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This paper provides an in-depth study and analysis of robot vision features for predictive control and a global calibration of their
feature completeness. The acquisition and use of the complete macrofeature set are studied in the context of a robot task by
defining the complete macrofeature set at the level of the overall purpose and constraints of the robot vision servo task. The visual
feature set that can fully characterize the macropurpose and constraints of a vision servo task is defined as the complete
macrofeature set. Due to the complexity of the task, a part of the features of the complete macrofeature set is obtained directly from
the image, and another part of the features is obtained from the image by inference. The task is guaranteed to be completely based
on a robust calibration-free visual serving strategy based on interference observer that is proposed to complete the visual serving
task with high performance. To address the problems of singular values, local minima, and insufficient robustness in the tra-
ditional scale-free vision servo algorithm, a new scale-free vision servo method is proposed to construct a dual closed-loop vision
servo structure based on interference observer, which ensures the closed-loop stability of the system through the Q-filter-based
interference observer, while estimating and eliminating the interference consisting of hand-eye mapping model uncertainty and
controlled robot input interference. The equivalent interference consisting of hand-eye mapping model uncertainty, controlled
robot input interference, and detection noise is estimated and eliminated to obtain an inner-loop structure that presents a nominal
model externally, and then an outer-loop controller is designed according to the nominal model to achieve the best performance of
the system dynamic performance and robustness to optimally perform the vision servo task.

1. Introduction

The ability of humans to observe things in the outside world
with both eyes and manipulate what we see is the result of a
long evolutionary process that is important for us to adapt to
and make use of the outside world. Inspired by this phe-
nomenon, visual sensing was introduced to robot control
systems to sense the state of the system and the task. This
type of information is collected from the outside of the
control system, compensating for the information fed back
from within the system, relaxing the requirements for
mechanical accuracy and joint tightness of the robot
components, and allowing the robot system to enhance its
flexibility in an uncertain external environment for various
automatic control functions, such as robotic assembly, ro-
botic surgery, and remote-control tasks. As a result, visual

servo control, that is, the introduction of visual information
into the control closed loop to guide dynamic system mo-
tion, has received a great deal of attention. The development
of robotics is changing rapidly; robots are more functional
and more versatile; not only traditional robots for industrial
applications but also more military and medical robots along
with the wave of artificial intelligence robots are making a
splash in various fields [1]. Whether the information con-
tained in the macro- and microfeatures is complete affects
the completion of the task. Therefore, the complete visual
feature set of the visual servo task is defined to describe the
feature set that meets the needs of completing the task. The
feature set consists of a complete macrofeature set and a
complete microfeature set. The wide application of robots
makes robotics products form a huge industry. At the same
time, the development of robotics will have a huge and far-
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reaching impact on the country’s comprehensive national
power and its ability to develop sustainably. Therefore,
robotics is not only seen as a frontier technology but also
taken as a national strategy by many developed countries in
the world, which gives strong support to the research in this
field. As the most important class of robots, mobile robots
will be used in industry, agriculture, national defines, sci-
entific research, and other industries to partially or com-
pletely replace the work of people as human society
continues to develop and the degree of information tech-
nology and intelligence continues to increase.
Vision-based mobile navigation is a research hotspot,
and research in this area can currently be divided into three
parts: visual simultaneous localization and mapping
(VSLAM), path planning, and navigation control. Over the
past decades, a large amount of research has focused on
VSLAM, which is the study of environmental modelling. The
process requires the system to build the environment while
using the known local environment to achieve self-locali-
zation and then incrementally model the environment [2].
Research in this area, often without considering the com-
mand generation for its movement control, but only how to
achieve environment reconstruction as well as real-time
localization is given the information, is essentially a real-
time version of structure from motion (SfM) in the field of
computer vision [3]. In the visual navigation process, the
captured image sequences are used to achieve online in-
cremental environment perception and autonomous local-
ization using VSLAM. The concept of feature completeness
for robot vision servo tasks is proposed, and the complete
feature set is defined to consist of a complete microscopic
feature set and a complete macroscopic feature set. For an
arbitrary vision servo task, a criterion is given to judge
whether a microscopic feature set is complete or not, and
three metrics are proposed to evaluate the performance of a
complete microscopic feature set. The task of grasping a
brush by a humanoid robot is taken as an example to study
the acquisition and application of the complete microfeature
set in the robot vision servo task [4]. According to the
proposed definition and discriminative quasi-discrimination
of the complete feature set, the complete feature set is
designed. The camshaft algorithm is used to detect target
points and actuator ends in the video stream captured by the
system camera, and then the complete feature set is obtained.
Mobile robots often work in unstructured and unknown
environments and need to autonomously sense and perceive
the environment according to specified task goals and plan
their behaviour efficiently and intelligently to accomplish
specific tasks. To accomplish tasks more efficiently, mobile
robot systems contain a central decision-making system and
several subsystems that are responsible for different subtasks
[5]. Among them, autonomous navigation technology for
mobile robots is a fundamental module. The navigation
system is the minimum complete system integrating envi-
ronment modelling, scene understanding and reasoning,
autonomous decision-making and execution, and human-
robot interaction, corresponding to a complete processing
process of information representation, association, fusion,
reasoning, and management. Therefore, the level of
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intelligence of a robot navigation system also determines the
complexity of the environment it can adapt to and the
complexity of the navigation task. The intelligence level of
robot autonomous navigation systems is closely related to
the corresponding methods of information processing,
feature expression, and autonomous cognition. In recent
years, the leap in technologies such as high-speed cameras,
image processing hardware, and high-performance mobile
computing platforms has provided mobile robots with the
assurance of perceptual information and computing effi-
ciency for autonomous navigation. The rapid development
of information intelligence processing technology also keeps
pushing the robot autonomous navigation system towards
the direction of intelligence, which makes the robot grad-
ually improve its adaptability and autonomy to the envi-
ronment. This paper focuses on the effect of different feature
sets on the completability and completion performance of an
uncalibrated visual servo task. Feature completeness is
proposed to examine whether a feature set provides enough
information to make a task complete. Evaluation metrics are
proposed to examine whether a completeness feature set
enables optimal task completion. The humanoid robot
grasping brush task and the robot writing Chinese callig-
raphy task are used as examples to investigate how to select,
extract, and use the complete feature set for different visual
servo tasks, respectively. Based on this, a robust calibration-
free visual servo control method based on the complete
feature set is proposed to improve the task completion
performance.

