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1 Notation 

A Constant  

a Radius or width (m) 

b Height (m) 

c Sound velocity (m/s) 

f Frequency  (Hz) or function of outgoing wave 

g  Function of incoming wave 

i  Imaginary number 

k Wave number (rad/m) 

0P  Pressure amplitude (kg/ms2) 

p Pressure (Pa) 

Q  Volume flow (m3/s) 

Q&  Source strength (m3/s2) 

vq&  Source strength per unit volume (1/s2) 

aq&  Source strength per unit area (m/s2) 

R Distance (m) 

0R  Rayleigh distance (m) 

r Radial direction 

S Area (m2) 

t Time (s) 

u Velocity (m/s) 

pu&  Piston acceleration (m/s2) 

x Direction  

y Direction  

z Displacement (m) 
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γ  Ratio of specific heat 

λ  Wavelength (m) 

ξ  Displacement (m) 

ρ  Density (kg/m3) 

σ  Radial direction  

τ  Time coordinate system (s) 

φ  Velocity potential (m/s) 

ψ  Angle (rad) 

ω  Angle velocity (rad/s) 
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2 Introduction 

Often when one thinks about creating sound one thinks about a speaker that 
uses a piston movement to create the sound. This way of creating sound is 
not the only way. The audible sound can be created in midair by using 
ultrasound and the non-linearity in air. 

If one sends out two frequencies with high frequency and amplitude into an 
nonlinear medium, in our case air, a third frequency can be heard, namely 
the difference frequency. In this thesis this phenomenon will be shown both 
theoretically and by measurement on a speaker, which was constructed 
within the project. There are many advantages of creating sound this way 
instead of the ordinary way. One of the advantages is that the sound that is 
created is very directed even of low frequencies. The directivity of sound is 
a problem in conventional speaker. The problem is that the low frequencies, 
is spreading in almost all directions in the room, and the higher frequencies 
are more directed. If one instead creates sound by sending out ultrasonic 
frequencies the nonlinearly created audible sound get the same directivity 
as the ultrasonic frequencies, which have a very narrow spreading beam.  A 
simile can be done with a light bulb and a torch, the conventional speaker 
radiates the sound like a light bulb is radiates the light, the ultrasonic 
speaker is on the other hand radiating the sound more like a torch or a 
spotlight see figure 2.1.  

 
Figure 2.1. Light bulb versus torch. 

The directivity of a speaker that creates sound using ultrasound can be a 
huge advantage in for example a museum where you only want the people 
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in front of a particular painting to hear the information of that painting, and 
the rest of the visitors can concentrate on the other parts of the exhibition. 
Another interesting advantage is that the speaker can be built very thin and 
that can be of commercial interest in these days of flat screen TVs. For a 
comparison between the thicknesses see figure 2.2  

 
Figure 2.2. Comparison of thickness of speaker. 

 

In figure 2.2 the sound creating units of the speaker is compared. A 
conventional speaker does not produce sound very well without a speaker 
box and the speaker box need to be quite large. In our case with the speaker 
that uses the nonlinearity in air to create sound there is no need for any 
speaker box. 
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3 Vibrations and sound 

A medium that is in complete rest is silent i.e. there is no sound. When for 
example people talk, vibrations occur to vocal cords. As a result of these 
vibrations sounds are created. This means that the vibrations are the source 
of sound. Other sources of sound are loudspeakers and all kinds of music 
instrument. But all vibrations are not audible, they have to be in the right 
frequency and amplitude. The audible sound for a human lies in the range 
of about 20 to 20,000 Hz with pressure range about 2*10-5 to about 100 Pa. 
Usually sound pressure is given in decibels, dB. Decibel is not a unit in the 
sense that a meter or a gram, a decibel is a relationship between two values 
of power. In this case the relationship is often between the lowest hear able 
sound pressure namely about 10-5 Pa and the measured sound pressure [1].  

The formula for decibels is: 

PowerB
PowerA

dB ⋅= 10
    (3.1) 

Power of sound varies as the square of pressure and if a value is squared its 
logarithm is doubled, so the decibels formula becomes. 

BpressureSound
ApressureSound

BpressureSound
ApressureSound

dB log20log10
2

⋅=







⋅=  

     (3.2) 

As mentioned previously sound pressure B is often the lowest sound 
pressure that is possible to hear, namely 2*10-5 Pa. A sound pressure of 100 
Pa is 133 dB (re 20µPa).  

133
102

100
log20 5 ≈

⋅
⋅ − dB (re 20µPa)  (3.3) 

The pain threshold is about 120 dB (re 20µPa). 

Sound with frequencies lower than 20 Hz is often called infrasound and 
sound with higher frequencies than 20 kHz is called ultrasound. Ultrasound 
is going to be used a lot in this thesis. 



 9

Sound travels in an elastic medium in a form of wave motion. It is often 
called sound wave. Waves can be of various types the most common types 
are longitudinal waves and transverse wave. Sound waves propagating in 
air are longitudinal waves. The wave length depends on the frequency and 
the sound velocity. 

fc=λ     (3.4) 

Ultrasonic sound is often created with piezoceramic elements that 
transform an electric signal to sound. The sound beam the elements create 
can be divided in a couple of zones [2]. The zone nearest the element is 
called the near field or the Fresnel zone, in this zone the amplitude changes 
substantially. The amplitude changes is due to that the same wave is sent 
from each part of the element, the phase difference between all these waves 
affect the amplitude. On greater distance from the element these phase 
differences becomes less important. Therefore the wave gets more stable 
and spread more like a spherical wave in the so called far field or 
Fraunhofer zone. The length of the Fresnel zone depends both on the 
frequency and the size of the element, this will be shown in chapter 4. 
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4 Basics of nonlinear acoustics 

The wave equations, which are usually used in solutions to acoustical 
problems, are valid only when the signal propagation is relatively small. In 
the derivation of these formulas the maximum displacement of the air 
particles is assumed to be small compared to the wavelength. This makes 
the density appear to be a linear function of the pressure. When these 
assumptions are no longer valid the wave will change shape as it propagates 
in the medium.  

Each part of the wave travels with a velocity that is the sum of the signal 
velocity and the particle velocity [3]. In other words the peaks travel with a 
higher velocity than the rest of the wave. This makes the wave deforming 
as it propagates.  

