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Anyone who has worked with matroids has come away with the conviction that
matroids are one of the richest and most useful ideas of our day.

—Gian Carlo Rota [10]

Why matroids?

Have you noticed hidden connections between seemingly unrelated mathematical
ideas? Strange that finding roots of polynomials can tell us important things about
how to solve certain ordinary differential equations, or that computing a determinant
would have anything to do with finding solutions to a linear system of equations.
But this is one of the charming features of mathematics—that disparate objects share
similar traits. Properties like independence appear in many contexts. Do you find
independence everywhere you look? In 1933, three Harvard Junior Fellows unified
this recurring theme in mathematics by defining a new mathematical object that they
dubbed matroid [4]. Matroids are everywhere, if only we knew how to look.

What led those junior-fellows to matroids? The same thing that will lead us: Ma-
troids arise from shared behaviors of vector spaces and graphs. We explore this natural
motivation for the matroid through two examples and consider how properties of in-
dependence surface. We first consider the two matroids arising from these examples,
and later introduce three more that are probably less familiar. Delving deeper, we can
find matroids in arrangements of hyperplanes, configurations of points, and geometric
lattices, if your tastes run in that direction.

While tying together similar structures is important and enlightening, matroids do
not reside merely in the halls of pure mathematics; they play an essential role in
combinatorial optimization, and we consider their role in two contexts, constructing
minimum-weight spanning trees and determining optimal schedules.

What’s that, you say? Minimum-weight what? The mathematical details will be-
come clear later, but suppose you move your company into a new office building and
your 25 employees need to connect their 25 computers to each other in a network. The
cable needed to do this is expensive, so you want to connect them with the least cable
possible; this will form a minimum-weight spanning tree, where by weight we mean
the length of cable needed to connect the computers, by spanning we mean that we
reach each computer, and by free we mean we have no redundancy in the network.
How do we find this minimum length? Test all possible networks for the minimum
total cost? That would be 25 & 1.4 x 102 networks to consider. (There are n" >
possible trees on n vertices; Bogart [2] gives details.) A computer checking one billion
configurations per second would take over a quadrillion years to complete the task.
(That’s 10" years—a very long time.) Matroids provide a more efficient method.
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Not only are matroids useful in these optimization settings, it turns out that they
are the very characterizations of the problems. Recognizing that a problem involves a
matroid tells us whether certain algorithms will return an optimal solution. Knowing
that an algorithm effects a solution tells us whether we have a matroid.

In the undergraduate curriculum, notions of independence arise in various contexts,
yet are often not tied together. Matroids surface naturally in these situations. We pro-
vide a brief, accessible introduction so that matroids can be included in undergraduate
courses, and so that students (or faculty!) interested in matroids have a place to start.
For further study of matroids, please see Oxley’s Matroid Theory [9], especially its
61-page chapter, Brief Definitions and Examples. Only a cursory knowledge of linear
algebra and graph theory is assumed, so take out your pencil and work along.

Declaration of (in)dependence

In everyday life, what do we mean by the terms dependence and independence? In
life, we feel dependent if there is something (or someone) upon which (or whom)
we must rely. On the other hand, independence is the state of self-sufficiency, and
being reliant upon nothing else. Alternatively, we consider something independent if
it somehow extends beyond the rest, making new territory accessible, whether that
territory is physical, intellectual, or otherwise. In such a case that independent entity
is necessary for access to this new territory.

But we use these terms more technically in mathematics, so let us connect the col-
loquial to the technical by considering two examples where we find independence.

Linear independence of vectors The first and most familiar context where we en-
counter independence is linear algebra, when we define the linear independence of a
set of vectors within a particular vector space. Consider the following finite collection
of vectors from the vector space R* (or C* or (IF3)?):

1 0 1
V) = 0 , Uy = 1 , V3 = 0 s Vg = 0 ,
0 0 1 1
2 0
vs=| 1 |, v=]| 0], v,=|0
1 0 0

It is not difficult to determine which subsets of this set are linearly independent
sets of vectors over R*: subsets in which it is impossible to represent the zero vec-
tor as a nontrivial linear combination of the vectors of the subset. To put it another
way, no vector within the subset relies upon any of the others. If some vector were
a linear combination of the others, we would call the set of vectors linearly depen-
dent. Clearly, this means v; must be excluded from any subset aspiring to linear
independence.

Let us identify the maximal independent sets. By maximal we mean that the set
in question is not properly contained within any other independent set of vectors. We
know that since the vector space has dimension 3, the size of such a maximal set can be
no larger than 3; in fact, we can produce a set of size 3 immediately, since {vy, v,, v3}
forms the standard basis. It takes little time to find 3, the complete set of maximal
independent sets. The reader should verify that B is
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{{Uh U, U3}7 {Uh U2, U4}1 {v17 U2, US}’ {vlv U3, US}, {Uh U4, U5}7
{va, v3, va}, {v2, v3, V6}, {2, V4, U5}, {V2, V4, V6},

{v2, vs, U6}, {3, V4, Us}, {V3, Vs, U6}, {v4, V5, V6}}.