2. Status of Research

Since the control commands of the vision servo system are
calculated based on the hand-eye mapping relationship, the
transient performance, steady-state performance, and sta-
bility of the system are affected by the hand-eye relationship
[6]. The calibration-free vision servo system uses visual
information to guide the robot’s motion when the camera
parameters are not calibrated. How to obtain an accurate
hand-eye relationship in uncalibrated vision servo control is
an important research problem [7]. The hand-eye mapping
relationship for visual servo systems is strongly nonlinear
and can be approximated by a series of linear relationships
within each local domain, such as the use of image Jacobian
matrices. There are two main ways to calculate the image
Jacobian matrix, indirectly or directly, to estimate the matrix
take values. One way to estimate the image Jacobian matrix
indirectly is by estimating the unknown parameters in the
model. The literature [8] represents the uncalibrated visual
servo problem as a multiple-input, multiple-output adaptive
control problem and accomplishes visual servo control using
a Lyapunov adaptive control method based on SDU de-
composition with online calibration of the camera param-
eters through a cascade control strategy. The literature [9]
investigates how a system with unknown camera and robot
parameters can accomplish calibrated control. The algo-
rithm uses a depth-independent image Jacobian matrix to
establish a mapping of visual deviations to the joint angle
space of the robot arm so that the unknown camera and
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robot parameters appear linearly in the closed-loop dynamic
structure of the system, which in turn estimates the un-
known parameters online using an adaptive algorithm [10].
Another approach estimates the image Jacobian matrix
directly using a different method.

