
Journal of Applied Mathematics and Computation, 2022, 6(1), 1-3 
https://www.hillpublisher.com/journals/JAMC/ 

ISSN Online: 2576-0653 
ISSN Print: 2576-0645 

 
DOI: 10.26855/jamc.2022.03.001 1 Journal of Applied Mathematics and Computation 
 

The Big-O of Mathematics and Computer Science 

Firdous Ahmad Mala1,*, Rouf Ali2 

1Department of Mathematics, Govt. Degree College Sopore, J&K, India. 
2Department of Computer Applications, Govt. Degree College Sopore, J&K, India. 
 
 

How to cite this paper: Firdous Ahmad 
Mala, Rouf Ali. (2022) The Big-O of Ma-
thematics and Computer Science. Journal of 
Applied Mathematics and Computation, 
6(1), 1-3. 
DOI: 10.26855/jamc.2022.03.001 
 
Received: November 23, 2021 
Accepted: December 18, 2021 
Published: January 4, 2022 
 
*Corresponding author: Firdous Ah-
mad Mala, Department of Mathematics, 
Govt. Degree College Sopore, J&K, 
India. 
Email: firdousmala@gmail.com 
 
 

  Abstract 
In this paper, we review the basic notion of the Big-O notation, also known as the 
Bachmann-Landau notation, that is frequent and prevalent in the study of the 
computational complexity of algorithms. Though this notation has been in use for 
quite some time, the authors feel that there is still scope for some literature in this 
direction. And this paper is an attempt for the same. We start with the discussion of 
a very brief chronological history of the various attempts made at understanding 
and calculating the computational complexities of algorithms. We show, using 
examples, how the Big-O notation could turn out to be a better, easier and more 
informative notation compared to the limit notation of a function. We point out 
some common Big-O orders that one comes across during the evaluation of the 
computational complexities of algorithms and functions. Finally, we show how the 
Big-O notation follows transitivity. 
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1. Introduction 

The history of what and how attempts were made at the optimization of arithmetic algorithms can be traced back to the 
Middle Ages. Methods employed to reduce the number of steps needed for various calculations can be found in the work 
of Ibn al-Majdi, a fourteenth century Egyptian astronomer [1]. 

Regarding the analysis of the Euclidean algorithm, Gabriel Lamé proved, in 1844, that if α > 𝛽𝛽 > 0, then the number 
of steps required for division employed in the Euclidean algorithm E(α,β) is, somewhat invariable, and less than five 
times the number of digits. Later on, several improvements were made regarding the number of required steps in the Euc-
lidean algorithm [2].  

It is pertinent to mention that algorithmic thinking has been studied in connection with geometrical constructions since 
antiquity. In fact, in the words of Schreiber, “the first studies on the unsolvability of problems by special instruments (that 
is, by special classes of algorithms) and the first attempts to measure, compare, and optimize the complexity of different 
algorithms for solving the same problem were in the field of geometrical constructions” [3]. 

Later, in 1864, it was Charles Babbage who predicted the importance of the analysis and study of algorithms. In his 
words, “As soon as an Analytical Engine (that is, a general purpose computer) exists, it will necessarily guide the future 
course of the science. Whenever any result is sought by its aid, the question will then arise—By what course of calcula-
tion can these results be arrived at by the machine in the shortest time?” [4]. 

The advent of a Turing machine, in 1937, raised a lot of eyebrows. The question of which problems could be or could 
not be solved by a computer came to the fore. More specifically, it led to the question of the relative computational diffi-
culty of computational functions that is now the part of computational complexity. The question of exactly what it meant 
to say that a function is more difficult to compute in comparison to another one was first addressed, in 1960, by Michael 
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Rabin in his paper “Degree of Difficulty of Computing a Function and Hierarchy of Recursive Sets” [5]. 

2. Main Discussion 
To compare efficiencies of competing algorithms in context of a given problem, it seems essential to consider the 

number of operations performed by each algorithm, especially for large inputs. This is carried out by classifying and 
comparing the growth rates of the complexity function of each algorithm. 

The Big-O notation, that was introduced by the German mathematician, Paul Bachmann in 1894, has been used exten-
sively in connection with the analyses of algorithms to understand and appreciate the order of growth of a complexity 
function [6].  

In particular, Big-O gives an upper bound on the order of growth of a function. 

3. Definition 

For functions f and g defined on some common domain D, we write f(x) = O�g(x)� as x → ∞ to mean that there 
exists some positive number k and some x0 ∈ D such that |f(x)| ≤ k g(x),∀x ≥ x0. 

In other words, this simply means that the absolute value of f(x) is at most a positive constant multiple of g(x) for 
all sufficiently large x ∈ D. The Big-O notation is also known as the Bachmann-Landau notation. 

Consider, for example, the function f:ℝ → ℝ defined by f(x) = x6 − x2 + x − 1 and the function g:ℝ → ℝ de-
fined by g(x) = x6.  

Clearly, for all x ≥ 1 , |f(x)| = |x6 − x2 + x − 1| ≤ |x|6 + |x|2 + |x| + 1 ≤ x6 + x6 + x6 + x6 = 4x6  so that 
|f(x)| ≤ 4 g(x). Consequently, f(x) = O�g(x)�. 

