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Abstract

We consider multivariate regression problems involvirghh@imensional predic-
tor and response spaces. To efficiently address such preplegrpropose a vari-
able selection method, Multivariate Group Orthogonal Matg Pursuit, which
extends the standard Orthogonal Matching Pursuit teclenidjhis extension ac-
counts for arbitrary sparsity patterns induced by domaiecgic groupings over
both input and output variables, while also taking advaat#dhe correlation that
may exist between the multiple outputs. Within this framekyave then formulate
the problem of inferring causal relationships over a caidecof high-dimensional
time series variables. When applied to time-evolving daviadia content, our
models yield a new family of causality-based influence messtihat may be seen
as an alternative to the classic PageRank algorithm teagiliy applied to hyper-
link graphs. Theoretical guarantees, extensive simulatand empirical studies
confirm the generality and value of our framework.

1 Introduction

The broad goal of supervised learning is to effectivelydaamknown functional dependencies be-
tween a set of input variables and a set of output variableena finite collection of training
examples. This paper is at the intersection of two key tojhiasarise in this context.

The first topic isMultivariate Regressiof¥, 2,/24] which generalizes basic single-output regressio
to settings involving multiple output variables with poti@fly significant correlations between them.

Applications of multivariate regression models includertitometrics, econometrics and computa-
tional biology. Multivariate Regression may be viewed & ¢lassical precursor to many modern
techniques in machine learning such as multi-task learffifig 16,/ 1] and structured output pre-

diction [18,/10, 22]. These techniques are output-centrithée sense that they attempt to exploit
dependencies between output variables to learn joint redat generalize better than those that
treat outputs independently.

The second topic is that adparsity[3], variable selectiorand the broader notion of regulariza-
tion [20]. The view here is input-centric in the followingesgfic sense. In very high dimensional
problems where the number of input variables may exceeduhebar of examples, the only hope
for avoiding overfitting is via some form of aggressive cagamontrol over the family of dependen-
cies being explored by the learning algorithm. This cagamintrol may be implemented in various
ways, e.g., via dimensionality reduction, input varial#éestion or regularized risk minimization.
Estimation of sparse models that are supported on a smaif ggput variables is a highly active

and very successful strand of research in machine leartirrgcompassek regularization (e.qg.,

Lasso [19]) and matching pursuit techniques [13] which camith theoretical guarantees on the
recovery of the exact support under certain conditionstidedarly pertinent to this paper is the



notion ofgroup sparsity In many problems involving very high-dimensional datasétis natural
to enforce the prior knowledge that the support of the madelikl be a union over domain-specific
groups of features. For instance, Group Lasso [23] exteadsd, and Group-OMP [12, 9] extends
matching pursuit techniques to this setting.

In view of these two topics, we consider here very high dinera problems involving a large
number of output variables. We address the problem of eimigrgparsity via variable selection
in multivariate linear models where regularization becsmmicial since the number of parameters
grows not only with the data dimensionality but also the nands outputs. Our approach is guided
by the following desiderata: (a) performing variable sttecfor each output in isolation may be
highly suboptimal since the input variables which are ratg\o (a subset of) the outputs may only
exhibit weak correlation with each individual output. Italso desirable to leverage information
on the relatedness between outputs, so as to guide theateoisithe relevance of a certain input
variable to a certain output, using additional evidencebam the relevance telated outputs(b)

It is desirable to take into account any grouping structheg imay exist between input and output
variables. In the presence of noisy data, inclusion dewisinade at the group level may be more
robust than those at the level of individual variables.

To efficiently satisfy the above desiderata, we propdsetivariate Group Orthogonal Matching
Pursuit (MGOMP) for enforcing arbitrary block sparsity patternsnmultivariate regression coef-
ficients. These patterns are specified by groups defined otbritput and output variables. In
particular, MGOMP can handle cases where the set of reldeahires may differ from one re-
sponse (group) to another, and is thus more general thaittaimeous variable selection procedures
(e.g. S-OMP of|[21]), as simultaneity of the selection in MEB is enforced within groups of
related output variables rather than the entire set of asitpdGOMP also generalizes the Group-
OMP algorithm of [12] to the multivariate regression case Wbvide theoretical guarantees on the
quality of the model in terms of correctness of group vagad®lection and regression coefficient
estimation. We present empirical results on simulatedsé#sathat illustrate the strength of our
technique.