The spatial projection of image pixel points using
multiview geometry as well as feature point matching and
optical flow tracking is used to obtain a spatial point cloud,
and the matching of this point cloud map with the current
image and the PnP algorithm is used to localize the robot
system [11]. Its localization optimization is performed with
the reprojection error or image error as the optimization
term for the pose solution. The method is characterized by
high operable accuracy and intuitive map representation
[12]. The basic dual-view geometric relative pose solution
usually uses feature points to represent the image and cal-
culates the basis matrix or single response matrix between
two frames by matching the feature points and then obtains
the relative pose between two frames by decomposing the
singular values of the matrix [13]. The method has a deep
theoretical foundation and can obtain pose calculation re-
sults with high accuracy under the premise of having ideal
data matching [14]. This kind of reprojection method is
usually implemented based on feature points, so this kind of
method relies on the information of individual pixels in the
image for localization, and this kind of matching method
with local information often limits the reliability of data
matching due to the limitation of its observation window
size; in addition, the amount of information used in the
selection and expression of pixels is limited, so this method
has a weak ability to overcome changes in environmental
conditions. In addition, due to the limited amount of in-
formation used, the ability to overcome changes in envi-
ronmental conditions is weak, resulting in problems such as
data matching errors or insufficient effective matching [15].
These problems also lead to the inability of visual navigation
based on these methods to achieve reliable localization
output and stable navigation under a long period or harsh
working environment, which reduces the robustness of the
visual navigation system.

Real-time modelling for the unstructured environment
in the human-robot collaboration scenario can provide
global process information for subsequent motion planning,
which is a key technology for visual perception. It mainly
studies the influence of different feature sets on the ac-
complish ability and completion performance of an un-
calibrated visual serving task. The feature completeness is
proposed to investigate whether a feature set provides
enough information to make a task complete. According to
the above comparison, the depth camera based on the
principle can calculate the depth information in real-time
and fast, with moderate accuracy and a large field of view,
which can fully meet the robot’s needs for motion planning
in a large working space. However, after analysis, in un-
structured working scenes, the field of view of a single depth
camera is affected by obstacle occlusion, so it is necessary to
introduce multiple depth cameras to form a high real-time
global vision system to obtain more complete environmental
information and improve the success rate and safety of

motion planning. Therefore, efficient modelling of un-
structured environments is one of the main research di-
rections of this paper.

3. Predictive Control for Robot Vision Feature
Completeness Analysis and Global
Calibration Analysis

3.1. Predictive Control for Robot Vision Feature Completeness
Design. Visual servo tasks require optimization of the
overall performance of the task from a macroscopic per-
spective and the achievement of planned control goals at
each step from a microscopic perspective. Both macroscopic
optimization and microscopic control require description
and feedback of the task in terms of visual features [16]. The
completeness of the information contained in the macro-
and microfeatures affects the completability of the task.
Therefore, the complete set of visual features for a visual
servo task is defined to describe the set of features needed to
satisfy the task completion, which consists of a complete
macrofeature set and a complete microfeature set. Macro-
features are often built on top of microfeatures, so this
section discusses the complete microfeature set first. Robot
vision servo control is an interdisciplinary research field,
involving multiple disciplinary elements such as image
processing technology, computer vision, control theory, and
real-time computing. However, the purpose of its task ex-
ecution is to achieve control goals in the task space. Mi-
croscopic visual features play a role in visual servo control to
characterize and feedback the control condition of the
system. Therefore, evaluating the merit of a microscopic
visual feature set for a visual servo task examines whether the
hand-eye relationship adequately links up control and visual
features. That is, the microscopic visual features should be
sufficiently informative to ensure that every control degree
of freedom is characterized and fed back by the visual
features.

0H (q) .
f- a(q)q,
1 (1)
f=J-U.

The image Jacobian matrix varies with robot poses, so for
a particular set of microscopic features, it is important to
ensure that the image Jacobian matrix is a full rank within
the robot motion range involved in the task. Based on
ensuring that the visual servo task can be completed, the
feature set with the best properties is selected so that the task
completion effect is optimized. First, the mapping rela-
tionship between the image space and the task space should
be as stable as possible, changing substantially as the relative
poses between the target object and the camera change so
that the feature set can avoid the system converging to local
minima or having unintended motions in the task space [17].
Second, the rate and magnitude of change of the microscopic
visual features should be as consistent as possible with the
control volume to better characterize it. The microscopic
features are chosen to avoid singular values and local



minima as much as possible. When singular values or local
minima are present, both visual feature changes and control
volume changes will be extremely inconsistent. At singu-
larities, it is known from the hand-eye mapping relationship
that a nonzero velocity vector at the end of the actuator
corresponds to a visual feature deviation that may be zero,
and thus, the visual feature does not correctly reflect the
condition of the controlled robot. At local minima, the
feature deviations belong to the zero space of the generalized
inverse matrix of the image Jacobian matrix.

f+f"=KerJ". (2)

The visual feature bias is not zero, and the robot control
speed command is calculated to have a value of zero, so the
visual feature cannot be used to guide the control either. In
addition, good decoupling of the hand-eye relationship
facilitates control and planning to avoid control of indi-
vidual degrees of freedom causing undesired operations in
other degrees of freedom, resulting in reduced control ef-
ficiency or actuator end motion out of the field of view, as
shown in Figure 1.