Note that each set contains exactly three elements. This will turn out to be a robust
characteristic when we expand the scope of our exploration of independence.

We know from linear algebra that every set of vectors has at least one maximal
independent set. Two other properties of B will prove to be important:

* No maximal independent set can be properly contained in another maximal indepen-
dent set.

* Given any pair of elements, By, B, € I3, we may take away any v from B; and there
is some element w € B, such that (B, \ v) U w isin B.

The reader is encouraged to check the second property in a few cases, but also
strongly encouraged not to bother checking all (120 ) = 45 pairs of maximal sets. (A
modest challenge: Using your linear algebraic expertise, explain why this “exchange”
must be possible in general.)

Notice that we used only seven vectors from the infinite set of vectors in R*. In
general, given any vector space, we could select some finite set of vectors and then
find the maximal linearly independent subsets of that set of vectors. These maximal
sets necessarily have size no larger than the dimension of the vector space, but they
may not even achieve that size. (Why not?) Whatever the size of these maximal sets,
they will always satisfy the two properties listed above.

Graph theory and independence Though not as universally explored as linear al-
gebra, the theory of graphs is hardly a neglected backwater. (West [11] and Wilson
[15] give a general overview of basic graph theory.) We restrict our attention to con-
nected graphs. There are two common ways to define independence in a graph, on the
vertices or on the edges. We focus on the edges. What might it mean for a set of edges
to be independent?

Revisiting the idea of independence being tied to necessity, and the accessibility of
new territory, when would edges be necessary in a connected graph? Edges exist to
connect vertices. Put another way, edges are how we move from vertex to vertex in a
graph. So some set of edges should be considered independent if, for each edge, the
removal of that edge makes some vertex inaccessible to a previously accessible vertex.

Consider the graph in FIGURE 1 with edge set E = {ej, e, ..., e7}.

Figure 1 Connected graph G
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Now, consider the subset of edges S = {ey, e3, 4, es}. Is this an independent set
of edges? No, because the same set of vertices are connected to one another even if,
for example, edge e; were removed from S. Note that the set S contains a cycle. (A
cycle is a closed path.) Any time some set of edges contains a cycle, it cannot be an
independent set of edges. This also means {e;} is not an independent set, since it is
itself a cycle; it doesn’t get us anywhere new.

In any connected graph, a set of edges forming a tree or forest (an acyclic sub-
graph) is independent. This makes sense two different ways: first, a tree or forest never
contains a cycle; second, the removal of any edge from a tree or forest disconnects
some vertices from one another, decreasing accessibility, and so every edge is nec-
essary. A maximal such set is a set of edges containing no cycles, which also makes
all vertices accessible to one another. This is called a spanning tree. There must be at
least one spanning tree for a connected graph. Here is the set, 7, of all spanning trees
for G:

T = {{e1, e2, e3}, {e1, €2, ea}, {e1, ez, €5}, {e1, e3, es}, {e1, es, €5},

{ea, e3, ea}, {ea, €3, e}, {€2, €4, €5}, {e2, €4, €6},

{e2, e5, €6}, {es, es, s}, {e3, es, s}, {es, es, e6}}.

Here again we see that all maximal independent sets must have the same size. (How
many edges are there in a spanning tree of a connected graph on n vertices?)
Spanning trees also have two other important traits:

* No spanning tree properly contains another spanning tree.

* Given two spanning trees, 77 and 73, and an edge e from 7, we can always find
some edge f from 75 such that (7} \ ¢) U f will also be a spanning tree.

To demonstrate the second condition, consider the spanning trees 7} and 7, shown
as bold edges of the graph G in FIGURE 2.

e e e

7 e, 7 ‘ e, 7 ‘ e,

el es ea es E1 N es el ‘N es
€, e, e,
T, T, T,

Figure 2 Three spanning trees of G

Suppose we wanted to build a third spanning tree using the edges from 7; except
e1. Then we must be able to find some edge of 75 that we can include with the leftover
edges from T7) to form the new spanning tree 73. We can, indeed, include edge e; to
produce spanning tree T3, also shown in FIGURE 2. This exchange property would
hold for any edge of Tj.

Motivated by our two examples, now is the proper time for some new terminology
and definitions to formally abstract these behaviors.
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Thus, matroids

As you notice these similarities between the spanning trees of a graph and the maxi-
mal independent sets of a collection of vectors, we should point out that you are not
alone. In the 1930s, H. Whitney [13], G. Birkhoff [1], and S. Maclane [8] at Harvard
and B. L. van der Waerden [12] in Germany were observing these same traits. They
noticed these properties of independence that appeared in a graph or a collection of
vectors, and wondered if other mathematical objects shared this behavior. To allow for
the possibility of other objects sharing this behavior, they defined a matroid on any
collection of elements that share these traits. We define here a matroid in terms of its
maximal independent sets, or bases.

The bases A matroid M is an ordered pair, (E, B), of a finite set E (the elements)
and a nonempty collection B (the bases) of subsets of E satisfying the following con-
ditions, usually called the basis axioms:

* No basis properly contains another basis.

* If By and B, are in B and e € By, then there is an element f € B, such that (B \ e) U
feB.

