
Coordinate descent

Geoff Gordon & Ryan Tibshirani
Optimization 10-725 / 36-725

1

Adding to the toolbox, with stats and ML in mind

We’ve seen several general and useful minimization tools

• First-order methods

• Newton’s method

• Dual methods

• Interior-point methods

These are some of the core methods in optimization, and they are
the main objects of study in this field

In statistics and machine learning, there are a few other techniques
that have received a lot of attention; these are not studied as much
by those purely in optimization

They don’t apply as broadly as above methods, but are interesting
and useful when they do apply ... our focus for the next 2 lectures

2

Coordinate-wise minimization

We’ve seen (and will continue to see) some pretty sophisticated
methods. Today, we’ll see an extremely simple technique that is
surprisingly efficient and scalable

Focus is on coordinate-wise minimization

Q: Given convex, differentiable f : Rn → R, if we are at a point x
such that f(x) is minimized along each coordinate axis, have we
found a global minimizer?

I.e., does f(x+ d · ei) ≥ f(x) for all d, i ⇒ f(x) = minz f(z)?

(Here ei = (0, . . . , 1, . . . 0) ∈ Rn, the ith standard basis vector)

3

x1 x2

f

A: Yes! Proof:

∇f(x) =

(
∂f

∂x1
(x), . . .

∂f

∂xn
(x)

)
= 0

Q: Same question, but for f convex (not differentiable) ... ?

4

x1

x2

f

x1

x2

−4 −2 0 2 4

−
4

−
2

0
2

4

●

A: No! Look at the above counterexample

Q: Same question again, but now f(x) = g(x) +
∑n

i=1 hi(xi), with
g convex, differentiable and each hi convex ... ? (Non-smooth part
here called separable)

5

x1

x2

f

x1

x2

−4 −2 0 2 4

−
4

−
2

0
2

4

●

A: Yes! Proof: for any y,

f(y)− f(x) ≥ ∇g(x)T (y − x) +

n∑
i=1

[hi(yi)− hi(xi)]

=

n∑
i=1

[∇ig(x)(yi − xi) + hi(yi)− hi(xi)]︸ ︷︷ ︸
≥0

≥ 0

6

Coordinate descent

This suggests that for f(x) = g(x) +
∑n

i=1 hi(xi) (with g convex,
differentiable and each hi convex) we can use coordinate descent
to find a minimizer: start with some initial guess x(0), and repeat
for k = 1, 2, 3, . . .

x
(k)
1 ∈ argmin

x1
f
(
x1, x

(k−1)
2 , x

(k−1)
3 , . . . x(k−1)

n

)
x

(k)
2 ∈ argmin

x2
f
(
x

(k)
1 , x2, x

(k−1)
3 , . . . x(k−1)

n

)
x

(k)
3 ∈ argmin

x2
f
(
x

(k)
1 , x

(k)
2 , x3, . . . x

(k−1)
n

)
. . .

x(k)
n ∈ argmin

x2
f
(
x

(k)
1 , x

(k)
2 , x

(k)
3 , . . . xn

)
Note: after we solve for x

(k)
i , we use its new value from then on

7

Seminal work of Tseng (2001) proves that for such f (provided f
is continuous on compact set {x : f(x) ≤ f(x(0))} and f attains
its minimum), any limit point of x(k), k = 1, 2, 3, . . . is a minimizer
of f . Now, citing real analysis facts:

• x(k) has subsequence converging to x? (Bolzano-Weierstrass)

• f(x(k)) converges to f? (monotone convergence)

Notes:

• Order of cycle through coordinates is arbitrary, can use any
permutation of {1, 2, . . . n}

• Can everywhere replace individual coordinates with blocks of
coordinates

• “One-at-a-time” update scheme is critical, and “all-at-once”
scheme does not necessarily converge

8

Linear regression

Let f(x) = 1
2‖y −Ax‖

2, where y ∈ Rn, A ∈ Rn×p with columns
A1, . . . Ap

Consider minimizing over xi, with all xj , j 6= i fixed:

0 = ∇if(x) = ATi (Ax− y) = ATi (Aixi +A−ix−i − y)

i.e., we take

xi =
ATi (y −A−ix−i)

ATi Ai

Coordinate descent repeats this update for i = 1, 2, . . . , p, 1, 2, . . .