In the context of the analysis of algorithms, the domain of all the functions under consideration will be a subset of the 
set of positive integers. This is because the variable with invariably be the input size or the discrete time variable.  

Consider, for example, f:ℕ → ℕ given by f(n) = ∑ (2r − 1)n
r=1 .  

Clearly, f(n) = 1 + 3 + 5 + ⋯+ (2n − 1) = n2 so that f(n) = O(n2). 

Similarly, if u(n) = �n
0� + �n

1� + �n
2� + ⋯+ �n

n� , then using the fact that ∑ �n
r� = 2nn

r=0 , we conclude that 
u(n) = O(2n ). 

4. Big-O compared to the limit notation 
In comparison with the limit notation of functions, it suppresses lesser information and is easy to manipulate. In the 

words of N. G. de Brujin, “It does not suppress a function, but only a number. That is to say, it replaces the knowledge of 
a number with certain properties by the knowledge that such a number exists. The O notation suppresses much less in-
formation than the limit notation, and yet it is easy enough to handle” [7]. 

To appreciate what Brujin said, consider the case of a sequence {fn } that satisfies |fn − 1| ≤ n−1,∀n ∈ ℕ. In the limit 
sense of functions, we have fn → 1 as n → ∞ or limn→∞ fn = 1. In the ϵ − δ sense of a function, it means that for 
every ϵ > 0, ∃m ∈ ℕ such that |fn − 1| < 𝜖𝜖 whenever n ≥ m. In terms of the Big-O notation, fn − 1 = O(n−1). No-
tice how the Big-O notation mentions not only the fact that the function is sort of dominated by another function, but it 
also mentions, without scale, the function that dominates f.  

To appreciate how much more informative the Big-O notation is in comparison to the limit notation of a function,  
observe that if a sequence {gn} satisfies |gn − 1| ≤ n−2, then gn → 1as n → ∞ or limn→∞ gn = 1. However, in terms 
of the Big-O notation, gn − 1 = O(n−2).  

Thus, the sequences {fn} and {gn}, despite being different, have the same limit but different orders. 
As recent work in the direction of computation of complexities and the Bachmann-Landau notation, there is good lite-

rature out there [8-11]. 

5. Some Special Cases 
𝐎𝐎(𝟏𝟏): If a function f is O(1), it would simply mean that there exists some M ∈ ℝ such that ∀n ≥ n0, f(n) ≤ M. 

This simply means that the function f is bounded on its domain. Examples include f(x) = e−n , n ∈ ℕ. Also, hash tables 
are O(1) that means that a hashed key would take one directly to what one is looking for.  
𝐎𝐎(𝐧𝐧): If a function f is O(n), it would simply mean that there exists some M ∈ ℝ such that ∀n ≥ n0, f(n) ≤ M n. 

This simply means that the function f is dominated by a linear function. Examples include f(n) = 3n + 2, n ∈ ℕ. 
Scanning a list is O(n) for one needs to visit each item in the list separately.  
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𝐎𝐎(𝐧𝐧𝟐𝟐): If a function f is O(n2), it would simply mean that there exists some M ∈ ℝ such that ∀x ≥ x0, f(x) ≤ M n2. 
Examples include f(n) = 1 + 2 + 3 + ⋯+ n, n ∈ ℕ. 
𝐎𝐎(𝟐𝟐𝐧𝐧): If a function f is O(2n ), it would simply mean that there exists some M ∈ ℝ such that ∀x ≥ x0, f(x) ≤ M 2n . 

Examples include f(n) = �n
0� + �n

1� + �n
2� + ⋯+ �n

n� , n ∈ ℕ. 
𝐎𝐎(𝐥𝐥𝐥𝐥𝐥𝐥 𝐧𝐧): If a function f is O(log n), it would simply mean that there exists some M ∈ ℝ such that ∀x ≥ x0, f(x) ≤

M log n. Examples include the binary search algorithm.  
𝐎𝐎(𝐧𝐧 𝐥𝐥𝐥𝐥𝐥𝐥 𝐧𝐧): If a function f is O(n log n), it would simply mean that there exists some M ∈ ℝ such that ∀x ≥

x0, f(x) ≤ M nlog n. Examples include sorting which is normally O(n log n).  

6. Transitivity of Big-O 
Theorem: The Big-O notation follows transitivity. In other words, if for functions f, g, h on some appropriate domain, 

f(x) = O�g(x)� and g(x) = O�h(x)� then f(x) = O�h(x)�. 
Proof: Given the fact for functions f, g, h defined on an appropriate domain, if f(x) = O�g(x)� and g(x) = O�h(x)�, 

then there exist numbers M1, M2, x0′, x0′′ such that f(x) ≤ M1 g(x),∀x ≥ x0′ and g(x) ≤ M2 h(x),∀x ≥ x0′′. 
Consequently, for M = max{M1, M2} and x = max{x0

′ , x0
′′ }, f(x) ≤ M h(x),∀x ≥ x0 .   

7. Conclusion 
In this paper, we reviewed, very briefly, the history that led to us to the current understanding of the computational 

complexity of algorithms. We discussed the concept of the Big-O notation used frequently in connection with the com-
putation of the complexity of an algorithm. We also discussed some common Big-O orders, the usefulness of the Big-O 
notation over the limit notation of functions and finally observed the transitivity of the Big-O notation. 
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