The bases of the matroid are its maximal independent sets. By repeatedly applying
the second property above, we can show that all bases have the same size.

Returning to our examples, we can define a matroid on a graph. This can be done
for any graph, but we will restrict our attention to connected graphs. If G is a graph
with edge set E, the cycle matroid of G, denoted M (G), is the matroid whose element
set, E, is the set of edges of the graph and whose set of bases, B, is the set of spanning
trees of G. We can list the bases of the cycle matroid of G by listing all of the spanning
trees of the graph.

For the graph in the FIGURE 1, the edges {e], e, e3, e4, €5, €6, €7} are the elements
of M(G). We have already listed all of the spanning trees of the graph above, so we
already have a list of the bases of this matroid.

We can also define a matroid on a finite set of vectors. The vectors are the elements,
or ground set, of the matroid, and B is the set of maximal linearly independent sets of
vectors. These maximal independent sets, of course, form bases for the vector space
spanned by these vectors. And we recall that all bases of a vector space have the same
size.

This helps us see where some of the terminology comes from. The bases of the
vector matroid are bases of a vector space. What about the word matroid? We can
view the vectors of our example as the column vectors of a matrix, which is why
Whitney [13] called these matroids.

Vp U2 VU3 V4 Vs Vg U7
1 0 0 1 0 2 O
O 1 0 O 1 0 O
0 0 1 1 1 0 O

These (column) vectors {vq, v,, v3, V4, Us, Vg, U7} are the elements of this matroid.
The bases are the maximal independent sets listed in the previous section.

Now for a quick example not (necessarily) from a matrix or graph. We said that
any pair (E, B) that satisfies the two conditions is a matroid. Suppose we take, for
example, a set of four elements and let the bases be every subset of two elements. This
is a matroid (check the two conditions), called a uniform matroid, but is it related to
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a graph or a collection of vectors? We will explore this later, but first let us further
develop our first two examples.

Beyond the bases You might notice something now that we’ve looked at our two
examples again. The bases of the cycle matroid and the bases of the vector matroid
are the same, if we relabel v; as e;. Are they the same matroid? Yes. Once we know
the elements of the matroid and the bases, the matroid is fully determined, so these
matroids are isomorphic. An isomorphism is a structure-preserving correspondence.
Thus, two matroids are isomorphic if there is a one-to-one correspondence between
their elements that preserves the set of bases [15].

Knowing the elements and the bases tells us exactly what the matroid is, but can we
delve deeper into the structure of this matroid? What else might we like to know about
a matroid? Well, what else do we know about a collection of vectors? We know what
it means for a set of vectors to be linearly dependent, for instance. In a graph, we often
look at the cycles of the graph. If we had focused on the linearly dependent sets and
cycles in our examples, we would have uncovered similar properties they share.

Recall also that, if we take a subset of a linearly independent set of vectors, that
subset is linearly independent. (Why? If a vector could not be written as a linear com-
bination of the others, it cannot be written as a linear combination of a smaller set.)
Also, if we take a subset of the edges of a tree in a graph, that subset is still indepen-
dent: If a set of edges contains no cycle, it would be impossible for a subset of those
edges to contain a cycle. So any subset of an independent set is independent, and this
is true for matroids in general as well.

We can translate some of these familiar traits from linear algebra and graph theory
to define some more features of a matroid. Any set of elements of the matroid that
is contained in a basis is an independent set of the matroid. Further, any independent
set can be extended to a basis. On a related note, anytime we have two independent
sets of different sizes, say |I;| < |I»|, then we can always find some element of the
larger set to include with the smaller so that it is also independent: There exists some
e € I, such that I} U e is independent. This is an important enough fact that if we were
to axiomatize matroids according to independence instead of bases—as we mention
later—this would be an axiom! It also fits our intuition well, if you think about what it
means for vectors.

A subset of E that is not independent is called dependent. A minimal dependent set
is a circuit in the matroid; by minimal we mean that any proper subset of this set is not
dependent.

What is an independent set of the cycle matroid? A set of edges is independent in
the matroid if it contains no cycle in the graph because a subset of a spanning tree
cannot contain a cycle. Thus, a set of edges is dependent in the matroid if it contains a
cycle in the graph. A circuit in this matroid is a cycle in the graph.

Get out your pencils! Looking back at the graph in FIGURE 1, we see that {e,, e4}
is an independent set, but not a basis because it is not maximal. The subset {e;} is
not independent because it is a cycle; it is a dependent set, and, since it is a minimal
dependent set, it is a circuit. (A single-element circuit is called a loop in a matroid.)
In fact, any set containing {e;} is dependent because it contains a cycle in the graph,
or circuit in the matroid. Another dependent set is {e;, e3, e4, €5}, but it is not a circuit;
{e,, e3, es} is a circuit.

In the vector matroid, a set of elements is independent in the matroid if that col-
lection of vectors is linearly independent; for instance, {v,, v4} is an independent set.
A dependent set in the matroid is a set of linearly dependent vectors, for example
{v2, v3, v4, v5}. And a circuit is a dependent set, all of whose proper subsets are inde-
pendent. {v,, v3, vs} is a circuit, as is {v7}. We noted earlier that any set containing {v;}
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is a linearly dependent set; we now see that any such set contains a circuit in the vector
matroid.

