). Using this combinator we can rephrase every recursive
declaration.

letrec f  =egine (*)
into
letf =Y{fun f » (fun z ~ey))ine (**)

As shown in the semantic description of the languages, 1t is useful to represent terms

271



with (eventually cyclic) graphs to allow sharing when using the fix-point equation
séen as a rewriting rule. When reducing the expression to which f is bound in (**),
one then may use only once the fix-point rule, binding f to (fun 2 - &,) in which
free occurrences of f are bound to this expression itself. The fix-point combinator
Y produces a cycle in the environment to allow, from inside an expression, the access
to the expression itself. A technique inspired by the fix-point combinator is used in
the lazy language to compile recursive non functional values.

In the categoncal framework, environments and code may be distinguishéed, and
loops in the environnments may be transported in the code. We use here this tech-
nique: instead of having cyclic environments, we have cyclic programs. Local func-
tion calls are compiled appending the code of the function after the code of the
argument. The code of local functions is stored in the formal environment as annota-
tions. In the case of recursive functions, the compiler uses a recursive data structure
as environment, and the generated code is represented by a cyclic graph.

The formal environments have the following structure.

P =) the empty environment
| Var a variable name
| (P, Var) environment constructor

| P{Var = s list] function annotdtions

The empty environment is used only to denote meaningless environments, as the ini-
tial environment of the compilation. An environment can also be a variable, but this
case is riot used jn this version of the compiler. The environment is dugmented with
a new variable using the environment constructor. In pyy = ¢y, the annotation {f = C}
of the formal environment p associates the name f to the code C. The compilation of
an expression e, given by [e](). is recursively defined on the structure of expres-
sions:

[/ ), = cur(cdr ins,) where f € F

[b]p quote(db) where b € B

[(f e)),=le),ins; where f € F

[3 ]p!z aC] = c

[z]p!y-Cl = [z]p if x # Yy

[z ](p.z) = cdr .

[z](‘w) =car [z}),ifx #y

[(e,.e2)]), = push [e,], swap [e;], cons

[fst(e)]p ={e], car

[snd(e )1, =le), cdr

[(Junz »e)], = cur(le], )

[(el ¢z)]p = [(el , ez)]p app

[let f z = e, ine,], = [e2], where o' =p{f =[(fun z - e,)],}
[letrec f z =e,in ezlp = [ez], where p' =p{f=[(funz - e,)]p-;
[let z=e in eZ]p = push [e,]p cons [ezl(p_-,,)

[if e then e, else e,}, = push [e], branch([e,]),[e2),)

272



In the compilation of the "let rec”” construct of the language, we use a cyclic formal
environment: p' =p{f=[ - - l,}. For the implementation of its compiler. the strict
language lacks for recursive data structures. In the real implementation of the ML
language, we have extended the strict language to deal with cyclic data structures.
The implementation uses some kind of local laziness inspired by the compiler of the
lazy language described in section 5 of this paper.

An Optimizing Compiler

In the compilation presented in the last section, there is an optimization based
on categorical equations (cf. [CouCurMa85]). The expression (let x=e, in e,) can be
seen as an abbreviation for (fun z -+ e;,) e,. Knowing that the abstraction is immedi-
ately applied to an expression, a §-reduction is done at compile time We save the
construction of the closure and the couple needed by the g-reduction realized when
executing the app instruction.

Another optimization is based on the recognition of closed expressions: each time an
expression is compiled, the code of each sub-expressions is surrounded by some
environment saving/restoring instructions. These instructions are useful only when
the last sub-expression (to be evaluated) has free variables, otherwise they can be
suppressed as the execution environment will not be used during the execution of
the last sub-expression. Some closed expressions are for example:
142 letz=1inz+1 Junz » 2%

Closed abstractions or combinators play a crucial role in some optimizations pro-
posed later in this section.

The compiler can be improved to recognize closed sub-expressions and to produce a
better code in these special cases.
[z): = (]
[(e,.e2)], = if ez is closed
then fe,], push [e.] cons
else push [e,], swap [e.], cons
[JQunz »e)], = if (funz -+ e)1s a combinator
then cur(cdr [e],)
else cur([e],.z))
[(e; e2)), = if e; is closed
then [e,], push [e,]( cons app
else push [e,], swap [e,], cons app
[let z=e¢, ine;]), = if (fun z + e;) is a combinator
then [e;], [e2]).
else push [e,], cons [e;]),..)

Each of these rules replaces its corresponding rule in the previous definition of [_].
Other rules stay unchanged.

Local Functions and Combinators

The next step is the optimization of locally defined functions (as no global
environment i1s proposed for this mini-language all functions are in this case). The
annotations of the formal environment give all the information to realize the 8-



reduction of the application of a variable (annotated as a function) to an expression.
For example, if we have a formal environment.
p = (.o {f =cur(CY,x;_y)....30)
the compilation of the expression f e gives:
{7 e), =push car® cur(C) swep [e], cons app
It is easy to see in the categorical formalism that this program scheme is equivalent
to:
[7 e], = push car® swap [e], cons C
In the case of recursive functions the cycle in the formal environment produces
cyclic graphs as programs as wili be shown in the example at the end of this section.