 
Figure 4.1 . Wave as it propagates through the medium 

 

In this thesis the fact that the non-linearity in air creates new frequencies if 
at least two frequencies are sent in to air is very important. In the following 
example this fact will be shown. 
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4.1 Difference and Sum Frequency 

We start with three equations of hydrodynamics for one-dimensional plane 
motion [4]. 

The first one is a generalization of the second Newton law with respect to a 
continuous medium. 

x
p

t ∂
∂

−=
∂
∂

2

2

0
ξ

ρ     (4.1) 

Where the variable ( )tx,ξ  is the displacement of the medium particles from 
the initial position x0.     

The second one is the law of conservation of mass written down in 
differential form.  









∂
∂

+=
x
ξ

ρρ 10

    (4.2) 

And the third one is the equation of state. 

( )
γ

ρ
ρ

ρ 







==

0
0ppp

   (4.3) 

(4.2) can be rewritten. 

x∂
∂

+
=

ξ
ρ

ρ
1

0

    (4.4) 

Put (4.4) into (4.3) 

( )


















∂
∂

+
==

x

ppp
ξ

ρ
ρ

1

0

   (4.5) 
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γ

γ

γ
ξ

ρ

ξ
ρ

ρ
ρ −









∂
∂

+=























∂
∂

+
=








=

x
pxppp 1

1
0

0

0

0
0

0

  (4.6) 

(1.6) into (1.1) 



















∂
∂

+
∂
∂

−=
∂
∂

−γ
ξξ

ρ
x

p
xt

102

2

0

   (4.7) 

1

2

2

02

2

0 1
−−









∂
∂

+
∂
∂

=
∂
∂ γξξ

γ
ξ

ρ
xx

p
t  

rewriting 

1

2

2

0

0
2

2

1
+









∂
∂

+

∂
∂

⋅=
∂
∂

γξ

ξ

ρ
γξ

x

xp
t

   (4.8) 

This equation is the non-linear Earnshaw equation. 

The denominator can be rewritten with the approximate relationship in 
form of the general type nonlinearity expansion in terms of power 
nonlinearities. 

( )

( ) ( )( )
21

21
2
1

111 







∂
∂

+++
∂
∂

+−≈







∂
∂

+
+−

xxx
ξ

γγ
ξ

γ
ξ γ

 (4.9) 

Substituting this expression in Earnshaws equation gives. 

( ) ( )( ) 

















∂
∂

+++
∂
∂

+−
∂
∂

⋅=
∂
∂

2

2

2

0

0
2

2

21
2
1

11
xxx

p
t

ξ
γγ

ξ
γ

ξ
ρ

γξ
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This can be written: 

( ) ( )( ) 

















∂
∂

+++
∂
∂

+−
∂
∂

⋅=
∂
∂

2

2

2
2
02

2

21
2
1

11
xxx

c
t

ξ
γγ

ξ
γ

ξξ

 (4.10) 

where 
2
1

0

0
0 








=

ρ
γp

c is the equilibrium sound velocity. 

( ) ( )( )
2

2

2

2

2

2

2

2
0

2

2

21
2
1

1
1









∂
∂

++⋅
∂
∂

+
∂
∂

+⋅
∂
∂

−
∂
∂

=
∂
∂

xxxxxct
ξ

γγ
ξξ

γ
ξξξ

 (4.11) 

This can be rewritten to a nice nonlinear wave equation containing 
quadratic nonlinear and cubic nonlinear terms. 

( ) ( )( )
2

22

2

2

2

2

2
0

2

2

21
2
1

1
1

xxxxtcx ∂
∂









∂
∂

++⋅−
∂
∂

⋅
∂
∂

+=
∂
∂

−
∂
∂ ξξ

γγ
ξξ

γ
ξξ

 (4.12) 

To investigate if any new frequencies are created when a couple of 
frequencies are propagating through air we are doing a simple calculation. 

The calculations are made with the biharmonic boundary condition at x=0: 

tAtA 2211 sinsin ωωξ +=    (4.13) 

This is a signal which has two frequencies before it has propagated in air.  

where A1 is the amplitude of the first frequency A2 the amplitude for the 
second one. The frequencies 1ω  and 2ω are in radians. 

We start to investigate the quadratic non-linearity. 

( )
2

2

2

2

2
0

2

2

1
1

xxtcx ∂
∂

⋅
∂
∂

+=
∂
∂

−
∂
∂ ξξ

γ
ξξ

   (4.14) 

The left hand side is linear so it is the right hand side that is important in 
this case. 
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First of all we change the coordinate system to a coordinate system that 

travels with the wave with the sound velocity, 




 −=

0c
xtτ . The signal is 

written with the new coordinate system. 






 −+





 −=+=

0
22

0
112211 sinsinsinsin c

xAc
xAAA τωτωτωτωξ

 

Develop each part individually. 

0

2

0
22

0

1

0
11

0
22

0
11

coscos

sinsin

cc
xA

cc
xA

c
xAc

xA
xx

ω
τω

ω
τω

τωτω
ξ

⋅




 −−⋅





 −−=

=












 −+





 −

∂
∂

=
∂
∂

 (4.15) 

2

0

2

0
22

2

0

1

0
112

2

sinsin 







⋅





 −−








⋅





 −−=

∂
∂

cc
xA

cc
xA

x
ω

τω
ω

τω
ξ

 

All parts together becomes 
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( )

( )

( )















⋅⋅+

+







⋅








⋅⋅+

+







⋅








⋅⋅+

+














⋅⋅⋅+=

=





















⋅−








⋅−⋅

⋅







⋅−⋅−⋅+=

=
∂
∂

⋅
∂
∂

+=
∂
∂

−
∂
∂

3

0

2
22

2
2

0

1

2

0

2
2112

0

2

2

0

1
1212

3

0

1
11

2
1

2

0

2
22

2

0

1
11

0

2
22

0

1
11

2

2

2

2

2
0

2

2

sincos

sincos

sincos

sincos1

sinsin

coscos1

1
1

c
A

cc
AA

cc
AA

c
A

c
A

c
A

c
A

c
A

xxtcx

ω
τωτω

ωω
τωτω

ωω
τωτω

ω
τωτωγ

ω
τω

ω
τω

ω
τω

ω
τωγ

ξξ
γ

ξξ

 

If we rewrite this once more we can see that the first harmonic of the 
frequencies has been created. 
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( )

( )







⋅








⋅








+







+⋅








⋅








⋅++

+




























⋅+








⋅

⋅+=

=
∂
∂

−
∂
∂

τωτω
ωω

τωτω
ωω

γ

τω
ω

τω
ω

γ

ξξ

12
0

2

2

0

1

21
0

1

2

0

2
12

2

3

0

22
21

3

0

12
1

2

2

2
0

2

2

sincos

sincos1

2

2sin2sin
1

1

cc

cc
AA

c
A

c
A

tcx

 (4.16) 

The rest of the solution is treated separately. 
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All parts together gives. 
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(4.17) 

Here we can see that the first harmonic of the two initial frequencies, the 
sum of the frequencies and the difference frequency is created when the 
signal is propagating through the medium. 
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4.1.1 Difference Frequency 

The most important one of the created frequencies is, in this thesis, the 
difference frequency. This is the frequency that will be audible if the 
original frequencies lies less than 20 kHz from each other.   