One way to measure the size of a matroid is the cardinality of the ground set, E,
but another characteristic of a matroid is the size of the basis, which we call the rank
of the matroid. If A C E is a set of elements of a matroid, the rank of A is the size
of a maximal independent set contained in A. In our vector matroid example, let A =
{v1, V2, vg, v7}. The rank of A is two. The rank of {v,} is zero.

Because it arose naturally from our examples, we defined a matroid in terms of the
bases. There are equivalent definitions of a matroid in terms of the independent sets,
circuits, and rank; indeed most introductions of matroids will include several such
equivalent axiomatizations. Often the first set of exercises is to show the equivalence
of these definitions. We spare the reader these theatrics, and refer the interested reader
to Oxley [9] or Wilson [14, 15].

Matroids you may not have known

If a matroid can be represented by a collection of vectors in this very natural way, and
can also be represented by a graph, why do we need this new notion of matroid? You
may ask yourself, given some matroid, M, can we always find a graph such that M is
isomorphic to the cycle matroid of that graph? Given some matroid, M, can we always
find a matrix over some field such that M is isomorphic to the vector matroid? Happily,
the answer to both of these questions is no. (Matroids might be a little boring if they
arose only from matrices and graphs.) A graph or matrix does provide a compact way
of viewing the matroid, rather than listing all the bases. But this type of representation
is just not always possible. When a matroid is isomorphic to the cycle matroid of some
graph we say it is graphic. A matroid that is isomorphic to the vector matroid of some
matrix (over some field) is representable (or matric). And not every matroid is graphic,
nor is every matroid representable.

To demonstrate this, it would be instructive to look at a matroid that is either not
graphic or not representable. The smallest nonrepresentable matroid is the Vamos ma-
troid with eight elements [9], and it requires a little more space and machinery than
we currently have to show that it is not representable. However, it is fairly simple to
construct a small example that is not graphic, so let us focus on finding a matroid that
is not the cycle matroid of any graph.

Uniform matroids If we take a set E of n elements and let B be all subsets of E
with exactly k elements, we can check that B forms the set of bases of a matroid on
E. This is the uniform matroid, U, ,, briefly mentioned earlier. In this matroid, any
set with k elements is a maximal independent set, any set with fewer than k elements
is independent, and any set with more than k elements is dependent. What are the
circuits? Precisely the sets of size k + 1.

Let’s consider an example. Let E be the set {a, b, ¢, d} and let the bases be all sets
with two elements. This is the uniform matroid U, 4. Is this matroid graphic? To be
graphic, U, 4 must be isomorphic to the cycle matroid on some graph; so, there would
be a graph G, with four edges, such that all of the independent sets of the cycle matroid
M (G) are the same as the independent sets of U, 4. All of the dependent sets must be
the same as well. Since every set with two elements is a basis of U, 4, and every set
with more than two elements is dependent, we see that each three-element set is a
circuit. Is it possible to draw a graph with four edges such that each collection of three
edges forms a cycle? Try it. Remember, each collection of two edges is independent,
SO must not contain a cycle.
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A careful analysis of cases proves that it is not possible to construct such a graph, so
U,.4 1s not isomorphic to the cycle matroid on any graph, and thus is not graphic. This
matroid is, however, representable. A representation over R is given below. Check for
yourself that the vector matroid is isomorphic to U, 4 (by listing the bases).

a b ¢ d
1 01 2
01 2 1

Notice that this representation is not unique over R since we could multiply the
matrix by any nonzero constant without changing the independent sets. Also notice
that this is not a representation for U, 4 over the field with three elements IF5 (the set
{0, 1, 2} with addition and multiplication modulo 3). Why? Because, over that field,
set {c, d} is dependent.

Harvesting a geometric example from a new field We just saw how a collection
of vectors can be a representation for a particular matroid over one field but not over
another. The ground set of the matroid (the vectors) is the same in each case, but
the independent sets are different. Thus, the matroids are not the same. Let’s further
explore the role the field can play in determining the structure of a vector matroid, with
an example over the field of two elements, ;. As above, the ground set of our matroid
is the set of column vectors, and a subset is independent if the vectors form a linearly
independent set when considered within the vector space (IF,)*.

a b ¢ d e [ g
1 001 1 0 1
01 01 0 1 1
0 01 0 1 1 1

Consider the set {d, e, f}. Accustomed as we are to vectors in R>, our initial in-
clination is that this is a linearly independent set of vectors. But recall that 1 +1 =0
over [F,. This means that each vector in {d, e, f} is the sum of the other two vectors.
This is a linearly dependent set in this vector space, and thus a dependent set in the
matroid, and not a basis. In fact, {d, e, f} is a minimal dependent set, a circuit, in the
matroid, since all of its subsets are independent.

The matroid generated by this matrix has a number of interesting characteristics,
which you should take a few moments to explore:

1. Given any two distinct elements, there is a unique third element that completes a
3-element circuit. (That is, any two elements determine a 3-element circuit.)

