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1 Notation

A Constant
a Radius or width (m)
b Height (m)
C Sound velocity (m/s)
f Frequency (Hz) or function of outgoing wave
g Function of incoming wave
[ Imaginary number
k Wave number (rad/m)
P, Pressure amplitude (kg/ms?)
p Pressure (Pa)
Q Volume flow (m®/s)
Q Source strength (m*/s%)
a, Source strength per unit volume (1/s?)
d, Source strength per unit area (M/s?)
R Distance (m)
R, Rayleigh distance (m)
r Radial direction
S Area (m?)
t Time (9)
u Velocity (m/s)
u, Piston acceleration (m/s?)
X Direction
Direction
z Displacement (m)
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Ratio of specific heat
Wavelength (m)
Displacement (m)

Density (kg/m®)

Radial direction

Time coordinate system ()
Velocity potential (m/s)

Angle (rad)
Angle velocity (rad/s)



2 Introduction

Often when one thinks about creating sound one thinks about a speaker that
uses a piston movement to create the sound. This way of creating sound is
not the only way. The audible sound can be created in midair by using
ultrasound and the non-linearity in air.

If one sends out two frequencies with high frequency and amplitude into an
nonlinear medium, in our case air, a third frequency can be heard, namely
the difference frequency. In this thesis this phenomenon will be shown both
theoretically and by measurement on a spesker, which was constructed
within the project. There are many advantages of creating sound this way
instead of the ordinary way. One of the advantages is that the sound that is
created is very directed even of low frequencies. The directivity of sound is
aproblem in conventional speaker. The problem is that the low frequencies,
is spreading in amost all directions in the room, and the higher frequencies
are more directed. If one instead creates sound by sending out ultrasonic
frequencies the nonlinearly created audible sound get the same directivity
as the ultrasonic frequencies, which have a very narrow spreading beam. A
simile can be done with a light bulb and a torch, the conventional speaker
radiates the sound like a light bulb is radiates the light, the ultrasonic
speaker is on the other hand radiating the sound more like a torch or a
spotlight see figure 2.1.

Figure 2.1. Light bulb versus torch.

The directivity of a speaker that creates sound using ultrasound can be a
huge advantage in for example a museum where you only want the people



in front of a particular painting to hear the information of that painting, and
the rest of the visitors can concentrate on the other parts of the exhibition.
Another interesting advantage is that the speaker can be built very thin and
that can be of commercial interest in these days of flat screen TVs. For a
comparison between the thicknesses see figure 2.2

q |

Figure 2.2. Comparison of thickness of speaker.

In figure 2.2 the sound creating units of the speaker is compared. A
conventional speaker does not produce sound very well without a speaker
box and the speaker box need to be quite large. In our case with the speaker
that uses the nonlinearity in air to create sound there is no need for any
speaker box.



3 Vibrations and sound

A medium that is in complete rest is silent i.e. there is no sound. When for
example people talk, vibrations occur to vocal cords. As a result of these
vibrations sounds are created. This means that the vibrations are the source
of sound. Other sources of sound are loudspeakers and all kinds of music
instrument. But all vibrations are not audible, they have to be in the right
frequency and amplitude. The audible sound for a human lies in the range
of about 20 to 20,000 Hz with pressure range about 2*10™ to about 100 Pa.
Usually sound pressure is given in decibels, dB. Decibel is not a unit in the
sense that a meter or a gram, a decibel is a relationship between two values
of power. In this case the relationship is often between the lowest hear able
sound pressure namely about 10™ Pa and the measured sound pressure [1].

The formulafor decibelsis;

PowerA
X
PowerB (3.1)

dB =10

Power of sound varies as the square of pressure and if avalue is squared its
logarithm is doubled, so the decibels formula becomes.

asound pr%ﬂJreAQ2 — 2030 Sound pressure A

dB=10%0
J Sound pressureB g Sound pressureB
o

(3.2)

As mentioned previously sound pressure B is often the lowest sound
pressure that is possible to hear, namely 2*10™ Pa. A sound pressure of 100
Pais 133 dB (re 20uPa).

20409 _ 1133 dB (re 204Pa) 3.3)

2%0°
The pain threshold is about 120 dB (re 20pPa).

Sound with frequencies lower than 20 Hz is often called infrasound and
sound with higher frequencies than 20 kHz is called ultrasound. Ultrasound
isgoing to be used alot in this thesis.



Sound travels in an elastic medium in a form of wave motion. It is often
called sound wave. Waves can be of various types the most common types
are longitudinal waves and transverse wave. Sound waves propagating in
air are longitudinal waves. The wave length depends on the frequency and
the sound velocity.

| =c/f (3.4)

Ultrasonic sound is often created with piezoceramic elements that
transform an electric signal to sound. The sound beam the elements create
can be divided in a couple of zones [2]. The zone nearest the element is
called the near field or the Fresnel zone, in this zone the amplitude changes
substantially. The amplitude changes is due to that the same wave is sent
from each part of the element, the phase difference between all these waves
affect the amplitude. On greater distance from the element these phase
differences becomes less important. Therefore the wave gets more stable
and spread more like a spherical wave in the so called far field or
Fraunhofer zone. The length of the Fresnel zone depends both on the
frequency and the size of the element, thiswill be shown in chapter 4.



4 Basics of nonlinear acoustics

The wave equations, which are usually used in solutions to acoustical
problems, are valid only when the signal propagation is relatively small. In
the derivation of these formulas the maximum displacement of the air
particles is assumed to be small compared to the wavelength. This makes
the density appear to be a linear function of the pressure. When these
assumptions are no longer valid the wave will change shape as it propagates
in the medium.

Each part of the wave travels with a velocity that is the sum of the signal
velocity and the particle velocity [3]. In other words the peaks travel with a
higher velocity than the rest of the wave. This makes the wave deforming
as it propagates.
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Figure4.1 . Wave as it propagates through the medium

In this thesis the fact that the non-linearity in air creates new frequencies if
at least two frequencies are sent in to air is very important. In the following
example this fact will be shown.
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4.1 Difference and Sum Frequency

We start with three equations of hydrodynamics for one-dimensional plane
motion [4].