We then focus on applying MGOMP tuigh-dimensional multivariate time series analygi®b-
lems. Specifically, we propose a novel application of maliite regression methods with variable
selection, namely that of inferring key influencers in oalsocial communities, a problem of in-
creasing importance with the rise of planetary scale welp@tfiorms such as Facebook, Twitter,
and innumerable discussion forums and blog sites. We riggtyanap this problem to that of infer-
ring causal influence relationships. Using special casé4@DMP, we extend the classical notion
of Granger Causality [7] which provides an operational oif causality in time series analysis,
to apply to a collection of multivariate time series varabtepresenting the evolving textual con-
tent of a community of bloggers. The sparsity structure efréssulting model induces a weighted
causal graph that encodes influence relationships. Whileiseeblog communities to concretize
the application of our models, our ideas hold more genetallg wider class of spatio temporal
causal modeling problems. In particular, our formulatioreg rise to a new class of influence mea-
sures that we calbrangerRankgshat may be seen as causality-based alternatives to imjpédsed
ranking techniques like the PageRank [17], popularized bgdke in the early days of the internet.
Empirical results on a diverse collection of real-world kefiuencer problems clearly show the
value of our models.

2 Variable Group Selection in Multivariate Regression

Let us begin by recalling the multivariate regression mpi¥el= XA + E, whereY € R"*X
is the output matrix formed by training examples ok output variablesX € R"*? is the data
matrix whose rows arg-dimensional feature vectors for thetraining examplesA is thep x K
matrix formed by the true regression coefficients one wisbestimate, and is then x K error
matrix. The row vectors aE, are assumed to be independently sampled f\f#, 3) whereX is
the K x K error covariance matrix. For simplicity of notation we assuwithout loss of generality
that the columns oK andY have been centered so we need not deal with intercept terms.

The negative log-likelihood function (up to a constant)responding to the aforementioned model
can be expressed as

1A, E) =tr (Y —XA)T(Y - XA)E™) —nlog|=7Y, 1)



whereA is any estimate oA, and|-| denotes the determinant of a matrix. The maximum likelihood
estimator is the Ordinary Least Squares (OLS) estimA®f® — (XTX)~1XTY, namely, the
concatenation of the OLS estimates for each of Acheutputs taken separately, irrespective3af
This suggests its suboptimality as the relatedness of gmoreses is disregarded. Also the OLS
estimator is known to perform poorly in the case of high disienal predictors and/or when the
predictors are highly correlated. To alleviate these issseveral methods have been proposed
that are based on dimension reduction. Among those, vargdéction methods are most popular
as they lead to parsimonious and interpretable models,hnikiclesirable in many applications.
Clearly, however, variable selection in multiple outpugnession is particularly challenging in the
presence of high dimensional feature vectors as well astgpsslarge number of responses.

In many applications, including high-dimensional timeisgranalysis and causal modeling set-
tings showcased later in this paper, it is possible to pmwdmain specific guidance for vari-
able selection by imposing a sparsity structurefonLetZ = {I,...I.} denote the set formed
by L (possibly overlapping) groups of input variables whégeC {1...p},k = 1,... L. Let

O = {O;...0p} denote the set formed by/ (possibly overlapping) groups of output vari-
ables wher&, c {1...K},k = 1,..., M. Note that if certain variables do not belong to any
group, they may be considered to be groups of size 1. Thesgglefinitions specify a block
sparsity/support pattern oA. Without loss of generality, we assume that column indicespar-
muted so that groups go over contiguous indices. We nownaudlinovel algorithmMultivariate
Group Orthogonal Matching PursufMGOMP), that seeks to minimize the negative log-likelidoo
associated with the multivariate regression model subgette constraint that the support (set of
non-zeros) of the regression coefficient matrx,is a union of blocks formed by input and output
variable groupingbs

2.1 Multivariate Group Orthogonal Matching Pursuit

The MGOMP procedure performs greedy pursuit with respetttedoss function
Le(A) =tr (Y = XA)T(Y - XA)C), 2)

whereC is an estimate of the precision mat#1, given as input. Possible estimates include
the sample estimate using residual error obtained fromingnanivariate Group-OMP for each
response individually. In addition to leveraging the grmgpinformation via block sparsity con-
straints, MGOMP is able to incorporate additional inforimaton the relatedness among output
variables as implicitly encoded in the error covariancermat, noting that the latter is also the co-
variance matrix of the respondeconditioned on the predictor matrX. Existing variable selection
methods often ignore this information and deal instead {wébgularized versions of) the simplified
objective tr((Y — XA)T(Y — XA)) , thereby implicitly assuming th&& = I.

