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ABSTRACT

Developments in artificial intelligence (Al) have led

to an explosion of studies exploring its application to
cardiovascular medicine. Due to the need for training
and expertise, one area where Al could be impactful
would be in the diagnosis and management of valvular
heart disease. This is because Al can be applied to the
multitude of data generated from clinical assessments,
imaging and biochemical testing during the care of the
patient. In the area of valvular heart disease, the focus
of Al has been on the echocardiographic assessment
and phenotyping of patient populations to identify
high-risk groups. Al can assist image acquisition, view
identification for review, and segmentation of valve
and cardiac structures for automated analysis. Using
image recognition algorithms, aortic and mitral valve
disease states have been directly detected from the
images themselves. Measurements obtained during
echocardiographic valvular assessment have been
integrated with other clinical data to identify novel aortic
valve disease subgroups and describe new predictors
of aortic valve disease progression. In the future, Al
could integrate echocardiographic parameters with
other clinical data for precision medical management of
patients with valvular heart disease.

INTRODUCTION
The global incidence of valvular heart disease
(VHD) has increased by 45% in the last 30 years,
with an annual incidence of 401 new cases per 100
000 people." This is due to an expanding ageing
population and age-related VHD.' Echocardiog-
raphy is the most common imaging modality used
to identify patients with VHD as it is non-invasive,
portable, widely available and cost-effective, and
provides real-time assessment of cardiac structure
and function.” Currently, there are over seven
million echocardiograms performed annually in
North America.® * Despite this, there is evidence
that a number of patients with VHD are underdi-
agnosed.” Merely increasing the number of echo-
cardiograms performed to provide screening to the
millions of people at risk of developing VHD is not
feasible within current clinical practice paradigms
and budgetary limits.® Even the advent of hand-
held/point-of-care ultrasound machines may not
address this need, as diagnostic quality image acqui-
sition and interpretation for VHD require training
and expertise.”” Moreover, busy clinicians must
incorporate multimodal imaging and clinical and
biochemical patient data for decision-making.
Developments in the field of artificial intelligence
(AI) hold great promise in transforming how patients
with VHD are assessed and managed as it can simu-
late the complex, multimodal decision-making
required (figure 1). It is already changing how

echocardiographic images are acquired, processed
and quantified. Al methods can also be applied to
the wealth of information contained in the images,
measurements and clinical data obtained that are
not currently considered during assessment. In this
review, we will discuss the emerging work of Al in
VHD assessment. First, we will provide a summary
of AI concepts related to medical imaging and the
contemporary implementation of Al to echocar-
diographic valvular image assessment. Then we
will examine the Al methods used for phenotyping
VHD and assess the studies in this area. Finally, we
will discuss the future directions of Al echocardiog-
raphy and valvular assessment.

Al IN CARDIAC IMAGING

Al is a method used to identify patterns of asso-
ciations between predictors and outcomes. Its
power comes from its ability to find these asso-
ciations from large amounts of data and, with no
prior knowledge of associations, draw non-linear
relationships between a wide variety of predictors
with an outcome of interest. These large amounts
of data, termed ‘big data’, are characterised by
the 4Vs: volume, variety, velocity and veracity
(figure 2).'"° Patient data collected today can be
considered ‘big data’ and Al is potent in its ability to
perform multidata integration and generate predic-
tions using clinical, imaging, electrophysiological
and genomics information. With improved access
to significant computing power and therefore the
capacity to process large amounts of data, Al can
perform complex decision-making in a fraction of
the time needed by humans.!!

