

Tornado Farm

Smart Contracts and Circuits. Audit

Mikhail Vladimirov and Dmitry Khovratovich

1st September 2020

This document describes the audit process of the FARM smart contracts performed by
ABDK Consulting.

1. Introduction
We’ve been asked to review the Tornado Farm smart contract and circuits given in private
files.

2. Farm.sol
In this section we describe issues found in the ​Farm.sol​.

2.1 Moderate Flaws
This section lists moderate flaws, which were found in the smart contract.

1. Line 142​: i​t is not ensured that the rate for the given instances exists. If such a rate
doesn't exist, ​args.rate ​ = 0 will pass.

2. Line 171​, ​218​, ​221​: returned value is ignored. By the EIP-20 standard, the token
operations may return `false`, and a caller must be able to handle this in certain
circumstances..

2.2 Suboptimal Code
This section lists suboptimal code patterns, which were found in the smart contract.

1. Line 32​-​34​: these parameters should be indexed:​ index, instance ​.
2. Line 68​, ​85​, ​86​: there should be ​uint248 ​ type.
3. Line 71​, ​87​: there should be ​bytes31 ​instead of ​bytes32 ​.

 ​TORNADO FARM
 R​EVIEW

ABDK
CONSULTING

https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L142
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L171
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L218
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L221
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L32
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L34
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L68
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L85
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L86
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L71
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L87
http://www.abdk.consulting/

4. Line 100​-​101​: passing a single array of the structures with two fields would be
cheaper and would make the length check unnecessary.

5. Line 115​: there is no check for the case when values of the ​_instances ​ array are
unique. The rate could be overridden in this line.

6. Line 123​: passing an array of structs wrapping bytes and ​RewardArgs ​ would make
the code more readable and probably more efficient:
struct RewardProofAndArgs {

bytes [] proof;

RewardArgs args;

}

function batchReward(

RewardProofAndArgs[] calldata rewardProofsAndArgs)

7. Line 125​: decoding all elements at once as an array of structs would be more
efficient:
struct RewardProofAndArgs {

bytes [] proof;

RewardArgs args;

}

function batchReward(

bytes calldata rewardArgs) external {

RewardProofAndArgs [] memory rewardProofsAndArgs = abi.decode

(rewardArgs, (RewardProofAndArgs[]));

8. Line 138​, ​192​: the ​extDataHash ​argument is redundant and can be computed
right in the line. Also, the ​cutFirstByte(keccak256 ​ ​actually calculates a custom
252-bit hash function. Consider implementing this custom hash function as a
separate Solidity function. Something like this:

function keccak252 (bytes memory data) public pure returns

(bytes31) {

return bytes31 (keccak256 (data) << 8);

}

9. Line 141​, ​195​, ​196​: changing type of the ​fee ​ and the ​amount ​ to ​uint248 ​ would
make the ​args.fee < 2**248 ​ check unnecessary. Also, the ​2**248 ​should be
a named constant.

10. Line 142​: probably, the ​rate ​ parameter is redundant and should be taken from the
rates[] ​ directly.

11. Line 169​: the ​treeUpdateArgs.newRoot ​ ​value may be zero in some cases.
Probably not when ​args.account.inputRoot != getLastAccountRoot() ​,
but though. Consider adding an explicit check to ensure that zero value will never be
used as account root.

12. Line 174​-​177​, ​224​-​226​: ​logging four events (​AccountCommitmen,
AccountNullifier, RewardNullifier, AccountData ​) for a single

 ​TORNADO​ ​FARM
 R​EVIEW

 ABDK
 CONSULTING

https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L100
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L101
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L115
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L123
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L125
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L138
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L192
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L141
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L195
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L196
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L142
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L169
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L174
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L177
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L224
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L226

operation looks cumbersome. Binding these events together later could be hard, as
there is no single key that could be used for this. Consider logging a single Reward
event with all necessary information. Also true for the next three events:
AccountCommitment ​ , ​AccountNullifier, AccountData.

13. Line 124​: the ​treeUpdateArgs.newRoot ​value may be zero in some cases.
Probably not when ​args.account.inputRoot != getLastAccountRoot() ​,
but though. Consider adding an explicit check to ensure that the zero value will never
be used as account root.

14. Line 230​:​ the values of the ​_previousDepositRoot ​ ​and the
_previousWithdrawalRoot ​ ​parameters are ignored in case the ​_deposits
and the ​_withdrawals ​ ​ are empty. Consider checking that in such cases both, the
_previousDepositRoot ​, the ​_depositRoot ​ and the
_previousWithdrawalRoot, ​ the ​_withdrawalRoot ​ ​are the same as the
current deposit root.

15. Line 240​, ​255​: the ​depositRoot ​ and the ​withdrawalRoot ​ value was already
read from the storage in the previous line. Consider reading once and caching in a
local variable.

16. Line 274​: the ​cutFirstByte ​ ​name is confusing as the function returns the same
number of bytes as passed as an argument. Consider renaming to something like
zero leading byte ​ or changing return type to ​bytes31 ​. In the latter case the
function could be implemented as ​bytes31 ​(source << 8).