Before outlining the details of MGOMP, we first need to intned some notation. For any set of
output variableD c {1,..., K}, denote byCy the restriction of the’l x K precision matrix
C to columns corresponding to the output variable®inand byCo o similar restriction to both
columns and rows. For any set of input variables {1,...,p}, denote byX; the restriction of
X to columns corresponding to the input variabled irFurthermore, to simplify the exposition,
we assume in the remainder of the paper that for each grouppat variablesl;, € 7, X, is
orthonormalized, i.e.XISTXIS = I. Denote byA (™) the estimate of the regression coefficient
matrix at iterationn, and byR (™) the corresponding matrix of residuals, iR(™ =Y — XA (™).

The MGOMP procedure iterates between two steps : (a) Blodkbe Selection and (b) Coefficient
matrix re-estimation with selected block. We now outline tietails of these two steps.

Block Variable Selection In this step, each block/,., O;), is evaluated with respect to how much
its introduction intoA™~! can reduce residual loss. Namely, at roundthe procedure selects the
block (I, O,) that minimizes

(Lo(AY + A) = Lo(A1)),

arg min min
1<r<L,1<s<M AtAy w=0,0¢I , wgO,

1We note that we could easily generalize this setting and MGQ@d/Meal with the more general case where
there may be a different grouping structure for each outpotig namely for eaclh,, we could consider a
different setZo, of input variable groups.



Note that when the minimum attained falls belevthe algorithm is stopped. Using standard Linear
Algebra, the block variable selection criteria simplifies t

(T(m)7 S(m)) = arg max tr ((X};R(m_l)Cos)T(XER(m_I)COS)(C(;:,OS)) . (3)
From the above equation, it is clear that the relatednesgceet output variables is taken into ac-
count in the block selection process.
Coefficient Re-estimation:
Let M(™~1) pe the set of blocks selected up to iteratian- 1 . The set is now updated to include
the selected block of variablég, ., O m) ), i.e.,, M™ = MO U {(I.im),Oywm)}. The
regression coefficient matrix is then re-estimated&8) = Ax (M) Y), where

Ax(M™ Y) = argAI%inK Lc(A) subject tosupp(A) € M ™), 4)
eRPx

Since certain features are only relevant to a subset of nsggo here the precision matrix estimate
C comes into play, and the problem can not be decoupled. Honawetosed form solution fof{4)
can be derived by recalling the following matrix identit[8%
tr(MTMoMsMT) = wee(M;)T (M, ® Ma)vec(Ms), (5)
vee(MiMs3) = (I® M;)vec(Ms), (6)
wherewvec denotes the matrix vectorizatios, the Kronecker product, anHthe identity matrix.
From [8), we have
tr ((Y — XA (Y - XA)C) = (vedY — XANT(C®I,)(vedY — XA)). @)
For a set of selected blocks, sa(, denote byO(M) the union of the output groups iM. Let
C = Comy,om) @I, andY = vec(Yon)). For each output grou@, in M, let I(O,) =
U1,.0.)emlr. Finally defineX such thatX = diag{Io,| ® X(0.),Os € O(M)} . Using [7)
and [6) one can show that the non-zero entries OML&iM, Y)), namely those corresponding to
mNTL N
the support induced by, are given bya = (XTCX) (XTC) Y, thus providing a closed-
form formula for the coefficient re-estimation step.
To conclude this section, we note that we could also congiceforming alternate optimization of

the objective in[(lL) oveA andX:, using MGOMP to optimize oveA for a fixed estimate oE, and
using a covariance estimation algorithm (e.g. Graphicabbd5]) to estimat& with fixed A.

2.2 Theoretical Performance Guarantees foMGOMP

In this section we show that under certain conditidSOMP can identify the correct blocks of
variables and provide an upperbound on the maximum absdiffiéeence between the estimated
and true regression coefficients. We assume that the esthétie error precision matrixz, is in
agreement with the specification of the output groups, narthelt C; ; = 0 if < andj belong to
different output groups.