Based on the type of problem, different Al algo-
rithms can be applied to clinical and imaging data
(figure 2). However, the most widely implemented
model has been the convolutional neural network
(CNN) due to its success in medical imaging. CNN
architecture is modelled based on the visual cortex
of the brain and involves identifying crucial image
features that allow for image identification. By
applying different filters, or sieves, to an image,
image features can be extracted and correlated with
the outcome of interest. This form of modelling
can be extremely accurate but requires significant
computational power and many images to train a
model to build associations.'*

Al is currently encountered in automated ECG
interpretation, cardiac CT and MRI chamber
measurements, and most recently two-dimensional
(2D) echocardiography strain analysis and Doppler
tracing.” Given the dominant role of echocar-
diography in VHD, this review will focus on this
modality. Echocardiograms are ideal for Al appli-
cations as each echocardiographic study contains
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Figure 1 Pathway of a patient with valvular heart disease and areas of care where Al can improve assessment and management. The top left and
right images are three-dimensional TTE images of the aortic valve in short axis during systole and diastole representing progression from a normal
to a diseased state. Below are the stages of care (screening, surveillance, decision to intervene, intervention). Al can be applied to any type of patient
data (ie, clinical notes, echo images) obtained at any of these stages. In turn, the collective set of data can be used by Al to improve management at

various care stages. Al, artificial intelligence; TTE, transthoracic echocardiogram.

several acquisition modes, multiple views and numerous frames
generating a large amount of data, of which only a fraction are
clinically appreciated. Al on these big data can generate gains in
echocardiographic valve imaging assessment and identification
of novel disease markers through phenotyping.

Al TO IMPROVE ECHOCARDIOGRAPHIC IMAGE VALVE
ASSESSMENT

The application of Al to echocardiographic images in patients
with VHD falls into four main categories: (1) image acquisition,
(2) view recognition, (3) image segmentation and (4) disease
state identification.

Image acquisition

In patients with VHD, the echocardiographic study is focused
on acquiring images that allow the diagnosis of valve disease
severity and the impact on related cardiac structures. Thus, in
addition to the cardiac chambers, acquired images should allow
clear visualisation of the valve leaflets/cusps, the jet origin and
extent in regurgitant lesions, the source of the flow acceleration
for stenotic lesions, and the complete continuous wave (CW)
Doppler signal of the maximal flows. Acquisition of such images
requires training, especially when regurgitant jets are eccentric
or wall-hugging or gradients are highest in non-traditional off-
axis planes. Some laboratories have addressed specific quality
issues such as the acquisition of maximal aortic stenosis (AS)
gradients by implementing ‘buddy’ systems.'* However, this is
time- and labour-intensive.

Al has the potential to improve valve assessments through
the development of programs that guide image acquisition.
Currently the focus of such Al-assisted image acquisition has
been on basic non-colour images such as the parasternal or apical
views."” 1 One such developed Al algorithm has been assessed
by comparing the quality of images acquired by novice nurses
scanning patients with Al guidance against expert sonogra-
phers.”® The percentage of evaluable images of the aortic, mitral
and tricuspid valves obtained by the novice users were 91.7%,
96.3% and 83.3%), respectively. Future iterations of these early-
stage programs can be used in patients with mitral or tricuspid
regurgitation or guide Doppler interrogation in AS.

View identification

Similar to its current use to identify left ventricular (LV) views,
Al could improve valve assessment by identifying images
containing valve data to allow for reading in ‘stacks’, automated
measurements, and even aid interpretation using current guide-
line criteria.’ This could offer significant time savings and poten-
tially improve report quality by increasing severity assessment
agreement between readers, which can be as low as 61% for
mitral regurgitation (MR) severity."” The first step for such Al
programs would be to identify the views that include valve infor-
mation.'® While many papers have been published on standard
view identification, few have been published identifying specific
valve anatomy or Doppler signals. One publication has described
using Al to identify and track mitral and tricuspid valve leaf-
lets in the apical four-chamber view to identify the presence
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Figure 2

(A) Characteristics of big data. (B) Common Al definitions. (C) Common model architectures used in Al depend on the purpose of

modelling. With supervised learning, predictors are mapped to a known outcome. When the outcomes of interest are clinical, machine learning
methods such as random forest and support vector machine are used. When the outcome of interest is imaging-based, then deep learning methods
such as convolutional neural networks are used. (D) With unsupervised learning, the predictors are visualised on a plot to find natural clustering

of the data. A typical use in valve disease studies has been in phenotyping to identify higher risk phenotypes. Methods used with unsupervised
learning include topological data analysis, model-based clustering, agglomerative hierarchical clustering and clustering around medoids. Al, artificial

intelligence.

of pathology.”” This paper reported that their program could
detect mitral valve leaflets with accuracy of 98% and tricuspid
valve leaflets with accuracy of 90%. Studies have also reported
overall success in identifying Doppler data of 949%.%° A sepa-
rate Al program has found that accuracy of identification of CW
Doppler signal images was better at 98% compared with pulsed-
wave (PW) images, which had an accuracy of 83% because a PW
signal can look similar to a faint CW signal.*!