9

Coordinate descent vs gra-
dient descent for linear re-
gression: 100 instances
(n = 100, p = 20)

0 10 20 30 40

1e
−

10
1e

−
07

1e
−

04
1e

−
01

1e
+

02

k

f(
k)

−
fs

ta
r

GD
CD

Is it fair to compare 1 cycle of coordinate descent to 1 iteration of
gradient descent? Yes, if we’re clever:

xi =
ATi (y −A−ix−i)

ATi Ai
=

ATi r

‖Ai‖2
+ xoldi

where r = y −Ax. Therefore each coordinate update takes O(n)
operations — O(n) to update r, and O(n) to compute ATi r —
and one cycle requires O(np) operations, just like gradient descent

10

0 10 20 30 40

1e
−

10
1e

−
07

1e
−

04
1e

−
01

1e
+

02

k

f(
k)

−
fs

ta
r

GD
CD
Accelerated GD

Same example, but now
with accelerated gradient
descent for comparison

Is this contradicting the optimality of accelerated gradient descent?
I.e., is coordinate descent a first-order method?

No. It uses much more than first-order information

11

Lasso regression

Consider the lasso problem

f(x) =
1

2
‖y −Ax‖2 + λ‖x‖1

Note that the non-smooth part is separable: ‖x‖1 =
∑p

i=1 |xi|

Minimizing over xi, with xj , j 6= i fixed:

0 = ATi Aixi +ATi (A−ix−i − y) + λsi

where si ∈ ∂|xi|. Solution is given by soft-thresholding

xi = Sλ/‖Ai‖2

(
ATi (y −A−ix−i)

ATi Ai

)
Repeat this for i = 1, 2, . . . p, 1, 2, . . .

12

Box-constrained regression

Consider box-constrainted linear regression

min
x∈Rn

1

2
‖y −Ax‖2 subject to ‖x‖∞ ≤ s

Note this fits our framework, as 1{‖x‖∞ ≤ s} =
∑n

i=1 1{|xi| ≤ s}

Minimizing over xi with all xj , j 6= i fixed: with same basic steps,
we get

xi = Ts

(
ATi (y −A−ix−i)

ATi Ai

)
where Ts is the truncating operator:

Ts(u) =


s if u > s

u if − s ≤ u ≤ s
−s if u < −s

13

Support vector machines

A coordinate descent strategy can be applied to the SVM dual:

min
α∈Rn

1

2
αTKα− 1Tα subject to yTα = 0, 0 ≤ α ≤ C1

Sequential minimal optimization or SMO (Platt, 1998) is basic-
ally blockwise coordinate descent in blocks of 2. Instead of cycling,
it chooses the next block greedily

Recall the complementary slackness conditions

αi ·
[
(Av)i − yid− (1− si)

]
= 0, i = 1, . . . n (1)

(C − αi) · si = 0, i = 1, . . . n (2)

where v, d, s are the primal coefficients, intercept, and slacks, with
v = ATα, d computed from (1) using any i such that 0 < αi < C,
and s computed from (1), (2)

14

SMO repeats the following two steps:

• Choose αi, αj that do not satisfy complementary slackness

• Minimize over αi, αj exactly, keeping all other variables fixed

Second step uses equality con-
straint, reduces to minimizing uni-
variate quadratic over an interval
(From Platt, 1998)

First step uses heuristics to choose αi, αj greedily

Note this does not meet separability assumptions for convergence
from Tseng (2001), and a different treatment is required

15

Coordinate descent in statistics and ML

History in statistics:

• Idea appeared in Fu (1998), and again in Daubechies et al.
(2004), but was inexplicably ignored

• Three papers around 2007, and Friedman et al. (2007) really
sparked interest in statistics and ML community

Why is it used?

