
Chapter 9
Detection of AI-Generated Synthetic
Faces

Diego Gragnaniello, Francesco Marra, and Luisa Verdoliva

Abstract In recent years there have been astonishing advances inAI-based synthetic
media generation. Thanks to deep learning methods it is now possible to generate
visual data with a high level of realism. This is especially true for human faces.
Advanced deep learning tools allow one to easily change some specific attributes
of a real face or even create brand new identities. Although this opens up a large
number of new opportunities, just think of the entertainment industry, it also under-
mines the trustworthiness of media content and supports the spread of fake identities
over the internet. In this context, there is a fundamental need to develop robust and
automatic tools capable of distinguishing synthetic faces from real ones. The sci-
entific community is making a huge research effort in this field, proposing several
interesting approaches. However, a universal detector is yet to come. Fundamen-
tally, the research in this field is like a cat and mouse game, with new detectors that
are designed to deal with powerful synthetic face generators, while the latter keep
improving to produce more and more realistic images. In this chapter we will present
the most effective techniques proposed in the literature for the detection of synthetic
faces. We will analyze their rationale, present real-world application scenarios , and
compare different approaches in terms of accuracy and generalization ability.

9.1 Introduction

Among the many applications of generative adversarial networks (GANs), image
synthesis is one of the most investigated, and research in this field has shown a
great potential. Particularly impressive are the results that can be achieved in face
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Fig. 9.1 Fully synthetic face images generated by different GAN architectures. Top, from left
to right: images generated using the method proposed in [20], BEGAN [3], and ProGAN [25] at
two different resolutions. Bottom, images generated by StyleGAN [27] (left) and StyleGAN2 [28]
(right)

generation, with images of higher and higher resolution quality, as also shown by
the examples of Fig. 9.1 which depict the evolution of synthetic faces over time.
The visual appearance of the images generated by the latest GAN architectures is
so realistic that it deceives even the experienced and attentive observer. This raises
major concerns on the possible malicious use of such tools. For example, they can be
used to create fake profiles on social networks and, more in general, they can be used
to spread false information over the web. Therefore, it is urgent to develop automatic
tools that can reliably distinguish real content from synthetic content.

Despite their high visual quality, GAN images are characterized by specific arti-
facts left from the generation process that can be used to develop effective tools
for their detection. In some cases, their synthetic origin can be identified by visual
inspection due to the presence of semantic inconsistencies, such as color anomalies or
lack of symmetries. More generally, these images present invisible artifacts, closely
linked to the architecture of the generative network, which can be extracted through
appropriate processing steps. These artifacts represent very strong clues, which can
be exploited even when synthetic images appear perfectly realistic. In fact, GAN-
generated images have been shown to embed a sort of artificial fingerprints [36, 60],
specific to each individual GAN architecture. Such patterns also show themselves as
peaks in the Fourier domain, not present in the spectral distribution of natural images
[16, 18, 61] (see Fig. 9.2).

Many of the detectors proposed so far for GAN-generated faces explicitly use the
features described above, while others exploit them implicitly by relying on convo-
lutional neural networks suitably trained on very large datasets [52]. Typically, these
solutions show very good performance in distinguishing synthetic faces from real
ones. However, they often require that the training set include a sufficient number
of examples of the specific GAN architecture that generated images in the test set.
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Fig. 9.2 GAN fingerprints extracted in the spatial domain (left) and traces of synthetic images in
the frequency domain (right)

Hence, the limited generalization capability is a major problem for current GAN
image detectors. As new AI-based models for synthesizing faces are proposed by
the day, it is very important to propose solutions that can generalize to new unseen
examples. Likewise, robustness is a major challenge, as images are routinely com-
pressed and resized on social networks and valuable clues can be easily reduced or
destroyed.

In this chapter, after briefly reviewing the main GAN architectures for face gen-
eration, we carry out an analysis of the state-of-the-art detection techniques. We will
first present the notion of artificial fingerprints and then describe the major detec-
tion methods. We will also present an investigation on the performance of the most
promising detectors by testing their generalization and robustness ability on several
recent GAN architectures. Besides providing a baseline, this comparative analysis
allows us to single out some key features of successful solutions, clearing the way
for the design of new and more effective tools.