For each output variable group, denote byG,..4 (k) the set formed by the input groups included
in the true model for the regressionsin, and letGy.q (k) be the set formed by all the pairs that are
not included. Similarly denote by1,,.4 the set formed by the pairs of input and output variable
groups included in the true model, and;,.q be the set formed by all the pairs that are not included.

Before we can state the theorem, we need to define the paraniedt are key in the conditions
for consistency. Lepx(Mgooa) = mingeqr, . ary infa {[|Xal3/[al3 : supe) € Ggooa(k)},
namely px (M,ood) iS the minimum over the output groug®, of the smallest eigenvalue of

X oo () XGooa (k) -
For each output grouy, define generally for any = {ui,...,ug, .k)} @andov =
{Ul’ T ’U|gbad(k)|}’

ood(k) bad(k) _
HUH{(ng) = Zcieggood(k) N > u3, and||v|\(271) = 2 G Gnaa(k) A/ 2 vi.
JjEG; jeG;
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For any matrixM € R/9scoa(k)[x|Gbaa (k)] jet |\M||%§“;‘§/bad(k) sup HM’UH%;OS
’ bad (k) _¢

o224

Then we defingix (Mgood) = maxgeqr,. ay [ X ggood(k)ngad(k)H%;Of)i/bad(k) where X+ de-

notes the Moore-Penrose pseudoinversK ofVe are now able to state the consistency theorem.

Theorem 1. Assume thatux(Mgeod) < 1 and 0 < px(Mgeoa) < 1. For any
n € (0,1/2), with probability at leastl — 27, if the stopping criterion of MGOMP is

such thate > m\/QpKln(ZpK/n) and Milge (1, M}, 1, €600 (k) |\A1j7?k||p >
V8epx (Mgooa) "t then when the algorithm stopst =1 = Myaoq and A1 — Al pax <

\/(2 1n(2|M300d|/n))/pX (Mgood)

Proof. The multivariate regression mod& = XA + E can be rewritten in an equiva-

lent univariate form with white noiseY = (Ix ® X)a + 7, wherea = veqA), Y =
K

dlag{ 1/2 veo(YCl/z) andn is formed by i.i.d samples from¥ (0,1). We can see that

applymg the MGOMP procedure is equlvalent to applying theup-OMP procedure [12] to the
above vectorized regression model, using as groupingtateuthat naturally induced by the input-
output groups originally considered for MGOMP. The theotken follows from Theorem 3 in [12]
and translating the univariate conditions for consisteimtyg their multivariate counterparts via
px (Mgooa) and px (Mgooa). SinceC' is such thatC; ; = 0 for any i, j belonging to distinct
groups, the entries il do not mix components 6Y from different output groups and hence the
error covariance matrix does not appear in the consistemugtittons. O

Note that the theorem can also be re-stated with an alteenaiindition on the amplitude of the true
regression coefficienthinge (1. ar},1,€6, .04 (k) MiNsco, HAIJ,,CHQ > \/_epx (Mgooa) "1 /+/|Ok]
which suggests that the amplltude of the true regressiofficieats is allowed to be smaller in
MGOMP compared to Group-OMP on individual regressionsuitively, through MGOMP we
are combining information from multiple regressions, thmproving our capability to identify the
correct groups.

2.3 Simulation Results

We empirically evaluate the performance of our method agjampresentative variable selection
methods, in terms of accuracy of prediction and variableyg) selection. As a measure of variable
selection accuracy we use tli¢ measure, which is defined @& = %, where P denotes the
precision andr? denotes the recall. To compute the variable grbupf a variable selection method,
we consider a group to be selecteauify of the variables in the group is selected. As a measure of
prediction accuracy we use the average squared error ohsete§or all the greedy pursuit meth-
ods, we consider the “holdout validated” estimates. Namedy select the iteration number that
minimizes the average squared error on a validation setuiiigariate methods, we consider indi-
vidual selection of the iteration number for each univariggression (joint selection of a common
iteration number across the univariate regressions ledteewesults in the setting considered). For
each setting, we ran 50 runs, each with 50 observationsdarinig, 50 for validation and 50 for
testing.