The first one is a generalization of the second Newton law with respect to a
continuous medium.

x
oy =- 1P (41)
It X
Where the variable x(x,t) is the displacement of the medium particles from
the initial position Xo.

The second one is the law of conservation of mass written down in
differential form.

ro=r §L+‘H_xg
e Wxg (4.2)

And the third one is the equation of state.

aer (',)'g
p= p(l’ ) = Po I‘_I
0@ (4.3)

(4.2) can be rewritten.

r
r = 0

14X
% (4.4)

Put (4.4) into (4.3)

x (4.5)
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Y S Y 1 "3 - pFe g
& h OQ 0 Z & Txo
& (4.6)
(1.6) into (1.1)
Px _ 1& xo 0
LESE X B
° 1t ‘ITXé & Xg g @7
1° T°x e X6
TS gh X o
rewriting
T
X _ Pl 1%
ﬂtz ro §+ﬂlg +1
e WXg (4.8)

This equation is the non-linear Earnshaw equation.

The denominator can be rewritten with the approximate relationship in
form of the genera type nonlinearity expansion in terms of power
nonlinearities.

..-(g+1)
X o x X &
§+—+ +1)—+=(g+1)g +2)c=—=
e Ixg (g )‘ITX (g )(g )e‘ITXra (4.9)

Substituting this expression in Earnshaws equation gives.

T[ZX pog ﬂX +1ﬂ_+ +1 +2a£90
w T ﬂxé 0+1g 50+ %m,g
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This can be written;

2 2, & 20
‘”T)Z(:ch:ﬁ% 1- (g +1)%+%(g +1)(g+2)8d%9 i
€V g (4.10)
l
where ¢, = aq%+ is the equilibrium sound velocity.
09
°x 1 _ 1% 1% ™ 1 1 X
- - =T~ 1= —+—x-(g+1)g+2)c—=
Mt co ™ ™ o )‘ITX x (g o )g‘ﬂxra (4.11)

This can be rewritten to a nice nonlinear wave eguation containing
guadratic nonlinear and cubic nonlinear terms.

™ 1 7% x 1% X 6 1
x— - —Ag+1)g+2)c—+F —
W =0+ e "(9 Jor2ke > o i

To investigate if any new frequencies are created when a couple of
frequencies are propagating through air we are doing a simple calculation.

The calculations are made with the biharmonic boundary condition at x=0:
X :Ais-nwlt"'AzS-ant (413)
Thisisasignal which has two frequencies before it has propagated in air.

where A; is the amplitude of the first frequency A, the amplitude for the
second one. The frequencies w, and w, arein radians.

We start to investigate the quadratic non-linearity.

2

x 1 9% x I
- . -1 = +1 X—
™ c M’ @ )ﬂX LS (4.14)

The left hand side is linear so it is the right hand side that is important in
this case.

13



First of all we change the coordinate system to a coordinate system that
travels with the wave with the sound velocity, t = a; / O Thesigna is

written with the new coordinate system.

X =AsSnwt + A, Snw,t = Aisinw1 / Oy A25mW2 Og

Develop each part individually.

%——?A&snwlg - % 9+Azsinwz§ - XCO%S,:
:-Aicoswl§-/0°><— Azcosw2§ x/ 02

2 c, Cog c, (4.15)

——-ALS'”W§ %g’g%; Aﬁ”‘”? yoﬂﬁcoz

All parts together becomes

14



L ARG e
x> ¢ ft? x T
ae 0
= (g +1)>¢- A cosw,t ><— A, cosw.t ><W—:><
Co G o
& g, © & &0
- A snwit - A,sSnw.,t >g—: ::
Co 5 o 5

.3

2
= (g +1)*¢ A% coswt >a@nw,t ?"_18 +
& G

,.2 ..
v, 0 aw,0
+ A A cosw,t >Enwt LT 2T+
Co C g
+ A A coswt >snw.t X2 >§
c,

-I-O

v,
+ A2 cosw,t >Enw,t X—2%
CO@@

If we rewrite this once more we can see that the first harmonic of the
frequencies has been created.
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NG Cg qt2
- 3 3 5
g&%g sin 2wt +A§>§chg sn2wt

=lg+1 g g t

(g )Vg 5 :
(;, -
é 2
2 ..
+(g +1)xAZAl¢%V aEM%coswlt anwt +
$&C g &S g
5
g— ——coswt >@nwj -
“ o o

(4.16)

Therest of the solution is treated separately.
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2
(9+1)XA2A1§ c_ aa(\:/ gcoswt xsnw,t +
0 J oﬂ

o)
0 9
g 2 Qcosw,t xEnwt * T=(g+1)xAA
CO ﬂ CO ﬂ ]
(')'
g 2T >§ -coswt >Enw,t g >§ -coswt >snw,t
C, C C,
xC 09 0 ﬂ +
¢
¢
e
.2 ..
aw, 0 av,0 ,0
LT G2 TCosW,t >Enwit >§ Zcosw;t xaEinw,t
Cog &C C,
4 €00 0 @ ﬂ +
2
.2 ..
aw,0 aav, 0 o asv, O
— 23 xCLrcoswt >Enw,t g >§ LIcosw,t xsEinwit
C, g &C C C,
+ (%] 0 & 0 ﬂ +
2 2
2 2 L.
aav, 0 aw, 0 0
g—: —2.7COoSW,t >sinw.t g >§ —coswt sinw,t T
+ Cog €C g Cpg G g =
2 2 N
2
.2 .. 2
@vzg o, O aw, O asv, 69
CClC, 5 &C, 5 %C, 5 %C, g*
_ 09 0 g 0 g 09
= (g +1)xA,A e 5 + ~sin(w, +w,)+
cc =
gg -
@
.2 .. .2 .. f5)
. 0 g, 0 0 g, g
C, g &C g. Coor &Cogr . =
+ €00 0 ﬂsn(wz W1)+ 02 0 ﬂsn(wl _ WZ)+
2 2 N
@
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All parts together gives.

