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ABSTRACT Machine learning algorithms represent the intelligence that controls many information
systems and applications around us. As such, they are targeted by attackers to impact their decisions. Text
created by machine learning algorithms has many types of applications, some of which can be considered
malicious especially if there is an intention to present machine-generated text as human-generated. In this
paper, we surveyed major subjects in adversarial machine learning for text processing applications. Unlike
adversarial machine learning in images, text problems and applications are heterogeneous. Thus, each
problem can have its own challenges. We focused on some of the evolving research areas such as: malicious
versus genuine text generation metrics, defense against adversarial attacks, and text generation models and
algorithms. Our study showed that as applications of text generation will continue to grow in the near future,
the type and nature of attacks on those applications and their machine learning algorithms will continue
to grow as well. Literature survey indicated an increasing trend in using pre-trained models in machine
learning. Word/sentence embedding models and transformers are examples of those pre-trained models.
Adversarial models may utilize same or similar pre-trained models as well. In another trend related to text
generation models, literature showed effort to develop universal text perturbations to be used in both black-
and white-box attack settings. Literature showed also using conditional GANs to create latent representation
for writing types. This usage will allow for a seamless lexical and grammatical transition between various
writing styles. In text generation metrics, research trends showed developing successful automated or
semi-automated assessment metrics that may include human judgement. Literature showed also research
trends of designing and developing new memory models that increase performance and memory utilization
efficiency without validating real-time constraints. Many research efforts evaluate different defense model
approaches and algorithms. Researchers evaluated different types of targeted attacks, and methods to
distinguish human versus machine generated text.

INDEX TERMS Adversarial machine learning, generative adversarial networks, GAN, text generation.

I. INTRODUCTION
There are strong indicators that machine learning (ML) mod-
els are amenable to attacks that involve modification of input
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data intending to cause models’ target misclassification. The
main reason behind such vulnerability is the adaptive nature
of ML models. While their vulnerability to attacks can vary,
nonetheless, all ML models are generally susceptible to such
attacks. To demonstrate an attack, we can think of an ML
model or system that takes and processes some inputs, which
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results in an initial accurate classification based on original
data inputs. Still, it is eventually possible for some malicious
actor to artificially construct an input that will result in incor-
rectly classified instances when tested by themachine learner.
Generating such artificial input data or adversarial examples
can be done in a variety of ways, including:

• Fast-gradient-sign methods
• One-step target-class methods
• Basic iterative methods
• Iterative least-likely-class methods

Each method has its advantages and drawbacks when used in
an actual attack. For example, a fast gradient sign method is
a simple and easy way to create adversarial examples. How-
ever, it has a lower success rate compared to other methods.
This method’s success rate is much lower than the others.

After generating adversarial examples, they can be used in
two main forms of attack settings: black-box and white-box
attacks. Black box attacks occur in cases where the malicious
actor has no, or limited information about the specifics of the
model and how it works. Conversely, the attacker is assumed
to possess full or most of the required knowledge about the
ML model and its parameters in a white-box setting.

Adversarial examples are inputs for ML models that allow
an attacker to cause the target ML model to make classi-
fication/prediction errors. These examples are intentionally
designed to make the model output incorrect. In a world ruled
by ML systems at a large scale, one exploitative example or
sample can have a cascading effect on themodel andwhatever
entity or application using them.

Transferability is a specially important feature of adver-
sarial examples. In this context, most adversarial examples
can be transferred from one model to another. Consequently,
an adversarial example generated and tested by a certain
malicious actor can attack other models, either with the same
attacker or by others.

To guard against adversarial input attacks, adversarial
training is performed. This concept refers to the process of
adding adversarial examples into the data set at the time of
training the model. By injecting these adversarial examples
into the training set, one trains the model to be resilient
against possible attacks since it will know how to handle this
kind of input when it is artificially introduced.

Training an ML model with ensemble models (e.g. from
different datasets, dataset subsets, features, or model settings)
can also be an effective approach against adversarial attacks.
There have been several research works that showed the
effectiveness of ensemble training in improving the model’s
resilience against both black-box and white-box attacks.

The idea of transferred attacks mentioned earlier seems
particularly difficult to handle or defend against. Still, ensem-
ble training is shown to be an efficient means of increasing the
system’s resilience against transferred attacks. Nonetheless,
there is a continuous arms race between ML defenders and
attackers; new attack types have been suggested to increase
the success rate of transferred attacks in a black box scenario.

Evaluating the security of ML models can involve the
following processes:
• Identifying attack classes to the system
• Measuring the robustness of the system against these
attack classes

• Designing and studying defense mechanisms against
potential attacks

ML defense strategies can be divided into reactive versus
proactive. A huge problem with securing machine learn-
ing systems is that adversarial examples are very difficult
to detect. In particular, neural networks are susceptible to
such adversarial examples [1]. Based on the experiments
performed, they can trick ML classifiers. Moreover, it is
shown that there is no easy or concrete method to differentiate
between an adversarial example and a legitimate one. Accord-
ingly, it can be concluded that the current security measures
we possess are not adequate to defend against current and
future types of adversarial examples. Before we can think
about using ML in security applications and be confident
with their performance, we need to design effective defenses
against adversarial attacks.

A secure machine learning algorithm is the one that can
perform under adversarial conditions. These conditions deal
with the possibility that an adversary can design training data
to change the system to treat hostile data as legitimate [2].
In [2], the authors exploit these conditions to develop a frame-
work for security analysis. In security analysis, there are two
metrics, security goals, and threat models. Security goals deal
with two factors, (1) integrity, how well a system can prevent
attackers from reaching system assets, and (2) availability,
how well a system can prevent attackers from interfering
with regular operations. Threat models evaluate two factors:
attacker goals/incentives and capabilities. The taxonomy of
these factors against learning systems is categorized into three
additional categories:
• Influence (causative and exploratory): which describe
the capacity of the attacker, and

• Security violation (integrity and availability): the type of
breach the attacker causes, and

• Specificity (target and indiscriminate): the attacker’s
intention.

As text input is discrete, text generator models the problem
as a sequential decision-making process. In such a model, the
current state is the previously generated characters, words,
or sentences. Correspondingly, the action or prediction to
make is the next character/word/sentence to be generated.
The generative net is a stochastic policy that maps the cur-
rent state to a distribution over the action space. As one
type of generative models based on deep neural networks,
a generative adversarial network (GAN) can create new data
instances that resemble original training data. Original GAN
described by [3] has the following components and work
flow:
• Two NNs: a discriminator and a generator. The dis-
criminator’s role is as of a simple classifier, that should
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distinguish real instances (positive examples, from the
original training dataset) from fake instances (negative
examples) created by the generator.

• The generator tries to fool the discriminator by synthe-
sizing fake instances that resemble real ones. As train-
ing progresses, the generator gets closer to producing
instances that can fool the discriminator. If the generator
is trained very well, the discriminator gets worse at
telling the difference between real and fake instances.
Generally speaking, the generator module task is harder
than that of the discriminator. For the least, the discrimi-
nator’s job is binary, whereas the generator’s job is much
more complex.

• The twoNNs compete with two different goals. The goal
of the discriminator is to distinguish between the real and
the fake instances. The goal of the generator is to learn
more about the real instances or data and eventually fool
the discriminator.

• Both are trained separately. Each one assumes that the
other module is fixed at the time of cycle training (to
avoid dealing with a moving target that can be more
complex). An accuracy of 100% for the generator to
generate fake instances indicates an accuracy of 50% for
the discriminator.

• As another sign of competition/game between rivals, the
generator instances become negative training examples
for the discriminator. The discriminator punishes the
generator for producing incorrect instances and rewards
it for producing correct instances. In return, the gener-
ator evolves to make the discriminator punish less and
reward more.

• In effect, a good discriminator should not reveal enough
information for the generator to make progress.

• In addition to discriminator and generator modules,
GANs include the following components:

– Generator’s random input module
– A generator network that transforms the random

input into a data instance
– Generator loss that punishes the generator for fail-

ing to fool the discriminator
– A back-propagation module that adjusts weights by

calculating their impact on the output

In this paper, we evaluate research progresses and trends in
adversarial machine learning (AML) text progressing focus-
ing on several subjects including proposed defense mecha-
nisms, text generation models, and metrics. In each section,
we identify research trends and challenges that can be used
to guide researchers in the respective area. Table 1 lists
acronyms used in the text.

We can summarize our contribution in this paper as
follows:

• Our main goal of this paper is to provide researchers in
one single paper open challenges and research trends
in the field of adversarial machine learning for text
applications.

TABLE 1. Acronyms and abbreviations.

• While AML field in image and videos is heavily inves-
tigated in literature, AML in text applications is much
recent and the volume and depth of contributions are
much less in comparison with the previous one.

• Unlike other relevant survey papers in the literature (),
we followed a top-down ontological approach to iden-
tify major themes, subjects, trends and challenges. This
paper typically helps novice researchers in new fields to
match their interests and skills with open research areas
and challenges in their selected field of study.

• AML text applications are continuously growing. They
are also getting more serious. One major example that
we evaluated in another pending paper is related to social
networks. AML in social networks can be seen in the
large number of social bots and trolls that are created at
large scales and state-sponsored agencies to impact and
influence public opinions.

II. TEXT GENERATION MODELS
Natural language generation (NLG) techniques allow natural
language text generation based on a given context. NLG for
text can be conducted based on predefined grammar such
as the Dada Engine [4], or leverage deep learning neural
networks such as recurrent neural networks (RNN) [5]. In this
section, we describe some of the popular approaches found in
relevant literature in the scope of AML.

In [4], the authors focus on email-based attacks. They
show how an attacker uses the NLG approach to masquerade
attacks. Then, they evaluate their efficacy with an analysis
of within-subjects. Specifically, this work suggests that NLG
approaches are useful for experienced email users and users
of all genders and ages. Therefore, defenders can use NLG to
enhance their system filters.

In [5], a new class of attacks based on deep learning
language models such as RNNs is defined. The authors use
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FIGURE 1. Popular approaches for text generation in the scope of AML.

TABLE 2. A comparison of different text generation methods.

RNN to generate an automatic fake review for services and
products. These attacks are inexpensive. Therefore, they have
the potential to be more scalable. Moreover, they can reg-
ulate the produced content rate to avoid the signature trace
that makes crowd-sourced campaigns easy to detect. Further-
more, [5] proposes a review platform to demonstrate how
a two-phased review generation and customization attack
may generate indistinguishable reviews by state of the art
detectors. Specifically, a novel approach is developed to
defend against RNN-based fake reviews using an RNN-
based model’s primary vulnerability related to information
loss incurred during the training process when fitting a large
training dataset.

Figure 1 presents a suggested classification of the popular
approaches for text generation in the scope of AML. Also,
Table 2 compares different methods for text generation.

A. CLASSICAL APPROACHES
Teacher forcing is a common approach to training RNNs to
maximize each token’s likelihood from the target sequences
given previous tokens in the same sequence [13]. In each time
step of training, the model is evaluated based on the target’s
likelihood, given a ground-truth sequence. Teacher forcing is
used for training the generator, which means that the decoder
is exposed to the previous ground-truth token.

RNNs trained by teacher forcing should model a distri-
bution that matches the target, where the joint distribution
is modeled adequately of RNN models prediction of future
steps. The created error when using the model is propagated
over each next step, resulting in low performance. A solution
to this is training the model using professor forcing. Along
this line, the authors in [14] propose a professor/teacher
forcing approach, that aims to align generative behavior as
closely as possible with teacher-forced behavior. Specifically,
they allow the RNN to generate robustly well exceeding the
length of the sequences it detected during training. Then,
they show that the new training method assists in modeling
better long-term dependencies from RNN. Moreover, the
professor/teacher forcing scheme can regularize the RNN.
This is shown by improving the likelihood of testing on Penn
Treebank at the character level, speech synthesis, and sequen-
tial MNIST generation. This method’s primary motivation is
to allow the discriminator to use single-step predictions and
behavior statistics. This will force the generator to behave
in the same way as in the case of data constraints and when
the outputs are generated for sequences that might be much
longer than the sequences for the training set.

In text generation, a model is trained over different inputs
belonging to different distributions. Specifically, a model
may be fed with its predicted data rather than the ground-truth
data at inference time. This creates an accumulation in the
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error referred to as exposure bias. This accumulation is
known to lead to generating poor samples [15]. To this end,
the main advantage of the professor/teacher forcing approach
is that it can help to overcome the exposure bias in generated
text sequences. On the other hand, a key drawback of this
approach is that it is an adversarial training approach; it does
not try to render the output distribution indistinguishable from
the observed data distribution. As a consequence, high sample
quality cannot be guaranteed.

Other language models based on n-grams1 [16] and
feed-forward neural networks [17] are common choice mod-
els for text generation in classical approaches. These models
usually suffer from two main drawbacks.

1) They are trained to predict the next word in the
sequence using the ground-truth words as an input. The
sequence is generated by predicting one word at a time
and feeding it back as an input at the next step.

2) The word-level loss function is used for the training
of these models. A cross-entropy loss is a common
option for optimizing the likelihood of the next correct
word. Discrete metrics are used to evaluate models’
performance, such as bilingual evaluation understudy
(BLEU) [18] which is used in language models based
on n-grams. It is difficult to train these models to opti-
mize metrics such as BLEU directly for these reasons:

• It is not distinguishable, and
• It requires a combinatorial optimization to evaluate
which sub-string can maximize the likelihood of
the next candidate word.