For the human-machine collaborative operation system,
there is a state that the human-machine is not in the same
space at the same time; then the robot’s working space is an
unstructured environment occupied by static obstacles.
Unlike the free space or structured environment where the
state is known, the work objects and obstacles in the un-
structured environment are irregular and randomly placed,
especially for the customized and small-batch operations
where the human-robot collaborative production method is
applicable; the work objects are of many types and often
change production. The navigation system is the smallest
complete system that integrates environment modelling,
scene understanding and reasoning, autonomous decision-
making and execution, and human-computer interaction. It
corresponds to a complete processing flow of information
expression, association, fusion, reasoning, and management.
In the actual operation process, the robot first needs to
identify the target workpiece among multiple types of work
objects, that is, to achieve the position estimation of the
target workpiece, which is the basis for completing the
subsequent operation tasks and is exactly what was studied
in the previous section of this paper [18]. In the process of
executing subsequent tasks, the robot calculates the corre-
sponding end tool posture based on the workpiece posture
and moves safely and autonomously to the target posture in
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an unstructured environment, which is an important
manifestation of the robot’s intelligence capability, and
motion planning is one of the key technologies to realize the
robot’s autonomous motion, which is also the focus of this
chapter. Since robots for human-robot collaboration usually
have six or seven degrees of freedom, their planning space is
a complex high-dimensional space, which leads to complex
space modelling and increased computational effort for
collision detection, affecting the efficiency and success rate of
motion planning. To solve the above problems and quickly
plan feasible motion paths, this chapter first introduces the
planning principle of the classical fast extended random tree
algorithm and then proposes a heuristic-guided fast ex-
tended random tree algorithm for its problems of randomly
scattered sampling points and slow convergence, which uses
a guided search strategy to accelerate the convergence of the
algorithm, and heuristic functions are used to optimize the
motion paths to make the optimal motion path length.
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The camera of a specific focal length can be selected
according to the range of features in the actual experiment to
avoid singular Jacobian matrices when the inverse matrix zero
space of the image Jacobian matrix contains only zero vectors
and avoids local minima. Thus, the feature set consisting of the
pixel coordinates of the marker points is the complete feature
set for this task. With the feature set complete, its performance
is discussed. The image Jacobian matrix does not change
rapidly with the relative positional change of the hand-eye, so
the linear nature is acceptable. Good consistency of hand-eye
variation is obtained by avoiding singular values and local
minima with a suitable choice of camera focal length. There are
three zero terms in the image Jacobian matrix, so the hand-eye
relationship under this feature set is well decoupled. The
simplicity of the points makes the feature set acquisition ef-
ficient and satisfies the requirement of processing speed in
human-computer interaction.
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The autonomous navigation behaviour of a mobile robot
is first based on stereo vision sensors to obtain information
about the surrounding environment and construct an

environmental possibility map and plan a reasonable exe-
cutable path under the a priori information of the possibility
map, and finally, the robot follows this executable path to
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FIGURE 1: Robot vision feature completeness framework.

complete the obstacle avoidance navigation task [19]. The
key to the robot navigation problem is to be able to find a
safe and smooth path in the process of moving towards the
target point while enabling the mobile robot to accomplish
the task of dynamic obstacle avoidance. The existing mobile
robots have a certain autonomous navigation capability, but
because the characteristics of the field environment are more
complex and dynamic, the control error and measurement
error of the mobile robot is greater; therefore, it is necessary
to conduct further in-depth research on the key technology
motion planning of the autonomous navigation behaviour of
the mobile robot in the field environment, as shown in
Figure 2.

For the visual tracking constraint, since this kind of
constraint is performed between the current frame and the
previous keyframe with a short visual tracking baseline, it
can be assumed that the relative motion between the two
images is small, and it is feasible to use the optical flow
method for data matching alignment in that case. Three
indicators are proposed to evaluate the performance of a
complete microfeature set. Taking the task of a humanoid
robot grabbing a brush as an example, the acquisition and
application of a complete set of microfeatures in the task of
robot visual serving are studied. Also, it is appropriate to use
the optical flow-based method to handle the visual tracking
constraint calculation with a higher establishment frequency
because of the simple and efficient data matching process.
Based on the matching results of the optical flow method in
the keyframe selection stage, pixel matching between two
frames can be simply obtained to complete the data asso-
ciation establishment of visual tracking constraints.