3 3 )
geAf aavlg sn2wt + A2 —an\NtO
I%LIX (g1 LEY ”éc 4
x> c2 ft? c 2 =
g -
e 2
2
GG
g+1 XA2A1>(;(;§COQ >1écoﬂ gcoﬂ ”gcoﬂ W W )
g ;
.2 i 2 N o)
o, 0 o, 0 g s
+£200_E O, - w,)+ E22_E% Pinfw, - w,):
2 2 -
5
(4.17)

Here we can see that the first harmonic of the two initial frequencies, the
sum of the frequencies and the difference frequency is created when the
signal is propagating through the medium.
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4.1.1 Difference Frequency

The most important one of the created frequencies is, in this thesis, the
difference frequency. This is the frequency that will be audible if the
origina frequencies lies less than 20 kHz from each other.

The difference frequency is created due to that the sound waves are
propagating through the nonlinear air, and it therefore takes a while for the
difference frequency to be created. The distance it takes for the difference
frequency to be created depends among other things on the amplitudes of
the original frequencies; higher amplitudes mean a shorter distance.

The amplitude of the difference frequency is only a fraction of the
amplitude of the original frequency, due to the fact that the created sound is
only a biproduct and the most energy is still in the origina frequencies.
Calculations can be done with Burgers™ equation to look further in to these
facts.

The results of such caculations are very hard to compare with
measurements because we are not able to measure the amplitudes with the
accuracy needed. For example we do not know the amplification of the
mixer used in the measurements and we also do not know the sensitivity
and frequency response of the microphone. The calculations with Burgers’
equation is therefore left out in thisthesis.
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5 Radiation from a baffled piston

The difference frequency is radiating as the beam of the ultrasonic sound.
This fact makes it interesting to know how the “ultrasonic beam” look
likes, in order to understand how the audible sound radiates. There are
many variables that affect how the beam of ultrasound looks like.

Size of the element or the array of elements

Frequency

Shape of the element or the array of elements
All these variables will be investigated further below

A baffled piston, a piston surrounded of arigid plane, radiates sound allittle
different from a piston which is not baffled. A baffled piston radiates only
in the hemisphere in front of the piston not the whole spherical room.

5.1 Derivation of Rayleigh Integral

A baffled piston can be seen as alarge number of point sources[2]. So first
of all we will investigate how a point source radiates sound. The derivation
does not need to consider nonlinearity, it is linear.

It can pretty easily be shown that the wave equation for spherical waves

£, - 2¢, =0 (5.1)
r Co

where f isthe velocity potential defined by u = Nf

has the general solution

rf = f(r - cot)+ g(r +cot) (5.2

Where the first term is an outgoing spherical wave and the second term is
an incoming spherical wave. In our case the incoming wave does not exist
due to we have no reflection and things like that, the solution is
conveniently expressed as

20



=) 'rr/ %) (53

We now look at a small pulsating sphere. The volume flow of fluid is Q(t)
from the source.

Qlt) = 4p xa® xu(a t) (5.4)

where a is the radius of the sphere and u® is the radial component of the
velocity.

In the case with the baffled piston the radiation is restricted to the
hemisphere in front of the piston not the whole spherical space. Therefore
the factor 4p inequation (5.4) isreplaced by 2p , this gives the equation.

Qlt)=2pxa”u"(at) (5.5)
The radial component of the velocity can be expressed with equation (5.3)

(t' a/co)gz_ f(t' za/CO)' f((t' a/co)

aef
u(a,t) =f =T
( ) a ﬂag

This expression is put into equation (5.5)

Qlt)=2p xa? - f(t- a/c,) fdt- a/co)g

Xg a ac, g

Q)=20 (1~ ajes)+ & 14 a2
0 (5.7)

To consider the sphere as a point source the radius a has to be very small
therefore we take the limit astheradius a® O.

lim Q(t) = - 20t (t) (5.8)

The pressure is

21



Pl =T x———— (5.9)
Equation (5.8) gives

ft)=- 2_(;) (5.10)
and the derivativeis
fgt)=- 2—(2 (5.11)

Equation (5.9) gives the pressure

p:ron(t' r/Co) (5.12)
2pr

Thisisthe pressure for one point source.

The quantity Q is often called the source strength. If the element we are

interested in is not small enough to be expressed as a point source we may
divide it into small elements which individually act as point sources.

The radiation received at the field point (x,y,z) is the sum of the radiations
from point sources.

p(x,y,zt)=r OGQV(X(’ y6 26t - Pw:‘))dxf}ayflziz(l: (5.13)
v 2pR

R is the distance from the point on the source(x¢ y( z) to the field point
(x,y,z) seefigure5.1.
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Radiatjon Body

xy.2)

(xy.2)

y
Figure 5.1. Radiation from body of arbitrary shape.

where ¢, is the source strength per unit volume. Thetime R/c, isthetime
it takes for the wave to travel from the source to the field point.

In most cases the sources are flat and represent an area instead of avolume,
this gives the pressure

) =1, an (X(’ y(;t B R/CO)dS (514)

p(x,y,zt 2R

S

The pistonisinthex,y planeso al z¢ iszero, seefigure5.2.
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Figure 5.2. Radiation of flat piston of arbitrary shape.

Inthis case ¢, isthe source strength per unit area or the volume
acceleration per unit area, it is smply the piston accelerationu,, .

u, (X yGt- R/Co)ds

p(x,y, zt) =140 R (5.15)

This equation is often called the Rayleigh integral.
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5.2 TimeHarmonic Signals

The vibrationsin a piston like element are often time harmonic [2], that is
u, = u e (5.16)

The acceleration term in equation (5.15) becomes

u,(x¢yet- R/c,)= %(uoeiw(" Re)) = oy >y, e R) (5.17)
A commonly used expression is the wave number that is defined as
=W
k AO (5.18)

The angle velocity can then be expressed as
w = K>, (5.19)

The acceleration term can be expressed as

U, (XYt - R/G,) =ity €™ ™R = i Xk, >y, 6™ (5.20)
The pressure then becomes
H iwt- ikR
px,y,zt) = 1o g €T g (5.21)

2pR

S

We now move all the constant terms outside the integral.