We refer the reader to Section V for a comprehensive
revision of popular metrics used in the context of text
generation.

B. CONVENTIONAL INFERENCE METHODS/MAXIMUM
LIKELIHOOD ESTIMATION (MLE)
MLE is used on real data samples, and the parameters are
updated directly according to the data samples. This may lead
to an overly smooth generative model. The goal is to select
the distribution that maximizes the likelihood of generating
the data. For practical sample scenarios, MLE is prone to
over-fitting or exposure bias issues on the training side. Fur-
thermore, during the inference or generation stage, the error
at each time step will accumulate through the sentence gen-
eration process [19]. Specifically, the most likely upcoming
word at the training process that gives a proper context will
be found. Since the text is self-generated, and the upcom-
ing word is found by assuming a valid sequence context,
the errors may accumulate through the sentence generation
process.

There are four main approaches to address expo-
sure bias: scheduled sampling, reinforcement learning, re-
parametrization, and adversarial training.

1In the fields of computational linguistics and probability, an n-gram is a
contiguous sequence of n items from a given sample of text or speech.

Conventional inferencemethods typically employMLP for
text generation. Here is a brief revision of several conven-
tional methods.

1) HIDDEN MARKOV MODEL (HMM)
A hiddenMarkovmodel (HMM) is a probability graphmodel
that can depict the transition laws of hidden states, and
mine the intentional features of data to model the observable
variables. The foundation of an HMM is a Markov chain,
which can be represented by a special weighted finite-state
automaton. The majority of generative models require the
using Markov chains [20], [21]. The observable sequence in
HMM is the participle of the given sentence in the part-of-
speech (PoS) tag while the hidden state is a different PoS.

2) METHOD OF MOMENTS
The method of moments (MoM) or method of learned
moments is an early principle of learning [22]. There are
situations in which MoM is more advantageous than MLE.
One is when MLE is more computationally challenging
than MoM [23]. In the generalized method of moments
(GMM), in addition to the data and the distribution class,
a set of relevant feature functions is given over the instance
space [24], [25].

The authors in [23] propose an approach for training
large-scale implicit generative models based on MoM. This
approach can be mapped to NN models with millions
of parameters and provides a learning moments method
like asymptotic variance minimized by moment estimators.
Moment calculation encounters difficulties in:

• Identifying the millions of moments necessary to learn
the model’s parameters, and

• Deciding which properties are useful when defining
moments

To tackle the first problem, [23] implements a moment
network and describes the moments as the hidden units of
the network and the gradient output of the network relative
to its parameters. On the other hand, to solve the second
issue, the asymptotic theory is used to illustrate desired data
for moments. Specifically, the asymptotic variance should be
reduced for the parameters of the estimated model. It is found
that the implicit generative models trained using the proposed
MoM algorithm outperform adversarial learning models in
generating samples.

Other research contributions for AML in MoM or moment
matching include the works in [26]–[28]. The work in [26],
proposes new trainingmethods used in GANs to trainmodels.
The proposed techniques, namely; feature matching, mini-
batch features, and virtual batch normalization, are inspired
by heuristics to realize the non-convergence problem and
improve the semi-supervised learning performance for the
generation of samples of the models. On the other hand, [27]
proposes a Fisher GAN framework for training genera-
tive models based on integral probability metrics (IPMs).
In this setting, MoM is employed using the critic function
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by constraining second-order moments that efficiently dis-
criminates between real and fake distributions. Fisher IPM
is used to formulate an algorithm resulting in these attractive
features: stability, unconstrained capacity, efficient compu-
tational cost, and representation power for semi-supervised
learning.

Authors in [29] discussed variational methods of
moments (VMM) estimators based on kernel methods or deep
learning. Examples of those variations include: Optimally
Weighted Generalized Method of Moments (OWGMM),
Neural Variational Methods (NVMs).

Authors in [30] proposed an automated algorithm for the
efficient Bayesian inference of the parameters of a computa-
tionally expensive, first-principles simulation.

Another related work is [28] which provides a solution to
the problem of finding a way to select moment conditions
appropriate to the learner’s hypothesis class. They proposed
an adversarial GMM algorithm and uses conditional moment
restrictions to learn deep neural networks.

3) RESTRICTED BOLTZMANN MACHINE (RBM)
Restricted Boltzmann machine (RBM) is a two-layer neu-
ral network that consists of a visible layer and a hidden
layer [31]. This is a generative model capable of learning
representations from data. Generative models have evolved
from RBM-based models, such as Helmholtz machines
(HMs) [32] and deep belief nets [31], to variational auto-
encoders (VAEs) [33] and GANs.

The authors in [31] derive a fast and greedy algorithm
using complementary priors to generate a hybrid model that
can learn deep, directed belief networks, one layer at a time.
In this model, the top two layers generate an undirected
associative memory. At the same time, the other remaining
layers generate a directed acyclic graph that converts the
representations in the associative memory into measurable
variables.

C. COOPERATIVE TRAINING METHOD (CTM)
In CTM, a language model is trained online to offer a target
distribution for minimizing the divergence between the real
data distribution and the generated distribution [15], [34].
CTM is used as an alternative to MLE training in AML.
Specifically, it is used to train a secondary model by fitting
the average of this model close to the real distribution and the
generator distribution average.

As another example work, [15] propose a cooperative
training method that uses language models. The resulting
adversarial text generator distribution is efficiently shaped,
and the mode collapse will be slowed down. Thus, this leads
text generation towards a more favorable trade-off in quality
and diversity.

1) RL-BASED VERSUS RL-FREE TEXT GENERATION
GAN models were originally developed for learning from
a continuous distribution. However, the discrete nature of
text input handicapped the use of early GANs. In GANs,

a reinforcement learning algorithm is used for policy gradi-
ent, to get an unbiased gradient estimator for the generator
and obtain the reward from the discriminator [35].

The performance of RL-based text generation largely
depends on the design of the reward ( [36]). Previous methods
directly consider the rewards as the hand-crafted metrics
between ground-truth sentences and generated sentences. The
generator is updated based on policy-gradient methods. As a
result, collecting rewards in the generation process is criti-
cal, [37]. In [38], authors proposed an RL-based algorithm
dedicated to learning aword-based textgeneration task, which
does not rely on a pre-training phase while scaling to large
vocabularies.

D. RL-BASED TEXT GENERATION
Reinforcement learning (RL) is a technique used to train an
agent to perform certain tasks. Due to its generality, reinforce-
ment learning is studied in many disciplines. More recently,
GAN models that use a discriminating module to guide the
training of the generative module as a reinforcement learning
policy have shown promising results in text generation [11].

One of the main goals of adversarial learning is to
reduce/eliminate exposure bias. Usually, the natural language
outputs are discrete. Therefore, there is no well-defined gra-
dient to direct a GAN through the training process. Various
solutions have been proposed to overcome this challenge,
e.g., the SeqGAN model [10] is one of the effective methods
used to handle the discrete problem in text GAN. The RL
policy gradient method is used in this model for updating
system weights.

The main challenge facing GAN text generation using
RNN is the decision of the operation selection at the
generator’s output. Therefore, it is challenging to use the
back-propagation for generator training.

Many approaches based on RL can be used to address this
issue, such as:

• The reinforce algorithm and policy gradients
• The actor-critic approach
• The Gumbel-softmax approximation
• Operating in the continuous space for the generator’s
output

A recent work in [12] develops a novel adversarial learn-
ing approach based on GAN, namely RankGAN, to gen-
erate high-quality language descriptions. RankGAN is used
as a relative ranker for ranking sets of human-written and
machine-written sentences by an adversarial approach. In this
setting, the machine-learned ranking optimization problem
is used to train the discriminator. Herein, two NN models
are exploited in the proposed AML network, a ranker, and
the generator. The ranker is trained to rank machine-written
sentences lower than human-written sentences relative to a
human-written reference sentence. As a result, the genera-
tor is trained to produce sentences that puzzle the ranker,
thus the machine-written sentences are ranked higher than
human-written sentences relative to the reference.
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One of the main challenges that face text generation via
GAN is the discrete state space problem. The authors in [39]
propose a text generation method via GAN that addresses
the aforementioned challenge by allowing the discriminator
to deal with continuous-valued distribution outputs. In this
setting, the discriminator receives a sequence of probabil-
ities from the generator for each token in the vocabulary,
as well as a sequence of one-hot vectors from the real data
distribution. Specifically, an empirical investigation for text
generation is provided by applying GANs to discrete state
spaces.

Another approach that can be used to tackle the discrete
data challenge in GAN is proposed by [40]. The authors
propose a maximum-likelihood augmented discrete GAN
(MaliGAN). Herein, a new GAN training objective is intro-
duced. This objective avoids the stability problem that arises
when the discriminator output is used as a direct reinforce-
ment learning reward. Furthermore, a normalized maximum
likelihood optimization is developed as a target. In order
to meet this objective, significance sampling and variance
reduction techniques are used.

There are several models of RL, some of which are applied
to sentence generation, e.g., actor-critic algorithm and deep
Q-network [41]–[43].

In general, RL methods consist of two types; 1) Value-
based methods such as Q-learning and deep Q-networks
(DQN) which outperform other models in the contin-
uous and stochastic environment, and 2) Policy-based
methods such as: reinforce and policy gradient. More
recently, the actor-critic approach is developed by merg-
ing the two above-mentioned types in an attempt to
maximize the benefits of both value-based and policy-
based approaches while avoiding their shortcomings.
Also, [43] uses this method by training the NN to gener-
ate sequences. This method can be used to overcome the
log-likelihood training approach limitations, which are con-
strained by the disparity between their testing and training
modes.

1) THE ACTOR-CRITIC APPROACH ADVANTAGE
The employment of the actor-critic approach provides bet-
ter machine translation tasks compared with the MLE and
reinforce approaches. On the other hand, [42] proposes using
DQN for sequence-to-sequence learning, which iteratively
decodes the output sequence, employing an encoder-decoder
long short-term memory (LSTM) network for automatic
internal states approximation and DQN actions formulation.
An attention technique is combined with the RL’s exploration
strategy to allow the decoder LSTM network to learn from
the generated texts during this phase. This approach pro-
vides better performance than the sentence regeneration task,
specifically while decoding unknown sentences. Moreover,
this approach tackles the problem of decoding sequences
with the variable-length size and the previously not known
sentences.

RL-based approaches face several challenges:

• Optimization challenge: they may yield high-variance
gradient estimates [44], [45].

• They may get trapped or converge to a sub-optimal local
minimum.

• They may have a huge state-action space, leading to
large portions of the space still unexplored.

• In general, the generated sentences’ quality is poor due
to the above-aforementioned reasons.

E. RL-FREE GANs FOR TEXT GENERATION
Researchers try also to find efficient approaches not based
on RL for training text GANs to address RL challenges.
Examples of RL-alternative models are.

• Latent space-based solutions
• Continuous approximation of discrete sampling

For GANs in the RL-free category, GSGAN, [46] and
TextGAN, [45] use the Gumbelsoftmax and soft-argmax
trick, respectively, to deal with discrete data, [47].

These models apply a simple soft-argmax operator,
or Gumbel-softmax trick to provide a continuous approxima-
tion of the discrete distribution on text. Examples of research
efforts in this category include: TextGAN [45], Gumbel-
Softmax GAN (GSGAN) [44], [46], [48], FM-GAN [35],
GSGAN [46], and RelGAN [7].

Sequence generation for discrete elements is one of the
main limitations of GANs. This challenge can be tack-
led using different distributions rather than multinomial
discrete distribution such as Gumbel-softmax distribution.
Gumbel-softmax is a continuous distribution used for sample
approximation of the multinomial discrete distribution. The
work in [46], uses this method based on RNN to gener-
ate sequences. Moreover, [45] presents another approach to
overcome the generation of the text for discrete elements
and alleviate the mode collapse problem associated with
GAN training. This is achieved through a framework to
generate text (TextGAN) through GAN, where the LSTM
network is employed as a generator and a convolutional
neural networks (CNN) is a discriminator. In this method,
the kernel-based discrepancy metric is used for matching the
distributions of the high-dimensional latent feature between
the real and synthetic sequences. On the other hand, [35]
proposes a new approach, namely feature mover’s distance
(FMD), to generate text in GAN, inspired by optimal trans-
port theory. Specifically, FMD is used as a discrepancymetric
for matching the high-dimensional latent feature distributions
between the real and synthetic sequences.

1) ADVANTAGES OF THE FMD APPROACH
This approach leads to a discriminatory critic and an easy-to-
optimize objective that can overcome the mode collapse and
the brittle training problems in current methods.

VOLUME 10, 2022 17049



I. Alsmadi et al.: Adversarial Machine Learning in Text Processing: Literature Survey

The study in [7] proposes a newGAN approach to generate
text called RelGAN. This approach contains the following
main components.

• A relational-based memory generator for longer-range
dependency in text modeling,

• Gumbel-softmax relaxation to train GANs on discrete
data, and

• Multiple embedded representations in the discriminator
give more informative signals for the generator updates.

RelGAN has the following Advantages:

1) RelGAN outperforms the current models in terms of
sample quality and diversity.