9.2 AI Face Generation

Progress on synthetic face generation has been possible thanks to the development
of deep learning techniques especially autoencoders and generative adversarial net-
works [20], but also the availability of large-scale public face datasets. Early works
were trained on very small face images dataset, while more recent ones rely on the
CelebA dataset [33], that includes more than 200k face images of 10k identities, its
extension CelebA-HQ with 30k images, and FFHQ [27] that comprises 70k high-
quality images collected from Flickr.

AI face generation methods can be roughly classified in the following categories:

• Fully synthetic faces: generated faces are synthesized completely from scratch.
Some examples have been already shown in Fig. 9.1. Beyond the availability of
high resolution face images, some specific strategies have been of key importance
to produce more accurate and realistic faces than those produced by the basic
GAN architecture [20]. Amajor breakthrough camewith the ProGAN architecture
proposed in [25], where high resolution has been achieved by growing both the
generator and discriminator progressively during the training process. Another
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Fig. 9.3 Images manipulated by changing a face attribute (left) and images where two identities
are fused together (right)

significant improvement can be found in several works that rely on style transfer
to gain more control in the synthesis process and that led to several successful
architectures: StyleGAN1 [27], StyleGAN2 [28] and the recent variant adaptive
discriminator augmentation (ADA) [26].

• Face attributes modification: beyond synthesizing faces from scratch, it is also
possible to modify an attribute of a real face, such as gender, age, skin, or hair
color. Conditional GANs represent a very effective tool to address this task and
many different approaches have been proposed in the literature and that allow a
surprisingly realistic result [32, 46, 51, 55, 62]. More sophisticated modifications
let to change the pose or the facial expression [49, 58]. In Fig. 9.3 (left), some
examples are shown. It is worth underlining that thesemanipulations do not change
the original identity of the involved subject. Some of these approaches can be found
in some mobile applications, such as the popular FaceApp2.

• Face blending: this category comprises methods that are able to fuse the identities
from two different face images. The resulting identity is neither non-existent nor
preserved, but the resulting facemixes both identities in one. InFig. 9.3 (right) some
examples of face identity blending3 are presented using the approach proposed in
[30].

9.3 GAN Fingerprints

Early work on synthetic media forensics has focused on extending successful
approaches and methods of real multimedia forensics to this new domain. In par-
ticular, device and model fingerprints represent formidable assets to perform a wide
array of forensic tasks, from source attribution to forgery detection and localization,
to blind image clustering. Device fingerprints have been first exposed in the seminal
work of Chen et al. [34] and Lukas [9]. Due to sensor imperfections, each camera

1 https://thispersondoesnotexist.com/.
2 https://play.google.com/store/apps/details?id=io.faceapp.
3 https://openai.com/blog/glow/.

https://thispersondoesnotexist.com/
https://play.google.com/store/apps/details?id=io.faceapp
https://openai.com/blog/glow/


9 Detection of AI-Generated Synthetic Faces 195

presents a so-called photo-response non-uniformity (PRNU) which leaves on each
acquired image traces that are unique of that device and stable in time. This image-
like pattern represents therefore a device fingerprint, which can be reliably estimated
from sample images of the device.

Given their potential, extending such tools to synthetic media has an obvious
appeal. The existence of “artificial” GAN fingerprints was first demonstrated in [36].
These fingerprints are extracted using the very same procedure adopted for real
fingerprints. More specifically, for a generic image Xi generated by a given GAN a
high-pass filter, i.e., a denoiser, is used to remove the semantic image content:

Ri = Xi − f (Xi ) (9.1)

Then, we assume the residual to be the sum of a non-zero deterministic component,
the fingerprint F , and a random noise component Wi

Ri = F +Wi (9.2)

Accordingly, the fingerprint is estimated by a simple average over the available
residuals

̂F = 1

N

N
∑

i=1

Ri (9.3)

As the number of averaged residuals grows, a weak but stable pattern emerges, which
characterizes uniquely the GAN architecture. The whole procedure is outlined in
Fig. 9.4. Once the GAN fingerprint has been extracted from 200 to 300 GAN images,
it can be compared by means of the normalized cross-correlation with the noise
residual extracted from the image under test. Experiments carried out in [36] prove

Fig. 9.4 Pipeline for GAN fingerprint extraction
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Fig. 9.5 Correlation of CycleGAN (left) and ProGAN (right) residuals with same/cross-GAN
fingerprints

that such fingerprints can be used to reliably tell apart real images from synthetically
generated ones, and also to attribute an image to its source GAN.