H jwt - kR
RatiaSac T TP IS (5.22)
2p s R

p(x.y.zt)=

The pressure amplitude r , >c, XU, is denoted P,

H iwt - ikR
I X4OR) e e

" ~-ds (5.23)

p(x.y.zt)=

25



5.3 Circular elements

The elements that are used in the construction of the loudspeaker in this
thesisare circular. It is therefore interesting to investigate how the radiation
looks like from a circular piston. In this case the surface integral can be
changed to a double integral over the radius of the piston and the angle y

seefig 5.3.

ds (x,0,2)

do

Figure 5.3. Radiation from circular piston.

Due to symmetry we can locate the field point in the x,z plane. The
symmetry also makes it possible to locate two identical elements on the
source, one when y goes in the positive direction and one when it goesin
the negative direction. These two elements have the same distribution to the
pressure in each field point so instead of calculating the distribution from
each of the two elements the pressure is calculated for one of the elements
and then doubled to get the total pressure. The two elements have the
combined area

dS=2:s :ds :dy (5.24)

The pressure radiation from a circular piston becomes

26



i >4(><R) >eth P\a‘e-ikR
2p 00

The distance R is still the distance from the source point to the field point.
In this case it can be calculated from the two vectorsr and r’.

p(x, Y, z,t) = 2> xds ®y (5.25)

R=|r-r¢ (5.26)

Often the Rayleigh distance is mentioned, it is the distance which roughly
marks the end of the near field. Rayleigh distance is denoted [2]

_S
AN (5.27)

Where Sisthe area of the element. For acircular piston this becomes.

| l 2 (5.28)
Vector r isthe vector from the origin to the field point.
r=ix+ jo0+kz (5.29)
Note that i is not the imaginary unit in this case.
Vector 1" is the vector from the origin to the source point.
rc=iss cogy +j:s sny +k:0 (5.30)

The distance R then becomes.

R=|r- r<]>:\/(x- s cosy | +s ?sn?y +7° (5.31)

The pressure is calculated with use of MATLAB in acouple of cases.
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5.3.1 Sound field on axis

As told in chapter 3 the field in front of the element can be divided in the
near field and the far field. The near field is the part with heavily varying
amplitudes, in this case with circular e ements the amplitude has nulls along
the distance see figure 5.4. The number of nulls depends on how long the
wavelength is compared to the radius of the element. If the wavelength is
half the radius there are two nulls and so on, see figure 5.4 and figure 5.5.
The special case on axis can be solved analytically. [2]

The infinitesimal element can be seen as a ring around the centre of the
piston. The area of the element is

dS=2:p:s >ds (5.32
The distance from the source point to the field point is simply
R=+r?+s? (5.33)

The Rayleigh integral can now be rewritten

a -ikR

p(x,y,zt) =i % P, ™ xc‘)e? s xds (5.34)
0

The integral can now be changed from one over s to one over R with the
fact thatsds = RdR [2]. Theintegra isnow

p(X, y, z,t) =i Xk xR, xe™ xg'"‘R xdR = Po[ei(“""“) - ei(“""“max)] (5.35)

where r_ =+r>+a’ (5.36)

This integral is solved for every point on the axisin a MATLAB script that
can be seen in appendix 9.3.
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Figure 5.4. Pressure distribution on axis.
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Figure 5.5. Pressure distribution on axis.
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5.3.2 Sound field off axis

One thing that can not be seen on the axis is how directed the sound beam
is, therefore the pressure distribution off axisis calculated.

Off axis the pressure is calculated from equation (5.25) in a little more
complex MATLAB script that can be seen in appendix 9.4. The result can
be seen in figure 5.6. The result is of course the same on the axis. A very
interesting and useful thing to notice is that when the wavelength decreases,
the sound beam gets more directed. When the wavelength is relatively large
compared to the piston radius the sound is radiating spherically, but when
the wavelength get smaller the sound is radiating more like a beam.

radius = 1 * wavelength

a 01 0.2 0.3 0.4 0.5 06 a.r 08 0.9
radius = 2 * wavelangth

Distancefradius

0 0.1 0.2 0.3 0.4 05 06 av 08 0% 1
radius = 5 * wavelength

1] 0.1 02 03 0.4 05 06 or 0.8 0.9 1
Distance/R0

Figure 5.6. Pressure distribution off axis.



5.4 Rectangular elements
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Figure 5.7. Radiation from rectangular piston.

We start with the Rayleigh integral [2].

u (xCyGt- R/c

p(x,y, zt) =140 (X yst- R 0)dS
s 2R

We use the same expression for the acceleration term as before and in this

case the two elements have the combined area

(5.37)

dS=2:dx>dy (5.38)
We get the pressure equation
H iwt P a .-ikR
pl(x,,2,8) = T as® ity (5.39)
p 00 R

The distance from the source point to the field point is in this case
described as

R=/(x- x¢ +(y- y§? + 22 (5.40)
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Rayleigh distance for arectangular piston is

S asb

Ry === (5.41)

where aand b is the height and width of the element.

5.4.1 Sound field on axis

To calculate the sound field on axis for a rectangular piston the Rayleigh
integral is used. There is no simplification done, as in the case of circular
piston. To make it easier to compare with the result from the circular piston
the outer dimension is the same as for the circular piston, and the piston is
square. The result from the calculations can be seen in figure 5.8 and figure
5.9.

Width and height = 4 * Wavelength
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Figure 5.8. Pressure distribution on axis.
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Width and height = 10 * Wavelength
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Figure 5.9. Pressure distribution on axis.

One significant difference from the circular piston is that the nulls, that
where present in the case with circular elements, is now only dips in the
amplitude. The near field is therefore much smoother for a rectangular
piston than for a circular piston.
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5.4.2 Sound field off axis

To calculate the pressure distribution off axis for the rectangular element
the same MATLAB script was used as for rectangular on axis. The results
from the calculations are similar to the ones from circular element off axis.
The greatest difference can be seen on the near field, see figure 5.10. The
same conclusions about that a smaller wavelength makes a narrower sound
beam can be made here.

wickh and height = 1 * wavelength

o 0.1 0z 03 0.4 05 n& 07 0.4 035
width and height = 4 * wavelength

i
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Figure 5.10. Pressure distribution off axis for rectangular element.