2) RelGAN can control the trade-off between sample
quality and diversity via a single adjustable parameter.

3) RelGAN is the first approach that allows GANs to gen-
erate realistic text with Gumbel-Softmax relaxation.

Table 3 presents a summary of the popular approaches for
GANs in the scope of text generation.

F. LONG VERSUS SHORT TEXT GENERATION
The literature body in this area differentiates between the
generation of short texts (e.g. less than 20 words) and that
of long text. Application areas of each one can be different
accordingly. The majority of publications focused on short
text generation as it seems to be less challenging. Differ-
ent challenges are discussed in the literature especially in
long text generation. One challenge is the sparse reward
issue, in which a scalar guiding signal is only available
after an entire sequence has been generated. Furthermore, the
non-informative scalar guiding signal of the generated text
is another challenge, where the intermediate text structure
information is not available during the text generation pro-
cess [11], [41], [51].

The main disadvantage of the sparse reward problem is
making the training sample inefficient [52]. Still, model-
based RLs have been proposed recently to solve problems
with extremely sparse rewards [53]. Regarding text-based
GANs, policy gradient methods usually provide reward func-
tions that sample a token per timestep without considering
their surroundings are unfeasible in long sequences, [54].

The hierarchy paradigm in the text generation pro-
cess can address the scalar guiding signal in the sparse
reward challenge. Specifically, the text generation task is
decomposed into different sub-tasks according to the hier-
archical structure to make the model learn the process
easier [11], [51]. Also, [11] proposes a new framework to
handle the above-mentioned long text generation challenges.
The so-called LeakGAN model is proposed to provide more
valuable information from the discriminator to the generator
using recent hierarchical reinforcement learning advances.
This model uses the manager and worker modules. The gen-
erator combines such informative signals into all generation
steps via a high-level Manager module that extracts features
from currently generated words and results in a latent vector
that leads the low-level Worker module to generate the next

word. While LeakGAN is proposed for long text generation,
it proved to improve the performance in short text generation
applications as well, [55].

G. SUPERVISED VERSUS UNSUPERVISED TEXT
GENERATION
Supervised text generation is a method to employ the existing
ML algorithms that rely on large labeled data sets. RNN
and CNN are two famous approaches in supervised learning
wherein large data sets contain millions of labeled data. Many
works use these approaches to generate texts in a supervised
fashion [43], [56]–[60].

The current classifiers with small-sized training data sets
cannot perform as expected compared to the large labeled
data sets. Besides, the process of obtaining a large data set
is time-consuming and expensive, so it’s essential to find a
new approach to construct a large data set in an optimized
and inexpensive way. GANs seem to be a promising solution
for expanding data-sets and overcoming the small data-set
sizes [61]. Therefore, GANs employed the idea of adversarial
training for text generation to generate a more realistic text.
Text generation in supervised learning is formulated as a
supervised problem. Specifically, in a particular sentence, the
terms/words in the sentence can be seen as the input features
while the next term/feature is the target.

The main challenges facing supervised learning can be
broken down into the following points.

• The majority of supervised learning methods require
large-scale and labeled data sets whose construction is
costly and time-consuming.

• The predictions to generate the next character/word/
sentence in the supervised model are only based on the
last few inputs. Therefore, errors may rapidly accumu-
late and there will be a small chance to improve from
earlier mistakes.

In recent literature, unsupervised text generation mod-
els are proposed to overcome challenges in the supervised
models. RNNs with LSTM cells is one of the leading
approaches for unsupervisedmodels [10], [62]–[65].We refer
the reader to Section VII for an elaborate revision of recent
memory-based ML architectures. Unsupervised text can be
generated from explainable latent topics [66], structured
data [67], [68], or knowledge graphs (KGs) [59], [65], [69],
[70]. The authors in [62] propose an unsupervised model
using LSTMwith RNN to generate complex and realistic sen-
tences containing long-range structures. They use the LSTM
memory in RNN architecture to better store and access data
compared to the conventional RNN. Also, [64] proposes a
new unsupervised neural generative model for text genera-
tion. This combines VAEs and holistic attribute discrimina-
tors to effectively imposition semantic structures. This model
resolves the challenge that comes from the discrete nature
of text samples. Moreover, it also solves the challenge for
controllable text generation related to learning disengaged
latent representations.
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TABLE 3. A summary of popular approaches for GANs in the scope of text generation.

III. MACHINE LEARNING ALGORITHMS FOR TEXT
GENERATION
It has been proven that RNN architectures are well-suited for
text generation tasks [71]. This section addresses machine
learning algorithms for text generation. We discuss the short-
coming of RNNs, i.e., long text generation where LSTM
and gated recurrent unit (GRU) are introduced to solve such
a problem. We also discuss the difference between various
text generation models. Furthermore, we highlight different
metrics used for evaluating text generation such as beam
search, greedy search, sequence-to-sequence models, knowl-
edge enhancement methods, recursive transition network,
relational memory, and scheduled sampling.

The state-of-the-art text generation models are based on
RNNs. RNNs have difficulties when constructing, generat-
ing, and representing long texts. However, they are robust
when generating local coherent text. Therefore, several
papers such as [6]–[8], [71]–[76] discuss various deep learn-
ing RNN algorithms in light to this shortcoming. Improved
versions of RNN, namely, LSTM and GRU are implemented
in an attempt to solve long-term dependencies in text.

LSTM has been used for sentence decoding in VAE. In [6],
the authors introduce Texar which is an open-source project
for various text generation models. In one model, they use a
conventional LSTM RNN decoder. They also used a trans-
former decoder. The test set perplexity and sentence–level
negative log-likelihood (NLL) with the same parameter size,
are evaluated for both decoders. Experiments show a signifi-
cant improvement of transformer VAE over traditional LSTM
VAE. Sentence segmentation into short clauses for translation
by the model is presented in [77]. Overall, this approach
enhances the translation of long sentences.

The authors in [7], introduce RELGAN which is a rela-
tional memory for text generation architecture to replace
LSTM. This is due to LSTM’s limitations such as the fact that

the discriminator might be more capable than the generator
and can differentiate between real versus non-real samples.
There might not be enough generator capacity to distribute
data based on modes due to mode crashes in current GANs.
Also, there may be the poor performance of current GANs in
terms of generating a long sentence. Experiments show that
RELGAN outperforms LSTMs (seqGAN, RankGAN, Leak-
GAN) in terms of long sequence andBLEU scores.Moreover,
RELGAN defeats MLE which is used as a baseline, and all
other GANs in terms of the generated text samples.

Texygen [8] is a platform of text generation models.
It includes metrics to measure the quality, consistency, and
diversity of generated text. Models such as seqGan, Mali-
GAN, RankGAN, LeakGAN, TextGAN, and MLE are evalu-
ated in terms of BLEU score on training data, BLEU score
on test data, and self-BLEU score. Experiments show that
LeakGAN outperforms the rest of the baseline models on
the trained data. LeakGAN achieves better generalization
capacity in terms of tested data where MaliGAN attains the
lowest BLEU score compared to other models. Furthermore,
less diverse documents are generated by all the models on
the original trained data. This shows that LeakGAN and
TextGAN undergo mode collapse problems when compared
to the rest of the models. On the other hand, MLE and
MaliGAN can generate outputs with high diversity.

Amodel consisting of an encoder-aligner decoder based on
RNN with LSTM is presented in [78]. The encoder encodes
over-determined events by applying a bidirectional LSTM-
RNN. Furthermore, to generate natural language descrip-
tions, the model uses an LSTM decoder of the selected
records. The performance of their model is analyzed on the
benchmark datasets ROBOCUP and WeatherGOV. In com-
parison to primary WeatherGOV, their model achieves bet-
ter results in terms of F-1, sBLEU, and cBLEU quality
metrics. Other assessment tools also include beam filter,
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ablation analysis, qualitative analysis, and domain indepen-
dence using ROBOCUP.

In [9], the authors address the problem of generating long
reviews within a neural network context. They focus on
an encoder-decoder framework by examining various ways
for text review generation. A multi-layer perceptron (MLP)
encoder is used along with an RNN encoder with LSTM.

The performance evaluation of GANs based on RNNs
with Gumbel-softmax output to generate discrete elements
is presented in [46], where the model is based on LSTM
RNN. The evaluation of the generative and discriminatory
losses is shown throughout training. More recently, Seq-
GAN [10], which is a sequence generation framework to
solve the problem of GANs discrete sequence generation.
Experiments show that this model outperforms other base-
lines such as MLE, SS, PG-BLEU in terms of the NLL
metric. Furthermore, LeakGAN is proposed in [11] for tack-
ling the problem of long text generation. The model uses
reinforcement learning to generate better quality informa-
tion from the discriminator to the generator. This model
is compared to MLE, seqGAN, and RankGAN using eval-
uation metrics such as NLL, BLEU, and human rating
scores.

RankGAN [12] is an adversarial learning framework for
creating high-quality language descriptions. This model is
one of its kind to learn by relative information. The model
is compared to different synthetic data methods such as
MLE, PG-BLEU, and seqGAN in terms of NLL and BLEU
scores. The result shows that RankGAN outperforms the
state-of-the-art methods in terms of NLL and BLEU scores.
Also, [79] presents a text generationmodel calledMaskGAN.
MaskGAN is compared and evaluated in terms of the ability
in conditional language generation, perplexity of samples,
model collapse, and human evaluation to other models.
The power of large RNNs based on Hessian-free opti-
mizer through applying them to character levels is studied
in [80].

Classical approaches to text generation include template-
based, rule-based, n-gram-based, and log-linear-based mod-
els. Rule-based techniques are grammar-based methods with
structured rules written based on accumulated knowledge.
Template-based approaches can be as simple as replacing
words of users’ choices by their synonyms [81]–[84].

N-gram models are widely used in NLP tasks such as text
generation. In an n-gram approach, the last word of the n-
gram (i.e. to be predicted) can be inferred from the other
words that already appear in the same n-gram [85].

Two popular deterministic decoding approaches are beam
search and greedy search [86]–[88]. Beam search maintains a
fixed-size set of partially-decoded sequences. It is a common
search strategy to improve results for several tasks such as
text generation, machine translation, and dependency pars-
ing. On the other hand, greedy search selects the highest
probability token in each step. Thus, it can be seen as a special
case of beam search.

1) SEQUENCE-TO-SEQUENCE MODELS AND KNOWLEDGE
ENHANCEMENT METHODS
Sequence-to-sequence models are common architectures for
text generation tasks where both the input and the output
are modeled as sequences of tokens. In other words, the
model converts an input sequence into an output sequence.
More specifically, this setting uses two models; the first one
encodes the input sequence as a set of vector representa-
tions using an RNN. The second RNN then decodes the
output sequence step-by-step. Sequence-to-sequence models
are commonly trained via maximum likelihood estimation
(MLE) [50].

One challenge with sequence-to-sequence models is that
the input text alone often does not provide enough knowl-
edge to generate the desired output. Several methods
are proposed to enhance the model’s knowledge beyond
input text such as attention, memory, linguistic features,
graphs, pre-trained language models, and multi-task learn-
ing. Many of those techniques are listed in [89] and
https://github.com/wyu97/KENLG-Reading. One of those
particular enhancement techniques is attention, [87] in which
an encoder compresses the input text and a decoder with
an attention mechanism generates output target word(s). The
decoder is bound to generate a sequence of text tokens.

The authors in [4] discuss using an RTN [90] for generating
fake content similar in nature to legitimate content. RTN is
used to detect simplification constructs. Nodes of the graph
are labeled, and arcs may be labeled with either node names
or terminal symbols. RNNs are essentially equivalent to an
extension of context-free grammars in which regular expres-
sions are allowed on the right side of production.

RTN is used to analyze an input sequence to establish its
grammatical structure in relation to a given formal gram-
mar by parsing the syntax of natural language phrases to
identify the syntactic structure of a sentence. Besides, they
have been used in a variety of research works on grammar
development and natural language parsing strategies. Along
this line [90] implements a system that provides a general
facility for semantic analysis, and one of the key aims of
the implementation is to examine the relationship between
syntactic and semantic aspects of sentence ‘‘understanding’’.
In the same research, the use of semantic knowledge to direct
parsing, the reduction of the number of blind-alley analysis
paths that must be taken, and the ordering of sentence analysis
in terms of some measure of ‘‘likelihood’’ have all been
discussed.

As a key work on parsing, [91] uses and compares sev-
eral English construction and parsing techniques and their
role in sentence generation. Besides, it is worth mentioning
that [91] also proposes a prototype system for parsing Arabic
to decide on the synthetic correctness of Arabic sentences.
Due to the extensive use of grammatical relations, conjunc-
tions, and other constructions, Arabic sentences can be com-
plex and syntactically ambiguous. Therefore, this prototype
system considered basic Arabic grammatical structures in
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its formation. Primarily, it consisted of examining and ana-
lyzing the grammar of Arabic language in terms of gender
and numeric figures, formulating the rules using context-free
grammar, representing the rules using transition networks,
constructing a lexicon of words that will be used in sentences,
implementing the recursive transition network parser, and
testing the structure using actual Arabic sentences.