2. Any two 3-element circuits will intersect in a single element.

3. There is a set of four elements no three of which form a circuit. (This might be a
little harder to find, as there are (}) = 35 cases to check.)

Geometrically inclined readers might be feeling a tingle of recognition. The traits
described above turn out to be precisely the axioms for a finite projective plane, once
the language is adjusted accordingly.

A finite projective plane is an ordered pair, (P, £), of a finite set P (points) and a
collection L (lines) of subsets of P satisfying the following [5]:

1. Two distinct points of P are on exactly one line.
2. Any two lines from £ intersect in a unique point.
3. There are four points in P, no three of which are collinear.
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Elements of the matroid are the points of the geometry, and 3-element circuits of
the matroid are lines of the geometry. Our example has seven points, and this partic-
ular projective plane is called the Fano plane, denoted F;. The Fano plane is shown
in FIGURE 3, with each point labeled by its associated vector over [F,. Viewed as a
matroid, any three points on a line (straight or curved) form a circuit.

Figure 3 The Fano plane, F;

We have already seen a variety of structures related to matroids, with still more to
come. Ezra Brown wrote in The many names of (7, 3, 1) [3] in the pages of this MAG-
AZINE: “In the world of discrete mathematics, we encounter a bewildering variety of
topics with no apparent connection between them. But appearances are deceptive.”
In fact, now that we’ve recognized the Fano plane as the Fano matroid, we may add
this matroid to the list of the “many names of (7, 3, 1)”. (For more names of F7, the
interested reader is referred, not surprisingly, to Brown [3].)

The Fano plane exemplifies the interesting fact that any projective geometry is also a
matroid, though the specific definition of that matroid becomes more complicated once
the dimension of the finite geometry grows beyond two. (Although the Fano plane has
rank 3 as a matroid it has dimension 2 as a finite geometry, which is, incidentally, why
it is called a plane. Oxley [9] gives further information.)

We started with a vector matroid and discovered the Fano plane, so we already
know that the Fano matroid is representable. The question remains, is it graphic? We
attempt to construct a graph, considering the circuits C; = {a, b, d}, C; = {a, c, e},
and C; = {b, ¢, f}. These would have to correspond to cycles in a graph representation
of the Fano matroid. There are two possible configurations for cycles associated with
C, and C;, shown in FIGURE 4. In the first we cannot add edge g so that {a, f, g}
forms a cycle. In the second, we cannot even add f to form a cycle for Cs. (Since the

Figure 4 Two possible configurations
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matroid has rank 3, the spanning tree must have three edges, so the graph would have
4 vertices and 7 edges.) Thus, the Fano matroid is not a graphic matroid.

One last fact about the Fano plane [9]: Viewed as a matroid, the Fano plane is only
representable over FF,.

Matroids—what are they good for?

Now that we have seen four different types of matroids, we consider their applications.
Beyond unifying distinct areas of discrete mathematics, matroids are essential in com-
binatorial optimization. The greedy algorithm, a powerful optimization technique, can
be recognized as a matroid optimization technique. In fact, the greedy algorithm guar-
antees an optimal solution only if the fundamental structure is a matroid. Once we’ve
familiarized ourselves with the algorithm, we explore how to adapt it to a different
style of problem. Finally, we will explore the ramifications, with respect to matroids,
of the greedy algorithm’s success in finding a solution to this different style of problem.

Walking, ever uphill, and arriving atop Everest Suppose each edge of a graph has
been assigned a weight. How would you find a spanning tree of minimum total weight?
You could start with an edge of minimal weight, then continue to add the next smallest
weight edge available, unless that edge would introduce a cycle. Does this simple and
intuitive idea work? Yes, but only because the operative structure is a matroid.

An algorithm that, at each stage, chooses the best option (cheapest, shortest, highest
profit) is called greedy. The greedy algorithm allows us to construct a minimum-weight
spanning tree. (This particular incarnation of the greedy algorithm is called Kruskal’s
algorithm.) Here are the steps:

In graph G with weight function w on the edges, initialize our set B:
B=4.

1. Choose edge ¢; of minimal weight. In case of ties, choose any of the
tied edges.

2. If BU/{e;} contains no cycle, then set B := BU{¢;}, else remove ¢;
from consideration and repeat previous step.

The greedy algorithm concludes, returning a minimum-weight spanning tree
B.

We will later see that, perhaps surprisingly, this approach will always construct a
minimum-weight spanning tree. The surprise is that a sequence of locally best choices
results in a globally optimal solution. In other situations, opting for a locally best
choice may, in fact, lead you astray. For example, the person who decides she will
always walk in the steepest uphill direction need not end up atop Mount Everest, and,
indeed, most of the time such a walk would end instead atop some hill (that is, a
local maximum) near her starting point. Or, back to thinking about graphs, suppose a
traveling salesperson has to visit several cities and return back home. We can think of
the cities as the vertices of a graph, the edges as connecting each pair of cities, and
the weight of an edge as the distance he must drive between those cities. What we
seek here is a minimum-weight spanning cycle. It turns out that the greedy algorithm
will not usually lead you to an optimal solution to the Traveling Salesperson Problem.
Right now, the only way to guarantee an optimal solution is to check all possible routes.
For only 10 cities this is 9! = 362,880 possible routes. But for the minimum-weight
spanning tree problem, the greedy algorithm guarantees success.
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What does this have to do with matroids? The greedy algorithm constructs a
minimum-weight spanning tree, and we know what role a spanning tree plays in a
graph’s associated cycle matroid. Thus, the greedy algorithm finds a minimum-weight
basis of the cycle matroid. (Once weights have been assigned to the edges of G, they
have also been assigned to the elements of M (G).) Further, for any matroid, graphic
or otherwise, the greedy algorithm finds a minimum-weight basis.