5.5 Array of elements

An array is when many elements are put in a pattern. The way this pattern
is designed determines how the sound field will look like. An advantage of
using an array is that a higher output level is possible than with a single
element. Because of the larger dimensions the directivity of an array is
higher than for a single element. A disadvantage is that the near field, due
to the larger dimensions, is more heavily changing amplitude. One way to
get a smoother near field is to place the elements in a rectangular pattern,
this has the same effect on the near field as for a single element that is
rectangular instead of circular. To calculate the pressure distribution from
an array the pressure distribution from many single elements are simply
summed in each point that are coinciding.

A caculation of a five element line array has been done to compare the
near and far field of an array with the same outer dimension as a large
element. The frequency is 40 kHz and the elements in the array have the
radius five millimetres, the distance between the elements is ten
millimetres. The single element that the comparison is made with is five
times fifty millimetres. The MATLAB scripts for this calculation can be
seen in appendix 9.6 to 9.8.

In figure 5.11 and figure 5.12 the results from the calculations are
presented. The most obvious difference is that the near field is not the same
for the two calculations. The plots of the pressure distributions on axis may
be mideading, because in the array the whole area is not producing
pressure so the pressure looks pretty much the same on axis but if we look
at the pressure between two elements it is far from the same. This means
that an array cannot be ssimplified as one element when it is interesting what
happens in the near field. In some cases the directivity in the far field can
be calculated with the simplification with one single element, but only
when only the far field is of interest. The simplification is only valid when
the distance between the elements is small. If the distance is so small that
the elements in the array cover the whole area, the smplification is then of
course valid in both the near field and the far field.
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Figure 5.11. Pressure distribution from 5 element line array.
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Figure 5.12. Pressure distribution from large piston.
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To compare the results on axis further the plots from the two calculations
are put in the same figure, see figure 5.13. Here it can be seen that the
pressures follow each other very well. The amplitude differenceis due to
that the single large element has a larger area than the array.

. — Array
- — - Large element
18 b

Pressure/P0

0 0.05 0.1 0.15 02 0.25 0.3
Distance from source [meter]

Figure 5.13. Pressure distribution on axis in the two cases.
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6 The Speaker

6.1 Building the speaker

There are a couple of parameters to think about when a speaker of this kind
should be built.

Size

As large as possible to get a narrow beam, but not to big because of
alarger element gives alonger near field

Shape

A rectangular array makes the near field less jJumpy

Distance between elements

If the distance is great the phase difference is large.

Manageable number of elementsin the array

It takes some time to solder all elements

Two fields

It is not possible in this case to play both frequencies in al of the
elements. If this is done the nonlinearity arise in the element instead
of intheair in front of the speaker.

If possible; four fields

Four fields can make it possible to make experiments on
“Disappearing Sound”.

The spesker was built before all calculations were made, so some
assumptions made before the calculations may be incorrect. The speaker is
built with 196 piezo ceramic elements which are connected in parallel in
two groups. The reason to divide the elements into two groups is as said in
thelist above that it is agreat risk that the difference frequency is created in
the elements due to nonlinearity in these instead of in the air. It is possible
by a ssimple operation to divide the elements into four groups. This can be
used to make experiments on “ Disappearing sound”. “ Disappearing sound”
iswhen two pairs of high frequency at high amplitude are creating the same
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difference frequency but one frequency in one of the pairs is in another
phase. This makes the difference frequency audible only in alimited area.

The finished speaker can be seenin figure 6.1.

i~ PR B gl ¥

Figure 6.1. Front and back of the speaker.
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6.2 Creating the Signal

It isof great interest that the speaker can be used as a demonstration unit, to
show that it is really possible to create sound by using the nonlinearity in
air. To make the speaker more interesting as a demonstration unit it has to
be able to change frequency, because it is getting very annoying to listen to
a single frequency for along time. Thisis done by programming the signal
generator with the program LABVIEW in a computer.

One of the two frequencies is the same at al times and the other frequency
is changed up and down randomly in the chromatic scale. It is not really
interesting to make a more detailed explanation of how the signal generator
was programmed, but a screenshot from the program is presented in figure
6.2.

Figure 6.2 Screenshot from LABVIEW.



6.3 Measuring the speaker

Some measurements are made of the speaker. The biggest reason for thisis
to ensure that it realy is the difference frequency that appears. One
interesting thing to measure is how the frequencies change on different
distances from the speaker. A couple of different measurement set ups
where tried, the hardest task was to move the microphone in a straight line
in front of the speaker. The final solution was to use a robot that holds a
microphone and makes a perfect sweep over the measurement domain. The
signa from the microphone first ran through a mixer that amplified the
signal, and then the signal was filtered and sent to a lock in amplifier that
gave the amplitude and phase of the selected frequency. LABVIEW was
used to collect the data.

A schematic picture of the measurement set up can be seen in figure 6.3.

Microphone Tl

o ——— .
Robot Speaker JZ Channel Amplifier

Signal generation /

T HIEEE EEEE

Mixer Lock In Ampilifier Computer

Data collection

Figure 6.3 Schematic picture of measurement set up.
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Three measurement results are presented in figure 6.4 to figure 6.6. The
figures show the amplitude at the axis for the speaker both for the
difference frequency (1 kHz) and for the two initial frequencies (40 and
41 kHz).

0 0.2 04 0.6 0.8 1 1.2 1.4 16 18
Distance from source [meter]

Figure 6.4. 40 kHz

0.08

s
0 02 04 0.6 0.8 1 1.2 1.4 1.8 18
Distance from source [meter]

Figure 6.5. 41 kHz
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Figure 6.6. 1 kHz

As can be seen in figure 6.4 and 6.5 the ultrasonic frequencies are damped
out quite quickly. It is in the high peak in the ultrasonic field that the
hearable 1 kHz tone is created. The audile tone in figure 6.6 seems to die
out quite fast as well, but this can be a little misleading. If one listens in
front of the speaker the difference frequency can be heard at great
distances, because ears are extremely sensitive detectors. The ears
sengitivity for sound amplitude is logarithmic. For the same reason the
sound level is often measured in decibels [1]. It isagood ideato look at the
result of the difference frequency in logarithmic scale on the amplitude
axis. Figure 6.7 shows the same as figure 6.6 but the amplitude is presented
in logarithmic scale.
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Figure 6.7 1 kHz, logarithmic amplitude scale.