17. Line 281​: the ​isKnownAccountRoot ​ function wastes a lot of gas. Since the root
index in the history array is fixed and known, it can be simply passed to this function
as a separate argument.

18. Line 286​-​294​: the loop could be simplified if ​currentAccountRootIndex ​ would
not wraped. See comment for the ​insertAccountRoot ​ function (the next
comment).

19. Line 344​-​346​: the code would be simpler and probably more efficient if index would
not be wrapped:

accountRoots [nextAccountRootIndex++ %

ACCOUNT_ROOT_HISTORY_SIZE] = root;

Then account root check would looks like this:

uint i = currentAccountRootIndex;

uint j = i > ACCOUNT_ROOT_HISTORY_SIZE ? i -

ACCOUNT_ROOT_HISTORY_SIZE : 0;

while (i --> j) {

if (accountRoots [i % ACCOUNT_ROOT_HISTORY_SIZE] == _root)

returntrue;

}

return false;

20. Line 313​-​315​:

 ​TORNADO​ ​FARM
 R​EVIEW

 ABDK
 CONSULTING

https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L214
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L230
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L240
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L255
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L274
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L281
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L286
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L294
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L344
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L346
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L313
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L315

● the ​treeUpdateArgs.oldRoot == getLastAccountRoot() ​implies
that the ​oldRoot ​ parameter is redundant.

● the ​treeUpdateArgs.leaf == commitment ​implies that the
commitment ​argument is redundant

● the ​treeUpdateArgs.pathIndices == currentAccountIndex
implies that the ​pathIndices ​ is redundant

2.3 Unclear Behaviour
This section lists issues of the smart contract, where the contract behavior is unclear: the
business logic might be violated here, but the documentation and functional requirements
are not sufficiently documented to make a clear decision.

1. Line 229​: ​the ​updateRoots ​ function does not make any consistency check. Is it
OK?

2. Line 268​: probably the ​setRate ​ function should emit some event. Also, there is no
range check for the ​_rate ​ parameter. Is zero value valid for it? If so, then it is
impossible to tell whether the ​_rate ​ for a given instance exists or not.

3. Line 274​: does the ​cutFirstByte ​ function need to be public?

2.4 Other Issues
This section lists other minor issues which were found in the token smart contract.

1. Line 1​: Pragma Solidity version should be ​^0.5.0 ​ according to the common best
practice, unless there is something special about this particular version. Also, the
mainstream version is not 0.6.x, and 0.5.0 is legacy. Consider upgrading to 0.6.x.

2. Line 14​: the next variables are unused:
● deposits
● withdrawals

3. Line 231​: the ​_depositRoot ​ ​parameter should be renamed to
the​_newDepositRoot ​ for clarity.

3. Reward.circom

3.1 Critical Issue

It is not guaranteed that the withdrawal block is later than the deposit block. As a result the
following attack is possible:

1. Alice deposits to Tornado with commitment $C=H_P(n_n,s_n)$ in block B_1.
2. Alice withdraws with nullifier hash $N_n=H_P(n_n)$ in block B_2.
3. Alice deposits to Tornado with commitment $C'=H_P(n_n,s_n')$ using the same

nullifier n_n in block B_3.
4. Farm owners adds these deposits and withdrawal to the Farm contract.

 ​TORNADO​ ​FARM
 R​EVIEW

 ABDK
 CONSULTING

https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L229
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L268
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L274
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L1
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L14
https://gist.github.com/AleksandraZv/ea0d4d3e4c00c5ab5e06499bf34356c6#file-farm-sol-L231

5. Alice provides a proof of reward using C' as alleged deposit and N_n as alleged
nullifier hash of this deposit. This is possible since C' uses the same nullifier as in
N_n.

6. However, the reward equation now contains negative value $r(B_2-B_3)$.
7. If v_I is zero, the equation underflows and output value becomes very big, but

likely under 2^{248} for reasonably high $rates$ or hundreds of blocks between
B_2 and B_3.

8. Alice drains the farm.

Note that there is no range check on the ​rate ​parameter either.

3.2 Minor issues
1. inputRoot better named oldRoot.
2. outputRoot better named newRoot.
3. depositCommitment parameter is redundant as it can be calculated directly from

noteSecret and noteNullifier.
4. withdrawalNullifier parameter is redundant as it can be calculated directly from

noteSecret and noteNullifier.
5. On dummy constraints: on our understanding, optimizer cannot remove public input

even if it is not used in any constraints, as the value of this input will anyway be
supplied to verifier and will not be ignored by it. So, probably this is indeed
redundant.

6. How is the big input parameter for `main` computed? CIRCOM doesn't have named
constants, but it may have constant functions, so consider extracting this value to a
constant function

4.Summary
Based on our findings, we also recommend the following:

1. Fix the critical issue.
2. Pay attention to moderate issues.
3. Check issues marked “unclear behavior” against functional requirements.
4. Refactor the code to remove suboptimal parts.
5. Fix other (minor) issues.

 ​TORNADO​ ​FARM
 R​EVIEW

 ABDK
 CONSULTING