We consider am x p predictor matrixX, where the rows are generated independently accord-
ing to N,(0,S), with S, ; = 0.71"=91. The n x K error matrix E is generated according to
Nk (0,%), with 3; ; = pl*=Jl, wherep € {0,0.5,0.7,0/9}. We consider a model with 3rd or-
der polynomial expansiorYr,, ..., Y7,] = X[A11y,..., Ar1,] + X2[Ao ..., Aoy, ] +

X3[Asr,...,As1,] + E. Here we abuse notation to denoteXW the matrix such thak{ , =
(X;,)%. Th, ..., T are the target groups. For ealcheach row of Ay 7, ,..., Az 1] isS e|ther aII
non-zero or aII zero, according to Bernoulli draws with sssscprobability. 1 Then for each non-
zero entry ofA; 7, , independently, we set its value accordingNd0, 1). The number of features
for X is set to 20. Hence we consider 60 variables grouped into@fpgrcorresponding the the 3rd
degree polynomial expansion. The number of regressiores 0 60. We consider 20 regression
groups {1, . .. Tyg), each of size 3.



Parallel runs| (p,L) | (K,M) | Precision matrix estimate Method
K (p,p) (1,1) Not applicable OMP [13]
K (p, L) (1,1) Not applicable Group-OMP [12]
1 (p,p) (K,1) | Identity matrix S-OMP [21]
1 (p,L) | (K, M) | Identity matrix MGOMP(Id)
1 (p,L) | (K,M) | Estimate from univariate OMP fits MGOMP(C)
M (p,L) | (M’',1) | Identity matrix MGOMP(Parallel)

Table 1: Various matching pursuit methods and their cooedmg parameters.

5 MGOMP (C) MGOMP (id) MGOMP(Paralle]) Group-OMP OMP
0.9 || 0.863 £0.003 | 0.818 £ 0.003 0.762 = 0.003 | 0.646 &£ 0.007 | 0.517 £ 0.006
0.7 || 0.850+0.002 | 0.806 + 0.003 0.757 +0.003 | 0.631 & 0.008 | 0.517 + 0.007
0.5 || 0.850+0.003 | 0.802 + 0.004 0.766 4+ 0.004 | 0.641 + 0.006 | 0.525 =+ 0.007

0 0.847 +0.004 | 0.848 +0.004 | 0.783 +£0.004 | 0.651 + 0.007 | 0.525 + 0.007

o MGOMP (C) MGOMP (id) MGOMP(Parallel) Group-OMP ONP
0.9 || 3.000 £0.234 | 3.324 £0.273 1.086 £ 0.160 | 6.165 £ 0.317 | 6.978 £ 0.206
0.7 || 8.114+0.252 | 3.555 +0.287 4.461 +£0.159 | 8.170 +0.328 | 8.14 + 0.390
0.5 || 8.117+0.284 | 3.630 +0.281 4.499 +0.288 | 7.305 4+ 0.331 | 8.098 + 0.323

0 3.124 +0.256 | 3.123 +0.262 | 3.852+0.185 | 6.137 +0.330 | 7.414 4 0.331

Table 2: Averagd; score (top) and average test set squared error (bottormhdéanbdels output
by variants of MGOMP, Group-OMP and OMP under the settingEatfe[].

A dictionary of various matching pursuit methods and theiresponding parameters is provided in
Table[1. In the table, note that MGOMP(Parallel) consistsiiming MGOMP separately for each

regression group an@ set to identity (UsingC estimated from univariate OMP fits has negligible
impact on performance and hence is omitted for concisendse results are presented in Tadle 2.

Overall, in all the settings considered, MGOMP is superiathkin terms of prediction and vari-
able selection accuracy, and more so when the correlatiovelke responses increases. Note that
MGOMP is stable with respect to the choice of the precisiotrimastimate. Indeed the advantage
of MGOMP persists under imperfect estimates (Identity eaarde estimate from univariate OMP
fits) and varying degrees of error correlation. In additimodel selection appears to be more robust
for MGOMP, which has only one stopping point (MGOMP has onih frgterleaving input variables
for various regressions, while GOMP and OMP h&¥@aths, one path per univariate regression).