7 Discussion and conclusion

The most interesting thing with the speaker is not any calculations or
measurement results, it is to actually listen to the speaker. It is very clear
that the sound is very directed. You do not hear the sound if you are not in
the beam of sound and if there are no reflections.

The speaker has aready been used at a demonstration at a local school
playing simple one tone melodies, and the students all seemed very amazed
by the fact that the sound they heard did not come from the speaker but
from the wall that reflected the sound. | take that reaction as a proof that |
have built an interesting demonstration unit.

It is possible to move the point on the wall that reflects the sound by simply
redirect the speaker in another direction. This can be used to fool the
listener that the sound comes from an object that can not produce sound
itsalf.

To be used commercially the speaker has to be able to play any sound, not
only simple sinusoidal tones. This can be done with some signal processing
and some additional theory. Due to lack of certain equipment, such as
digital to analogue converters that can manage very high frequencies, and
also due to some lack of time, no attempts on creating more complex sound
has been done.
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9 Appendix MATLAB scripts

There are a couple of MATLAB functions that are used in amost every
script in this thesis. These two functions shows the status of the progressin
the scripts, the reason is that the scripts can take awhile to run.

9.1 Statusbar.m

% STATUSBAR - statusbar.m makes a figure that shows the status of o
process

% open afigure for progress bar

% Ex: [figHndl statusHndl] = statusbar(‘Calculating LS Per Tone ...");

% Ex #2 [figHndl statusHndl] = statusbar('Calculating LS Per Tone ...",2);
if it is the second window in the same file

% to update the status bar write for example thisin your loop that you want
to know the status of%

% Ex: forj=1.T

%  updatestatusbar(statusHndl,j,T);

% end

function [figHndl, statusHndl] = statusbar(namestring,n)

if nargin==1
n=1;
end
% open figure
figHndl = figure('Name',namestring,...
'IntegerHandl€','of f',...
'NumberTitle,'off',...
'MenuBar','none€,...
‘position’,[ 330 500-(n-1)* 70 400 40]);

% setup axes
statusHndl=axey( ...
'Units,'normalized, ...
'Position’,[0.05 0.1 0.9 0.6], ...
‘Box','on, ...
'‘UserData,0, ...
'Visble,'on', ...
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XTick',[1,'Y Tick',[], ...
"XLim',[0 1],"Y Lim',[0 1]):

9.2 Updatestatusbar.m

% Used in statusbar to update
function updatestatusbar(statusHndl ,status, maxstatus)

% make the axes with the handle statusHndl active
axes(statusHndl);
% fill the bar one additional step
xpatch=[0 status status O]/(maxstatus+1);
ypatch=[0 0 1 1];
patch(xpatch,ypatch,'r','EdgeColor','none’,'EraseM ode','none’);
view(2);
% save the current status of the bar
set(statusHndl,'UserData, status);
drawnow;
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9.3 Pressureaxis 205.m

%% Script that plots pressure distribution on axis for two cases

%% one case with radius of 2 wavelength and one with radius of 5
wavelength

clear dl; clc; close dl;

global dsigmak

tic

u0=0.005;

f=40000;

c0=343;

|ambda=cO/f;

rho0=1.21;

a=lambda* 2; %Radius of element

% On the axis on different distance
w=2*pi*f;

k=w/c0;

RO=(k* &2)/2; %Rayleigh distance.
rsteps=10000;% steps along axis
r=[1e-7:R0/rsteps.RO];
rl=sgri(r."2+a2);

t=1,

PO=rho0* cO* uo;

%% a = lambda* 2 %%%

p(1,:)=PO* (exp(i* (W*t-k*r))-exp(i* (w*t-k*rl)));
rgRO=r/RO0;
Pplot=abs(p)/PO;

figure;

plot(rgRO,Pplot,'k"); axis([0 1 0 2.3]);
xlabel (‘Distance/R0O);

ylabel (‘Pressure/PO");
text(0.5,2,'Radius = 2 * Wavelength');

%% a = lambda* 5 %%%
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a=lambda* 5; %Radius of element
% On the axis on different distance
w=2*pi*f;
k=w/cO0;
RO=(k* &2)/2; %Rayleigh distance.
rsteps=10000;% steps along axis
r=[1e-7:R0/rsteps.RO];
rl=sgri(r.\2+a2);

p(1,:)=PO* (exp(i* (W*t-k*r))-exp(i* (w*t-k*rl)));
rgRO=r/RO0;

Pplot=abs(p)/PO;

figure;

plot(rgRO,Pplot,'k’); axis([0 1 0 2.3));
xlabel (‘Distance/R0);

ylabel (‘Pressure/PO");
text(0.5,2,'Radius = 5 * Wavelength');
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9.4 Pressureofaxis 205.m

%% Script that plots pressure distribution off axis for two cases

%% one case with width and height of 2 wavelength and one with width
and height of 5

clear dl; clc; close dl;

global dsigmak

tic

u0=0.005;

f=40000;

c0=343;

lambda=cO0/f;

rho0=1.21;

a=1*lambda; %%Radius of element for case with radius 1 * wavelength
%a=2*lambda; %%Radius of element for case with radius 2 * wavelength
%a=5*ambda; %%Radius of element for case with radius 5 * wavelength

% On the axis on different distance

w=2*pi*f;

k=w/c0;

RO=(k* &2)/2; %Rayleigh distance.

rsteps=500;% steps along axis

z=[1e-7:0.6735/rsteps.0.6735];

%r1=sgrt(r. " 2+a2);

t=1; %time cant vary in this program. Its only the amplitude thats
interesting so it doesn’t matter

PO=rho0* c0* u0;

astep=50;
dsigma=a/astep;
sigma=0:dsigma:a;
Xistep=150;
dxi=pi/xistep;
xi=0:dxi:pi;
xtot=3*g;
xstep=200;
dx=xtot/xstep;
x=0:dx:xtot;
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[fig status]=statusbar('Cal culating Pressure for each zZ');
for n=1:length(z);

updatestatusbar(status,n,length(z));
[fig2 status2]=statusbar('Calculating Pressure over x for each z',2);
for m=1:length(x);
%tic
updatestatusbar(status2,m,length(x));
R2=feval ('R3',z(n),x(m),xi,sigma);
pl=sum(R2,2);
p(n,m)=i*k* PO/pi* exp(j* w*t)* sum(pl* dxi,1);
% toc
end
close('Calculating Pressure over x for each 7))

end

close('Calculating Pressure for each z')
% figure;