Image segmentation

Al-driven automated image analysis to provide measurements
would greatly increase quantitative assessments, accuracy and
reproducibility. This can be achieved through image segmenta-
tion, which refers to recognising a specific structure in the image,
identifying its boundaries and performing measurements. Appli-
cation of image segmentation can be applied to 2D and three-
dimensional (3D) echocardiographic chamber images with the
goal to automate size and function measurements. Note, most
of this work has been performed using labelled images, but there

are some studies developing programs without manual image
delineation.”** In addition, segmentation can be performed
of the valve annulus, leaflets/cusps, jets and Doppler spectral
profiles.

Valve annulus and leaflet

Commercial and non-commercial programs have been devel-
oped that use Al methods to provide automated valve measure-
ments from 3D aortic, mitral and tricuspid echocardiographic
images (table 1). It must be noted that early programs in this
area were based on computational methods, which apply math-
ematical rules for automation, rather than Al methods such as
CNNs. Due to the proprietary nature of commercial software
packages, details on the included Al algorithms are not avail-
able, although it is likely that current iterations include some
form of Al analytics (online supplemental table 1).27%” Overall,
these commercial packages have a few limitations. Some are
technically semiautomated processes that require expert initiali-
sation and others can only be applied to images generated from

Table 1 Summary of Al applications by valve
Valve Pathology Al application
Image acquisition View identification Image segmentation Disease state identification Phenotyping
Aortic Stenosis X X X X
Regurgitation X X X
Mitral Stenosis X X X X
Regurgitation X X X X
Pulmonary Stenosis No current literature.
Regurgitation
Tricuspid Stenosis X X X
Regurgitation X X X

Al artificial intelligence.

Nedadur R, et al. Heart 2022;0:1-8. doi:10.1136/heartjnl-2021-319725

JybuAdoo Aq paroalold 1sanb Aq zz0oz ‘2T Areniga- uo Jwodfwqgueay//:dny wolj papeojumoq ‘2z0og Arenigad 0T U0 §Z/6TE-TZ0Z-lulueay/9eTT 0T Se payslgnd 1sii :LesH


https://dx.doi.org/10.1136/heartjnl-2021-319725
http://heart.bmj.com/

Figure 3 Example images of commercial valve analysis software.
Mitral valve models from (A) GE, (B) Philips and (C) TomTec. (D) An
aortic valve model from Siemens. A, anterior; AL, anterolateral; Ao,
aorta; L, left coronary cusp; N, non-coronary cusp; P, posterior; PM,
posteromedial; R, right coronary cusp.

echocardiographic machines produced by the same vendor
(figure 3).%

Non-commercial programs have also been developed to aid
valve annular and leaflet segmentation (table 2). These programs
focus on CNN development using mitral valve images. These
methods” Dice coefficients (measurement of accuracy in the
setting of image identification) for mitral valve segmentation
were modest to good, ranging from 0.48 to 0.79.%® Error rates of
these automated program measurements were low at 6.1%+4.5%

for annular perimeter measurements and 11.94%=10% for area
measurement.”’ The strength in these algorithms is their perfor-
mance on low-quality images, while their limitations arise from
their overestimation of mitral valve borders and false structure
identification caused by image artefact.