Figure 5 Graph G with weights assigned to each of its edges

Let’s work through an example, based on the cycle matroid of the weighted graph
shown in FIGURE 5. The greedy algorithm will identify a minimum-weight basis from
the set of bases, B. It will build up this basis, element by element; thus, in the algo-
rithm below, the set B will not actually be a basis for the matroid until the algorithm
has concluded. (It will be an independent set throughout, but only maximal when the
algorithm concludes.) We will use matroid terminology to emphasize the matroidal
nature of the algorithm:

Initialize our set B as B =(.

1. The minimum weight element is e7, but it is rejected since its
inclusion would create a circuit. (It is a loop.) B =0.

2. Consider next smallest weight element e¢;. It creates no circuits
with the edges in B, so set B = {e}.

3. Consider eg: It creates a circuit with e, so do not add it to B.
B = {61}.

4. Consider e4: It creates mno circuits with e;, so set B = {ey, es4}.

5. Consider e3: It creates a circuit with the current elements of B,
so do not add it to B. B ={ej, es}.

6. Consider ej: It creates no circuits with the elements of B, so set
B ={e, ez, ea}.

7. Consider the remaining element, e¢5. It creates a circuit with the
elements of B. B = {ey, e, es}.

The greedy algorithm concludes, returning a minimum-weight basis
B ={e1, e, e4}.

None of these steps was actually specific to the graph—they all involve avoiding cir-
cuits in the matroid. This is a matroid algorithm for constructing a minimum-weight
basis, whether the matroid is graphic or not.

Let us sketch a proof of why this algorithm will always produce a minimum-weight
basis. Suppose the greedy algorithm generates some basis B = {ey, €3, ..., e,}, yet
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there exists some other basis B' = {fi, f2, ..., f,} with smaller total weight. Fur-
ther, without loss of generality, let the elements of each basis be arranged in order
of ascending weight. Then w(e;) = w( f), necessarily. Let k be the smallest integer
such that w(f;) < w(e;). Consider the two independent sets I} = {ey, ..., ¢;_;} and
L, ={fi,..., fr}, and recall the observation we made earlier about two independent
sets of different size. Since |I;| < |I;| we know there must be some f;, [ < k such that
I, U fj is independent. But this means f; is both not dependent on ey, .. ., ¢,_; and has
weight smaller than e;. So this is a contradiction, because the greedy algorithm would
have selected f; over ¢; in constructing B. This contradiction proves that the greedy
algorithm will find a minimum-weight basis. (Oxley [9] gives more details.)

What is fascinating and quite stunning is that one may go further and define ma-
troids using the greedy algorithm. That is, it turns out that any time the greedy algo-
rithm, in any of its guises, guarantees an optimal solution for all weight functions, we
may be sure that the operative mathematical structure must be a matroid. Stated an-
other way, only when the structure is a matroid is the greedy algorithm guaranteed to
return an optimal solution. (See Oxley [9] or Lawler [7].) We may, however, have to
dig deep to find out what that particular matroid might be.

The greedy algorithm The underlying structure
guarantees an optimal solution. is actually a matroid.

Figure 6 A stunning truth

Finally, one other observation on the nature of matroids is in order. Once a particular
matroid is defined, another matroid on the same ground set naturally arises, the dual
matroid. The set of bases of this new matroid are precisely the set of all complements
of bases of the original matroid. That is, given a matroid M on ground set E, with set
of bases B, we may always construct the dual matroid with the same ground set and
the set of bases {B' C E | B' = E \ B, B € B}. What is surprising is that this new
collection of sets does in fact satisfy the basis axioms, and this fact has kept many
matroid theorists employed for many years. In our current context, the reason this is
particularly interesting is that any time the greedy algorithm is used to find a minimum-
weight basis for a matroid, it has simultaneously found a maximum-weight basis for
the dual matroid. Pause for a moment to grasp, and then savor, that fact. (In fact, the
greedy algorithm is sometimes presented first as a method of finding a maximum-
weight set of bases, in which case the adjective “greedy” makes a little more sense.)