% plot(z/R0,abs(p)/PO); axis([0 1 0 2]);
% toc

%save rekt300g200;

P(:,xstep+2:2* xstep+2)=p;
P(:,1:xstep+1)=flipdim(p,2);
X(:,xstep+2:2* xstep+2)=x;
X(:,1:xstep+1)=-flipdim(x,2);

mesh(z(:,2:rsteps)/0.6735,X/a,abs(P(2:rsteps,:))'/PO); view([0 90])

axis equal

axis([01-11])

%text(0.06,0.04,'radius = 1 * wavelength’) %% For the case with radius 1
* wavelength

%text(0.06,0.04,radius = 2 * wavelength’) %% For the case with radius 2
* wavelength

%text(0.25,0.1,'radius = 5 * wavelength’) %% For the case with radius 5 *
wavelength
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save hildl
%save hild2
%save bild3

Functionsfor Pressureofaxis 205.m

R3.m
function R2=R3(Z,X ,xi,sigma);
global k dsigma

%[figHnd! statusHndl] = statusbar(‘Calculating the R matrix over r');

R=zeros(length(sigma),|ength(xi)); %R=zeros(length(r) length(teta),length(s
igma),length(xi));

%for k=1:length(r);
% updatestatusbar(statusHndl,k,length(r));
%[figHndI2 statusHndl2] = statusbar('Calculating the R matrix over
teta,2);
%for n=1:length(teta);
Y%updatestatusbar(statusHndl2,n,length(teta));
for m=1:length(xi);

for c=1:length(sigma);
R1(m,c)=sgrt((X-

sigma(c)* cos(xi(m)))*2+sigma(c)"2* (sin(xi(m)))"2+Z2"2);
R2(m,c)=sigma(c)* exp(-i* k* R1(m,c))/R1(m,c)* dsigma;

end

end

%end

%close (‘Calculating the R matrix over teta);

%end

%close('Calculating the R matrix over r');
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9.5 Pressure rect 4010.m

%% Script that plots pressure distribution for two cases
%% one case with width and height of 4 wavelength and one with width
and height of 10

clear dl; clc; close dll;
global dak

u0=0.005;
f=40000;
c0=343;
|ambda=cO/f;
rho0=1.21;

%a=lambda* 1; %Height of element in case a= lambda* 1
%a=lambda* 4; %Height of element in case a= lambda*4
%a=lambda* 10; %Height of element in case a= lambda* 10
b=3a; %Width of element

w=2*pi*f;
k=w/c0;
RO=(a* b)/lambda; %Rayleigh distance.

zstep=500; % Steps along z-axis

%ztot=R0; % Size of room in z direction in the case on axis

ztot=0.8575; % Size of room in z direction in the case off axiswhere RO is
0.8575 in the last case

z=[1e-7:ztot/zstep: ztot];

xstep=200; % Steps along x-axis

xtot=1*a; % Size of room in x direction
x=[-xtot:xtot/xstep:xtot]; % In the case off axis
%x=0; % In the case On axis

t=1;, %time cant vary in this program. Its only the amplitude thats
interesting so it doesn’t matter



PO=rho0* cO* uO;

astep=70;
da=alastep
A=-al2:daal2;
bstep=70;
db=b/bstep;
B=-b/2:db:b/2;

[fig status]=statusbar('Cal culating Pressure for each z);
for n=1:length(z);

updatestatusbar(status,n,length(z));
[fig2 status2]=statusbar(‘Calculating Pressure over x for each z',2);
for m=1:length(x);

updatestatusbar(status2,m,length(x));
R2=feval('R3',z(n),x(m),B,A);

pl=sum(R2,2);

p(n,m)=i*k* PO/pi* exp(i* w*t)* sum(pl* db,1);

end
close('Calculating Pressure over x for each z')

end
close('Calculating Pressure for each z')

figure;

% plot(z/R0,abs(p)/PO,'k"); axis([0 1 0 2]); % in the case on axis
% xlabel ('Distance/R0"); % in the case on axis

% ylabel ('Pressure/P0); % in the case on axis

mesh(z(:,2:zstep)/0.8575,x/a,abs(p(2:zstep,:)) /PO); view([0 90])
%text(0.5,1.7, Width and height = 1 * Wavelength'); %in the case a =
lambda* 1

%text(0.5,1.7,Width and height = 4 * Wavelength'); %in the case a =
lambda* 4
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%text(0.5,1.7,'Width and height = 10 * Wavelength'); %in the case a =
lambda* 10

%save hildl
%save hild2
%save hild3

Functionsfor Pressureaxis rect_4010.m

R3.m
function R2=R3(Z,X,A,B);
global k da

for s=1:length(B);

for c=1:length(A);
R1(s,c)=sqrt((X-A(c))"2+(B(s))"2+Z"2);
R2(s,c)=exp(-i*k*R1(s,c))/R1(s,c)*da;

end

end

9.6 Comparison.m

To get any results from this script it is necessary to run the two next coming
scriptsfirst, Large_element.m and Small_element.m

%% Script that reads and plots results to compare Array with large element.
%% The first operation is to make the sumation to an array
clear al; clc; close dll;

load rektWithFarfield2;
P(:,302:602)=p;
P(:,1:301)=flipdim(p,2);
X(:,302:602)=x;
X(:,1:301)=-flipdim(x,2);

distance=0.010%0.0125
M T=distance/dx;
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X1=-dx*(602+4* MT)/2:dx:dx* (602+4* M T)/2-dx;

S, )=P;

S(;,1+MT:602+MT,2)=P;

S(;,1+2*MT:602+2* M T,3)=P,

S(;,1+3*MT:602+3*MT ,4)=P;

S(;,1+4* M T:602+4* M T ,5)=P;