As an example, Fig. 9.5 shows the histograms of the correlation coefficients
between image residuals and fingerprint of two GAN architectures. On the left,
the GAN-A fingerprint is considered, with green/red colors indicating images gen-
erated from the same (GAN-A) or the other (GAN-B) network. The cross-GAN
histogram is evenly distributed around zero, indicating no correlation between gen-
erated images and unrelated fingerprints. On the contrary, the same-GAN histogram
is shifted around larger values, testifying of a significant correlation with the cor-
rect fingerprint. The behavior is very similar when GAN-B residuals are considered
and the roles are reversed, on the right. In both cases the two distributions are well
separated, allowing reliable discrimination.

In [60] fingerprint extraction is addressed by means of a supervised deep learn-
ing scheme, where the fingerprint maximizes the correlation with images generated
by the same-GAN. Under this setting, both image-like fingerprints, like in [36],
and compact vectorial fingerprints can be used. The sophisticated extraction process
further improves the performance. Moreover, the experiments prove that different
fingerprints arise not only due to different GAN architectures but also from small
differences in the training of the same architecture, enabling fine-grained model
authentication. Also, GAN fingerprints are shown to persist across different image
frequencies and patches and are not biased by GAN artifacts. Both [36] and [60] sug-
gest that the regular patterns observed inGANfingerprints are due to the up-sampling
operations typical of the synthesis network, while instance-level peculiarities depend
on the specific filters learned in training.

In [1, 28] attribution of GAN generated images to their source is pursued through
GAN inversion. The idea is to provide the test image as target to a set of generators.
The likely source is the generator that ensures the minimum reconstruction error. In
fact, a GAN architecture cannot perfectly generate a synthetic image that has been
produced by another GAN architecture nor it can perfectly reproduce a real image.
The projection-basedmethod of [28]was used to prove that an imagewas synthesized
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(a) (b) (c) (d)
target after 10 iter. after 150 iter. after 1000 iter.

Fig. 9.6 Target face (a) and generated faces at different iterations (b, c, d). In one case (top) the
GAN model is not able to perfectly reproduce the target real face, while it succeeds in perfect
reconstruction (bottom) with a target image generated by the GAN itself, that is, face (a) is identical
to (d)

by a specific GAN network.We show such a result in Fig. 9.6, where the target image
(a) and the output of theGANgeneration process at different iterations are shown.We
can observe that in one case (top figure) the GAN is not able to perfectly reproduce
the target face, since it is real, while in the second case the target face is perfectly
reproduced by the GAN generator (bottom figure), which demonstrates that it was
generated by that GAN model.

9.4 Detection Methods in the Spatial Domain

Most of the techniques that aim at distinguishing AI-generated faces from real ones
rely on some sort of artifacts, either visible, such as unnatural facial traits, or invisible,
like pixel-level statistical inconsistencies that suggest the presence of a generative
process. In this section we present detection approaches that work in the original
spatial domain. They all use a neural classifier, eventually, but differ for the nature
of the features on which the classification is based, handcrafted, or data-driven.

9.4.1 Handcrafted Features

Several handcrafted discriminative features have been proposed to detect generated
face images, typically based on the visual inspection of GAN imagery and on prior
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knowledge of the relevant architectures. In the following we describe the most com-
mon and effective ones.

• Face asymmetries. Synthetic faces are often characterized by unnatural asymme-
tries. Indeed, to the best of our knowledge, no specific constraint on symmetry is
imposed in the generation phase, probably because of technical difficulties. There-
fore, symmetry emerges only as a common feature of the training data and cannot
be ensured for all tiny details, however significant for a human observer. For exam-
ple, GAN images sometimes present eyes with different colors, or asymmetric
specular reflections, different earrings, or only on earrings, or ears with markedly
different characteristics (see Fig. 9.7). These artifacts are exploited in [39], where
simple features are built in order to capture them, such as the correlation between
the eyes in suitable color spaces. To exploit asymmetric corneal specular reflec-
tions a detector is proposed in [23] based on inconsistencies between light sources
reflected in the two eyes. However, this approach needs high-resolution images
in order to correctly segment the light spots in both eyes and then compare them,
which is not the case of most social networks. This problem is tackled in [22],
where a super-resolution module is used, trained to preserve generation artifacts.
After the resolution increase, a CNN is used which pools different feature maps
on the basis of facial key-points.