The difference frequency is created due to that the sound waves are 
propagating through the nonlinear air, and it therefore takes a while for the 
difference frequency to be created. The distance it takes for the difference 
frequency to be created depends among other things on the amplitudes of 
the original frequencies; higher amplitudes mean a shorter distance.  

The amplitude of the difference frequency is only a fraction of the 
amplitude of the original frequency, due to the fact that the created sound is 
only a biproduct and the most energy is still in the original frequencies. 
Calculations can be done with Burgers´ equation to look further in to these 
facts.  

The results of such calculations are very hard to compare with 
measurements because we are not able to measure the amplitudes with the 
accuracy needed. For example we do not know the amplification of the 
mixer used in the measurements and we also do not know the sensitivity 
and frequency response of the microphone. The calculations with Burgers´ 
equation is therefore left out in this thesis. 
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5 Radiation from a baffled piston 

The difference frequency is radiating as the beam of the ultrasonic sound. 
This fact makes it interesting to know how the “ultrasonic beam” look 
likes, in order to understand how the audible sound radiates. There are 
many variables that affect how the beam of ultrasound looks like. 

• Size of the element or the array of elements 

• Frequency 

• Shape of the element or the array of elements 

All these variables will be investigated further below  

A baffled piston, a piston surrounded of a rigid plane, radiates sound a little 
different from a piston which is not baffled. A baffled piston radiates only 
in the hemisphere in front of the piston not the whole spherical room. 

5.1 Derivation of Rayleigh Integral  

A baffled piston can be seen as a large number of point sources [2]. So first 
of all we will investigate how a point source radiates sound. The derivation 
does not need to consider nonlinearity, it is linear. 

It can pretty easily be shown that the wave equation for spherical waves  

0
12

2
0

=−+ ttrrr cr
φφφ      (5.1) 

where φ  is the velocity potential defined by φ∇=u  

has the general solution 

( ) ( )tcrgtcrfr 00 ++−=φ    (5.2) 

Where the first term is an outgoing spherical wave and the second term is 
an incoming spherical wave. In our case the incoming wave does not exist 
due to we have no reflection and things like that, the solution is 
conveniently expressed as 
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( )
r

crtf 0−
=φ     (5.3) 

We now look at a small pulsating sphere. The volume flow of fluid is ( )tQ  
from the source. 

( ) ( ) ( )tauatQ r ,4 2 ⋅⋅= π    (5.4)
  

where a is the radius of the sphere and u(r) is the radial component of the 
velocity. 

In the case with the baffled piston the radiation is restricted to the 
hemisphere in front of the piston not the whole spherical space. Therefore 
the factor π4  in equation (5.4) is replaced by π2 , this gives the equation. 

( ) ( ) ( )tauatQ r ,2 2 ⋅⋅= π    (5.5) 

The radial component of the velocity can be expressed with equation (5.3) 
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This expression is put into equation (5.5) 
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To consider the sphere as a point source the radius a has to be very small 
therefore we take the limit as the radius 0→a . 

( ) ( )tftQ
a

π2lim
0

−=
→     (5.8)

 

The pressure is 
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( )
r

crtf
p t

0
00

−′
⋅−=−= ρφρ    (5.9) 

Equation (5.8) gives 

( ) ( )
π2
tQ

tf −=     (5.10) 

and the derivative is 

( ) ( )
p
tQ

tf
2

&
−=′     (5.11) 

Equation (5.9) gives the pressure 

( )
r

crtQ
p

π
ρ

2
00 −⋅

=
&

    (5.12) 

This is the pressure for one point source. 

The quantity Q&  is often called the source strength. If the element we are 
interested in is not small enough to be expressed as a point source we may 
divide it into small elements which individually act as point sources.  

The radiation received at the field point (x,y,z) is the sum of the radiations 
from point sources. 

( ) ( )
zdydxd

R
cRtzyxq

tzyxp
V

v ′′′−′′′
= ∫ π

ρ
2

;,,
,,, 0

0

&
  (5.13) 

R is the distance from the point on the source ),,( zyx ′′′  to the field point 
(x,y,z)  see figure 5.1. 
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Figure 5.1. Radiation from body of arbitrary shape. 

where vq&  is the source strength per unit volume. The time 0cR is the time 
it takes for the wave to travel from the source to the field point. 

In most cases the sources are flat and represent an area instead of a volume, 
this gives the pressure 

( ) ( )
dS

R
cRtyxq

tzyxp
S

a∫
−′′

=
π

ρ
2
;,

,,, 0
0

&
  (5.14) 

The piston is in the x,y plane so all z′  is zero, see figure 5.2. 
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Figure 5.2. Radiation of flat piston of arbitrary shape. 

In this case aq&  is the source strength per unit area or the volume 
acceleration per unit area, it is simply the piston acceleration pu& . 

( ) ( )
dS

R
cRtyxu

tzyxp
S

p∫
−′′

=
π

ρ
2

;,
,,, 0

0

&
  (5.15) 

This equation is often called the Rayleigh integral. 
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5.2 Time Harmonic Signals 

The vibrations in a piston like element are often time harmonic [2], that is 

ti
p euu ω

0=     (5.16) 

The acceleration term in equation (5.15) becomes 

( ) ( )( ) ( )00
000;, cRticRti

p euieu
t

cRtyxu −− ⋅⋅⋅=
∂
∂

=−′′ ωω ω&  (5.17) 

A commonly used expression is the wave number that is defined as 

0ck ω=      (5.18) 

The angle velocity can then be expressed as 

0ck ⋅=ω     (5.19) 

The acceleration term can be expressed as 

( ) ikRtiikRti
p euckieuicRtyxu −− ⋅⋅⋅⋅=⋅⋅⋅=−′′ ωωω 0000;,&  (5.20) 

The pressure then becomes 
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,,, 00
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We now move all the constant terms outside the integral. 
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The pressure amplitude 000 uc ⋅⋅ρ  is denoted 0P  
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,,, 0   (5.23) 
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5.3 Circular elements 

The elements that are used in the construction of the loudspeaker in this 
thesis are circular. It is therefore interesting to investigate how the radiation 
looks like from a circular piston. In this case the surface integral can be 
changed to a double integral over the radius of the piston and the angle ψ  
see fig 5.3. 