To avoid the computationally expensive problem of too
many candidate regions due to probabilistic sampling, the
sampling mode of other traditional tracking algorithms is
replaced by a local search cantered on the location of the
target, which reduces the search range and improves the
computational efficiency. The advantage of local search is

that it considers the continuity of the target’s motion tra-
jectory and the smoothness of the appearance transforma-
tion during the tracking process. The previous frame filter
model, obtained by using the filter template update method,
is correlated with the local search region of the current image
frame to locate the position of the tracking target in the
current frame.

y=F'{ZeF}. (5)

To introduce multiscale estimation in the algorithm to
obtain an accurate extraction of the region where the target
is located, but not to lose the rapidity of tracking efficiency
due to the increase in computational complexity, an in-
cremental estimation strategy is used. The strategy separates
the position estimation from the scale estimation, forming a
cascading relationship. After relying on position estimation
to capture the location of the target from the image, scale
estimation is enabled to extract the extent of the target’s
region in the image. This estimation strategy does not affect
the computational process of location estimation but also
relies on its results to reduce the scale estimation range and
reduce the computational cost.

3.2. Experimental Analysis of Visual Feature Completeness
Bureau Calibration. Based on the positional information of
the operation object, the robot needs to plan a feasible path
in the unstructured environment. Since in unstructured
scenarios such as human-robot collaboration, there is a
situation where the human and the robot are in the same
workspace at the same time when the robot is in a dynamic
unstructured scene, the state changes of the human, the
robot, and the environment are random, so the robot needs
to intelligently sense the state changes of the obstacles in the
workspace through vision sensors, and when the obstacles
may interfere with its normal operation, the robot needs to
react in time, that is, plan its motion trajectory online to
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achieve obstacle avoidance to avoid potential collision
hazards [20]. Therefore, this chapter proposes an online real-
time trajectory planning method for robots in dynamic
unstructured environments.

First, to solve the problems of the limited single-camera
field of view and real-time dynamic obstacle avoidance, a
visual perception method is proposed to establish an offline
mapping and online fusion model of multicamera depth
images and robot workspace 3D raster, determine the oc-
cupation state of the occluded 3D raster by the robot and
obstacles, and obtain the nearest distance and relative ve-
locity between the stable robot and obstacles in real-time
based on Kalman filtering algorithm. It often does not
consider the generation of commands for movement control
but only considers how to achieve environmental recon-
struction and real-time positioning under given informa-
tion, which is essentially a real-time version of the field of
computer vision. Then, based on the improved artificial
potential field method to calculate the attractive and re-
pulsive forces, the trajectory avoidance strategy is adjusted
according to the relative position and velocity of the ob-
stacles, and the potential field forces are converted into robot
joint velocities to control the robot from the velocity level to
complete the obstacle avoidance task so that the robot can
avoid obstacles and ensure the operational efficiency at the
same time. Finally, the effectiveness of the trajectory
avoidance algorithm is verified in scenarios with different
dynamic obstacles, as shown in Figure 3.

Unlike current path planning methods that optimize the
path search approach to improve efficiency, this chapter
improves the efficiency of path search by reconstructing the
environment representation model. The multilevel graph
model-based environment representation method can de-
scribe the multilevel topological structure information of the
environment more effectively, which in turn improves the
efficiency of using environment-inspired information in the
path search process. This experiment further validates the
idea that building a task-oriented environment
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—— Length
—— Number of cells

FiGure 3: Path planning.

representation model can improve the efficiency of re-
trieving and utilizing information during task execution.
However, in the path tracking process, to track the feature
paths, the mobile robot needs to accurately identify the
global features of the environment, thus requiring higher
performance of global localization. The mobile robot needs
to globally localize not only its pose but also the features of
the environment.