3 Granger Causality with Block Sparsity in Vector Autoregressive Models

3.1 Model Formulation

We begin by motivating our main application. The emergeridb@®web2.0 phenomenon has set in
place a planetary-scale infrastructure for rapid praddifen of information and ideas. Social media
platforms such as blogs, twitter accounts and online d&ouossites are large-scale forums where
every individual can voice a potentially influential pubdipinion. This unprecedented scale of un-
structured user-generated web content presents new ng@did¢o both consumers and companies
alike. Which blogs or twitter accounts should a consuméofoin order to get a gist of the com-
munity opinion as a whole? How can a company identify bloggenose commentary can change
brand perceptions across this universe, so that markeiieyentions can be effectively strategized?
The problem of finding key influencers and authorities in malcommunities is central to any vi-
able information triage solution, and is therefore attragincreasing attention [14, 6]. A traditional
approach to this problem would treat it no different from tireblem of ranking web-pages in a
hyperlinked environment. Seminal ideas such as the PadggRahand Hubs-and-Authorities [11]
were developed in this context, and in fact even celebratdatiaging a semblance of order to the
web. However, the mechanics of opinion exchange and adopigkes the problem of inferring
authority and influence in social media settings somewHégrdint from the problem of ranking
generic web-pages. Consider the following example thafiggthe process of opinion adoption. A
consumer is looking to buy a laptop. She initiates a web sefmrcthe laptop model and browses
several discussion and blog sites where that model has legswed. The reviews bring to her
attention that among other nice features, the laptop alsekeellent speaker quality. Next she buys
the laptop and in a few days herself blogs about it. Arguatdynditional on being made aware of



speaker quality in the reviews she had read, she is morg likeherself comment on that aspect
without necessarily attempting to find those sites againrdieioto link to them in her blog. In other
words, the actual post content is the only trace that thei@pivas implicitly absorbed. Moreover,
the temporal order of events in this interaction is indigabf thedirection of causal influence

We formulate these intuitions rigorously in terms of theiootof Granger Causalityf7] and then
employ MGOMP for its implementation. For scalability, we nkavith MGOMP (Parallel), see
table[d. Introduced by the Nobel prize winning economisiyeCGranger, this notion has proven
useful as an operational notion of causality in time seriesysis. It is based on the intuition that
a cause should necessarily precede its effect, and in plarti€ a time series variabl& causally
affects anothel”, then the past values & should be helpful in predicting the future valuesof
beyond what can be predicted based on the past valuésatifine.

Let By ... Bg denote a community off bloggers. With each blogger, we associedatent vari-
ables which consist of frequencies of words relevant to a topiwss time. Specifically, given a

dictionary of K words and the time-stamp of each blog post, we remﬁ’(’i, the frequency of the

kth word for bloggerB; at timet. Then, thecontentof bloggerB; at timet can be represented as

B! = [w",...,w!""]. The input to our model is a collection of multivariate timerigs,{B!}7_,

(1< zg G), whereT is the timespan of our analysis. Our key intuition is thathatities and
influencers areausal driversof future discussions and opinions in the community. This may be

phrased in the following terms:

Granger Causality: A collection of bloggers is said to influence Blogderif their collective past
content (blog posts) is predictive of the future contentlofjBer B;, with statistical significance,
and more so than the past content of Blog@ermlone.

The influence problem can thus be mapped to a variable grolgctiem problem in
a vector autoregressive model, i.e., in multivariate regiom with G x K responses
{B!,j = 1,2...G} in terms of variable group${B’~'}i,,j =1,2...G}: [B,... . BY] =

B .., B B BS YA + E. We can then conclude that a certain blogger

influences bloggeB;, if the variable group{Bﬁ_l}le{l,___,d} is selected by the variable selection
method for the responses concerning bloggerFor each bloggeB;, this can be viewed as an ap-
plication of a Granger test ai; against bloggers,, Bs, . . ., B¢. This induces a directed weighted
graph over bloggers, which we cathusal graphwhere edge weights are derived from the underly-
ing regression coefficients. We refer to influence measuresasal graphs arangerRanksFor
example, GrangerPageRank refers to applying pagerankeoratisal graph while GrangerOutDe-
gree refers to computing out-degrees of nodes as a meastaeagsl influence.