 
Figure 5.3. Radiation from circular piston. 

Due to symmetry we can locate the field point in the x,z plane. The 
symmetry also makes it possible to locate two identical elements on the 
source, one when ψ goes in the positive direction and one when it goes in 
the negative direction. These two elements have the same distribution to the 
pressure in each field point so instead of calculating the distribution from 
each of the two elements the pressure is calculated for one of the elements 
and then doubled to get the total pressure. The two elements have the 
combined area 

ψσσ dddS ⋅⋅⋅= 2     (5.24) 

The pressure radiation from a circular piston becomes 

z 

x 

y

ψ

dS

ds

a

R
(x,0,z) 

rs ′=
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The distance R is still the distance from the source point to the field point. 
In this case it can be calculated from the two vectors r and r´. 

rrR ′−=     (5.26) 

Often the Rayleigh distance is mentioned, it is the distance which roughly 
marks the end of the near field. Rayleigh distance is denoted [2] 

λ
S

R =0
    (5.27) 

Where S is the area of the element. For a circular piston this becomes.  

2

22

0
akaS

R
⋅

=
⋅

==
λ

π
λ    (5.28) 

Vector r is the vector from the origin to the field point. 

kzjixr ++= 0     (5.29) 

Note that i is not the imaginary unit in this case.  

Vector r´ is the vector from the origin to the source point. 

0sincos ⋅+⋅+⋅=′ kjir ψσψσ    (5.30) 

The distance R then becomes. 

( ) 2222 sincos zxrrR ++−=′−= ψσψσ   (5.31) 

The pressure is calculated with use of MATLAB in a couple of cases.  
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5.3.1 Sound field on axis 

As told in chapter 3 the field in front of the element can be divided in the 
near field and the far field. The near field is the part with heavily varying 
amplitudes, in this case with circular elements the amplitude has nulls along 
the distance see figure 5.4. The number of nulls depends on how long the 
wavelength is compared to the radius of the element. If the wavelength is 
half the radius there are two nulls and so on, see figure 5.4 and figure 5.5. 
The special case on axis can be solved analytically. [2]  

The infinitesimal element can be seen as a ring around the centre of the 
piston. The area of the element is  

σσπ ddS ⋅⋅⋅= 2     (5.32) 

The distance from the source point to the field point is simply 

22 σ+= rR     (5.33) 

The Rayleigh integral can now be rewritten 

( ) ∫ ⋅⋅⋅⋅⋅⋅=
−a ikR

ti d
R

e
ePkitzyxp

0
0,,, σσω   (5.34) 

The integral can now be changed from one over σ to one over R with the 
fact that RdRd =σσ  [2]. The integral is now 

( ) ( ) ( )[ ]max

max

00,,, krtikrti
r

r

ikRti eePdReePkitzyxp −−− −=⋅⋅⋅⋅⋅= ∫ ωωω  (5.35) 

where 22
max arr +=     (5.36) 

This integral is solved for every point on the axis in a MATLAB script that 
can be seen in appendix 9.3.  



 29

 

 
Figure 5.4. Pressure distribution on axis. 

 

 
Figure 5.5. Pressure distribution on axis. 
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5.3.2  Sound field off axis 

One thing that can not be seen on the axis is how directed the sound beam 
is, therefore the pressure distribution off axis is calculated. 

Off axis the pressure is calculated from equation (5.25) in a little more 
complex MATLAB script that can be seen in appendix 9.4. The result can 
be seen in figure 5.6. The result is of course the same on the axis. A very 
interesting and useful thing to notice is that when the wavelength decreases, 
the sound beam gets more directed. When the wavelength is relatively large 
compared to the piston radius the sound is radiating spherically, but when 
the wavelength get smaller the sound is radiating more like a beam.  

 

 
Figure 5.6. Pressure distribution off axis. 
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5.4 Rectangular elements 
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Figure 5.7. Radiation from rectangular piston. 

 

We start with the Rayleigh integral [2]. 
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We use the same expression for the acceleration term as before and in this 
case the two elements have the combined area 

dydxdS ⋅⋅= 2     (5.38) 

We get the pressure equation 

( ) dydx
R

eePki
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a ikRti
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⋅⋅⋅

=
−πω

π 0 0
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The distance from the source point to the field point is in this case 
described as 

( ) ( ) 222 zyyxxR +′−+′−=    (5.40) 
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Rayleigh distance for a rectangular piston is 

λλ
baS

R
⋅

==0     (5.41) 

where a and b is the height and width of the element. 

 

5.4.1 Sound field on axis 

To calculate the sound field on axis for a rectangular piston the Rayleigh 
integral is used. There is no simplification done, as in the case of circular 
piston. To make it easier to compare with the result from the circular piston 
the outer dimension is the same as for the circular piston, and the piston is 
square. The result from the calculations can be seen in figure 5.8 and figure 
5.9. 

 
Figure 5.8. Pressure distribution on axis. 
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Figure 5.9. Pressure distribution on axis. 

One significant difference from the circular piston is that the nulls, that 
where present in the case with circular elements, is now only dips in the 
amplitude. The near field is therefore much smoother for a rectangular 
piston than for a circular piston.  
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5.4.2 Sound field off axis 

To calculate the pressure distribution off axis for the  rectangular element 
the same MATLAB script was used as for rectangular on axis. The results 
from the calculations are similar to the ones from circular element off axis. 
The greatest difference can be seen on the near field, see figure 5.10. The 
same conclusions about that a smaller wavelength makes a narrower sound 
beam can be made here.  

 
Figure 5.10. Pressure distribution off axis for rectangular element. 
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5.5 Array of elements 

An array is when many elements are put in a pattern. The way this pattern 
is designed determines how the sound field will look like. An advantage of 
using an array is that a higher output level is possible than with a single 
element. Because of the larger dimensions the directivity of an array is 
higher than for a single element. A disadvantage is that the near field, due 
to the larger dimensions, is more heavily changing amplitude. One way to 
get a smoother near field is to place the elements in a rectangular pattern, 
this has the same effect on the near field as for a single element that is 
rectangular instead of circular. To calculate the pressure distribution from 
an array the pressure distribution from many single elements are simply 
summed in each point that are coinciding.  