• Landmark locations. Just like for symmetry, no explicit constraint can be imposed
in the generation process to ensure the correct positioning of facial landmark
points. As a consequence, it may happen that all individual face parts are generated
with a high level of realism and with many details, but their relative locations
are unnatural. Based on this observation, the method proposed in [57] uses the
locations of the facial landmark points, like the tips of the eyes, nose, and the
mouth, as discriminative features for detection.

• Color features. GANs produce by design only a limited range of intensity values,
and do not generate saturated and/or under-exposed regions. While this is a good
property to ask of a photo, a large number of natural face images do present
extreme-valued pixels, and their absence suggests a synthetic origin. This fact
is exploited in [40] by measuring the frequency of saturated and under-exposed
pixels in each image. Turning to color, current GANs are known to not accurately
preserve the natural correlation among color bands. This property is exploited
in [31] where the chrominance components of the image are high-pass filtered
and their co-occurrence matrices are computed to form discriminative features
for detection. Indeed, co-occurrences of high-pass filtered images are popular
tools in image forensics since invisible artifacts are often present in the high-
frequency signal components [12]. Thus, co-occurrence matrices extracted from
the RGB channels are also used in [42] as the input of a CNN and, similarly,
in [2] co-occurrences across color bands are computed to capture discriminative
information.
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Fig. 9.7 Examples of GAN synthetic faces with visible artifacts. A generated face with asymmetric
earrings (left) and a face with eyes of different colors

9.4.2 Data-Driven Features

Deep networks, in particular ConvolutionalNeuralNetworks (CNNs), have proven to
adapt well to multimedia forensic tasks [48]. A first investigation of detectors based
on very deep networks is carried out in [35], where state-of-the-art pre-trained CNNs,
like Xception, Inception, and DenseNet, are shown to ensure excellent performance
for GAN image detection. In particular, they turn out to outperform CNN models
specifically tailored to forensics tasks and trained from scratch, especially in themost
challenging scenarios. More recently, Xception [11] has been used also in [15] as
the backbone of a strategy that includes an attention mechanism.

In [53], following an approach originally proposed in Deepxplore [45], detection
is based on the neurons’ activity at each layer of the network. Experiments carried out
on the challenging DFDC dataset show that the neurons’ activity provides detailed
information about the network behavior and leads to improved classification perfor-
mance and higher robustness against adversarial attacks. In [24] both detection and
attribution are pursued by means of a three-level hierarchical framework. The first
level distinguishes real images from manipulated ones, the latter are then classified
in the second level as retouched or generated from scratch, and these latter are finally
attributed to the generating GAN architecture in the third level. At each level, a CNN
is used for feature extraction and an SVM for classification.

GANarchitectures typically includes up-sampling stages, which produce a typical
checkerboard pattern. To exploit this trace, in [41] an ad hoc self-attentionmechanism
is proposed to replace plain global pooling in the final layers of the CNN.

9.5 Detection Methods in the Frequency Domain

The checkerboard pattern mentioned in the previous Section shows its traces very
clearly in the frequency domain. In fact, the up-sampling operations give rise
to quasi-periodic patterns which result in strong peaks in the image spectrum
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Fig. 9.8 A real image and its Fourier transform (left) a GAN image generated using starGAN [10]
and its Fourier transform (right). In this last case it is possible to observe clear peaks in the spectrum

(see again Fig. 9.2 for generic images and Fig. 9.8 for faces). Based on this observa-
tion, a detector is proposed in [61] which takes the frequency spectrum instead of
image pixels as input for a CNN. A frequency-domain analysis is also performed
in [18] to investigate the presence of artifacts across different network architectures,
datasets, and resolutions. Then, a CNN-based classifier is trained with Fourier spec-
tra taken from both real images and their synthetic versions obtained through an
adversarial autoencoder. Also [17] shows that GAN images do not faithfully mimic
the spectral distributions of natural images. Various generative architectures are con-
sidered, based both on GANs and autoencoders, and the spectra of the generated
images are compared with those of real ones. It results that the spectrum decay along
the radial dimension is markedly different in the two cases, with fake images that
exhibit higher energy at mid-high frequencies than real ones, which corresponds to
small-scale correlations. To exploit these findings, a KNN classifier is trained using
the energy spectral distribution as an input feature. Along the same line, in [16] a
parametric model is used to fit the decay function of the Fourier spectrum and a
classifier is trained on the fitting parameters. It is worth noting that both approaches
propose also countermeasures to limit the appearance of such spectral artifacts by
means of a simple post-processing [17] or a spectral loss to be used during GAN
training [16].