3.2 Application: Causal Influence in Online Social Communites

Proof of concept: Key Influencers in Theoretical Physics Drawn from a KDD Cup 2003 task,
this dataset is publically available @it p: 77 ww. cs. cornel . edu/ pr oj ect s/ kddcup/ dat aset s. htmil It
consists of the latex sources of all papers in lile@-thportion of the arXiv [ttp: 77arxiv.org) In
consultation with a theoretical physicist we did our anislyg a time granularity of 1 month. In
total, the data spans 137 months. We created document tetmeesaising standard text processing
techniques, over a vocabulary 463 words chosen by running an unsupervised topic model. For
each of the 9200 authors, we created a word-time matrix ef468x137, which is the usage of the
topic-specific key words across time. We considered one yeard = 12 months as maximum
time lag. Our model produces the causal graph shown in Fijsteowing influence relationships
amongst high energy physicists. The table on the right sidegurre[] lists the top 20 authors ac-
cording to GrangerOutDegree (also marked on the graphpger®agerRank and Citation Count.
The model correctly identifies several leading figures sucBdward Witten, Cumrun Vafa as au-
thorities in theoretical physics. In this domain, numbecitditions is commonly viewed as a valid
measure of authority given disciplined scholarly practéeciting prior related work. Thus, we
consider citation-count based ranking as the “ground 'trutdie also find that GrangerPageRank
and GrangerOutDegree have high positive rank correlatitim gitation counts (0.728 and 0.384
respectively). This experiment confirms that our model egkgith how this community recognizes
its authorities.


http://www.cs.cornell.edu/projects/kddcup/datasets.html
http://arxiv.org

GrangerOutdegree

GrangerPageRank

Citation Count

E.Witten
C.Vafa
Alex Kehagias
Arkady Tseytlin
P.K.Townsend
Jacob Sonnenscheir
Igor Klebanov
R.J.Szabo
G.Moore

Michael Douglas

E.Witten
C.vafa
Alex Kehagias
Arkady Tseytlin
P.K.Townsend
Jacob Sonnenscheir
R.J.Szabo
G.Moore
Igor Klebanov

lan Kogan

E.Witten
N.Seiberg
C.vafa
J.M.Maldacena
A.A.Sen
Andrew Strominger
Igor Klebanov
Michael Douglas
Arkady Tseytlin
L.Susskind

(b) Hyperlink Graph

Figure 2: Causal and hyperlink graphs for the lotus blogsidta

Real application: IBM Lotus Bloggers: We crawled blogs pertaining to the IBM Lotus software
brand. Our crawl process ran in conjunction with a relevartassifier that continuously filtered out
posts irrelevant to Lotus discussions. Due to lack of spae®mit preprocessing details that are
similar to the previous application. In all, this datasgiresents a Lotus blogging community of
684 bloggers, each associated with multiple time seriesritsg the frequency of 96 words over a
time period of 376 days. We considered one weekd.e=,7 days as maximum time lag in this ap-
plication. Figuré 2 shows the causal graph learnt by our risagtethe left, and the hyperlink graph
on the right. We notice that the causal graph is sparser tiehytperlink graph. By identifying the
most significant causal relationships between bloggenscausal graphs allow clearer inspection
of the authorities and also appear to better expose striiigcommunity structures in this blog
community. We also computed the correlation between PageBad Outdegrees computed over
our causal graph and the hyperlink graph (0.44 and 0.65 ctgply). We observe positive corre-
lations indicating that measures computed on either grapliafly capture related latent rankings,
but at the same time are also sufficiently different from eattier. Our results were also validated
by domain experts.

4 Conclusion and Perspectives

We have provided a framework for learning sparse multivariegression models, where the sparsity
structure is induced by groupings defined over both inputarngut variables. We have shown that
extended notions of Granger Causality for causal inferewee high-dimensional time series can
naturally be cast in this framework. This allows us to depedacausality-based perspective on the
problem of identifying key influencers in online commundtiégeading to a new family of influence
measures called GrangerRanks. We list several directibimgeyest for future work: optimizing
time-lag selection; considering hierarchical group s@edo identify pertinent causal relationships
not only between bloggers but also between communitiesagfgars; incorporating the hyperlink
graph in the causal modeling; adapting our approach to methpic specific rankings; developing
online learning versions; and conducting further empiritadies on the properties of the causal
graph in various applications of multivariate regression.
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