A calculation of a five element line array has been done to compare the 
near and far field of an array with the same outer dimension as a large 
element. The frequency is 40 kHz and the elements in the array have the 
radius five millimetres, the distance between the elements is ten 
millimetres. The single element that the comparison is made with is five 
times fifty millimetres. The MATLAB scripts for this calculation can be 
seen in appendix 9.6 to 9.8.  

In figure 5.11 and figure 5.12 the results from the calculations are 
presented. The most obvious difference is that the near field is not the same 
for the two calculations.  The plots of the pressure distributions on axis may 
be misleading, because in the array the whole area is not producing 
pressure so the pressure looks pretty much the same on axis but if we look 
at the pressure between two elements it is far from the same. This means 
that an array cannot be simplified as one element when it is interesting what 
happens in the near field. In some cases the directivity in the far field can 
be calculated with the simplification with one single element, but only 
when only the far field is of interest. The simplification is only valid when 
the distance between the elements is small. If the distance is so small that 
the elements in the array cover the whole area, the simplification is then of 
course valid in both the near field and the far field. 
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Figure 5.11. Pressure distribution from 5 element line array. 

 

 
Figure 5.12. Pressure distribution from large piston. 
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To compare the results on axis further the plots from the two calculations 
are put in the same figure, see figure 5.13. Here it can be seen that the 
pressures follow each other very well. The amplitude difference is due to 
that the single large element has a larger area than the array.  

 

 
Figure 5.13. Pressure distribution on axis in the two cases. 
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6 The Speaker 

6.1 Building the speaker 

There are a couple of parameters to think about when a speaker of this kind 
should be built.  

• Size 

As large as possible to get a narrow beam, but not to big because of 
a larger element gives a longer near field 

• Shape 

A rectangular array makes the near field less jumpy 

• Distance between elements 

If the distance is great the phase difference is large. 

• Manageable number of elements in the array 

It takes some time to solder all elements 

• Two fields 

It is not possible in this case to play both frequencies in all of the 
elements. If this is done the nonlinearity arise in the element instead 
of in the air in front of the speaker. 

• If possible; four fields 

Four fields can make it possible to make experiments on 
“Disappearing Sound”. 

The speaker was built before all calculations were made, so some 
assumptions made before the calculations may be incorrect. The speaker is 
built with 196 piezo ceramic elements which are connected in parallel in 
two groups. The reason to divide the elements into two groups is as said in 
the list above that it is a great risk that the difference frequency is created in 
the elements due to nonlinearity in these instead of in the air. It is possible 
by a simple operation to divide the elements into four groups. This can be 
used to make experiments on “Disappearing sound”. “Disappearing sound” 
is when two pairs of high frequency at high amplitude are creating the same 
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difference frequency but one frequency in one of the pairs is in another 
phase. This makes the difference frequency audible only in a limited area. 

The finished speaker can be seen in figure 6.1. 

 

 
Figure 6.1. Front and back of the speaker. 
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6.2 Creating the Signal 

It is of great interest that the speaker can be used as a demonstration unit, to 
show that it is really possible to create sound by using the nonlinearity in 
air. To make the speaker more interesting as a demonstration unit it has to 
be able to change frequency, because it is getting very annoying to listen to 
a single frequency for a long time. This is done by programming the signal 
generator with the program LABVIEW in a computer.  

One of the two frequencies is the same at all times and the other frequency 
is changed up and down randomly in the chromatic scale. It is not really 
interesting to make a more detailed explanation of how the signal generator 
was programmed, but a screenshot from the program is presented in figure 
6.2. 

 

 
Figure 6.2 Screenshot from LABVIEW.  
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6.3 Measuring the speaker 

Some measurements are made of the speaker. The biggest reason for this is 
to ensure that it really is the difference frequency that appears. One 
interesting thing to measure is how the frequencies change on different 
distances from the speaker. A couple of different measurement set ups 
where tried, the hardest task was to move the microphone in a straight line 
in front of the speaker. The final solution was to use a robot that holds a 
microphone and makes a perfect sweep over the measurement domain. The 
signal from the microphone first ran through a mixer that amplified the 
signal, and then the signal was filtered and sent to a lock in amplifier that 
gave the amplitude and phase of the selected frequency. LABVIEW was 
used to collect the data. 

A schematic picture of the measurement set up can be seen in figure 6.3. 

 

 
Figure 6.3 Schematic picture of measurement set up. 
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Three measurement results are presented in figure 6.4 to figure 6.6. The 
figures show the amplitude at the axis for the speaker both for the 
difference frequency (1 kHz) and for the two initial frequencies (40 and 
41 kHz).  

 

 
Figure 6.4. 40 kHz. 

 

 
Figure 6.5. 41 kHz. 
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Figure 6.6. 1 kHz. 

 

As can be seen in figure 6.4 and 6.5 the ultrasonic frequencies are damped 
out quite quickly. It is in the high peak in the ultrasonic field that the 
hearable 1 kHz tone is created. The audile tone in figure 6.6 seems to die 
out quite fast as well, but this can be a little misleading. If one listens in 
front of the speaker the difference frequency can be heard at great 
distances, because ears are extremely sensitive detectors. The ears 
sensitivity for sound amplitude is logarithmic. For the same reason the 
sound level is often measured in decibels [1]. It is a good idea to look at the 
result of the difference frequency in logarithmic scale on the amplitude 
axis. Figure 6.7 shows the same as figure 6.6 but the amplitude is presented 
in logarithmic scale. 
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Figure 6.7 1 kHz, logarithmic amplitude scale. 
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7 Discussion and conclusion 

The most interesting thing with the speaker is not any calculations or 
measurement results, it is to actually listen to the speaker. It is very clear 
that the sound is very directed. You do not hear the sound if you are not in 
the beam of sound and if there are no reflections.  

The speaker has already been used at a demonstration at a local school 
playing simple one tone melodies, and the students all seemed very amazed 
by the fact that the sound they heard did not come from the speaker but 
from the wall that reflected the sound. I take that reaction as a proof that I 
have built an interesting demonstration unit. 

It is possible to move the point on the wall that reflects the sound by simply 
redirect the speaker in another direction. This can be used to fool the 
listener that the sound comes from an object that can not produce sound 
itself.  