S=sum(S,3);

figure();

subplot(2,1,1);

mesh(z(:,2:1500),X 1/0.005,abs(S(2:1500,:)'/P0)); view([0 90]); axis([0 0.3 -
10 10));

title('Pressure in plane); ylabel (‘'Radia distance/radius of small element’)

figure();

subplot(2,1,2);

plot(z(2:1500),abs(S(2:1500,(602+4* M T)/2)/P0),'k"); axis([0 0.3 0 2));
title('Pressure on axis);xlabel ('Distance from source [meter]’);
ylabel (‘Pressure/PO")

figure(3)

plot(z(2:1500),abs(S(2:1500,(602+4* M T)/2)/P0),'k"); axis([0 0.3 0 2));
xlabel ('Distance from source [meter]'); ylabel ('Pressure/P0")
hold on;

clear dl;

load rektangular1000g300

figure(2)

subplot(2,1,2)

plot(z(2:1000),abs(p(2:1000,300)/P0),'k"); axis([0 0.3 0 2]);
title('Pressure on axis);xlabel ('Distance from source [meter]’);
ylabel (‘Pressure/PO")

figure(2);

subplot(2,1,1);

mesh(z(2:1000),x/0.005,abs(p(2:1000,:)/P0)"); view([0 90]);
axis([0 0.3 -10 10]); title('Pressure in plane);

ylabel('Radia distance/radius of small element’)
%z(2:100)/R0,x

figure(3)

plot(z(2:1000),abs(p(2:1000,300)/P0),'k-."); axis([0 0.3 0 2));
legend('Array','Large element’)
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9.7 Large element.m

%% Script that calculates pressure distribution from a rectangular element,
%% with the dimensionsaand b
clear dl; clc; close dll;

global dak

tic

u0=0.005;

f=40000;

c0=343;

lambda=cO/f;

rho0=1.21,;

a=0.005; %Height of element
b=0.0505; %Width of element

w=2*pi*f;
k=w/c0;
RO=(k*a"2)/2; %Rayleigh distance.

zstep=1000; % Steps along z-axis
ztot=0.32036; % Size of room in z direction
z=[1e-7:ztot/zstep: ztot];

xstep=300; % Steps along x-axis
xtot=0.05; % Size of room in x direction
X=[-xtot:xtot/xstep:xtot];

t=1;, %time cant vary in this program. Its only the amplitude thats
interesting so it doesn’t matter
PO=rho0* c0* u0;

astep=70;
da=alastep
A=-al2:da:al2;
bstep=100;
db=b/bstep;
B=-b/2:db:b/2;
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[fig status]=statusbar('Cal culating Pressure for each z);

for n=1:length(z);
%tic
updatestatusbar (status,n,length(z));
[fig2 status2]=statusbar('Calculating Pressure over x for each z',2);
for m=1:length(x);
%tic
updatestatusbar(status2,m,length(x));
R2=feval('R3',z(n),x(m),B,A);
pl=sum(R2,2);
p(n,m)=i*k* PO/pi* exp(i* w*t)* sum(pl* db,1);
%toc
end
%toc
close('Calculating Pressure over x for each z))

end

close('Calculating Pressure for each z')
toc

save rektangular1000g300;

Functionsfor Large element.m
R3.m

function R2=R3(Z,X,A,B);

global k da

for s=1:length(B);

for c=1:length(A);
R1(s,c)=sqrt((X-A(c))"2+(B(s))"2+Z"2);
R2(s,c)=exp(-i*k*R1(s,c))/R1(s,c)*da;

end

end
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9.8 Small_element.m

%% Script that calculates pressure distribution from a circular element,
%% with the radius a

clear dl; clc; close dll;

global dsigmak

tic

u0=0.005;

f=40000;

c0=343;

lambda=cO/f;

rho0=1.21,;

a=0.005;%0.005; %Radius of element

% On the axis on different distance

w=2*pi*f;

k=w/c0;

RO=(k* &2)/2; %Rayleigh distance.

rsteps=1500;% steps along axis

z=[1e-7:35* R0/rsteps.35* RO];

%r1=sgrt(r. " 2+a2);

t=1;, %time cant vary in this program. Its only the amplitude thats
interesting so it doesn’t matter

PO=rho0* c0* u0;

astep=100;
dsigma=a/astep
sigma=0:dsigma:a;
Xistep=250;
dxi=pi/xistep;
Xi=0:dxi:pi;
xtot=12*g;
xstep=300;
dx=xtot/xstep;
x=0:dx:xtot;

[fig status]=statusbar('Cal culating Pressure for each z);
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for n=1:length(z);

updatestatusbar(status,n,length(z));
%tic
[fig2 status2]=statusbar('Calculating Pressure over x for each z',2);

for m=1:length(x);
%tic
updatestatusbar (status2,m,length(x));
R2=feval ('R3',z(n),x(m),xi,sigma);
pl=sum(R2,2);
p(n,m)=i*k* PO/pi* exp(j* w*t)* sum(pl* dxi,1);
% toc
end
close('Calculating Pressure over x for each z))

%toc

end

close('Calculating Pressure for each z')
%figure;

%plot(z/R0,abs(p)/P0); axis([0 1 0 2]);
toc

save rektWithFarfield2;

Functionsfor Small_element.m

R3.m
function R2=R3(Z,X ,xi,sigma);
global k dsigma

%[ figHnd! statusHndl] = statusbar(‘Calculating the R matrix over r');

R=zeros(length(sigma),length(xi));%R=zeros(length(r) length(teta),length(s
igma),length(xi));

%for k=1:length(r);

% updatestatusbar(statusHndl,k,length(r));

%[figHndI2 statusHndl2] = statusbar('Calculating the R matrix over
teta,2);
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%for n=1:length(teta);
Yupdatestatusbar(statusHndl 2,n,length(teta));
for m=1:length(xi);

for c=1:length(sigma);
R1(m,c)=sgrt((X-

sigma(c)* cos(xi(m)))*2+sigma(c)"2* (sin(xi(m)))"2+Z2"2);
R2(m,c)=sigma(c)* exp(-i* k* R1(m,c))/R1(m,c)* dsigma;

end

end

%end

%close (‘Calculating the R matrix over teta);

%end

%close('Calculating the R matrix over r');
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