ON HAMILTONIAN CIRCUITS IN FINITE GRAPHS

C. ST. J. A. NASH-WILLIAMS

Let G be a finite graph with $n(\geqq 3)$ vertices and no loops or multiple edges. Two vertices are adjacent if they are joined by an edge. The degree of a vertex v will be denoted by $d(v)$. A way is an alternating sequence of distinct vertices and edges of G in which each pair of successive terms are incident and the first and last terms are vertices. The i th vertex of a way W will be denoted by w_{i}. A circuit is obtained from a way with more than two vertices whose first and last terms are adjacent by adding the edge joining them. The number of edges in a way or circuit is its length. A circuit of length n is Hamiltonian. Pósa [1] proved the following interesting theorem.

Suppose that G satisfies the following conditions:
(i) for every positive integer k less than $\frac{1}{2}(n-1)$, the number of vertices of degree not exceeding k is less than k,
(ii) the number of vertices of degree not exceeding $\frac{1}{2}(n-1)$ is less than or equal to $\frac{1}{2}(n-1)$.

Then G has a Hamiltonian circuit.
(We remark that Condition (ii) is contained in Condition (i) if n is even.)

This note presents a slightly different proof of Pósa's theorem, which avoids the construction of additional graphs.

Suppose that G satisfies (i) and (ii). If a component of G has r vertices, the degrees of these vertices cannot exceed $r-1$ and therefore $r>\frac{1}{2} n$ by (i). Therefore each component of G has more than $\frac{1}{2} n$ vertices and so G must be connected. Let m be the maximum of the lengths of the ways in G. Choose a way W of length m such that $d\left(w_{1}\right)+d\left(w_{m+1}\right)$ is as large as possible. Let S be the set of all vertices w_{i} such that w_{1} is adjacent to w_{i+1}. We note that $w_{m+1} \notin S$. Since there is no way of length $m+1$ in G, w_{1} is not adjacent to any vertex not in W, and hence is adjacent to $d\left(w_{1}\right)$ terms of W. Therefore S has cardinal number $d\left(w_{1}\right)$. Moreover, if $w_{i} \in S$, then

$$
\begin{equation*}
w_{i}, w_{i-1}, \cdots, w_{1}, w_{i+1}, w_{i+2}, \cdots, w_{m+1} \tag{1}
\end{equation*}
$$

are the vertices of a way of length m, and therefore $d\left(w_{i}\right) \leqq d\left(w_{1}\right)$ by the manner in which W was chosen. Hence the degrees of the $d\left(w_{1}\right)$ elements of S do not exceed $d\left(w_{1}\right)$ and therefore by (i), $d\left(w_{1}\right) \geqq \frac{1}{2}(n-1)$.

Received by the editors January 29, 1965.

By a similar argument, $d\left(w_{m+1}\right) \geqq \frac{1}{2}(n-1)$. Moreover, if $d\left(w_{1}\right)$ and $d\left(w_{m+1}\right)$ were both $\frac{1}{2}(n-1)$, it would follow, since S has $d\left(w_{1}\right)$ elements with degrees not exceeding $d\left(w_{1}\right)$, that $S \cup\left\{w_{m+1}\right\}$ was a set of $\frac{1}{2}(n+1)$ vertices with degrees not exceeding $\frac{1}{2}(n-1)$, which is precluded by (ii). It follows that $d\left(w_{1}\right)+d\left(w_{m+1}\right) \geqq n$. Therefore w_{m+1} is nonadjacent to at most $d\left(w_{1}\right)$ vertices, and, since w_{m+1} itself is one of these, the $d\left(w_{1}\right)$ elements of S include a vertex w_{i} adjacent to w_{m+1}.

For this value of i, let X be the way with vertex sequence (1). We note that $x_{1}=w_{i}$ is adjacent to $x_{m+1}=w_{m+1}$. Then, if m were less than $n-1$, the connectedness of G would imply that some vertex v not in X was adjacent to a term x_{j} of X, which is impossible since in this event

$$
v, x_{j}, x_{j+1}, \cdots, x_{m+1}, x_{1}, x_{2}, \cdots, x_{j-1}
$$

would be a way of length $m+1$. Therefore $m=n-1$ and X, together with the edge joining x_{1} to x_{m+1}, contributes a Hamiltonian circuit of G.

I am indebted to Professor F. Harary for suggesting several improvements in this paper.

Reference

1. L. P6sa, A theorem concerning Hamiltonian lines, Magyar Tud. Akad. Mat. Kutató Int. Közl. 7 (1962), 225-226.

University of Waterloo, Waterloo, Ontario, Canada and University of Aberdeen, Scotland