• Very simple and easy to implement

• Careful implementations can attain state-of-the-art

• Scalable, e.g., don’t need to keep data in memory

Some examples: lasso regression, SVMs, lasso GLMs, group lasso,
fused lasso (total variation denoising) trend filtering, graphical
lasso, regression with nonconvex penalties

16

Pathwise coordinate descent for lasso

Here is the basic outline for pathwise coordinate descent for lasso,
from Friedman et al. (2007), Friedman et al. (2009)

Outer loop (pathwise strategy):

• Compute the solution at sequence λ1 ≥ λ2 ≥ . . . ≥ λr of
tuning parameter values

• For tuning parameter value λk, initialize coordinate descent
algorithm at the computed solution for λk+1

Inner loop (active set strategy):

• Perform one coordinate cycle (or small number of cycles), and
record active set S of coefficients that are nonzero

• Cycle over coefficients in S until convergence

• Check KKT conditions over all coefficients; if not all satisfied,
add offending coefficients to S, go back one step

17

Even if solution is only desired at one value of λ, pathwise strategy
(λ1 ≥ λ2 ≥ . . . ≥ λr = λ) is much faster than directly performing
coordinate descent at λ

Active set strategy takes algorithmic advantage of sparsity; e.g.,
for large problems, coordinate descent for lasso is much faster than
it is for ridge regression

With these strategies in place (and a few more tricks), coordinate
descent is competitve with fastest algorithms for 1-norm penalized
minimization problems

Freely available via glmnet package in MATLAB or R (Friedman
et al., 2009)

18

Convergence rates?

Global convergence rates for coordinate descent have not yet been
established as they have for first-order methods

Recently Saha et al. (2010) consider minimizing

f(x) = g(x) + λ‖x‖1

and assume that

• g convex, ∇g Lipschitz with constant L > 0, and I −∇g/L
monotone increasing in each component

• there is z such that z ≥ Sλ(z −∇g(z)) or z ≤ Sλ(z −∇g(z))
(component-wise)

They show that for coordinate descent starting at x(0) = z, and
generalized gradient descent starting at y(0) = z (step size 1/L),

f(x(k))− f(x?) ≤ f(y(k))− f(x?) ≤ L‖x(0) − x?‖2

2k

19

Graphical lasso

Consider a data matrix A ∈ Rn×p, whose rows a1, . . . an ∈ Rp are
independent observations from N(0,Σ), with unknown covariance
matrix Σ

Want to estimate Σ; normality theory tells us that

Σ−1
ij = 0 ⇔ Ai, Aj conditionally independent given A`, ` 6= i, j

If p is large, we believe above to be true for many i, j, so we want
a sparse estimate of Σ−1. We get this by solving graphical lasso
(Banerjee et al., 2007, Friedman et al., 2007) problem:

min
Θ∈Rp×p

− log det Θ + tr(SΘ) + λ‖Θ‖1

Minimizer Θ? is an estimate for Σ−1. (Note here S = ATA/n is
the empirical covariance matrix, and ‖Θ‖1 =

∑p
i,j=1 |Θij |)

20

Example from Friedman et al. (2007), cell-signaling network:

Believed network Graphical lasso estimates

Example from Liu et al. (2010), hub graph simulation:

True graph Graphical lasso estimate

21

Graphical lasso KKT conditions (stationarity):

−Θ−1 + S + λΓ = 0

where Γij ∈ ∂|Θij |. Let W = Θ−1; we will solve in terms of W .
Note Wii = Sii + λ, because Θii > 0 at solution. Now partition:

W = Θ = S = Γ =[
W11 w12

w21 w22

] [
Θ11 θ12

θ21 θ22

] [
S11 s12

s21 s22

] [
Γ11 γ12

γ21 γ22

]
where W11 ∈ R(p−1)×(p−1), w12 ∈ R(p−1)×1, and w21 ∈ R1×(p−1),
w22 ∈ R; same with others

Coordinate descent strategy: solve for w12, the last column of W
(note w22 is known), with all other columns fixed; then solve for
second-to-last column, etc., and cycle around until convergence.
(Solve for Θ along the way, so we don’t have to invert W to get Θ)

22

Now consider 12-block of KKT conditions:

−w12 + s12 + λγ12 = 0

Because

[
W11 w12

w21 w22

] [
Θ11 θ12

θ21 θ22

]
=

[
I 0
0 1

]
, we know that

w12 = −W11θ12/θ22. Substituting this into the above,

W11
θ12

θ22
+ s12 + λγ12 = 0

Letting x = θ12/θ22 and noting that θ22 > 0 at solution, this is

W12x+ s12 + λρ = 0

where ρ ∈ ∂‖x‖1. What does this condition look like?