To be used commercially the speaker has to be able to play any sound, not 
only simple sinusoidal tones. This can be done with some signal processing 
and some additional theory. Due to lack of certain equipment, such as 
digital to analogue converters that can manage very high frequencies, and 
also due to some lack of time, no attempts on creating more complex sound 
has been done.   
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9 Appendix MATLAB scripts 

There are a couple of MATLAB functions that are used in almost every 
script in this thesis. These two functions shows the status of the progress in 
the scripts, the reason is that the scripts can take a while to run. 

9.1 Statusbar.m 

% STATUSBAR - statusbar.m makes a figure that shows the status of o 
process 
% open a figure for progress bar 
%  Ex:  [figHndl statusHndl] = statusbar('Calculating LS Per Tone ...'); 
%   Ex #2 [figHndl statusHndl] = statusbar('Calculating LS Per Tone ...',2); 
if it is the second window in the same file 
%  to update the status bar write for example this in your loop that you want 
to know the status of%   
% Ex:   for j=1:T 
%      updatestatusbar(statusHndl,j,T); 
%       end 
function [figHndl, statusHndl] = statusbar(namestring,n) 
 
if nargin==1 
    n=1; 
end 
% open figure 
figHndl = figure('Name',namestring,... 
  'IntegerHandle','off',... 
      'NumberTitle','off',... 
      'MenuBar','none',... 
      'position',[330 500-(n-1)*70 400 40]); 
 
% setup axes  
   statusHndl=axes( ... 
        'Units','normalized', ... 
        'Position',[0.05 0.1 0.9 0.6], ... 
        'Box','on', ... 
        'UserData',0, ... 
        'Visible','on', ... 
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        'XTick',[],'YTick',[], ... 
        'XLim',[0 1],'YLim',[0 1]); 

9.2 Updatestatusbar.m 

% Used in statusbar to update 
function updatestatusbar(statusHndl,status,maxstatus) 
 
% make the axes with the handle statusHndl active 
axes(statusHndl); 
% fill the bar one additional step  
   xpatch=[0 status status 0]/(maxstatus+1); 
   ypatch=[0 0 1 1]; 
   patch(xpatch,ypatch,'r','EdgeColor','none','EraseMode','none'); 
   view(2); 
% save the current status of the bar  
   set(statusHndl,'UserData',status); 
   drawnow; 
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9.3 Pressureaxis_2o5.m 

%% Script that plots pressure distribution on axis for two cases  
%% one case with radius of 2 wavelength and one with radius of 5 
wavelength 
clear all; clc; close all;  
 
global dsigma k 
tic 
u0=0.005; 
f=40000; 
c0=343; 
lambda=c0/f; 
rho0=1.21; 
a=lambda*2; %Radius of element 
 
% On the axis on different distance 
w=2*pi*f; 
k=w/c0; 
R0=(k*a^2)/2; %Rayleigh distance. 
rsteps=10000;% steps along axis 
r=[1e-7:R0/rsteps:R0]; 
r1=sqrt(r.^2+a^2); 
t=1; 
P0=rho0*c0*u0; 
 
%% a = lambda * 2 %%% 
    p(1,:)=P0*(exp(i*(w*t-k*r))-exp(i*(w*t-k*r1))); 
rgR0=r/R0; 
Pplot=abs(p)/P0; 
 
figure; 
plot(rgR0,Pplot,'k'); axis([0 1 0 2.3]); 
xlabel('Distance/R0'); 
ylabel('Pressure/P0'); 
text(0.5,2,'Radius = 2 * Wavelength');  
 
%% a = lambda * 5 %%% 
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a=lambda*5; %Radius of element 
% On the axis on different distance 
w=2*pi*f; 
k=w/c0; 
R0=(k*a^2)/2; %Rayleigh distance. 
rsteps=10000;% steps along axis 
r=[1e-7:R0/rsteps:R0]; 
r1=sqrt(r.^2+a^2); 
    p(1,:)=P0*(exp(i*(w*t-k*r))-exp(i*(w*t-k*r1))); 
rgR0=r/R0; 
 
Pplot=abs(p)/P0; 
 
figure; 
plot(rgR0,Pplot,'k'); axis([0 1 0 2.3]); 
xlabel('Distance/R0'); 
ylabel('Pressure/P0'); 
text(0.5,2,'Radius = 5 * Wavelength'); 
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9.4 Pressureofaxis_2o5.m 

%% Script that plots pressure distribution off axis for two cases  
%% one case with width and height of 2 wavelength and one with width 
and height of 5 
clear all; clc; close all;  
global dsigma k 
tic 
u0=0.005; 
f=40000; 
c0=343; 
lambda=c0/f; 
rho0=1.21; 
a=1*lambda; %%Radius of element for case with radius 1 * wavelength 
%a=2*lambda; %%Radius of element for case with radius 2 * wavelength 
%a=5*lambda; %%Radius of element for case with radius 5 * wavelength 
 
% On the axis on different distance 
w=2*pi*f; 
k=w/c0; 
R0=(k*a^2)/2; %Rayleigh distance. 
rsteps=500;% steps along axis 
z=[1e-7:0.6735/rsteps:0.6735]; 
%r1=sqrt(r.^2+a^2); 
t=1; %time cant vary in this program. Its only the amplitude thats 
interesting so it doesn´t matter  
P0=rho0*c0*u0; 
 
astep=50; 
dsigma=a/astep; 
sigma=0:dsigma:a; 
xistep=150; 
dxi=pi/xistep; 
xi=0:dxi:pi; 
xtot=3*a; 
xstep=200; 
dx=xtot/xstep; 
x=0:dx:xtot; 
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[fig status]=statusbar('Calculating Pressure for each z'); 
 
for n=1:length(z); 
 
updatestatusbar(status,n,length(z)); 
[fig2 status2]=statusbar('Calculating Pressure over x for each z',2); 
    for m=1:length(x); 
  %tic    
         updatestatusbar(status2,m,length(x)); 
    R2=feval('R3',z(n),x(m),xi,sigma); 
        p1=sum(R2,2); 
        p(n,m)=i*k*P0/pi*exp(j*w*t)*sum(p1*dxi,1); 
   %     toc 
    end 
close('Calculating Pressure over x for each z') 
 
 
end 
close('Calculating Pressure for each z') 
% figure; 
% plot(z/R0,abs(p)/P0); axis([0 1 0 2]); 
% toc 
%save rekt300g200; 
 