Based on the above description, the definition of a visual
tracking failure of the system is given here: a keyframe with
an empty set of constraints is considered to have a tracking
failure at that point. When a tracking failure occurs, the
system considers this keyframe as the first keyframe in a new
subgraph at the back end and reestablishes the subgraph
coordinate system based on this frame so that future visual
tracking is maintained in this new subgraph. It is important
to note that in contrast to the first keyframe initialized by the
system that is cured and not involved in the optimization
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adjustment, the first node of the newly created subgraph
here is not cured and will be involved in the future global
graph optimization adjustment process. With this subgraph
mechanism, the system will always be in two states: main-
taining visual tracking in a subgraph or creating a new
subgraph and trying to track maintenance in that subgraph.
Thus, the system can run all the time without running out.
The flow diagram of the back end of this subgraph is shown
in Figure 4.

During the visual tracking of a particular subgraph, the
poses of the nodes are given according to the motion model.
The pose estimate of the current image frame is determined
by the known pose of the related frames within the same
subgraph and the constraints between the two frames. Also,
nodes that are within the same subgraph will be influenced
by other nodes that are constrained by another subgraph,
thus achieving an overall alignment of the subgraph. Mobile
robots are the most important category of robots. With the
continuous development of human society and the con-
tinuous improvement of informatization and intelligence,
mobile robots will surely replace human work partially or
completely in industries such as manufacturing industry,
agriculture, national defense, and scientific research. Thus,
visual tracking always operates within a certain subgraph,
and the operation of that visual tracking is always a two-view
geometric operation based on two frames of images. With
such a strategy, it is possible to maintain the operation of the
system in the face of visual tracking failure in this system,
despite the loss of information about other existing nodes.

When building a workstation for human-robot collab-
oration, the area of interest to be observed needs to be set
and multiple cameras need to be arranged according to the
scope of the working scene regarding the above method to
obtain more complete environmental information [21].
Although two cameras can acquire more complete envi-
ronmental information, the amount of data acquired by two
depth cameras at the same time is large, and they need to be
updated and fused in real time, which requires more
computational effort and time, resulting in the robot’s in-
telligent perception and trajectory planning performance in
dynamic unstructured environments being affected by the
online updating efficiency of the environmental model.
Therefore, to speed up the fusion and update of dual-camera
data, this paper draws on the idea of offline modelling and
online updating, builds a model of the projection rela-
tionship between 3D raster and depth image in the offline
stage based on the projection principle of 3D space and 2D
image, calculates the projected pixel points of each 3D raster
centre in the robot workspace on the depth image, and
constructs the mapping data structure of 3D raster to depth
map pixels to the data set that is saved offline.

4. Results and Analysis

4.1. Predictive Control Results for Completeness of Robot
Vision Features. Figure 5 depicts the entire process of right-
hand tracking for the NAO robot. In this task, the binocular
vision system takes pictures of the workspace and the vision
servo system uses the Camshafts algorithm to detect the

end of the actuator and the quill. In this way, this process of
the task can be described in vision space. At the beginning
of the task, the NAO robot’s left and right cameras capture
images with a difference of 111 pixels in the horizontal and
163 pixels in the vertical direction. A Kalman-Bucy filter-
based visual servo controller is used to estimate the image
Jacobian matrix, which in turn derives control quantities to
act on the robot. The NAO robot eventually reaches the
quill within 17 steps, and the deviation between the two
centres is within 10 pixels. The experimental results show
the robustness of the algorithm proposed in this paper to
image noise, motion disturbances, and irregular motion of
the target object.

Task-oriented evaluation of visual feature sets examines
the impact of feature sets on task completability and
completion performance. First, a definition of a complete
feature set for a visual servo task is proposed, and a complete
feature set includes a complete microfeature set and a
complete macrofeature set. This section focuses on the
complete microfeature set and proposes a criterion to de-
termine whether a feature set is a complete microfeature set
for a visual servo task. On this basis, if the visual feature set is
complete, its performance needs to be further examined in
terms of the linear nature, change consistency, and
decoupling of the complete feature set. Taking a humanoid
robot grasping a brush as an example, the acquisition and
use of the complete microscopic feature set is investigated,
and a visual servo system is proposed, which is built based on
the calibration-free Kalman-Bucy filter visual servo method
and the Camshaft detection algorithm. Using this system,
the NAO robot accomplished the grasping of brushes well in
the calligraphy task. The experimental results verify the
validity of the theory of complete microscopic feature sets
proposed in this chapter and the robustness of the complete
feature set extraction algorithm to image noise, humanoid
robot return error, and an irregular motion of the target
object.