Frequency analyses have been also widely used to detect generated images shared
online. Indeed, images uploaded to the web are very often coded using the JPEG
standard, based on the Fourier-like discrete cosine transform (DCT). For synthetic
images, this compression stepmay reveal distinctive traces of the generation process,
absent in real images, which can be used for reliable detection. As an example,
for generated images, the most significant digit of the quantized DCT coefficients
violates the well-known Benford’s law. Based on this evidence, in [4] a compact
feature vector is extracted from the DCT coefficients and used to train a random
forest classifier. Frequency-aware features are learned in the DCT domain in [47] to
exploit both local and global frequency clues. On one hand, the proposed approach
learns the global DCT coefficients where it is easier to spot fake faces. On the other
hand, block-wise DCT frequency statistics are computed as complementary features
to improve detection.
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9.6 Learning Features that Generalize

Fully supervised approaches are typically very effectivewhen theGAN images under
test come from a model that is also present in training. However, often they fail to
generalize to data generated by new unseen models. This phenomenon has been
shown both in [29] and in [14], where some interesting experiments are carried out
that highlight the inability of both handcrafted and data-driven features to support
cross-dataset generalization. In the following we will review some of the methods
proposed so far to address this issue.

• Few-shot and incremental learning. In [14] a strategy based on few-shot learning
is proposed to increase transferability. An autoencoder with a bipartite hidden
layer is trained. Then, the input image is projected onto a latent vector where
the information needed to make the real/synthetic decision is disentangled from
the image representation. This allows for higher detection rates in cases where
only a few training samples of an unseen GAN architecture are available. In [38],
instead, an approach based on incremental learning is proposed to update the
detector to new data (i.e., new GAN architectures) made available at different
times. A few representative template vectors of the known architectures are kept in
a compactmemory. In thisway, the network can be re-trained onnewdata of a novel
architecture without forgetting the old ones. Despite the improved generalization,
these methods still require some examples of the new GAN architecture, which
could not be available in a real scenario.

• Augmentation. A different solution is proposed in [56]. The idea is to carry out
augmentation by Gaussian blurring so as to force the discriminator to learn more
general features while discarding noise-like patterns that impair the training. A
similar approach is followed in [54]where a standard pre-trainedmodel, ResNet50,
is further trained with a strong augmentation based on compression and blurring.
Experiments show that, even by training on a single GAN architecture, the learned
features generalize well to unseen architectures, datasets, and training methods.
The comparative analysis of [21], instead, shows that by avoiding any subsampling
in the first layer of the network ensures improved detection results. This finding
is also confirmed by studies on no-subsampling network architectures for more
general multimedia forensics tasks [37].

• Patch-based learning. A different perspective is adopted in [8] where a fully con-
volutional patch-based classifier with limited a receptive field is proposed. The
authors prove the importance of focusing on local patches rather than on the global
structure of the image, and hence ensemble the patch-wise decisions to obtain the
overall prediction.
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9.7 Generalization Analysis

Early techniques proposed for the detection of AI-generated faces were evaluated
in an ideal scenario in which both the training and testing samples were generated
by the very same AI (or small variations thereof). In this setting, even a simple
approach like a shallow CNN can reach almost perfect performance [2, 4, 18, 35,
42]. As already discussed in the previous section, the detection performance drops
on images generated by different GAN architectures. In this chapter, we will analyze
the ability of several AI face detectors to generalize on synthetic images that are not
used during training.

Following the protocol proposed in [54], we train all the detection methods on a
large dataset of pristine images from LSUN, while synthetic images are generated
using 20 ProGAN models [25], each trained on a different category, for a grand
total of more than 700k images. All images have a resolution of 256× 256 pixel
and a subset of 4k images are used for validation. The test dataset comprises both
same-resolution and higher resolution (1024× 1024) images generated by various
GANarchitectures: StyleGAN [27], StyleGAN2 [28], BigGAN [6], CycleGAN [62],
StarGAN [10], RelGAN [55], and GauGAN [44]. Then we have a large dataset of
real images both low-resolution and high-resolution ones, as specified in [21].