23

These are exactly the KKT conditions for

min
x∈Rp−1

xTW11x+ sT12x+ λ‖x‖1

which is (basically) a lasso problem and can be solved quickly via
coordinate descent

From x we get w12 = −W11x, and θ12, θ22 are obtained from the

identity

[
W11 w12

w21 w22

] [
Θ11 θ12

θ21 θ22

]
=

[
I 0
0 1

]

We set w21 = wT12, θ21 = θT12, and move on to a different column;
hence we have reduced the graphical lasso problem to a bunch of
sequential lasso problems

24

This coordinate descent approach for the graphical lasso, usually
called glasso algorithm (Friedman et al., 2007) is very efficient and
scales well

Meanwhile, people have noticed that using glasso algorithm, it can
happen that the objective function doesn’t decrease monotonically
across iterations — is this a bug?

No! The glasso algorithm makes a variable transformation and
solves in terms of coordinate blocks of W ; note that these are not
coordinate blocks of original variable Θ, so strictly speaking it is
not a coordinate descent algorithm

However, it can be shown that
glasso is doing coordinate ascent
on the dual problem (Mazumder
et al., 2011)

25

Screening rules for graphical lasso

Graphical lasso computations can be significantly accelerated by
using a clever screening rule (this is analogous to the SAFE rules
for the lasso)

Mazumder et al. (2011), Witten et al. (2011) examine the KKT
conditions:

−Θ−1 + S + λΓ = 0

and conclude that Θ is block diagonal over variables C1, C2 if and
only if |Sij | ≤ λ for all i ∈ C1, j ∈ C2. Why?

• If Θ is block diagonal, then so is Θ−1, and thus |Sij | ≤ λ for
i ∈ C1, j ∈ C2

• If |Sij | ≤ λ for i ∈ C1, j ∈ C2, then the KKT conditions are
satisfied with Θ−1 block diagonal, so Θ is block diagonal

Exact same idea extends to multiple blocks. Hence group structure
in graphical lasso solution is just given by covariance thresholding

26

References

Early coordinate descent references in statistics and ML:

• I. Daubechies and M. Defrise and C. De Mol (2004), An
iterative thresholding algorithm for linear inverse problems
with a sparsity constraint

• J. Friedman and T. Hastie and H. Hoefling and R. Tibshirani
(2007), Pathwise coordinate optimization

• W. Fu (1998), Penalized regressions: the bridge versus the
lasso

• T. Wu and K. Lange (2008), Coordinate descent algorithms
for lasso penalized regression

• A. van der Kooij (2007), Prediction accuracy and stability of
regresssion with optimal scaling transformations

27

Applications of coordinate descent:

• O. Banerjee and L. Ghaoui and A d’Aspremont (2007), Model
selection through sparse maximum likelihood estimation

• J. Friedman and T. Hastie and R. Tibshirani (2007), Sparse
inverse covariance estimation with the graphical lasso

• J. Friedman and T. Hastie and R. Tibshirani (2009),
Regularization paths for generalized linear models via
coordinate descent

• J. Platt (1998), Sequential minimal optimization: a fast
algorithm for training support vector machines

Theory for coordinate descent:

• R. Mazumder and J. Friedman and T. Hastie (2011),
SparseNet: coordinate descent with non-convex penalties

• A. Saka and A. Tewari (2010), On the finite time convergence
of cyclic coordinate descent methods

• P. Tseng (2001), Convergence of a block coordinate descent
method for nondifferentiable minimization

28

More graphical lasso references:

• H. Liu and K. Roeder and L. Wasserman (2010), Stability
approach to regularization selection (StARS) for high
dimensional graphical models

• R. Mazumder and T. Hastie (2011), The graphical lasso: new
insights and alternatives

• R. Mazumder and T. Hastie (2011), Exact covariance
thresholding into connected components for large-scale
graphical Lasso

• D. Witten and J. Friedman and N. Simon (2011), New
insights and faster computations for the graphical lasso

29