Doppler

One study has been published applying Al segmentation to
colour Doppler images. Zhang et al** studied 1132 patients with
expert reader-defined MR, ranging from mild to severe, to train
an algorithm that can quantify MR from 2D echo colour images.
On an external validation data set of 295 patients, the accuracy
of classification was 0.90, 0.89 and 0.91 for mild, moderate and
severe MR, respectively. Similarly, little has been published on
Al automation of CW and PW measurements. From one publi-
cation, compared with a board-certified echocardiographer, Al
automation of CW and PW measurement of peak velocity, mean
gradients and velocity time integral showed excellent correlation,
with all correlation coefficients greater than 0.9.3° Commercial
software has been developed to perform semiautomated 3D
proximal isovelocity surface area (PISA) measurements with
good accuracy and reproducibility, as multiple measurements
can be made, although it is unclear if Al is used in modelling.!

Disease state identification

Deep learning approaches are powerful in that they can automat-
ically encode features from data for recognition that are beyond
human perception.’” In the case of disease state identification,
echo images do not need to proceed through the traditional Al
workflow of image identification and segmentation as diseases
can be directly linked to the echocardiographic images. Using
a cohort of 139 patients with no, mild, moderate and severe
MR, Moghaddasi and Nourian®® developed an algorithm that
can automatically quantify MR severity with 99.52%, 99.38%,
99.31% and 99.59%, respectively, for normal, mild, moderate
and severe MR. Similarly, Al programs can automatically iden-
tify rheumatic heart disease involving the aortic and/or mitral
valves with 72.77% accuracy.’® These algorithms are also able to
effectively recognise prosthetic mitral valves as demonstrated by
Vafacezadeh et al,*>* who developed and tested 13 different CNN

Table 2 Non-commercial Al-driven algorithms for valvular detection in echocardiography

Training data

Authors (year)  Data population Outcome of interest

Algorithm used

Findings

Vafaeezadeh et al 2044 TTE studies: 1597 had  Patients with normal
(2021)* normal valves and 447 had  mitral valve and mitral
prosthetic valves. valve prosthesis:
both mechanical and
biological.

Identification of
prosthetic mitral valve
from echo images.

Corinzia et al
(2020)*°

Training: 39 2D TTE.
Test: 46 2D echos from
EchoNet-Dynamic public
echo data set.

Patients who were Fully automated
undergoing mitraclip: all delineation of mitral
patients had moderate  valve annulus and both
to severe or severe MR. MV leaflets.

Andreassen etal 111 multiframe 4D echocardiographic  Fully automated
(2020)%° recordings from 3D TEE images of the mitral method for
echocardiograms. valve. mitral annulus
segmentation on 3D
echocardiography.
Costa et al Training: 21 2D TTE echo PLAX and A4C views Automatic
(2019)% videos in PLAX, 22 videos in  from echos. segmentation of mitral

AA4C.Test: 6 videos in PLAX
and A4C.

valve leaflets.

13 pretrained models with
CNN architecture and fine-
tuned via transfer learning. had the best AUC (99%) for PLAX. However, these models were

CNN, specifically a U-Net
architecture.

All the models worked with incredible accuracy (>98%), but the
EfficientNetB3 had the best AUC (99%) for the A4C and EfficientNetB4

computationally more expensive for a small gain in AUC, so the authors
concluded that the best model for this task is EfficientNetB2.

NN-MitralSeg, unsupervised This model outperforms state-of-the-art unsupervised and supervised
MV segmentation
algorithm based on neural
collaborative filtering.

CNN, specifically a U-Net
architecture.

methods (NeuMF MF Dice coefficient of 0.482, with benchmark
performance of 0.447), with best performance on low-quality videos or
videos with sparse annotation.

With no manual input, this methodology gave comparable results with
those that required manual input (relative error of 6.1%=4.5% for
perimeter measurements and 11.94%=10% for area measurement).

This model is the first of its kind to perform segmentation of valve
leaflets.

For AMVL, the median Dice coefficient in PLAX was 0.742 and 0.795 in
A4C. For PMVL, the median Dice coefficient in PLAX was 0.60 and 0.69
in A4C.

Cardiologists were then asked to score the segmentation quality on a
scale from 0 to 2, with pooled score of 0.781, suggesting reasonable
quality segmentation.