P(:,xstep+2:2*xstep+2)=p; 
P(:,1:xstep+1)=flipdim(p,2); 
X(:,xstep+2:2*xstep+2)=x; 
X(:,1:xstep+1)=-flipdim(x,2); 
 
mesh(z(:,2:rsteps)/0.6735,X/a,abs(P(2:rsteps,:))'/P0); view([0 90]) 
axis equal 
axis([0 1 -1 1]) 
%text(0.06,0.04,'radius = 1 * wavelength')  %% For the case with radius 1 
* wavelength 
%text(0.06,0.04,'radius = 2 * wavelength')  %% For the case with radius 2 
* wavelength 
%text(0.25,0.1,'radius = 5 * wavelength')  %% For the case with radius 5 * 
wavelength 



 53

 
save bild1 
%save bild2 
%save bild3 
 
Functions for Pressureofaxis_2o5.m 
 
R3.m 
function R2=R3(Z,X,xi,sigma); 
global k dsigma 
    
%[figHndl statusHndl] = statusbar('Calculating the R matrix over r');  
     
R=zeros(length(sigma),length(xi));%R=zeros(length(r),length(teta),length(s
igma),length(xi)); 
 
%for k=1:length(r);  
   % updatestatusbar(statusHndl,k,length(r)); 
    %[figHndl2 statusHndl2] = statusbar('Calculating the R matrix over 
teta',2);    
%for n=1:length(teta); 
    %updatestatusbar(statusHndl2,n,length(teta)); 
for m=1:length(xi); 
 
for c=1:length(sigma); 
    R1(m,c)=sqrt((X-
sigma(c)*cos(xi(m)))^2+sigma(c)^2*(sin(xi(m)))^2+Z^2); 
    R2(m,c)=sigma(c)*exp(-i*k*R1(m,c))/R1(m,c)*dsigma; 
end  
end 
%end 
%close ('Calculating the R matrix over teta'); 
%end 
%close('Calculating the R matrix over r'); 
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9.5 Pressure_rect_4o10.m 

%% Script that plots pressure distribution for two cases  
%% one case with width and height of 4 wavelength and one with width 
and height of 10  
 
clear all; clc; close all;  
global da k 
 
u0=0.005; 
f=40000; 
c0=343; 
lambda=c0/f; 
rho0=1.21; 
 
%a=lambda*1;        %Height of element in case a = lambda*1 
%a=lambda*4;        %Height of element in case a = lambda*4 
%a=lambda*10;        %Height of element in case a = lambda*10 
b=a;        %Width of element 
 
w=2*pi*f; 
k=w/c0; 
R0=(a*b)/lambda; %Rayleigh distance. 
 
zstep=500; % Steps along z-axis 
%ztot=R0; % Size of room in z direction in the case on axis 
ztot=0.8575;  % Size of room in z direction in the case off axis where R0 is 
0.8575 in the last case 
z=[1e-7:ztot/zstep:ztot]; 
 
 
xstep=200; % Steps along x-axis 
xtot=1*a;   % Size of room in x direction 
x=[-xtot:xtot/xstep:xtot]; % In the case off axis 
%x=0;  % In the case On axis 
 
t=1; %time cant vary in this program. Its only the amplitude thats 
interesting so it doesn´t matter  
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P0=rho0*c0*u0; 
 
astep=70; 
da=a/astep 
A=-a/2:da:a/2; 
bstep=70; 
db=b/bstep; 
B=-b/2:db:b/2; 
 
 
[fig status]=statusbar('Calculating Pressure for each z'); 
 
for n=1:length(z); 
 
updatestatusbar(status,n,length(z)); 
[fig2 status2]=statusbar('Calculating Pressure over x for each z',2); 
    for m=1:length(x); 
 
        updatestatusbar(status2,m,length(x)); 
        R2=feval('R3',z(n),x(m),B,A); 
        p1=sum(R2,2); 
        p(n,m)=i*k*P0/pi*exp(i*w*t)*sum(p1*db,1); 
 
    end 
close('Calculating Pressure over x for each z') 
 
end 
close('Calculating Pressure for each z') 
 
figure; 
% plot(z/R0,abs(p)/P0,'k'); axis([0 1 0 2]); % in the case on axis 
% xlabel('Distance/R0');  % in the case on axis 
% ylabel('Pressure/P0');  % in the case on axis 
 
mesh(z(:,2:zstep)/0.8575,x/a,abs(p(2:zstep,:))'/P0); view([0 90]) 
%text(0.5,1.7,'Width and height = 1 * Wavelength'); %in the case a = 
lambda*1 
%text(0.5,1.7,'Width and height = 4 * Wavelength'); %in the case a = 
lambda*4 
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%text(0.5,1.7,'Width and height = 10 * Wavelength'); %in the case a = 
lambda*10 
 
%save bild1 
%save bild2 
%save bild3 
 
Functions for Pressureaxis_rect_4o10.m 
 
R3.m 
function R2=R3(Z,X,A,B); 
global k da 
    
for s=1:length(B); 
for c=1:length(A); 
    R1(s,c)=sqrt((X-A(c))^2+(B(s))^2+Z^2); 
    R2(s,c)=exp(-i*k*R1(s,c))/R1(s,c)*da; 
end  
end 
 

9.6 Comparison.m 

To get any results from this script it is necessary to run the two next coming 
scripts first, Large_element.m and Small_element.m 
  
%% Script that reads and plots results to compare Array with large element. 
%% The first operation is to make the sumation to an array 
clear all; clc; close all; 
 
load rektWithFarfield2; 
 