Is a schedule(d) digression really a digression? Lest we forget how important
mathematics can be in the so-called “real world,” let us imagine a student with a con-
strained schedule. This student, call her Imogen, can only take classes at 1 PM, 2 PM,
3 PM, and 4 PM. She’s found seven classes that she must take sooner or later, but at the
moment she has prioritized them as follows in descending order of importance: Ge-
ometry (g), English (e¢), Chemistry (c¢), Art (a), Biology (b), Drama (d), French (f).
The classes offered at i PM, denoted H;, are

H1={C,€,f,g}, H2={a’b’d}7 H3={C,€,g}, H4={d7f}

Now the question is perhaps an obvious one: Which classes should Imogen take to
best satisfy the prioritization she has set up for herself? Granted, it can be tempting in
a small example to stumble our way through some process of trial and error, but let’s
demonstrate ourselves a trifle more evolved. Casting ourselves in the role of Imogen’s
advisor, we will attempt something akin to the greedy approach we saw above. Though
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it would be a rather busy schedule, we will allow Imogen to take four courses, if there
is indeed a way to fill her hours.

Since Geometry is Imogen’s top priority, any schedule leaving it out must be con-
sidered less than optimal, so we make sure she signs up for g. (This class is offered at
two times, but for the moment we must suppress our desire to specify which hour we
choose.) What should our next step be? If we can add English, e, without blocking out
Geometry, then we should do so. Is it possible to be signed up for both g and e? Yes,
each is offered at 1 PM and 3 PM. (We still need not commit her to a time for either
class.) Can she take her third priority, Chemistry, ¢, without dislodging either of those
two classes? No, because Chemistry is only offered at 1 PM and 3 PM. There are only
two possible times for her top three priorities. What about her fourth priority, Art, a?
Yes, she could take Art at 2 PM, the only time it is offered. Imogen’s next priority is
Biology, b, but it is only offered at 2 PM, where it conflicts with Art. Finally we may
fill one more slot in her schedule by signing her up for Drama, d, at 4 PM.

Now her schedule is full, and she is signed up for her first, second, fourth, and sixth
most important classes, and filled all her time slots. Better yet, she even still has some
flexibility, and can choose whether she’d like to take Geometry at 1 PM and English
at 3 PM or vice versa. As her advisor, we leave our office feeling satisfied with our
performance, as we should, for if we were to search all her possible schedules, we
would find that this is the best we could do.

Why do we need powerful concepts like matroids and the greedy algorithm to tackle
this problem? In this example, the problem and constraints are simple enough that
trial-and-error may have allowed us to find the solution. But in more complicated sit-
uations the number of possibilities grows massive. (This is affectionately referred to
as the “combinatorial explosion.”) If Imogen had eight possible times to take a class
and a prioritized list of 17 classes, trial-and-error would likely be a fool’s errand. Simi-
larly, in our earlier example with 25 computers in a network, constructing a minimum-
weight spanning tree without the algorithm would be miserable: we would need a
quadrillion years to compare all possible spanning trees. Imagine an actual company
with hundreds of computers! Knowing that our structure is a matroid tells us that the
algorithm will work, and the algorithm is an efficient way to tackle a problem where
an exhaustive search might take the fastest computer longer than a human lifetime to
compute.

The hidden matroid For Imogen’s schedule, at each stage we chose the best option
available that would not conflict with previous choices we had made. This is another
incarnation of the greedy algorithm, and in this type of scheduling problem it will
always produce an optimal solution. (We omit the proof here for brevity’s sake. See
Bogart [2] or Lawler [7] for details.) Since the greedy algorithm is inextricably con-
nected to matroids, it must also be true that a matroid lurks in this scheduling example.
Let’s ferret out that matroid!

To identify the matroid, we need to identify the two sets in (E, 5). The first is fairly
simple: E is the set of seven courses. Now which subsets of E are bases?

The solution to the scheduling problem is actually an example of a system of distinct
representatives (or SDR) [7]. We have four possible class periods available, and a
certain number of courses offered during each period. A desirable feature of a course
schedule for Imogen would be that she actually takes a class during each hour when
she is available. We have a set of seven courses, C = {a, b, ¢, d, e, f, g}, and a family
of four subsets of C representing the time slots available, which we’ve denoted H,,
H,, H;, and Hy. We seek a set of four courses from C so that each course (element
of the set) is taken at some distinct time (H;). The classes we helped Imogen choose,
{a,d, e, g}, form just such a set; a distinct course can represent each time. Formally, a
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set S is a system of distinct representatives for a family of sets Ay, ..., A, if there exists
a one-to-one correspondence f : S — {A;,..., A,} such that foralls € S,s € f(s).
These problems are often modeled using bipartite graphs and matchings. Bogart [2]
and Oxley [9] give details.

The greedy algorithm returns a minimum-weight basis; in our example that basis
was an SDR. It turns out that any system of distinct representatives for the family of
sets H,, H,, H;, H, is a basis for the matroid; that is, B = {S € C | S is an SDR for
family H,, H,, H3, H;}. The SDR we found was minimum-weight. (Imogen defined a
weight function when she prioritized the classes.)