AA4C, apical 4-chamber view; Al, artificial intelligence; AML, anterior mitral valve leaflet; AUC, area under the receiver operator curve; CNN, convolutional neural network; 2D, two-dimensional; 3D, three-dimensional; 4D,
four-dimensional; MR, mitral regurgitation; MV, mitral valve; PLAX, parasternal long-axis view; TEE, transoesophageal echocardiogram; TTE, transthoracic echocardiogram.
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Figure 4 (A) Deep learning workflow in automated image analysis. (B) A stepwise approach to assessing machine learning phenotyping studies
from the study population and the data/predictor selection to the algorithm choice and assessment metrics. 2D, two-dimensional; 3D, three-

dimensional; ROC, receiver operator curve.

algorithms, all of which had excellent area under the receiver
operator curve (AUC) values of at least 98%.

Al VHD PHENOTYPING

During a routine echocardiogram, a large volume of potentially
diagnostic data are generated, which are further increased with
3D imaging and speckle tracking strain analysis. The totality of
data available can be difficult for the busy cardiologist to parse
and interpret and are likely underutilised.*® It is unknown how
many ‘hidden’ variables exist within an echocardiogram and Al
can help discover the value of these variables.” This is especially
relevant when discussing VHD, as currently the assessment is
predominantly focused on valve haemodynamics. However,
cardiac changes that occur in response to VHD could also be
informative to severity assessment. Using Al for phenotyping
allows for identification of novel disease groups and novel
predictors of these disease groups. There have been consider-
able efforts in phenotyping VHD as practitioners are increas-
ingly recognising the heterogeneity of our current classification
groupings. Phenotyping can help identify a high-risk subgroup
that may require more timely intervention.

METHODOLOGICAL CONSIDERATIONS FOR PHENOTYPING
IN STUDIES IN VALVE DISEASE

To evaluate phenotyping studies, there are five methodolog-
ical components that are helpful in their evaluation (figure 4).
In determining the inclusion criteria, the disease group has to
present a heterogeneous phenotype with a subgroup that experi-
ences worse outcomes. Attention should be paid to the inherent
biases, such as those related to sex, or race, that can affect the
population included in a data set.”” Predictors should be derived
from various data sources as the use of Al to amalgamate data
from echocardiograms, other imaging, ECG and patient clinical
data can boost identification of high-risk groups from higher

data granularity. During algorithm choice, unsupervised learning
can be used to derive clusters that can be studied and compared
with other clusters to identify high-risk groups and novel
predictors of these groups. Performance metrics should include
measurements of improved performance of classification.’®
Model validation is important to ensure the model can perform
on non-training examples and is generalisable to its task. This
measure is important as training data can be skewed and can
contribute to bias in modelling. Validation can take many forms
and is tailored to the purpose of the modelling.

Al PHENOTYPIC STUDIES IN AORTIC VALVE DISEASE

VHD phenotyping using machine learning (ML) is an emerging
field with only three studies, all on AS, published (table 3). One
study, not discussed in detail, identified aneurysmal proximal
aorta phenotypes in 656 patients with bicuspid aortic valve
(AV) disease using CT.*’ The three AS papers, to be discussed in
further detail, all investigated heterogeneity in patients with AS
to identify high-risk subgroups.

Casaclang-Verzosa et al*® used unsupervised ML to create a
patient—patient similarity network to describe the progression
between mild and severe AS from 346 patients using 79 clinical
and echocardiographic variables. A Reeb graph, where distances
between patients define their similarities, was created using topo-
logical data analysis. Two subtypes of patients with moderate AS
were visualised, with one group being male with lower ejection
fraction and more coronary artery disease, while the other group
had a lower peak AV velocity and mean gradients but higher LV
mass indexes and left atrial volumes. In follow-up post aortic
valve replacement (AVR), the patients’ loci in the Reeb graph
regressed from the severe to the mild position. The model was
then validated in a murine model of AS, with similar findings to
the human Reeb graph. From this analysis, a subset of patients
with moderate AS who experience aggressive deterioration of

Nedadur R, et al. Heart 2022;0:1-8. doi:10.1136/heartjnl-2021-319725
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LV function were identified. This superior stratification supports
the use of changes in LV and AV function along a continuum in
disease management.