In terms of quantitative evaluation for the multisugar
back end, to demonstrate the improved enhancement of
this back end design for fault recovery, we recorded the
timestamps of the occurrence of tracking loss and closed-
loop detection during the experiment, as well as the lo-
calization error at the corresponding time points. The
results are shown in, Figure 6, where the difference between
the true bit poses recorded by the red grasping system is
obtained, the light blue line is the response marker for the
moment of tracking loss, and the red line is the response
marker for the occurrence of closed loop. During the figure,
visual tracking, as well as map construction, can always
maintain operation in either subgraph, and when mutual
constraints are detected between the subgraphs, the error
curve decreases due to the alignment between the sub-
graphs. Furthermore, the trend of the error curve shows
that after a certain time of environmental exploration, the
error curve stops rising, and any new keyframe always finds
a relevant reference frame in the map, which in turn es-
tablishes a constraint and achieves successful localization.
Such curve results quantify the ability of the system in
tracking lost fault recovery.
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The decreasing trend in the number of particles employed
in the process indicates that the robot positional uncertainty is
reducing the influence of its fluctuation process by the envi-
ronmental structure. In the algorithm of this chapter, the
number of effective particles is always maintained at a low level,
which makes the algorithm require a low amount of compu-
tation. As the mobile robot moves, it collects enough infor-
mation about its environment, and the uncertainty in its
positional estimation decreases. However, to still ensure the
robustness of the positional estimation, the algorithm still
maintains a certain number of particles for the estimation of the
positional pose.

The convergence rate is low in the corridor scenario
because only the boundary information of the motion model
is provided and the inner content is not fully described. Also,
due to the use of omnidirectional observation particles,
while obtaining as many possibility regions as possible, it
introduces correlation uncertainty that needs to be fused
with more observations for elimination. From the com-
parison experiments, the initial likelihood region calculation
has an important impact on the convergence speed of the
global localization algorithm. In the corridor scenario, it is
difficult to make an accurate estimate of the region in which
the initial poses are located. However, in the results of the
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FIGURE 6: Analysis of positioning error accuracy at the back end of
multisubgraph.

method in this chapter, despite the large deviation of the
initial moment’s positional estimation, the algorithm is still
able to converge to the correct region after a period of
motion, which fully verifies the robustness and stability of
the method in this chapter in the process of global locali-
zation. It compensates for the information fed back from the
system, relaxes the requirements for the mechanical accu-
racy and joint tightness of the robot components so that the
robot system can also improve flexibility in an uncertain
external environment, and realizes various automatic con-
trol functions. Through simulation experiments, this chapter
verifies the effectiveness of the proposed method in terms of
global localization accuracy and further verifies the effec-
tiveness of this chapter’s method in terms of global locali-
zation efficiency and global localization robustness through
online experiments.

4.2. Experimental Results of Visual Feature Completeness
Bureau Calibration. Geometric features in scenes are per-
vasive features, less affected by texture, more robust to
changes in perspective, and so on. Geometric features can
improve the ability to represent space. Establishing a
mapping model of geometric feature descriptors to their
spatial locations and constructing a method to retrieve their
corresponding geometric features for a given spatial location
are essential to improve the ability of geometric features to
represent space. There are two main types of geometric
features. One is the features corresponding to geometric
primitives, such as line segments, planes, and other features.
The second is local geometric features of dense surfaces,
which do not have a specific form of expression but describe
geometric information of the corresponding surface and can
generally be modelled using surface elements. Single features
have limited ability to characterize spatial information and
are more dependent on environmental conditions. Ex-
ploring global localization methods for multiple features is
important for improving navigation system stability and
environmental adaptability.

Line segment features are pervasive features in the en-
vironment and are the main environmental features in

weakly textured scenes. Their number is generally small, but
the feature descriptors are relatively expressive. In this
chapter, a visual global localization method based on
multivariate geometric features is proposed, which can
better reason about feature associations by using the rela-
tionship between multivariate features. Furthermore, since
the dense geometric information of the environment can
greatly improve the screening quality of the positional hy-
pothesis, this chapter explores more efficient dense map
representation methods that enable the robot to quickly
retrieve location-specific geometric distribution information
to speed up the screening efficiency. A schematic diagram of
visual relocation based on multivariate geometric features is
shown in Figure 7.