In the case of text generation, [92] proposes a sys-
tem for evaluating RTNs defined in a script called ‘‘Dada
engine’’. The package includes files that could be used in
scripts that describe frequently used features, and include
a format-independent method for generating formatted text.
Dada Engine scripts store RTN definitions in a form of gram-
mar as a set of rules that generate different sections of the
output that aim to produce randomly generated documents in
several formats. Reference [4] uses Dada Engine to gener-
ate masquerade emails by fine-tuning the grammar of Dada
Engine with respect to the original author’s main stylistic
elements while inducing content deception that simulates
masqueraded behavior to fool learning algorithms or people.
Several procedures are considered to generate fake emails
similar to the original email used in the Dada Engine, from
combining original emails to form a dataset to be used to build
a structure for generating fake emails, up to writing the email
grammar by identifying key features about the compromised
account’s writing style and to generate other email details
such as recipients email, date, time sent, and email subject.

Ideally, it is possible to generate a variety of sentences
using only RTNs. However, this process is both inconvenient
and time-consuming. Besides, there are certain concerns
about how RTNs generate sentences [91], as follows.

• The parser may be unable to assign any rule to the input
sentence due to a lexical problem in which some parts
of sentences are not available in the lexicon, and

• When the parser fails to produce a rule for an input
sentence because its synthetic form is not included in the
grammar, the synthetic form of the sentence generated is
incorrect.

It is not necessary to obtain a representation of all possible
parsings of the input sentence in many applications of natural
language analysis and generation. As a response, a non-
deterministic algorithm is still needed, as well as the ability to
discover any particular parsing. Of course, the effectiveness
of this method is contingent on the existence of a system
for prioritizing the semantically ‘‘most probable’’ parsing
modes [90].

The basic idea of a relational memory is to consider a fixed
set of memory slots and allow for interactions between mem-
ory slots through using self-attentionmechanisms [93]. RM is
proposed to record key information of the generation process,
for example, record the information from previous generation
processes. The goal is to enhance the text generation pro-
cess through such learning/memory as well as patterns for
long text generation. Such RL can provide a stateful, rather
than stateless text generation process. Self-attention is also

used between the memory slots to enable interaction between
them and facilitate long-term dependency modeling [93].
Several relational-based text generations that showed better
modeling of longer-range dependencies are described in the
literature, [7], [94].

Released by Google, Google LM is a language pre-trained
model trained on a billion-word corpus, a publicly available
dataset containing mainly news data [95], [96]. It is based on
a two-layer LSTM with 8192 units in each layer, [97], [98].

SS is proposed to bridge the gap between training and
inference for sequence prediction tasks. It is used to avoid
exposure bias 2 in sequence-to-sequence generation [56],
[99]. During the inference process of sequence-to-sequence
generation, true previous target tokens are unavailable. As a
result, they are replaced by tokens generated by the model
itself, which may yield a discrepancy between how the model
is used at training and inference [56]. One limitation with
SS is that target sequences can be incorrect in some steps
since they are randomly selected from the ground-truth data,
regardless of how the input is chosen [19], [100].

GANs are algorithmic architectures that place two neural
networks against each other (hence the term ‘‘adversarial’’)
to generate new, synthetic instances of data that can pass as
real data.

GANs are designed to produce continuous data and have
a lot of success with continuous samples such as images.
GANs have been modified to produce discrete data, such as
text sequences. A growing buffer of previous states has been
used in a variety of other approaches to model sequential
information. Some decisions must be taken about the size
of the stored past-embedding buffer, whether it should be
a rolling window, how computations should be cached and
propagated over time, and so on.

GANs are implicit generative or language models (LMs)
learned via a competition between a generator network and
a discriminator network. The discriminator distinguishes
uniquely GANs from other LMs. Particularly for this subject,
AML, adversarial training with the discriminator is used in
GANs as opposed to training based on solely maximum like-
lihood and categorical cross-entropy in other LMs. Conven-
tional LMs are not trained in an adversarial manner. Unlike
traditional approaches (e.g. teacher forcing, SS), GANs do
not suffer from exposure bias [39], [101].

IV. ADVERSARIAL TRAINING TECHNIQUES
Adversarial examples are data points created by adding small
perturbations to the input; these perturbations are incom-
prehensible to the human eye but lead to incorrect model
outcomes. It is shown that deep learning models are vulner-
able to invasion and poisoning attacks initiated using those
examples [3], [102]. There have been several attempts to
design algorithms to generate and defend against those exam-
ples [103]–[107]. A widely used defense technique is adver-
sarial training, in which the training data set is augmented

2See Section II
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FIGURE 2. A categorization of popular adversarial training techniques.

with adversarial examples in the hope that the model will
generalize better and be more robust.

Adversarial training techniques can be categorized based
on the strategy used, the threat model, and whether the
attack using these examples is targeted or non-targeted. Fig. 2
demonstrates a summary of the different adversarial training
techniques categorized based on the crafting method. In tar-
geted attacks, adversarial examples are crafted such that a
specific label is outputted from the model, while on the non-
targeted attacks, the goal is to misclassify the input. Table 4
compares several adversarial training techniques based on the
attack target, the threat model, and the number of iterations ,
and summarizes the limitations of each technique.

Below we explain several adversarial training techniques
and showcase their strengths and weaknesses.

A. GRADIENT-BASED METHODS
1) FAST GRADIENT SIGN METHOD (FGSM)
Reference [3] is one of the early papers to explain deep neural
networks’ behavior in the presence of adversarial examples.
It shows a one-shot, white-box method that generates adver-
sarial examples. It is assumed that this method provides a
stronger regularization technique compared to the traditional
regularization methods in the literature [3], making the mod-
els more robust against attacks. As demonstrated in [3] the
rule followed to craft an adversarial example is based on an
input x, and the goal is to maximize the gradient with respect

to input x. The formula is summarized in 1.

x∗ = x + ε ∗ sign(∇L(θ, x, y)), (1)

where x∗ is the adversarial example, x is the original input, y is
the original label, ε is the size of the perturbation, L is the loss,
and θ is the model’s parameters. It is shown that this method
is fast and efficient in generating the required examples [3],
[108] as it only needs to take a step toward the gradient. The
problems with FGSM are that it can lead to a label leaking
issue 3 [109] and also it has a lower success rate compared to
complex models [109].

There have been several attempts to lessen the label leak-
ing problem and to improve the performance of FGSMs,
including iterative fast gradient sign method [109], iterative
least-likely fast gradient sign method [109], random fast
gradient sign method variants [109], and momentum itera-
tive fast gradient sign method [106]. Below we give a brief
description of each method and how they work.

2) BASIC ITERATIVE FGSM (IFGSM)
Reference [109] is a variant of FGSM where the adversarial
example is crafted by taking multiple steps in the direction of
the gradient instead of one, shown in [109] as

x∗0 =x, x
∗

t+1=Clipx,ε{x
∗
t +ε∗sign(∇xL(θ, x

∗
t , ytrue))}, (2)

3It is the phenomenon that during adversarial training, the validation
errors on adversarial examples are smaller than the validation errors on clean
examples. Thus, at the end of the training, models can solve the problem of
classifying adversarial examples better than the original problem.
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TABLE 4. Adversarial training techniques comparison based on the attack target, the threat model, and the number of iterations.

where the operator Clipx,ε clips the result x to be within the
given ε.
IFGSM is a white-box, iterative, non-targeted method

believed to produce more harmful examples to the model
compared to FGSM. As shown in [109], with a careful
selection of ε, IFGSM generates better adversarial exam-
ples compared to FGSM. The paper also points out that
the approach gives higher top-1 and top-5 accuracy than
FGSM [109]. Nevertheless, this comes with the extra compu-
tational cost for adversarial training. Furthermore, themethod
transferability drops when increasing the number of training
iterations [119].

3) ITERATIVE LEAST-LIKELY FGSM (FGSM-LL) AND ITERATIVE
RANDOM FGSM (FGSM-RAND)
[109] are white-box, iterative, targeted approaches to gener-
ate adversarial examples. Data is generated by taking mul-
tiple steps towards the gradient while minimizing the loss
with respect to a target class. The formula of calculating
FGSM-LL is presented in [109] as:

x∗0 = x, x∗t+1 = Clipx,ε{x∗t − ε ∗ sign(∇xL(θ, x
∗
t , yLL))}.

(3)

FGSM-LL is called the least likely because the selected
label is typically the least likely class predicted by the
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model. FGSM-Rand follows a similar approach. Still, the
target label is chosen randomly. These approaches are cre-
ated to overcome an issue in FGSM, which is the inability
to initiate a targeted attack. Furthermore, both techniques
achieve a high success rate with a minimal level of input
distortion.

4) PROJECTED GRADIENT DESCENT (PGD) TRAINING
Reference [103] is a training technique that builds on the
concept of IFGSM [109]. The authors train and attack deep
models by solving a new optimization problem. The algo-
rithm runs a nested loop with the optimization problem
formed of two parts; the inner loop has the first one called the
inner maximization problem, which has the goal of finding
an adversary version of an input x that will have a high
loss. On the other hand, the outer loop has the other one
called the outer minimization problem, in which the aim is to
find the model’s parameters such that the adversity loss of a
given attack is minimized. The method generates adversarial
examples by selecting a point within a small round (ball)
from an input image. Then, multi-step IFGSM is run to
generate the examples. The authors argue that their method
is universal and can be used to train models to defend against
any adversary.

PGD is viewed as a robust and strongmethod for first-order
attacks [120], [121]. It is believed to be the state-of-the-
art in adversarial training [115], [121]. Nevertheless, due to
the method’s iterative behavior and the need to take many
back-propagation steps to generate the adversarial examples
(∼ 10 - 40) [110], [120], the method is expected to have high
computational needs. There have been several attempts to
improve PGD, including using matrix approximation [110],
feature denoising [111], activation pruning [113], and reuse
of the training gradients [122].

5) JACOBIAN-BASED SALIENCY MAP APPROACH (JSMA)
Reference [118] is a training technique where the attacker
iteratively changes a small part of the input until the model
outputs the desired label. The perturbations to the input
are crafted using saliency maps. Those maps are created
based on the derivative from the model, and they determine
which features to perturb to get the desired results from the
model. Reference [118] describes the optimization problem
for JSMA as:

argminmax
δx

||δx|| s.t.F(x + δx) = y∗, (4)

where F is the model, δx is the perturbation to the input x,
and y∗ is the target label. This method’s main advantages
are that it provides adversarial examples with a minimum
level of distortion to the input and is independent of the
model used for the learning task. However, this approach is
limited only to the feed-forward networks. Even though it
generates adversarial examples with minimum distortion, it is
believed that this method is more computationally expensive
compared to other methods [108].

B. PRE-PROCSSING-BASED METHODS
1) ME-Net
Reference [110] is a pre-processing defense technique that
aims to mitigate adversarial attacks by adversarial training
with matrix estimation (ME). The input data is considered
as the noisy versions of the original data, and the intuition
behind this method is by reconstructing a cleaner version of
the images, the adversarial noise is removed, and the global
structure of the data is reserved.

The ME-Net method works as follows. There is a training
phase and an inference phase. During training, n masked
images are generated for each training image x, wherein for
each mask image, a set of random pixels are dropped. Then
an ME algorithm is used to reconstruct images. The set of
images are used to train the neural network while applying
stochastic gradient descent (SGD) or adversarial training.
In the inference phase, test images are preprocessed similarly.
However, only one masked image is generated via one of
the masks used during training. Then it is processed using
the same ME used during training. Finally, the reconstructed
image is fed to the neural network.

ME-Net can be used to defend against black-box and
white-box attacks. Moreover, conventional adversarial train-
ing techniques are prone to overfitting and require large train-
ing sets to have better generalization [123]. ME-Net lifts this
need by its pre-processing work. ME-Net can be combined
with any training algorithm because its work is part of the pre-
processing step. The method comes with the overhead cost of
the estimation. Also, since the input is estimated, the method
can degrade the model performance on clean images.

2) INTRODUCING NON-LINEARITY
to the models such as thermometer encoding is believed to
help defend against the attacks [104]. Thermometer encod-
ing can help with the discretization of the input where it
discretizes the input such that the magnitude of the variable
is represented while the relative distance information is pre-
served [104]. For example, representing the value 4 in a vector
of 5 elements, the encoding will be [0, 1, 1, 1, 1]. Formally,
for an index i ∈ 1, . . . , k , the thermometer vector ξ (i)l ∈ Rk

is defined in [104] as

ξ (i)l =

{
1 if l is ≥ i,
0 otherwise.

(5)

As shown in [3], models converge to mostly-linear
solutions; consequently, a small change in the input will
result in a big change in the output, making the mod-
els vulnerable to adversarial attacks. Thus introducing
non-linearity to the models will make them more robust
against adversarial attacks. The proposed idea is shown
effective against white-box attacks such as [3] and [103]
trained on MNIST [124]. Nevertheless, it is shown less
effective on larger, more complex datasets such as CIFAR-
100 [125]. The method can be adapted to black-box attacks
as well, but it shows a small improvement in the defense. The
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method depends on [3] and [103] known to have label-leaking
issues or require high computation, respectively. A possible
improvement to this method is to try coupling it with methods
that solve the stated issues. Another possible research track is
to try exploring the usage of this method with textual input
where the encoding is almost an essential part of the pre-
processing and observe the effectiveness of using non-linear
functions to defend against the attacks.