In Sengupta et al,*' the investigators sought to identify a
high-risk group among a cohort of 1052 patients with mild or
moderate AS and a discordant AS group which is the traditional
low-flow, low-gradient group. Topological data analysis based
on echocardiographic parameters derived a high-risk pheno-
type which had higher AV calcium scores, more late gadolinium
enhancement, higher brain natriuretic protein and troponin
levels, greater incidences of AVR, and death before and after
AVR. These relationships remained true when the data set was
restricted only to discordant AS. Model validation included
developing a supervised ML model with an AUC of 0.988, which
had better discrimination (integrated discrimination improve-
ment of 0.07) and reclassification (net reclassification improve-
ment of 0.17) for the outcome of AVR at 5 years compared with
our traditional grading of valve severity. This paper showed that,
using echocardiographic measurements and ML, there can be
improved risk stratification in discordant AS where risks can be
identified without the need for additional tests.

Kwak et al** used model-based clustering of 398 patients
with newly diagnosed moderate and severe AS, with 11 demo-
graphic, laboratory and echocardiographic parameters, to
identify a high-risk subgroup that may not benefit from valve
intervention. They found three patient clusters that differed by
age, LV remodelling and symptoms. These clusters had different
risks of mortality, with one group experiencing higher all-cause
mortality and another group having high cardiac mortality.
When the cluster variable was added to modelling predicting
3-year all-cause mortality, there was improved discrimination
(integrated discrimination improvement 0.029) and net reclas-
sification improvement (0.294). Important findings from this
paper include the integration of non-echocardiographic measure-
ments and non-traditional measures of disease severity in risk-
stratifying patients with AS. This paper suggests that patients at
high risk of non-cardiac death could warrant a different thera-
peutic strategy.

LIMITATIONS

Although there are many avenues for Al to improve echocar-
diographic VHD assessment, there are some limitations to this
approach (table 4). Al is sensitive to data quality and valvular
data can be challenging as the components are mobile and the
images are prone to noise and artefact. Thus, training data must
include a wide variety of images of varying quality to develop
implementable Al solutions. Al models can have significant
model complexity, rendering it a ‘black box” and uninterpretable
to the user. Measures such as saliency maps, which show which
parts of the images are analysed for classification, can help the
user understand how the algorithm functions.* Widespread Al
implementation has also been limited by questions related to
patient privacy and consent, algorithmic bias that could cause

Table 4 Limitations in echo imaging that make artificial intelligence
implementation in valve disease more challenging

Image quality Speckle noise, artefact.

Frame rate Low frame rates, irregular frames resulting in fast and irregular
motion of the valve leaflets.

Echogenicity Lack of features to discriminate heart valve from adjacent

myocardium, which have similar intensity and texture.

diagnostic/management errors, algorithm scalability, data secu-
rity and an agreed-upon implementation strategy.** *

SUMMARY AND FUTURE DIRECTIONS

The application of Al to echocardiographic valvular assess-
ment is growing and will become essential given clinical time
constraints and the increasing volume of patient data. Echo auto-
mation using Al can reduce structural and economic barriers to
VHD care, democratising access to disease screening, point-of-
care valvular evaluation and potentially referral for interven-
tion.** ** * For example, conditions such as rheumatic heart
disease, which is underdiagnosed among marginalised popula-
tions, could benefit from automated disease detection and help
connect patients with healthcare services.*® Additionally, plat-
forms such as federated cloud computing can allow for auto-
mated image acquisition in low access areas with real-time image
interpretation/consultation occurring elsewhere in a private and
trustworthy manner.*’ Al applications in phenotyping could be
used in other circumstances where valvular assessment on echo
can be challenging, such as in identifying low-flow, low-gradient
AS, or in disease quantification in mixed valve disease. Overall,
Al can create efficiencies in the use of echo in healthcare that
allows for enhanced valve disease identification, diagnosis and
management, giving more patients access to timely, accurate and
goal-directed treatment.
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