When a local function is a combinator, its annotation is of the form |f =cur(cdr C'){,
which means that the access to the environment and also the couple construction
made just before the code C are unnecessary and the following special case can also
be inciuded:

[f el,=le), Cil p=(.(p'1f =cur(cdr C)}.x%;)...xo)

Example

[let rec zero z = if £=0 then O else zero(pred r) in zero 100000]),
= gquote (100000) C
where C = push [z =0}, branch(quote (0) . pred C)

Other optimizations not discussed in this paper include:

- Local Variables: this optimization works once again with Lhe “let .. inr .. con-
struct of the language. Each time a local variable is declared the formal environ-
ment is augmented and accesses to all other local variables is affected. If we
place the whole environment in a flat structure (instead of a list as in our
machine), we obtain constant access time for local values. but we lose sharing of
the execution environments between local functional values (see {Cardelli 84]).
When compiling “let z = e, in e,”, building a new environment with the local
value of £ can be saved if there is no free occurrence of z in any abstraction
sub-expression of e,. In this case, the value of z can be pushed on the stack, giv-
ing constant access time to that value during the execution of [e,]. If z appears
free in an abstraction inside e,. it must be possible to build a closure containing
its value in the environment part, hence that value must be present in the exe-
cution environment of [e.]).

- Curry Bind: the code of the application of a curryed function to all its argu-
ments can have no overhead compared to the application of an equivalent non
curryed version of this function with only one (structured) argument. This can
be outlined with the following rule of compilation in which the local function has
n levels of curryfication. (There is also a similar rule for the local combinators)-

(7 e e), = push
push [e,], cons swap
push [e.], cons swep

push [e, ], cons C
if p=(.(p{f=cur(cur (cur --- (cur C) - - )){.%)...2¢)

274



5. Compilation of the lazy language

The CAM can be easily extended to support lazy evaluation ([CouCurMa85].
[Mauny85]). using the classical technique ([Plotkin75), [Henderson80]) of building
new closures to represent unevaluated expressions. These new closures are com-
posed of the code of the expression and the environment to use when executing this
code. The new instruction fre C (freeze) builds this frozen object and the instruc-
tion unf (unfreeze) “thaws” the execution of the frozen code in its own environment.
The instruction upd (update) allows Lthe sharing of "thawed’ values.
The instruction wind is used to build cyclic data structures as those used by the
strict compiler (for the formal environments).

Frozen objects are noted as (C.s) (code C, environment s). We must extend the set of
values of the machine with frozen values. The new definition is:

Val ::= () empty environment
| C constants

| (s list. Env)  frozen values

| (Ins list:Env) closures

| (Val,Val)

The transitions associated with these new instructions are:
s, fre(Cy):C. S| —>cau HCys).C, S}
{Cys), unf:C, S| —>caw Is.Cy.(Cy.5):C::S}
{s ,unf::C,S} —>cau {s.C.S|
{t ,upd:C,h(C1.5):8] —>cuu HCi1s)N(Cys)t, C .S}
{s .wind::C, (¢.()):S] —>cau s[(t.0)(t.s)]. C.5}

The rules concerning upd and wind instructions are implemented using a physical
modification of objects.

For the strict primitives some CAM code (particular to each primitive) is prefixed to
prepare the arguments. Those sequences of instructions are noted lins, .

The compilation of the lazy language is given by the following function:
(71, =cur(car unys lins,) where f € F
{61, = quote(b) where b € B
[(f e)J,=[e], lins, where f € F
[z ]z =cdr uns
(zlpy)=car[z],ifz 2y
[(e1e2)l, = push fre(le,), upd) swap fre([e,], upd) cons
[rst(e)), = [el, car uny
[snd(e)l, =[e], cdr uns
[(funz > e)], = cur(le],.))
[(e1 e2)), = push [e,], swap fre(lez], upd) cons app
[let f z = e, ine,], =[e,), where p' =pif =[(fun z + e,)],}
[let rec f z = e, ine,]), =[e,], where p' =p{f =[(Junz » ¢,)], !}
[(let z=e, in e,)], = push fre(fe,], upd) cons [e,l,,)
[(let rec z=e, in e,)], = push push (quote()) cons push

Ire(ley)z) upd) wind cons[ez),z)

[if e then e, else e;], = push [e ]} branch([e,],.[e2],)

275



The correctness proof of this compilation (without sharing) can be found in
[Mauny85]. All the optimizations proposed for the strict language can be applied to
this compilation.
It is possible in the lazy language to build recursive data structures; for etample, the
infinite list of natural numbers can be defined as:

let rec Nat = 0 :: map succ Nat
It is also interesting to see that the expression:

letrecz =1:zinz

produces an infinite term with a finite representation:

1

6. Implementation

In a real implementation of the ML language, the CAM code can be seen as an
intermediate language which should be rewritten into a host machine code. An
environment should also be available for the problems of communication, memory
allocation/retrieving, etc.
We have decided to use the virtual machine of the Le_LisP system ([Chailloux84]): the
LLM3. The LLMS3 provides the possibility to easily write memory allocators/garbage
collectors, in-line machine code expansion and the advantage of being machine-
independent.
The toplevel of the ML system consists in evaluating global declarations. Global
identifiers will be treated as constants by the compiler. The toplevel loop contains
the following steps:

- parsing producing the shallow syntax of the language,

- type-checking the current ML phrase synthetising its most general type (in the
sense of [Miiner78]). During this step, are performed some kind of analysis such
that combinators detection, etc...

- compiling the current expression into CAM code,

- rewriting the CAM code into LLM3 code. At this step, some usual optimizations
are realized. They consist in detecting CAM instructions sequences which are
known as being rewritten in LLM3 instructions sequences which are more com-
pact and eflicient than the ones produced by a naive rewriting process,

- execution of the program,
- updating the global environment.

The implemented version of the ML Language contains abstract/concrete types,
call-by-pattern, streams and typed exceptions as in Standard ML (| Milner85]). An
interface with the Yacc ([Johnson75]) parser generator is also available.

About efliciency

We give an’ estimation of the number of function calls per second compared
whith others languages and with other implementations of ML available at INRIA. As a
target machine, we use a VAX-780. For this estimation, we use in ML the following
definition:

276



letrec fcps =funtl »1|{2->1|n 1+ fcps(n—1) + feps(n-2)

SYSTEM Funetion Calls /7 Second
Le_ML (Qur version of ML) 94000
Cc 45200
Pascal 36600
Franz ML (ML V6.2 Compiled in Franz Lisp) * 15000
Le_lisp 12500
Poiy/SML 12300
Le_LML (Our lazy ML) * 7600

The estimation for the lazy version of ML is identical to that of the strict version
when the optimizations are realized after strictness analysis. This 1s a future
improvement of the lazy ML.

7. Conclusion

Traditionally closure-based implementations of functional ianguages have been
considered inefficient because of the environments but with the opuimisation of local
functions and local variables, the environments contains only what is absolutely
necessary.

In the implementation of ML due to Luca Cardelli {[Cardelli84]), the access time for
local variables is constant but each construction of a new closure implies allocation
of space proportional to the number of elements of the environment.

In our compilation the operation of closure construction takes constant time and
space (and only when the applied function is not a combinator), so we encourage
partial application and in particular multiple use of partially applied functions.

The theoretical bases of the Categorical Abstract Machine allow a very formal
approach to the compiiation of functional programming languages and to their code
optirnization.

References

[CardelliB4] Cardelli L., Compiling a functional language, Proc. ACM Conf on Lisp and
Functional Programmng, Austin (1984).

[Chailloux85] Chailloux J., L& Lisp Version 15, le manuel de ré ference INRIA (Feb. 85).
[Chailloux86] Chailloux J., La machine LLM3, INRIA internal report (Jan. 86).

[CouCurMa85] Cousineau G., Curien P.L., Mauny M., The Categorical Abstract Machine.
IFIP Conference on Functiona! Programmng Languages and Computer Architec-
ture, Nancy (Sept. 1985}.

[Henderson80] Henderson P, Functional programming application and implementa-
tion, Prentice Hall International (1980).

[GorMilWa79] Gordon M.. Miiner R.. Wadsworth C.. Edimburgh LCF. Lecture Notes in
Computer Science, No 78, Springer-Verlag (1979).

"Garbage collecting time not tncluded.

277



[Johnson75] Johnson S. C., YACC - Yet another compiler-compiler, CSTR 32, AT&T Bell
Laboratories (1975).

{Mauny86] Mauny M., Compilation des langages fonctionnels dans les combinateurs
catégoriques. Application au langage ML Thése de troisiéme cycle, Université
Paris VII, (Sept. 85).

[Milner78] Milner R., A theory of type polymorphism in programming. Journal of Com-
puter and System Science, Vol. 17,3, pp. 348-375 (Dec. 1978)

[Milner 85] Milner R., 4 proposal for Standart ML, Proc. ACM Conf on Lisp and Func-
tional Programming. Austin (1984).

[Plotkin75] Plotkin G.D., Call-by-name, call-by-value and the lambda-calculus,
Theoretical Computer Science, Vol. 1, pp. 125-159 (1975).

[Plotkin81] Plotkin G., 4 structural approach to operational semantics, University of
Aarhus, DAIMI FN-19 (1981).

[SuarezB6] Suarez A., Une implémentation de ML en ML, Thése a paraftre.