C. REGULARIZATION-BASED METHODS
1) FEATURE DENOISING
Reference [111] is an adversarial training approach that uses
the training procedure in [103]. It is also similar to [110] in
the sense that they deal with the adversarial perturbations
as noise to the original data. The authors propose adding
noise blocks as intermediate layers in CNNs; these blocks
are typically trained end-to-end alongwith the neural network
using adversarial training [103]. The denoising blocks consist
of a denoising operation followed by a 1× 1 convolution and
an identity skip connection.

Four different denoising operations are suggested in the
paper, namely, non-local means, bilateral filter, mean filter,
andmedian filter. The non-local means generate a new feature
map of input x by calculating a weighted average of features
in all spatial locations 0 as shown in [111] as

yi =
1

L(x)

∑
∀j∈0

f (xi, xj) · xj, (6)

where f (xi, xj) is a weighting function and L(x) is a normal-
ization function.

Bilateral filter is a simple modification to the non-local
mean where the neighborhood is a local region to x rather
than pre-selected spatial locations. The formula of this filter
is described in [111] as:

yi =
1

L(x)

∑
∀j∈�(i)

f (xi, xj) · xj. (7)

Mean filtering simply performs an average pooling with
a stride of one. Average pooling [126] is a function that
down-samples the output of a previous layer by taking the
average of a rectangular portion of the feature map then
reducing that potion to the average. Median filter works in
a similar manner to the mean filter, but the median is taken
over a local region. Calculating the median filter can be done
using the formula given in [111] as:

yi = median{∀j ∈ �(i) : xj}, (8)

where �(i) is the local region for calculating the median.
Although feature denoising seems to be useful in the set-

ting of adversarial attacks, there are no benefits shown on
clean data. Thus it can be viewed as an overhead work that
can only help in the presence of adversarial examples.

2) STOCHASTIC ACTIVATION PRUNING (SAP)
Reference [113] is a method that can be applied to pre-trained
networks as a defense mechanism against adversarial attacks.

The method runs in a similar manner to the game theory
setting where the attacker’s goal is to maximize the loss
of the defender with respect to the perturbed input, and
the defender’s goal is to minimize the model loss. It is a
white-box method with the assumption that the adversary
will craft adversary examples using the method in [3]. The
optimization problem of this method is presented in [113] as:

π∗, ρ∗ = argminmax
πρ

Ep∼π,r∼ρ[J (Mp(θ ), x + r, y)], (9)

where ρ is attacker policy, and π is the defender policy.
During forward propagation, a stochastic number of nodes

in each layer are dropped out. Then the remaining nodes
are scaled up to maintain the dynamic range of the acti-
vation in the network’s layers. The advantage of this tech-
nique compared to other adversarial training techniques is the
maintenance of the model accuracy. This can be achieved if
the number of samples used in training is carefully selected
and balanced, then the pruned model will have comparable
accuracy to the original model. Another advantage is that
this method can be used on pre-trained models trained to
generalize well on the original task.

3) LOGITS PAIRING
Reference [114] is a regularization method that can improve
models’ robustness against adversarial attacks if paired with
adversarial training. The basic idea of the method is to boost
logits from two images to be similar. The penalization term
added to the loss during the model training is demonstrated
in [114] as:

αL(J (x), J (x ′)), (10)

where α is a penalization coefficient determining the strength
of the pairing, J (x) is the vector of logits of model J based
on input x, and L is the loss function. There are three types of
logit pairing proposed in the paper, clean logit pairing (CLP),
logit squeezing (LSQ), and adversarial logit pairing (ALP).
CLP pairs two clean images x and x ′. These images are
randomly picked and can have different labels. LSQ works
similarly to CLP, but the loss penalizes the norm of the logits.
ALP pairs a clean image x with its adversarial version x ′,
and the model is trained to output the same label for both
images. The paper claims that adding this regularization can
improve the model robustness against white-box and black-
box attacks. Yet, [127] shows that CLP and LSQ complicate
the generation of adversarial examples with no improvement
in the model’s robustness. It also shows that combining ALP
with adversarial training can improve the robustness of the
model.

4) JACOBIAN REGULARIZATION
is another method that can be used to defend against adversar-
ial attacks which incorporates the minimization of the norm
of the Jacobianmatrix to the training of themodel. As demon-
strated in [116], one way to enhance model robustness is to
increase the classification margins of a network which can be
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achieved by minimizing the square of the Frobenius norm of
the input-output Jacobian. The norm computation using the
method of [116] can be found as:

‖J (x)‖2F =
∑
i,c

[
∂fc
∂xi

(x)]2, (11)

where f is the classification function, and c is classes in the
model.

The exact computation of the norm can grow exponentially
with the number of classes, thus computationally it is very
costly. The authors show a theoretically guaranteed alterna-
tive to doing the exact computation which is using the expec-
tation of an unbiased estimator. The square of the norm can
be calculated using random vector projections sampled from
the output. Since this is a regularization method, it should
be easily added to the loss of any model and architecture.
The method also has some theoretical guarantees in terms of
performance and cost.Moreover, it can also be combinedwith
adversarial training to strengthen the defense.

D. OPTIMIZATION-BASED METHODS
1) MOMENTUM ITERATIVE FAST GRADIENT SIGN METHOD
(MI-FGSM)
Reference [106] is a method that combines the idea of itera-
tive FSGM with the addition of a momentum. An adversarial
example is generated using iterative FGSM by maximizing
the loss with respect to the input gradient. Then it is tested on
an ensemble of models. To speed up and stabilize the gradient
descent algorithm performance in training, the authors use the
momentum method [128]. It stores a velocity vector in the
gradient direction of the loss function over iterations [106].
The vector which holds the history of the gradients helps
tackling mini obstacles the algorithm might encounter such
as local minima and maxima [129]. The method’s formula is
shown in [106] as:

ft+1 = ε · ft +
∇xL(x∗t , y)
‖∇xL(x∗j , y)‖1

x∗t+1 = x∗t + α · sign(ft+1), (12)

where x is the sample, x∗t is the adversarial example at t , L is
the loss function of the classifier, y is the ground-truth label,
and ε is a decay factor. One can see that (12) is the application
of the sign gradient method [109] to generate x∗t+1.

Model performance can be improved if an adversarial
example could fool multiple models i.e. the examples have a
high transferability level: [106], [130]. To test this idea, [106]
proposes the ensemble in logitsmethod. In this method, mod-
els are ensembled by averaging their logits as in (13), and the
loss will be calculated as in (14).

l(x) =
K∑
k=1

wk lk (x), (13)

where lk (x) are the logits of the k−th model and wk is the
ensemble weight.

J (x, y) = −1y · log(softmax(l(x))), (14)

where 1y is the one-hot encoding of y. Themethod is designed
so that the adversarial examples have a high transferability
level. Therefore, it can be used to adversely train models
against white-box and black-box attacks.

2) UNIVERSAL ADVERSARIAL PERTURBATIONS
Reference [112] is a method that builds on the concepts of
the generalization of adversarial perturbations an adversarial
example generated to fool a certain model can be used to fool
another [3]. The authors show that their generated perturba-
tions generalize well across data points and models. The goal
is to find a perturbation vector v that can be used to fool most
of the data points in the data set while satisfying the following
constraints:

1) ‖a‖p ≤ α, and
2) Px∼µ = (k(x + v) 6= k(x)) ≥ 1− γ ,

where α is the parameter that controls the magnitude of the
perturbation γ is the control parameter for the fooling rate,
and µ is a sample from the data distribution. The algorithm
runs iteratively by working with a sample of data µ. Every
point inµ is assumed to be placed in a classifier region, which
outputs the correct label.

A minimal adversarial perturbation ∇vi is crafted for one
of the data points xi such that themodel outputs a label outside
xi’s classifier region. ∇vi is then projected to a ball with
radius α to ensure it satisfies the size constraint. The proposed
universal perturbation has several advantages. However, the
main one is the reduced amount of computation. The crafted
perturbation is image-agnostic. Therefore it can be directly
added to an unseen sample without the need to compute or
optimize a new perturbation, and it will produce a new adver-
sarial example. The method is tested across several models to
check if it is model-agnostic, and it showed relative success
in the aspect.

3) QUANTIZATION
References [131]–[135] is an optimization technique applied
to neural networks to decrease memory and computation
costs. Empirical experiments in [105] show that vanilla quan-
tization can remove small perturbations and increase network
robustness against adversarial attacks. Per contra, if the input
has large perturbations, the error is amplified, and the network
shows poor performance and makes more errors.

4) DEFENSIVE QUANTIZATION (DQ)
Reference [105] is a neural network quantization method
designed to improve the networks’ efficiency and robustness
at the same time. The authors suggest transforming the fea-
tures to low-bit representation while controlling the Lipschitz
constant to be small enough to the point where the error does
not amplify. This can strengthen the robustness and lower
the computational costs. The control of the Lipschitz can be
achieved by adding a regularization term to the overall loss
of the model described in [105] as (15), where LCE is the
original loss, and I is the identity matrix. Essentially, they are
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forcing the filters to be orthogonal to each other.

L = LCE +
β

2

∑
Wl∈W

‖W T
l Wl−I‖2. (15)

The method combined with adversarial training or other
defense techniques can be used to defend against white-box
and black-box attacks and added the computations cost are
illustrated as non-expensive computations [105].

5) L2-NON-EXPANSIVE NEURAL NETWORKS (L2NNNs)
Reference [115] are a class of well-condition neural networks
built to reduce the effect of input perturbations on the neural
network’s output. Similar to [105], LNNNs use the concepts
of restricting the Lipschitz constant of a network to defend
against adversarial attacks. However, L2NNN gives more
freedom to the weights of the model, namely, an upper bound
is given rather than the condition of orthogonality between
them as shown in [115] as:

ψ(W TW ) ≤ b(W ) , min(r(W TW ), r(WW T )), (16)

where r(M ) = maxi
∑

j |Mi,j|.
For a single L2NNN, the classifier’s output will be affected

if the perturbations to the input do not exceed the L2-norm of
g(x) /

√
2. To achieve this, several techniques are suggested,

including an updated loss function that maximizes the con-
fidence gap between the largest and second-largest logits.
They also suggest using two-sided ReLU, and norm-pooling
instead of ReLU, tanh, and average pooling. The aforemen-
tioned techniques are believed to preserve the distance better
than the latter ones. Preserving the distance and maximizing
the average confidence gap will help in the overall robustness
against adversarial attacks. The model is trained using the
loss function in [103] which also improves the robustness.
One issue with this method is that adversarial examples are
bounded to the `2 norm, which is a limited attack model.
Another issue is that the performance on clean images is
degraded.

6) ROBUST MANIFOLDS DEFENSE (RMD)
Reference [117] introduces a different approach than the
previous ones, which builds a model called Spanner. Spanner
is a deep neural network that has low dimensional inputs
and outputs an approximation of the data set. The concept
of Spanner is similar to the generative models found in the
literature, such as generators in GANs [20] and decoders in
auto-encoder [33].

An overpower attack, which is a new type of attack
designed for generative models is proposed in [117]. The
problem is formulated as a min-max game, where the adver-
sity is the max player and it searches for two adversarial
images generated (via generatorG) using two latent variables
(z, z′) such that ‖G(z) − G(z′)‖ ≤ γ . This means that they
have similar features, but they are classified using classifier
M differently, i.e., M (G(z)) and M (G(z′)) are different. One
advantage of using this method is reducing the search space

for an adversary example, the latent space (z, z′) is much
smaller than the original input space. The experiments in the
paper demonstrate a boost of performance to the state-of-the-
art methods to defend against bounded white-box attacks. It is
also noted that combining this method with that of [103] dur-
ing training helps in improving the performance. The problem
with this method is the complexity of training the generator
G. Generally speaking, generative models need large datasets
and many steps until Spanner outputs acceptable results.

V. TEXT GENERATION METRICS
Recently, with increasing the interest in text generation with
several applications such as translation, question answering,
summarization, and more, there is a need for evaluating the
generated text. Text generation is a challenging task because
of the importance of considering several constraints such
as linguistic structure, grammar, the meaning of the text,
and semantic connections. Evaluation metrics shall measure
the model quality from different perspectives. Mainly, there
are two methods for evaluation; human evaluation and auto-
matic metrics. Human evaluation is more accurate. Still, it is
expensive and time-consuming where days can be spent just
evaluating part of the corpus.

Automaticmetrics are introduced to find cheaper and faster
methods than human-based evaluation. An automatic metric
is often based on two sentences a candidate and a reference,
and they return a score that indicates the similarity between
sentences. Several studies and researches discussed automatic
metrics for different applications. With all the metrics devel-
oped, still, there is no agreed-upon metric for evaluation.

In this section, several categories of text generation met-
rics are discussed and compared showing the challenges and
future work for evaluation metrics. Table 5 provides a sum-
mary of text generation metrics.

A. CONTRIBUTIONS IN THE CONTEXT OF TEXT
GENERATION METRICS
Several text generation metrics are proposed where they
are classified based on applications, usage, evaluating
method, and more. categories and metrics are summarized as
follows.