In this analysis, the following synthetic image detectors are considered: Xception
[35], SRNet [5], Spec [61],M-Gb [56], Co-Net [42],Wang2020 [54], PatchForensics
[8]. Beyond these methods that are specifically proposed for GAN image detection,
we also include SRNet that was instead originally proposed for steganalysis. In fact,
both steganalysis and image forensics have a very similar goal, i.e., detecting hidden
traces in the image, and methods proposed for steganalysis have often shown a great
potential also in forensics [52]. More specifically, to better preserve features related
to noise residual, SRNet avoids down-sampling in the first layers of the network.

To manage both low- and high-resolution images in the test phase, we adopt the
strategy proposed in the original papers. In particular, for M-Gb, FFD and Patch-
Forensics, the image is resized to the dimension of network input, meanwhile for
Spec the central clip of size 224× 224 is considered. The remaining techniques are
applied on the whole test image without clipping/resizing it since they include a
global average pooling. The list of the analyzed approaches and their test strategy
are summarized in Table 9.1.

Results are shown in Fig. 9.9 for low-resolution (top) and high-resolution (bottom)
images in terms of several performance metrics: area under the receiver-operating
curve (AUC), accuracy at the fixed threshold of 0.5, and probability of detection for
a 5% (Pd@5%) and 1% (Pd@1%) false alarm rate (FAR). Performance in terms
of AUC on low-resolution (LR) images are very good, considering that there is a
misalignment between training and testing data, with several methods exceeding
the 0.9 level. However, accuracy results are much less encouraging, since a fixed
threshold is used. Indeed, we noticed that each GAN architecture needs a different
threshold to be set. Hence, without sample images generated from a specific GAN, it
is hard to set the correct threshold. Considering the Pd@FARmetric, results become
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Table 9.1 List of the methods used in our analysis together with the test strategy, as proposed in
the original papers

References Acronym Test strategy

[35] Xception No cropping and no resizing

[5] SRNet No cropping and no resizing

[61] Spec Central cropping (224 × 224)

[56] M-Gb Resizing (128 × 128)

[42] Co-Net No cropping and no resizing

[15] FFD Resizing (299 × 299)

[54] Wang2020 No cropping and no resizing

[8] PatchForensics Resizing (299 × 299)

Fig. 9.9 Results of themethods under comparison in termsofAUC,Accuracy, Pd@5%andPd@1%
for all the tested methods on low-resolution (top) and high-resolution images (bottom)

worse, and only a few methods are able to ensure a good detection ability for high-
resolution images. It is interesting to observe that the ranking of the methods change
based on the specific metric.

9.8 Robustness Analysis

In this section we present a robustness analysis of the GAN detectors analyzed in
the previous section. In fact, it is important to understand to which extent these
detectors are affected by post-processing operations such as image compression or
resizing that is commonly applied when images are uploaded on a social network.
These operations could strongly reduce the low-level inconsistencies. For example
in Fig. 9.10 it is shown the spectrum of GAN images when resizing and compression
operations have been applied. One can observe that by reducing the size of the image
the peaks in the Fourier domain tend to vanish, while enlarging the image further
enhances those artifacts. Compression reduces the Fourier artifacts that completely
disappear if the quality factor is too low (below 70).
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Fig. 9.10 Fourier transform of a GAN image by varying its dimensions using different resizing
factors (top) and by applying JPEG compression at different quality levels (bottom)

Fig. 9.11 Results of themethods under comparison in terms of Pd@5%byvarying the JPEGquality
compression level and by resizing the images at different factors. LR images are both enlarged and
reduced in size, while HR images are only reduced

Figure9.11 reports the Pd@5% performance for low-resolution and
high-resolution images for varying compression factors and resizing scales. Sev-
eral methods suffer dramatic impairments as soon as they move away from the ideal
case of no compression and 100% scale. For example, we can notice that a 2x down-
sampling has a catastrophic effect, as justified by the fact that peaks completely
disappear in the Fourier spectrum (see again Fig. 9.10). The most robust methods
are those that benefit by a strong augmentation, in addition we can observe the good
performance of SRNet on compressed images. Overall these experiments suggest
that there is still much room for improvements with respect to the existing solutions,
especially in terms of robustness to compression and resizing.
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9.9 Further Analyses on GAN Detection