P(:,302:602)=p; 
P(:,1:301)=flipdim(p,2); 
X(:,302:602)=x; 
X(:,1:301)=-flipdim(x,2); 
 
distance=0.010%0.0125 
MT=distance/dx; 
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X1=-dx*(602+4*MT)/2:dx:dx*(602+4*MT)/2-dx; 
S(:,:,1)=P; 
S(:,1+MT:602+MT,2)=P; 
S(:,1+2*MT:602+2*MT,3)=P; 
S(:,1+3*MT:602+3*MT,4)=P; 
S(:,1+4*MT:602+4*MT,5)=P; 
S=sum(S,3); 
figure(1); 
subplot(2,1,1); 
mesh(z(:,2:1500),X1/0.005,abs(S(2:1500,:)'/P0)); view([0 90]); axis([0 0.3 -
10 10]); 
title('Pressure in plane'); ylabel('Radial distance/radius of small element') 
 
figure(1); 
subplot(2,1,2); 
plot(z(2:1500),abs(S(2:1500,(602+4*MT)/2)/P0),'k'); axis([0 0.3 0 2]); 
title('Pressure on axis');xlabel('Distance from source [meter]'); 
ylabel('Pressure/P0') 
figure(3) 
plot(z(2:1500),abs(S(2:1500,(602+4*MT)/2)/P0),'k'); axis([0 0.3 0 2]);  
xlabel('Distance from source [meter]'); ylabel('Pressure/P0') 
hold on; 
clear all;  
load rektangular1000g300 
figure(2) 
subplot(2,1,2) 
plot(z(2:1000),abs(p(2:1000,300)/P0),'k'); axis([0 0.3 0 2]);  
title('Pressure on axis');xlabel('Distance from source [meter]'); 
ylabel('Pressure/P0') 
figure(2); 
subplot(2,1,1); 
mesh(z(2:1000),x/0.005,abs(p(2:1000,:)/P0)'); view([0 90]);  
axis([0 0.3 -10 10]); title('Pressure in plane'); 
ylabel('Radial distance/radius of small element') 
%z(2:100)/R0,x 
figure(3) 
plot(z(2:1000),abs(p(2:1000,300)/P0),'k-.'); axis([0 0.3 0 2]); 
legend('Array','Large element') 
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9.7 Large_element.m 

%% Script that calculates pressure distribution from a rectangular element, 
%% with the dimensions a and b 
clear all; clc; close all;  
global da k 
tic 
u0=0.005; 
f=40000; 
c0=343; 
lambda=c0/f; 
rho0=1.21; 
a=0.005;        %Height of element 
b=0.0505;        %Width of element 
 
 
w=2*pi*f; 
k=w/c0; 
R0=(k*a^2)/2; %Rayleigh distance. 
 
zstep=1000; % Steps along z-axis 
ztot=0.32036;  % Size of room in z direction 
z=[1e-7:ztot/zstep:ztot]; 
 
xstep=300; % Steps along x-axis 
xtot=0.05;   % Size of room in x direction 
x=[-xtot:xtot/xstep:xtot]; 
 
t=1; %time cant vary in this program. Its only the amplitude thats 
interesting so it doesn´t matter  
P0=rho0*c0*u0; 
 
astep=70; 
da=a/astep 
A=-a/2:da:a/2; 
bstep=100; 
db=b/bstep; 
B=-b/2:db:b/2; 
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[fig status]=statusbar('Calculating Pressure for each z'); 
 
for n=1:length(z); 
%tic 
updatestatusbar(status,n,length(z)); 
[fig2 status2]=statusbar('Calculating Pressure over x for each z',2); 
    for m=1:length(x); 
  %tic    
        updatestatusbar(status2,m,length(x)); 
        R2=feval('R3',z(n),x(m),B,A); 
        p1=sum(R2,2); 
        p(n,m)=i*k*P0/pi*exp(i*w*t)*sum(p1*db,1); 
        %toc 
    end 
    %toc 
close('Calculating Pressure over x for each z') 
 
end 
close('Calculating Pressure for each z') 
toc 
save rektangular1000g300; 
 
Functions for Large_element.m 
R3.m 
function R2=R3(Z,X,A,B); 
global k da 
    
for s=1:length(B); 
for c=1:length(A); 
    R1(s,c)=sqrt((X-A(c))^2+(B(s))^2+Z^2); 
    R2(s,c)=exp(-i*k*R1(s,c))/R1(s,c)*da; 
end  
end 
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9.8 Small_element.m 

%% Script that calculates pressure distribution from a circular element, 
%% with the radius a  
clear all; clc; close all;  
global dsigma k 
tic 
u0=0.005; 
f=40000; 
c0=343; 
lambda=c0/f; 
rho0=1.21; 
a=0.005;%0.005; %Radius of element 
 
% On the axis on different distance 
w=2*pi*f; 
k=w/c0; 
R0=(k*a^2)/2; %Rayleigh distance. 
rsteps=1500;% steps along axis 
z=[1e-7:35*R0/rsteps:35*R0]; 
%r1=sqrt(r.^2+a^2); 
t=1; %time cant vary in this program. Its only the amplitude thats 
interesting so it doesn´t matter  
P0=rho0*c0*u0; 
 
astep=100; 
dsigma=a/astep 
sigma=0:dsigma:a; 
xistep=250; 
dxi=pi/xistep; 
xi=0:dxi:pi; 
xtot=12*a; 
xstep=300; 
dx=xtot/xstep; 
x=0:dx:xtot; 
 
[fig status]=statusbar('Calculating Pressure for each z'); 
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for n=1:length(z); 
 
updatestatusbar(status,n,length(z)); 
%tic 
[fig2 status2]=statusbar('Calculating Pressure over x for each z',2); 
 
for m=1:length(x); 
  %tic 
         updatestatusbar(status2,m,length(x)); 
    R2=feval('R3',z(n),x(m),xi,sigma); 
        p1=sum(R2,2); 
        p(n,m)=i*k*P0/pi*exp(j*w*t)*sum(p1*dxi,1); 
       % toc 
    end 
close('Calculating Pressure over x for each z') 
 
%toc 
end 
close('Calculating Pressure for each z') 
%figure; 
%plot(z/R0,abs(p)/P0); axis([0 1 0 2]); 
toc 
save rektWithFarfield2; 
 
Functions for Small_element.m 
 
R3.m 
function R2=R3(Z,X,xi,sigma); 
global k dsigma 
    
%[figHndl statusHndl] = statusbar('Calculating the R matrix over r');  
     
R=zeros(length(sigma),length(xi));%R=zeros(length(r),length(teta),length(s
igma),length(xi)); 
 
%for k=1:length(r);  
   % updatestatusbar(statusHndl,k,length(r)); 
    %[figHndl2 statusHndl2] = statusbar('Calculating the R matrix over 
teta',2);    
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%for n=1:length(teta); 
    %updatestatusbar(statusHndl2,n,length(teta)); 
for m=1:length(xi); 
 
for c=1:length(sigma); 
    R1(m,c)=sqrt((X-
sigma(c)*cos(xi(m)))^2+sigma(c)^2*(sin(xi(m)))^2+Z^2); 
    R2(m,c)=sigma(c)*exp(-i*k*R1(m,c))/R1(m,c)*dsigma; 
end  
end 
%end 
%close ('Calculating the R matrix over teta'); 
%end 
%close('Calculating the R matrix over r'); 
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