1) DOCUMENT SIMILARITY-BASED METRICS
BLEU [18] is one of the most used metrics for automatic
evaluation of text generation. It is a precision-based metric
that evaluates based on the overlapping between the generated
text-based and the reference text. This is achieved by com-
puting a score of a range between 0 and 1 where 1 indicates
the best score where the generated text matches the reference
text. The BLEU Score [18] is counting the number of n-gram
matched between the texts where n-gram of sizes 1 to 4 with
the coefficient of brevity penalty

BP =

{
1 if c > r
e(1− r/c) if c ≤ r
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TABLE 5. A summary of text generation metrics.

BLEU = BP ∗ exp(
N∑
n=1

Wn logPn), (17)

where c is the total length of generated text and r is the
sum of effective reference length. Also, Pn indicates n-gram
precision using n-grams until length N and positive weights
Wn where it is usually selected as a uniform weight. BLEU
is an effective metric. However, it does not consider the
meaning of the sentences and sentence structure and does not
work well with human judgments.

Embedding similarity (EmbSim) [8] is a metric inspired
by BLEU [18] by comparing the word embeddings instead
of comparing words by words. With EmbSim, for each word
embedding, the cosine similarity is calculated with other
words. Then, a similarity matrix is generated. EmbSim is
calculated as follows [8].

EmbSim = log(
N∑
i=1

cos(W ′i −Wi)/N ), (18)

where W defines the similarity matrix of real data and the
similarity matrixW ′ of generated data with i-th column. Also,
N denotes the total number of words.
Wordmover’s distance (WMD) [137] is ametric that calcu-

lates the dissimilarities between documents. The metric aims
that the embedded words of a document reach the minimum
amount of distance for another document. It is based on
word embedding to calculate the distance even if there are no
common words. WMD retrieves the vectors from word2vec
word embedding model and then uses a normalized bag
of words (nBOW) to represent the weight and importance.
In WMD, d and d ′ are the two documents in the nBOW
representation, and i and j are the number of words in the
documents, respectively. Also, Tij ≥ 0 shows how much of
word i in d travels to word j in d ′. The minimum cumulative
cost [137] of moving d to d ′ is obtained as follows.

min
T≥0

n∑
i,j=1

Tijc(i, j), (19)
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subject to:

n∑
j=1

Tij = di ∀i ∈ {1, . . . ..n} . (20)

n∑
i=1

Tij = d ′i ∀j ∈ {1, . . . ..n} . (21)

2) LIKELIHOOD-BASED METRICS
Reference [3] apply a log-likelihood (NLL) term to minimize
the negative of the training loss function for the binary clas-
sification task (logistic regression). The log-likelihood term
ensures that the maximum value of the log of the proba-
bility occurs on the same original probability function. The
system uses FGSM for adversarial training. In this setting,
for training a single model to recognize labels y ∈ {−1, 1}
and the input x ∈ Rd , the adversarial objective of logistic
regression [3] is to minimize the following.

Exypdataζ (y(∈ ‖w‖1wT x − b)), (22)

where weights w and bias b are defined in wT x − b as where
the predictions are scaled by the signed distance between x
and the classification boundaries defined by the model. Also,
the soft plus loss is defined as ζ (z) = log(1+e−z) and the sign
of the gradient is − sign(w) that implies wT sign(w) = ‖w‖1.

3) PERPLEXITY
perplexity [138] measures a model’s certainty of its pre-
dictions. The model aims to minimize cross-entropy and
perplexity to achieve the goal by following probability dis-
tributions. The method measures the distance between prob-
abilities in discrete distributions [138] as follows.

PPL = 2(H (P,Q)), (23)

where

H (P,Q) = −
∑
x

P[X = x]l logQ[X = x], (24)

where H is the cross-entropy that calculates the distance
between probabilities in P which contains the word distribu-
tion of the actual data and Q presents the predicted output of
word’s probability.

4) INCEPTION SCORE (IS)
The inception score (IS) [26] is one of the main met-
rics used to evaluate the quality of generative models
for different instances especially within images. IS uses a
pre-trained model such as the Inception v3 model to predict
the class probabilities for each generated instance. Moreover,
the instances will have conditional probabilities where the
instance with one classified class is considered as high qual-
ity where conditional probabilities should have low entropy.
IS [26] is calculated as follows.

exp(ExKL(p(y|x)‖p(y))), (25)

where p(y|x) indicates the conditional probability for each
image and p(y) is the marginal probability as the average of
the conditional probabilities. After that KL divergence (KL)
is used to measure the difference between the conditional and
marginal probability distributions for each instance and then
calculates the average for all classes to get the IS value.

5) FRECHET INCEPTION DISTANCE (FID)
Frechet inception distance (FID) [139], [145] is a metric that
is built to enhance the evaluation of IS to include more real-
world samples. In FID, the generated samples are embedded
into the feature space provided by the model. The generated
samples are considered as multivariate Gaussians where the
mean and covariance of embedding of real and generated
data are calculated. FID finds the distance between two dis-
tributions for the evaluation of the quality of the generated
samples. FID Score is computed as follows.

d2((m, c)(mw, cw))=‖m− mw‖22+Tr(C+Cw − 2(CCw)
1
2 ).

(26)

The above-mentioned FID measure finds the square dis-
tance between the distributions of real-world data and gen-
erated samples where ‖m − mw‖22 calculates the sum of the
difference between the mean of the real data and generated
samples. Also, C and Cw refer to the covariance metrics for
the real and generated samples.

6) N-GRAM BASED METRICS
In [140], distinct-n calculates the percentage of the distinct
n-grams in all the n-grams. Distinct-1 and Distinct-2 have
been used to measure the degree of the unigram and bigram
diversity. The metric is used for n-gram distinct word embed-
ding.

7) ROUGE METRICS
ROUGE metrics [141] are mostly used for text generation
with several variants such as ROUGE-1, ROUGE-2, and
ROUGE-L. ROUGE uses the recall of the number of words or
n-grams in the references that appearing in the generated text
or candidate text. ROUGE-N [141] is calculated as follows.

ROUGE−N =

∑
s∈ReferencesGramn∈S

∑
CountMatch(Gramn)∑

s∈{References}Gramn∈S

∑
Count(Gramn))

.

(27)

ROUGE counts the maximum number of n-grams occur-
ring in a candidate text (CountMatch(Gramn)) where n indi-
cates the length of n-grams.

8) METEOR
METEOR [142] (metric for evaluation of translation with
explicit ordering) is a metric used to evaluate text genera-
tion by computing a score based on word-to-word matches
between the generated text and the reference. METEOR cre-
ates a word alignment in the reference and generated text
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where every word in each string maps to the closest word in
the other string and the alignment is incrementally generated
by sequences of word mappings. The word mapping defines
all possible word matches and the largest word mappings
selected. The computation of the METEOR score [142] is as
follows.

Score = Fmean ∗ (1− Penalty), (28)

where

Fmean =
10PR
R+ 9P

, (29)

and

Penalty = 0.5 ∗ (
#chunks

#unigrams,matched
)3, (30)

where P and R stand for n-gram precision and recall, respec-
tively. Chunks are created by grouping the unigrams in the
reference into the number of chunks where the longer the
n-grams created fewer chunks. The score is between 0 and
1 and a higher score indicates better matching between the
reference and generated text.

9) METRICS FOR GANs
Traditional probability-based LMmetrics, for recurrent GAN
and recurrent conditional GAN [143], maximum mean dis-
crepancy (MMD) and train on synthetic, test on real are
used for evaluation. Maximum mean discrepancy (MMD) is
defined as the distance between the means of the two distribu-
tions. In GAN, the MMD finds the squared difference of the
statistics between the two sets of samples (samples of real
data and those generated by GAN). The kernel K is defined
as: k : x × y ← R, and the samples xi(i = 1)N , xi(j = 1)M

where MMD2 [143], is defined as follows.

M̂MD2
u

=
1

n(n− 1)

n∑
i=1

n∑
j6=i

K (xi, xj)

−
2
mn

n∑
i=1

m∑
j=1

K (xi, yj)+
1

m(m− 1)

m∑
i=1

m∑
j6=i

K (yi, yj).

(31)

For train on synthetic, test on real or reverse case [143],
the data is generated from GAN is used to train the model and
tested on a held-out set of true examples where generated data
shall have labels. This method will generate a new feature
based on the generated data.

10) DIVERGENCE-BASED mETRICS
Kullback-Leibler divergence (KL) [144] is a widely used tool
for evaluating GANs. KL measures the divergence between
two probability distributions P and Q, and it quantifies the
distance between two probabilities distributions. KL [144] is
defined as follows.

KL(P|Q) =
∑
i

Pi log
Pi
Q
, (32)

where P represents the data distribution and Q indicates the
prediction probability distribution. In KL, a relative entropy
of 0 indicates that the two distributions are matched.

Another divergence-based metric is Self-BLEU [8] used
in evaluating the diversity of the generated data. Self-BLEU
score is calculated for each generated sentence by considering
other generated sentences as reference. A higher Self-BLEU
score indicates less diversity of the document.

B. TEXT GENERATION: RESEARCH CHALLENGES AND
FUTURE RESEARCH TRENDS
Text generation is a challenging task which makes the evalu-
ation using metrics more challenging. Some of the challenges
in text generation metrics are:

• Text Generation is an open-ended task which means that
the system can generate multiple generated texts for the
same user input which makes the evaluation harder.

• The accuracy of the metric is affected by the nature of
its application area.

• The accuracy of the metric is affected by the size of real
data (corpus).

• Considering themeaning, structure, and semantics of the
generated text is an outstanding challenge.

VI. TEXT GENERATION DATASETS
This section highlights the main datasets used in a general
NLP context.

NLP and ML have come a long way in recent years and
have become a fascinating field of research. Text generation
or natural language generation (NLG) is one of the few devel-
opments that arose in response to the need for advanced NLP
methods/techniques that use computational linguistics and
ML knowledge to automatically generate natural language
texts that meet conversational requirements. NLG can be
achieved by training a computational model with ML heavily
depending on data; it is the most important component that
allows training algorithms to function, from training to tuning
to model selection and testing. For NLG researchers, there
are many datasets freely accessible and can be used in their
research experiments. A list of dataset resources for NLP
research is provided below. Besides, Table 6 summarizes how
datasets from these resources can be used in NLP research.

• Aclweb.org (Natural Language Generation Portal): This
portal contains lists of datasets and corpora used in
natural language generation research. Maintained by
ACL SIGGEN since 2005. (https://aclweb.org/aclwiki/
Data_sets_for_NLG)

• Paperswithcode.com: A community of project-based at
Facebook AI Research. The majority of datasets have
been annotated by the Papers with Code team and its
involved group. Data from other sources, such as NLP-
progress, EFF AI metrics, SQuAD, and RedditSota,
is also included. (https://paperswithcode.com/task/data-
to-text-generation)
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TABLE 6. A listing of available dataset for NLP research.

• Project-awesome.org: Includes a list of NLG appli-
cations and techniques, as well as links to different
systems, approaches, scientific papers, and learning
materials collected by Piscis Magnus. (https://project-
awesome.org/tokenmill/awesome-nlg#datasets)

• Github.com/niderhoff/nlp-datasets: A list of free/public
domain datasets with text data for use in Natural Lan-
guage Processing (NLP). This also provides a dataset of
Arabic newspaper articles extracted from a number of
Saudi news sites online. (https://github.com/niderhoff/
nlp-datasets)

• LIONBRIDGEAI: Contains a list of free online NLP
datasets that can be used for sentimental research,
voice recognition, chatbots, text generation, and other
machine learning applications. Also, it provides a
high-quality and multilingual dataset for machine learn-
ing. (https://lionbridge.ai/datasets/the-best-25-datasets-
for-natural-language-processing/)

• Machine learning mastery: J. Brownlee published
‘‘Datasets for Natural Language Processing’’ in Septem-
ber 2017 on the Machine Learning Mastery web-
site, which provides a list of common datasets
for NLP. (https://machinelearningmastery.com/datasets-
natural-language-processing/)

• KDnuggets: G. Shapiro and M. Mayo’s website about
AI, analytics, big data, data mining, data science, and
ML. The platform also has a large number of NLP
datasets that can be used in general NL tasks and
research. (https://www.kdnuggets.com/tag/datasets)

1) TEXT GENERATION DATASETS FOR GAN RESEARCH
The latest developments in text generation have culminated
in the use of large-scale datasets and GAN models trained

TABLE 7. A listing of available datasets for text generation research using
GAN.

from beginning to end, without explicitly specifying the order
and the context of the generated text. This area of research
encompasses a wide range of topics in text generation and
analysis, all of which use datasets to train and evaluate GAN
models for text generation research. In addition to the dataset
resources mentioned in Table 6, a few datasets/benchmarks
used specifically for GAN text generation research papers are
presented below and summarized in Table 7.

• MS COCO Image Captions: A dataset that includes
human-generated captions for images containing mul-
tiple objects in their natural context. The dataset is cre-
ated using images from the original MS COCO dataset
used in the training, validation, and testing sets. Using
Amazon’s Mechanical Turk a total of 1,026,459 human-
generated image captions are obtained, with 413,915
captions for 82,783 images used for training, 202,520
captions for 40,504 images used for validation and
379,249 captions for 40,775 images for testing. Since
captions created by humans can differ significantly, cre-
ating an image caption dataset presents many challenges
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although even if two captions are very different, a person
may judge them to be the same. Developing successful
automated assessment metrics strongly associated with
human judgment is still a challenging job [146]. Ever
since the creation of theMSCoco image caption dataset,
numerous research projects have used it to evaluate
their models using different evaluation metrics such as
BLEU-1, BLEU-2, and Meteor [147].