In this section we want to further investigate the performance of a good solution
for GAN detection so as to identify the key ingredients of the most promising solu-
tions. We consider as baseline the method proposed in [54], given the very good
performance shown in the previous experiments, and introduce the following varia-
tions: remove Imagenet pre-training (no-pretrain), include an initial layer for residual
extraction as often performed in image forensics strategies [52] (residual), do not
perform down-sampling in the first layer as suggested by [5] (no-down), perform a
stronger augmentation (strong-aug) by including Gaussian noise adding, geometric
transformations, cut-out, and brightness and contrast changes. In addition, for the
no-down variant, we also change the backbone network and replace ResNet50 with
Xception (Xception no-down) and Efficient-B4 (Efficient no-down).

Results for the various metrics are shown in Fig. 9.12, while Fig. 9.13 shows
results in terms of Pd@5% as a function of compression level and scaling factor.
We can notice that the solution that avoids down-sampling in the first block of the
architecture is very promising also in presence of resizing and compression. Instead
no significant improvement can be observed by adopting strong augmentation or
changing the backbone network. Note also the importance of the pre-training step
on imagenet especially to gain robustness to resizing and compression.

Finally, in Table9.2 we show the results for the baseline and the best variant over
all the different GAN architectures, also including ProGAN that was used in the
training step. We can notice that the best variant (no-down) provides an average gain
of about 15% in terms of accuracy and 14% in terms of Pd@5%. Overall accuracy
is always above 90% irrespective of the type of architecture. Finally, we added a
further experiment by adopting 23 StyleGAN2 different models in training. In this
last case performance are almost perfect with a further consistent improvement with
respect to our baseline.

These experiments confirm the importance of diversity to increase robustness,
like ImageNet pre-training, as already observed in steganalysis [59]. For the same

Fig. 9.12 Results of the baseline (Wang2020) and its variants in terms of AUC, Accuracy, Pd@5%
and Pd@1% for variants ofWang2020 on low-resolution (top) and high-resolution images (bottom)
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Fig. 9.13 Results of the baseline (Wang2020) and its variants in terms of Pd@5% by varying the
JPEG quality compression level and by resizing the images at different factors. LR images are both
enlarged and reduced in size, while HR images are only reduced

Table 9.2 Accuracy and Pd@5% for the baseline and the best variant that avoids down-sampling
in the first block

Accuracy/Pd@5% Wang2020
(baseline)

Best variant
(no-down)

On StyleGAN2
(no-down)

Low res. ProGAN 99.3/100.0 94.7/100.0 99.8/100.0

StyleGAN 75.9/73.9 93.7/93.1 99.9/100.0

StyleGAN2 71.5/69.0 92.2/88.8 99.9/100.0

BigGAN 59.2/45.2 93.5/92.0 96.5/99.4

CycleGAN 77.4/80.5 90.3/81.5 96.5/99.5

StarGAN 84.3/89.4 94.5/97.6 99.9/100.0

RelGAN 63.6/56.0 92.8/86.6 99.7/100.0

GauGAN 82.5/86.3 93.6/93.5 90.8/97.1

High res. ProGAN 99.7/100.0 97.1/100.0 99.7/100.0

StyleGAN(Cel.) 99.3/100.0 97.1/100.0 99.7/100.0

StyleGAN(FFHQ) 82.6/93.7 96.6/98.7 99.7/100.0

StyleGAN2 73.2/78.1 96.9/99.6 99.7/100.0

reason, image pre-processing like resizing to match the input size of the CNN should
be avoided. In fact, just like other forensics applications, the useful information lays in
pixel-level patterns spread all over the image. If size reduction is necessary, cropping
should always be preferred to resizing both during the training and test phase. Along
this same direction, the no-down variant is very promising and suggests to work on
full-resolution end-to-end processing to design better and more robust detectors, as
also proposed in [37] for image forgery detection. More importantly, they shed some
lights on the needs for well-designed evaluation protocols to assess the generalization
capabilities of AI-generated image detectors in real-world scenarios.
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9.10 Open Challenges