We now know the matroid, but which sets are independent in this matroid? Gone
are the familiar characterizations like “Are the vectors linearly independent?” or “Do
the edges form any cycles?” Thinking back to the definition of independence, a set is
independent if it is a subset of a basis. In our example, a set S € C will be independent
when it can be extended into a system of distinct representatives for H,, H,, H;, H,.
This is a more unwieldy definition for independence. But there is a simpler way to
characterize it. As long as a subset of size k (from C) can represent kK members of the
family of sets (the H;s), it will be possible for that set to be extended to a full SDR
(assuming that a full SDR is indeed possible, as it was in our example). Naturally, this
preserves the property that any subset of an independent set is independent; if some
set S can represent | S| members of the family of sets, then clearly any §” C S can also
represent |S’| members of the family of sets.

So it turns out that (E, B) forms a matroid. By definition, SDRs must have the same
number of elements, and thus no SDR can properly contain another, satisfying the first
condition for the bases of a matroid.

A full proof of the basis exchange property for bases would be rather involved, so
let’s examine one example to see how it works in this matroid. Consider two bases,
By =1{b,c,d, f}and B, = {a, d, e, g}. Again, each of these is an SDR for the family
of sets H, H,, H3, Hy. In a full proof, we would show that for any element x of By,
there exists some element y of B, such that (B; \ x) U y is a basis, which in this case is
an SDR. For this example, consider element d of B;. We must find an element of B, to
replace d, and if we do so with e we find that, indeed, the resulting set B; = {b, c, e, f}
is an SDR, as shown in TABLE 1.

TABLE 1: Three SDRs and the sets they represent

Time | Set Bl Bz B3 = (B[ \d) Ue
1pM | H French Engl. or Geom. Chemistry
2PM | H, | Biology Art Biology
3PM | H; | Chemistry | Engl. or Geom. English
4PM | Hy Drama Drama French

Notice that in B,, there are options for which class will represent H; and Hs. In
defining the SDR, we need not pick a certain one-to-one correspondence, we just need
to know that at least one such correspondence exists. Note also that the sets represented
by f and ¢ changed from B to B;. Finding a replacement for d from B, forced the
other classes to shuffle around. This is a more subtle matroid than we’ve yet seen. (You
may also have noticed that we could have just replaced d from B, when building B;.
But, wouldn’t that have been boring?)

What if Imogen had chosen a list of classes and times such that it was only possible
for her to take at most two or three classes? Even in situations where no full system
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of distinct representatives is possible, there exists a matroid such that the bases are
the partial SDRs of maximum size. Any matroid that can be realized in such a way
is called a transversal matroid, since SDRs are usually called transversals by matroid
theorists. Such a matroid need not be graphic (but certainly could be). The relationship
between the types of matroids we have discussed is summarized in the Venn diagram
in FIGURE 7.

All Matroids

*Vamos Matroid

Representable ’

eFano Matroid, F;

Figure 7 Matroids you have seen

Matroids you have now seen

Where you previously saw independence you might now see matroids. We have en-
countered five matroids: the cycle matroid, the vector matroid, the uniform matroid, the
Fano matroid, and the transversal matroid. Some of these matroids you have known,
some are new. With the matroid, we travel to the worlds of linear algebra, graph theory,
finite geometry, and combinatorial optimization. The matroid is also tied to endless
other discrete structures that we have not yet seen. We have learned that the greedy al-
gorithm is a characterization of a matroid: when we have a matroid, a greedy algorithm
will find an optimal solution, but, even more surprisingly, when a greedy approach
finds an optimal solution (for all weight functions), we must have a matroid lurking.
Once, we have even found that lurking matroid.
Do you now see matroids everywhere you look?
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Letter to the Editor: Archimedes, Taylor, and Richardson

The enjoyable article “What if Archimedes Had Met Taylor?” (this MAGAZINE, October
2008, pp. 285-290) can be understood in terms of eliminating error terms. This leads to
a different concluding approximation that is more in the spirit of the note by combining
previous estimates for improvement. We denote the paper’s weighted-average estimates
for w based on an n-gon by A,, using area, and P,, using perimeter. The last section
shows two formulas,

5 7

T
Error(perim) = P, —m = —— + —— +--- and
(perim) = P =7 = 2508 T 56 T
2> 2n’
E —A, — T = ...
rror(area) n— T 5n? T 636 +

where we have corrected the first term in the latter. A combination of 8/5 of the first and
—3/5 of the second will leave O (1/n°) error. So, the last table could show
8

3
§P96 — §A96 = 3.14159265363.

This approach could be used alternatively to justify
1 2
An = EAIn + gACn,

where Al, and AC, are inscribed and circumscribed areas respectively, by subtracting
out the 1/n? error terms and leaving the corrected error formula above. For general inte-
gration, a similar derivation motivates Simpson’s rule as the combination of 1/3 trape-
zoidal rule plus 2/3 midpoint rule. This is more than a coincidence since the inscribed
area connects arc endpoints as in trapezoidal rule and circumscribed area uses the arc
midpoint.

The technique of combining estimates to eliminate error terms is known as Richard-
son’s Extrapolation in most numerical analysis textbooks. It is usually applied to halving
step-size in the same approximation formula. For example, Archimedes could have com-
puted

16

1
22 Pog — — Pyg = 3.14159265337,
1570 15 %

if Taylor could have whispered these magical combinations.
—Richard D. Neidinger
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Davidson, NC 28035