In the interference observer-based visual servo control,
the tracking results observed from both cameras are shown
in Figure 8. It can be seen from the figure that the system can
track the target object well using the interference observer-
based algorithm even in the presence of image noise and
external interference. It can be concluded that the visual
servo method based on interference observer can suppress
the effect of image noise and external interference well while
ensuring the closed-loop stability of the system. At the same
time, there is no steady-state error.

The experiments were first conducted using a pioneer
robot equipped with vision sensors to collect training data
and test data in a laboratory scene and a corridor scene. The
lab scene contains richer texture information, while the
corridor scene is a typical weak texture scene. Line segment
features are the main feature type in the corridor. The data
sequences collected in the static laboratory scene are Official
and Office 2. To test the robustness of the method in this
chapter to dynamic objects, pedestrians are set to walk
during the test, and the corresponding data sequences are
Office-D and Corridor-D. The method in this chapter is
compared with the DBoW2 method, which is a global lo-
calization method widely used in current SLAM systems. It
can be seen from Figure 8 that the method in this chapter can
obtain more successful localization frames, in which, the
indexes of the training and test sequences are given in the
table. The experimental indexes are the number of frames
with localization error less than 5cm and the number of
frames less than 10 cm. In the laboratory scenario, more
correct localization frames can be obtained due to the richer
features. Comparing the localization results of ORB-SLAM?2
in Office and Office-D, the robustness of the method in this
chapter is higher for dynamic objects. Although the method
in this chapter obtained fewer successful localization frames
with errors less than 5 cm in the corridor scene, most of the
frames were localized with errors of 10 cm, indicating the
robustness of the method in this chapter for dynamic, low-
texture scenes.

The feature point maps, line segment feature maps, and
dense point cloud maps learned through regression trees,
which greatly improve the efficiency of feature-based re-
trieval of space and spatial information-based retrieval of
features. In the process of global localization, the camera
poses are estimated by combining the applied point in-
formation and line segment information, and stable point
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FIGURE 7: Results of point matching within the test image.
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FIGURE 8: Tracking trajectory obtained using interference observer-based vision in a workspace.

pair matching is constructed using point-to-linear pro-
jection to realize the computation of positional assump-
tions. The stacked RANSAC method is constructed to
address the problem of insufficient sampling efficiency due

to the low proportion of interior points in the matched
pairs. Compared to the traditional RANSAC method, the
stacked RANSAC method uses the results of the previous
sampling information to guide the new sampling process to
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be more biased towards meaningful samples. At the same
time, a more efficient method of assuming a quality metric
for the poses is utilized to constrain the current observation
to match the environmental surface in a more efficient
manner using the dense geometric information of the
environment.

5. Conclusion

The concept of a complete feature set is proposed from the
perspective of visual servo task completability; the determi-
nation method of a complete microscopic feature set is given;
and the extraction and use of a complete microscopic feature
set are investigated using a humanoid robot grasping a brush
as an example. In this paper, the hand-eye relationship of the
feature-based 2D visual servo task is described by the image
Jacobian matrix, and the completeness of the microscopic
feature set is examined by finding the rank of the image
Jacobian matrix to see whether the microscopic feature set
completely characterizes the robot control degrees of free-
dom, that is, the completeness of the microscopic feature set is
examined. The camshaft method is used to track the target
object, obtain the microscopic feature set, and complete the
task based on the complete microscopic feature set using a
Kalman-Bucy filter-based visual serving method. Through
the experiments based on the NAO robot, it is confirmed that
the feature set proposed in this paper can guarantee the
completion of the task, the microscopic feature set acquisition
method has good robustness in the presence of image noise
and irregular motion trajectory of the target object, and fi-
nally, the visual serving task can be completed with good
performance according to the whole visual serving strategy.
Based on the Q-filter to construct the interference observer,
the equivalent interference consisting of model uncertainty,
high-frequency detection noise, and low-frequency input
interference is estimated and eliminated through the input
and output signals of the controlled object so that the part
consisting of the controlled object and the interference ob-
server externally exhibits the given nominal model, and then
the visual servo controller is designed according to the
nominal model to achieve robustness under the premise of
closed-loop stability of the system high-performance control
effect under the premise of closed-loop stability of the system.
Finally, the effectiveness of the calibration-free visual servo
method proposed in this paper is verified by comparing the
algorithm with the proportional-integral method and the
divisional Brayden method in the simulation environment
and comparing the method with the proportional-integral
method in the experimental conditions.
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