The advent of deep learning has given extraordinary impulse to both face manipu-
lation methods and forensic detection tools. We have seen that successful detectors
rely on inconsistencies at different levels, looking for both hidden and visible arti-
facts. One first important observation is that visual imperfections on faces will likely
disappear soon. Newer GAN architectures [28] already improved upon this aspect
by producing faces with even more details and highly realistic. Thus, relying exclu-
sively on these traces could be a losing strategy in the long term. Turning to generic
deep learning based-solutions, the main technical issue is probably the inability to
adapt to situations not seen in the training phase. Misalignment between training
and test, compression, and resizing are all sources of serious impairments and, at
the same time, highly realistic scenarios for real-world applications. Also, to deal
with the rapid advances in manipulation technology, deep networks should be able to
adapt readily to new manipulations, without a full re-training, which may be simply
impossible for lack of training data or entail catastrophic forgetting phenomena.

A more fundamental problem is the two-player nature of this research which is
common to many security-related fields. In fact, detection algorithms must confront
with the capacity of an adversary to fool them. This means that new solutions are
needed in order to cope with unforeseen attacks. This applies to any type of classifier
and is also very well known in forensics, where many counter-forensics methods
have been proposed in the literature in order to better understand weaknesses of
current approaches and help to improve them over time.

In the following, we analyze some works that have shown the vulnerabilities of
GAN detectors to different types of threats.

• Adding adversarial perturbations. It is well known, from the object recognition
field, that suitable slight perturbations can induce misclassification [50]. Follow-
ing this path, in [7] it has been investigated the robustness of GAN detectors to
imperceptible noise both in a white-box and in a black-box scenario. The authors
show that it is possible to generate appropriate adversarial perturbations so as to
misclassify fake images as real (see Fig. 9.14), but also the opposite. In addition,
they show that the attack can survive JPEG compression. Interestingly, it is also
possible to design an effective strategy in a black-box threat model when the adver-
sary does not have perfect knowledge of the classifier but is aware about the type
of classifier. A similar analysis is conducted in [19], where adversarial attacks are
designed to fool co-occurrence-based GAN detectors.

• Removing GAN fingerprints. Instead of adding noise, one can take a different
perspective and remove the specific fingerprints that are used to discriminate GAN
images from real ones. This approach is pursued in [43], where an autoencoder-
based strategy is proposed, that is trained using only real faces and is able to remove
the high-frequency components that correspond to the fingerprints of the models
used to generate synthetic images. At test time the autoencoder takes as input
synthetic face images and modifies them so as to spoof GAN detection systems.
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Fig. 9.14 A small and imperceptible adversarial perturbation can be added to the synthetic face
image in order to fool the detector

• Inserting camera fingerprints.Another possible direction to attack GAN detectors
is to insert the specific camera traces that characterize real images. In fact, real
images are characterized by their own device and model fingerprints, as explained
before. Such differences are important to carry out camera model identification
from image content but can also be used to better highlight anomalies caused
by image manipulations [52]. In [13] it is proposed a targeted black-box attack
that is based on a GAN architecture, able to insert specific real camera traces in
a synthetic images. In this way it is possible not only to fool a GAN detector
without any prior information on its architecture, but also to fool a camera model
identification algorithm, that will attribute the GAN image to the targeted camera
under attack.

It is worth observing that all these approaches generate face images that are visu-
ally indistinguishable from real ones. This makes clear that a good GAN detector
should always taken into account possible adversarial attacks and include proper
strategies to face them. Another issue for forensics deep learning-based methods is
interpretability. The black-box nature of these approaches makes it difficult to under-
stand the reason behind a certain decision. Hence it is important to develop strategies
that increase the level of understanding so as to improve its design and maybe also
increase robustness to possible malicious attacks.

Overall, we can conclude that AI synthetic face detection is not a trivial task and,
despite the huge effort made by the scientific community, we need to develop more
reliable tools, that should also include anti-forensics and adversarial attacks since
these techniques are widespread and can seriously impair the detection performance.
It is difficult to forecast whether detection tools will be able to ensure a good defense
against a bad use of synthetic content over the web or if active protection technology
will become necessary. However, we believe that developing reliable detectors that
possess good features in terms of generalization and robustness can represent a first
step to protect our society.
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