• EMNLP2017 WMT: This dataset contains text from
papers taken from a variety of European online news
sources. Along this line, [11] uses this dataset as a long
text corpus in the LeakGAN text generation framework
to test and generate long text. Words with a frequency of
less than 4,050 are removed from the dataset, as well
as sentences containing these words. Since the focus
is to generate long text, sentences with a length of
less than 20 are removed also. After preprocessing the
dataset, it contains 5,742 terms and 397,726 sentences.
A random sample of 200,000 sentences is used as a
training set and 10,000 sentences as a test set to assess
the framework, with BLEU 1–5 scores as evaluation
metrics.

• WeiboDial: A data set from Weibo, a microblogging
application launched by Sina Corporation focuses on
user relationships to communicate, disseminate and get
information similar to Twitter. Sina Weibo has grown
to become one of China’s top two social media sites
with free data collection applications that can be used
to collect real-time user post data for analysis, data visu-
alization, and academic research. Reference [148] used
theWeiboDial dataset to train their proposed model for a
chatbot profile detector used to generate comprehensible
responses in their text generation research. The data set
included 9, 697, 651 post-response pairs from Weibo
used to train the model decoders, as well as 7000 pairs
for validation. The classifier trained on Weibo social
data to detect chatbot profiles and generate responses is
fairly accurate. In addition to this dataset, the following
link provides access to other existing Weibo data sets,
which are primarily used for academic study. (Retrieve
from https://ocean.sagepub.com/blog/how-researchers-
around-the-world-are-making-use-of-weibo-data).

• Chinese Poem Dataset: A Chinese poem corpus that
consists of 284,899 poems obtained from several online
resources. 78,859 of these are used for training and eval-
uating the model proposed in [149] for Chinese poem
generation research based on RNN by learning repre-
sentations of individual characters and their variations
inside and across poem lines. The model performs both
content selection and surface realization.

• CUB captions: Contains 11,788 images in the dataset,
representing 200 different bird species. Each species is
linked to a Wikipedia article and categorized accord-
ing to scientific classification (order, family, genus, and
species). An online field guide is used to compile the
list of species names and a Flickr image search is used

to gather the images. The bounding box, part position,
and attribute labels are all labeled on each image.

• Image Captioning dataset: Proposed a tool for col-
lecting massive datasets of images from the internet,
which could be useful in replacing the MS COCO or
Flickr datasets used in most previous studies. It can
also be used in generating a caption indistinguishable
from human-written captions. This can be achieved by
adding semantic implementation to provide a simple
way to insert emotion into the existing image captioning
scheme [147].

VII. MEMORY-BASED MODELS
CNNs, RNNs, LSTMs, and GRUs are some of the most
popular memory-based neural networks that have emerged.
This section reviews the structure, characteristics, and use
cases of ML models commonly used in NLP applications.

CNN is a type of neural network originally designed to
map image data to output variables. Fig. 3 shows the basic
architecture of a CNN network. CNN’s are typically made
up of a convolutional layer, a pooling layer, and a fully
connected layer. The convolutional layer is traditionally a
multi-dimensional matrix and could be a one-dimensional
sequence. This layer analyses the input using parallel filters
in order to extract different features of interest. The output
is sent to the pooling layer to reduce the size of the feature
map. After that, the fully connected network is used as a
classification layer for computing the score of each class
from the extracted features. Next, the scores of the respective
classes are calculated. Finally, the classifier gives output for
the corresponding classes based on the highest score.

FIGURE 3. The basic architecture of a CNN.

Major applications in medical image analysis, recognition,
and biometric detection use CNN-based models. The CNN
architecture allows for learning the position and extraction
of features in a variety of images. However, CNN’s structure
has the limitation of fixed-size inputs and fixed-size outputs.
Later, it is used in NLP-related applications and analyzing
sequential inputs, such as text, speech, and videos.

RNN is a type of neural network essentially used for
processing sequential data. It simply uses feedback loops in
the recurrent layer in order to allow for maintaining infor-
mation over time. This lets the previous information in the
sequence produce the current output. Fig. 4 illustrates the
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FIGURE 4. The basic structure of an RNN with a loop.

basic structure of RNN where xt is a vector of inputs at a time
slice t, ht is the hidden vector sequence for time slices 1 to t .
The loop allows information to be passed from one step in the
network to the next one.

RNNs are useful for sequence generation applications such
as machine translation, as well as other models where the
input is not a sequence such as in image captioning. More-
over, RNN works well with sequence perdition problems.
Sequence prediction problems involve different combinations
of inputs and outputs such as one-to-many, many-to-one, and
many-to-many (a.k.a. sequence-to-sequence). Still, a draw-
back of RNNs is their poor performance when the learning
sequences have long-term temporal dependence [56]. For
example, processing text to do prediction using RNN may
overlook important information from the beginning. Specif-
ically, RNNs have a difficulty in carrying information from
early steps to later ones due to an issue called vanishing gra-
dients. Gradients are values used to update NN weights. The
vanishing gradient issue occurs when the gradient becomes
smaller as it back propagates through time. Accordingly, [56]
proposes a curriculum learning process to train RNNs to
produce a sequence of tokens given some input. This leads
to performance improvements using a short training period.
The proposed model is an example of a scheduled sampling
process for sequence prediction using RNN. In essence, this is
a curriculum learning approach for sequence prediction tasks
where the system explores more options during the training
task.

As an alternative to RNNs, LSTM models are effective
approaches in the field of sequential modeling methods.
LSTMs are special types of RNN that overcome the lim-
itations of RNN by introducing memory cells within four
neural network layers in their structure instead of a single one.
Figures 5 and 6 illustrate the basic structures of RNNs and
LSTMS. In these figures, where the horizontal line at the top
represents the cell state. LSTM models provide a mechanism
to both store and discard the information saved about the
previous steps. This happens while limiting the accumulated
error using Constant Error Carousels [151]. LSTM removes
or adds information to the cell state using input gate, and
forget gate, respectively [152]. Likewise, a GRU is introduced
to solve similar types of problems such as LSTMs. In terms
of their architecture, LSTMs and GRUs are types of RNN
that use special units in addition to standard units. GRUs can

FIGURE 5. The basic structure of an RNN [156].

FIGURE 6. The basic structure of an LSTM [156].

better learn long-term patterns [153], [154]. The design of the
forget gate is the core of the LSTM and GRU models [155].

GRUs are similar to LSTMs, but they have a simplified
structure. Fig. 7 illustrates the structure of LSTM and GRU.
GRUs use fewer gates which makes the model faster. They
make use of a memory cell to store the value of previous
words in the long sequences. A set of gates are is used
to control the flow of information in the network and to
learn which inputs in the sentence are important to store
in the memory units. Therefore, GRU requires fewer net-
work parameters. Nevertheless, LSTMprovides better perfor-
mance than GRU, if one has enough data and computational
power [157].

FIGURE 7. The structure of LSTMs and GRUs [156].

Reference [158] illustrates an example of an LSTM appli-
cation for automated music generation by combining raw and
symbolic audio models. The raw audio models represent the
realistic sound and feel of the music, while the symbolic
models represent the complexity, structure, and long-range
dependency of the generations. This model can inspire many
future applications.

Tables 8 and 9 summarize the differences between popular
memory-based models and list the advantages and disadvan-
tages of these models.
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TABLE 8. A summary of advantages and drawbacks of memory-based models.

TABLE 9. A summary of differences between popular memory-based models.

VIII. DEFENSE AGAINST NLP ADVERSARIAL ATTACKS
As discussed earlier, the discrete nature of text creates dif-
ficulties in generating adversarial examples in NLP applica-
tions. There is a research body onNLP attacks and defenses at
character, word, and sentence levels. Table 10 revises popular
NLP adversarial attacks, attack granularities, and defense
strategies.

TABLE 10. NLP adversarial attacks, attack granularity, and defense
strategies.

Current adversarial attacks can be roughly be divided into
three categories: white-box attacks, black-box, and gray-box
attacks, according to whether the data, model architecture,
and parameters of the target are accessible. In black-box
attacks (also called zero-knowledge attacks), no or very lim-
ited information about the target model is accessible. For

example, a certain number of model queries (i.e. oracle
queries) are granted.

Some of the defenses, [11], [34] are shown to be quite
robust against black-box attacks. In gray-box attacks/limited
knowledge attacks, partial knowledge about the model under
attack (e.g., type of features, or type of training data) is
assumed. On the other side, is white-box (perfect-knowledge)
attacks. Those exploit model internal information. They
assume complete knowledge of the targeted model, including
its parameter values, architecture, training method, and in
some cases its training data.

These are examples of defense against specific attacks
in an NLP context. Below is a concise revision of these
algorithms and approaches, their rationale, and how they
evolved.
• Dirichlet neighborhood ensemble, a randomized
smoothing method for training a model against
substitution-based attacks [159]

• Adversarial training as a defense method, [160]–[162]
• Increasing model’s robustness by adding perturbations
on word embedding [3]

• Certified defenses: aim to provide guarantees of robust-
ness to some specific types of attacks [163], [164]

• Defensive distillation: Defensive distillation can take an
arbitrary NN and increase its robustness, reducing the
success rate of attacks’ ability [165]

• Defense through randomization [166], [167]

An example work on adversarial evaluation in NLP
is [164]. A scheme called the Stanford question answer-
ing dataset (SQuAD) is proposed for reading compre-
hension tasks then answer questions on paragraphs from
Wikipedia. The authors are doubtful that current systems have
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correct language understanding and reasoning capabilities.
To improve adversarial evaluation, the authors suggest the
need for new strategies for training models.

In the context of text classification, [168] proposes a
framework, called learning to discriminate perturbations
(DISP), to identify and modify malicious perturbations,
which accordingly helps in blocking NLP adversarial attacks.
The model is represented against adversarial attacks with-
out changing the model structure and the training pro-
cedure. DISP has three parts: perturbation discriminator,
embedding estimator, and hierarchical navigable small-world
graphs. The perturbation discriminator classifies a group
of perturbed tokens. The framework organizes an efficient
k nearest neighbor (KNN) search across a hierarchical
taxonomy toward translating each of the embedding vec-
tors to a suitable token for changing the related perturbed
word.

Another work on text generation is [169] which uses
a black-box population-based optimization algorithm. The
authors produce semantically and syntactically similar
adversarial examples versus models trained on sentiment
analysis task as well as the Stanford natural language
inference (SNLI) textual entailment task. They validate the
examples, which are correctly categorized through human
evaluators and like the original via a human study. Defense
against such adversarial attacks is performed using adversar-
ial training. However, it fails to yield any robustness, demon-
strating the strength and diversity of the produced adversarial
examples.

From a deep neural network (DNN) perspective, [170]
introduces a technique for crafting adversarial samples
against DNN-based text classifiers. Rather than simply over-
lapping the perturbation and the original input, the authors’
design three perturbation tactics (insertion, modification, and
removal) and establish the natural language watermarking
method to elaborately dress up a given text to generate
an adversarial example. The proposed technique carries out
either white-box or black-box attacks to various adversarial
scenarios. For the model whose implementation can be freely
and completely examined by the adversaries, the cost gradi-
ents of the input are calculated to effectively decide what,
where, and how to insert, modify or remove. Then, if the
objective model cannot be directly analyzed, some occluded
tests are produced to probe it and obtain the needed usable
knowledge.

In a binary classification context, [171] proposes a tech-
nique to generate adversarial text examples which fool or
increase the probability of misclassification. Text classi-
fiers are now arguably approximately of the most organized
machine learning models, used in high-impact domains rang-
ing on or after spam classification to medical record analysis.
On the contrary, several standard methods used to generate
adversarial samples have largely focused on image classi-
fiers, and depend on gradient-based, visually imperceptible
changes to current images which do not simply apply to
discrete and semantically meaningful text sequences.

2) MACHINE TRANSLATION
Considering the applications of machine translation, [172]
proposes a framework, called Seq2Sick, for generat-
ing adversarial attacks against sequence-to-sequence mod-
els. Seq2Sick uses non-overlapping and targeted keyword
attacks. The framework achieves a high success rate
(84% -100%) in both types of attacks with one or two key-
words. This approach employs group LASSO 4 regulariza-
tion and the projected gradient method to simultaneously
search all replacement positions as opposed to the majority of
approaches, which are based on greedy search. The authors
evaluate the robustness of the proposed model on multi-
ple applications such as text summarization and machine
translation.

Another work on neural machine translation (NMT)
is [173] which proposes a white-box character-based NMT
system for generating adversarial attacks. The proposed
approach is built on top of the HotFlip method [176] for gen-
erating adversarial examples. The robustness of the approach
is further improved with faster adversarial training. The
authors propose a two-level type of attack: a controlled
attack aiming to remove a specific word from the output,
and a targeted attack aims to replace a specific word with
another one. The proposed system outperforms its black-
box counterparts. Both [172] and [173] use gradient-based
estimate to rank adversarial manipulations, then they search
for adversarial examples using greedy search or beam search.
Overall, Seq2Sick achieves a high success rate of almost
100%, while [173] is less as successful.

3) DIALOGUE SYSTEMS
The authors in [174] improve the robustness of NMT models
compared to baseline methods using adversarial examples
generated by a white-box, guardian-based method guided
by translation loss from the inputs of an NMT model. This
approach allows access to the parameter level of the attacker.
Both [174] and [173] use white-box methods. However, the
former applied it at the word level while the latter applied it
at the character level. Generally speaking, latent variables in
DNNs are uninterpretable. Hence, it is difficult to explain how
adversarial perturbations influence features in these variables
leading to final misclassification.

4) DEPENDENCY PARSING
[175] proposed interpretability and diagnostic method, called
InterpretGAN, to understand and diagnose vulnerability
attacks. Themethod applies GAN to train an explanation gen-
erator to produce explanations for features used in latent vari-
ables. Interpretability results can be further used to improve
model performance.

4Least absolute shrinkage and selection operator, which is an algorithm
for sparse approximation.
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A. BLACK VERSUS WHITE-BOX ATTACKS
Considering long text generation, [11] proposes an algo-
rithmic framework called LeakGAN based on adversarial
training. The proposed method addresses the sparsity and
non-informativeness issues of the scalar reward signal in
previous GAN solutions ( [12], [39], and [40]) by leaking
of the feature that has been extracted by the discriminator,
as the step-by-step guiding signal, which guides the generator
to produce better long text.

[11] conducts experiments based on synthetic and real
data, which include long, mid-length and short text. Dealing
with synthetic data, LeakGAN showed a lower NLL than pre-
vious GAN solutions using sequence lengths set to 20 and 40.
Dealing with real data, the text in EMNLP2017 WMT News,
COCO Image Caption, and Chinese Poems had been used
as the long, mid-length, and short text corpus, respectively.
using all these datasets, the proposed method showed better
results compared to previous GANmodels in terms of BLEU
statistics [18] and the human Turing test.

[34] proposes using randomization at inference time to
mitigate adversarial attacks’ effects. The authors use two ran-
domization procedures: random padding, which pads zeros
around the input images in a random manner, and ran-
dom resizing, which resizes the input images to a ran-
dom size. In this regard, the impact of randomization on
the genratyion of adversarial exmaples is analyzed. Results
show that adversarial examples hardly transfer between
different randomization patterns, particularly for iterative
attacks. Furthermore, the randomization layers of the pro-
posed technique are compatible with different network struc-
tures and adversarial defense methods. Thus, they can work
as basic components for defense against different adversarial
examples.

A literature review on the special effects of different types
of attacks on machine learning systems and their defenses
against these types of attacks is presented in [2]. This work
also proposes the a spam detection system called SpamBayes.
The authors then argue on possible attacks against this system
and quantify their success rates. There proposed framework
offers a good foundation for analyzing attacks on machine
learning systems and developing defense mechanisms against
them.

From another perspective, [159] proposes a method called
Dirichlet neighborhood ensemble to generate virtual sen-
tences by mixing the embedding of the original word in the
input sentence with its synonyms. By training on these vir-
tual sentences, the proposed model improves the robustness
against word substitution-based attacks.

Reference [159] tests a new defense method over exper-
imental results conducted using several model architec-
tures (bag-of-words, CNN, LSTM, and attention-based) on
several data sets. These results shows that the proposed
method achieves better performance on clean and adversarial
examples compared with other defense techniques. Further-
more, [159] finds that one can enable the embedding of a
set of similar words to be updated together in a coordinated

way. This idea is then exploited in improving the robustness
of NLP models against adversarial attacks.

There has been an increasing interest in extending adver-
sarial training for the purpose of defense. Along this
line, [160] extends adversarial and virtual adversarial training
to the text domain by occupying perturbations to the word
embedding in an RNN rather than to the original input itself.
A major finding in this work is pointing out that adversar-
ial and virtual adversarial training have good regularization
performances in sequence models on text classification tasks.
Another finding is that adversarial and virtual adversarial
training enhance not only classification performance but also
the quality of word embedding.

Another research trend considers developing our under-
standing of the evolution of adversarial examples, their rea-
soning, and how they work. As an example, [161] discusses
the interpretability of adversarial training based on adversar-
ial perturbation applied to tasks in the NLP field. Specifi-
cally, [161] controls the directions of perturbations toward
the locations of existing words in the word embedding space.
Consequently, the authors could directly restructure each
input with perturbations to an actual text by reflecting the
perturbations to be the replacement of words in the sentence
while maintaining or even improving the task performance.

In an attempt at developing better understanding ofmodel’s
behavior under attack, [161] shows that an attacker can
positively generate reasonable adversarial texts and inter-
pretable visualizations of perturbations in the input embed-
ding space, which they assume will help researchers analyz-
ing a model’s behavior. The presented results confirm that the
proposed technique maintains or improves the state-of-the-
art performance obtained by baseline methods, AdvT-Text
and VAT-Text, in well-studied sentiment classification, gram-
matical error detection, and category classification bench-
mark datasets. From another perspective, [162] reports that
adversarial training considerably improves the performance
of state-of-the-art models for various language understand-
ing tasks. Along this line, an adversarial training algorithm,
known as FreeLB (Free Large-Batch), is proposed. This
algorithm adds adversarial perturbations to word embeddings
and minimizes the resultant adversarial loss around input
samples. Besdies it can improve Transformer-based models
(BERT, RoBERTa, and ALBERT) on several datasets and
achieve the new state-of-the-art on GLUE and ARC bench-
marks. This algorithm is experimentally verified to score
higher robustness in the embedding space compared to nat-
ural training, and better generalization capability.

It is noted that the early attempts to explain adversar-
ial examples focus on overfitting and nonlinearity. Con-
versely, [3] argues that the main cause of neural net-
works’ vulnerability to adversarial perturbation is their lin-
earity, which is supported by experimental results showed
in the paper while explaining the highest interesting fact
about them, which is their generalization across architectures
and training sets. Furthermore, this view leads to develop-
ing a simple and fast technique for generating adversarial
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examples. Using this method to create examples for adversar-
ial training [3] reduces the test set error of a maxout network
on the MNIST dataset.

Another line of research considers studying system’s
robustness against predefined classes of adversarial attacks.
Along this line, [163] considers text classification under
synonym replacements or character flip perturbations. This
is achieved by modeling these input perturbations as a
simplex and then using interval bound propagation. The
resulting models show only a minor difference in terms
of nominal accuracy. However, they present considerably
enhanced verified accuracy under perturbations and it came
with an efficiently computable formal guarantee on worst
case adversaries.

The used standard accuracy metrics show that reading
comprehension systems are achieving rapid progress. How-
ever, they do not evaluate these system’s capability to under-
stand language. To evaluate the real language understanding
abilities of the reading systems, [164] proposes an adversar-
ial evaluation method for the Stanford question answering
dataset (SQuAD). The proposed method examines whether
reading systems can answer questions about paragraphs that
contain adversarial inserted sentences, which are generated to
confuse computer systems without changing the right answer
or misleading humans. This work considers defensive distil-
lation as a defense mechanism. Int his setting, one uses the
logits of the (possibly backdoored) trained model to retrain
for a benign one, using benign data.

The experimental results presented in [164] show that no
published open-source model is robust against adversarial
sentences. Furthermore, a major contribution in this work
is showing that defensive distillation does not meaningfully
increase the robustness of neural networks. This observation
is experimentally verified on three types of attack algorithms,
which are successful on both un-distilled and distilled neural
networks with 100% probability. Nearly at the same time,
[165] proposes adversarial attacks that overcome defensive
distillation, demonstrating that these attacks could be used
to evaluate the potential defense efficiency. The generated
attacks from the proposed algorithm are tailored to three
types of distance metrics that used previously in the literature.
Then, they, when compared to previous adversarial example
generation algorithms, the generated attacks are regularly
much more effective.

A recent research trend considersmergingmultiple defense
techniques to improve the resilience of ML models against
attacks. As an example, [167] proposes a new defense
method, named as Random SelfEnsemble (RSE), by combin-
ing two concepts: ensemble and randomness. This is done by
adding a new ‘‘noise layer’’ that merges input vector with
randomly generated noise. Next, this new layer is inserted
before each convolution layer of a deep network. Exper-
imental results show that this method makes the network
more resistant to adversarial attacks. Moreover, RSE slightly
affects test accuracy when no attack is performed on natural
images.

Following the line or randomization, a new defense tech-
nique referred to as randomized smoothing has been emer-
ing recently. This technique delivers better-certified accuracy
because it permits the utilization of larger networks and it
does not constrain the expressively of the base classifier.
In this regard, [166] uses randomized smoothing to train state-
of-the-art certifiably L2-robust ImageNet classifiers. As an
example, one of the trained classifies scores 49% provable
top-1 accuracy under adversarial perturbations with L2 norm
less than 127/255. Reference [166] also show that even on
smaller-scale datasets, they can challenge approaches to cer-
tified L2 robustness. An important fidnign in this work is
showing that randomized smoothing is a promising direction
on future research for adversarial robust classification.

As a final remark, a comparison of the mentioned papers
in this section is presented in Table 11.

IX. SUMMARY AND RESEARCH TRENDS
In this paper, recent literature in adversarial machine learning
for text generation tasks is summarized. We noticed a contin-
uous expansion in the applications, models, and algorithms.
This paper can serve as an introduction to this field and read-
ers may need to follow through with some of the researchers
and references we referred to based on their focuses or inter-
ests. Our goal is to present a one-stop source for researchers
and interested readers to learn the basic components, explore
the main research trends, and envision future research in this
field.

The applications of machine-based automatic text-
generation span many domains and use cases. Automatic
text generators replace humans for saving time, effort, and
resources. However, they are vulnerable to be malicious in
some cases. This is especially the case when such genera-
tors try to masquerade as humans. Popular recent examples
include the usage of Trolls and Social-Bots to act as regular
citizens in online social networks. The goal of such trolls/bots
is to create politically manipulated text that can influence
public opinions [177].

A. RESEARCH CHALLENGES AND FUTURE
RESEARCH TRENDS
Now that we have revised key approaches for attack and
defense ML models for text generation, it is time to explore
and envision possible areas of research to improve the knowl-
edge circle in this domain.We categorize these into the scopes
of GAN text generation, text generation metrics, memory-
based ML models associated used in NLP settings, defense
against NLP adversarial attacks, and adversarial training,
as detailed below. Besides, Table 12 summarizes outstanding
directions for future work.

1) GAN TEXT GENERATION
1) Exploring new NLP application areas and contempo-

rary use cases for GANs. An example along this line
is non-goal-oriented dialog systems, with no specific
training and assessment criteria.
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TABLE 11. A compression of the main surveyed papers in this subsection.

TABLE 12. A table summary of horizons for future work.

2) The exploitation of word and sentence embeddings to
provide an extra pre-training stage for the machine
learning model. This includes embeddings from large
databases such as those of Google and conditional
generation cases such as dialogue generation

3) Using conditional GANs to create latent representation
for writing types. This usage will allow for a seam-
less lexical and grammatical transition between various
writing styles.

4) Developing universal text perturbations to be used in
both black- and white-box attack settings.

2) TEXT GENERATION METRICS
1) Developing successful automated assessment metrics
2) Associating such metrics with human judgement [146]
3) Developing multilingual text generation metrics
4) Successfully making use of ML to develop, train and

deploy quality metrics having desirable properties,
including the aforementioned points

3) MEMORY-BASED DNN MODELS
1) Designing and developing new memory models that

increase performance and memory utilization effi-
ciency without validating real-time constraints

2) Exploring better sampling decisions to minimize
back-propagation of errors, enriching knowledge
from external memory inherited from a knowl-
edge base (top-down) can contribute to design-
ing appropriate networks for emerging real-world
problems.

4) DEFENSE AGAINST NLP ADVERSARIAL ATTACKS
1) Exploring different types of targeted attacks especially

those that target more than one word, with different
types of constraints and characterizations.

2) Investigating the direction of generating more natural
adversarial examples dispensing with word replace-
ments

3) Developing new defense approaches with improved
performance through adversarial training

4) Reintroducing a true GAN-style discriminator, updated
during training, to distinguish between human and
machine-generated instances.

5) Complex classification tasks and model architec-
tures might yield similar explainable insights. Such
an approach might offer a useful outline for iden-
tifying important target model vulnerabilities and
limitations.
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FIGURE 8. Machine learning for text generation tasks related keywords.

5) ADVERSARIAL TRAINING
Nowadays, adversarial training is considered to be the state-
of-the-art defense against several adversarial attacks [178].
Despite its robustness, the method has some shortcomings,
highlighted below.

1) Computational cost: Most of the mentioned techniques
require high computational needs, typically muchmore
extensive than what the model requires to train nat-
urally [49]. A potential track of research is to find
new training techniques that require less computa-
tional requirements and accelerate the training pro-
cess. As an example, [122] suggests free adversarial
training, which optimizes SGD passes such that during
the backward pass, the model’s gradient is computed
with respect to the network parameters. Simultane-
ously, the gradient of the loss with respect to the input
is computed [122]. The paper shows an interesting
level of speed-up compared to the original training
model [103] with comparable accuracy. Another exam-
ple work is [49] where the authors propose a new train-
ing method that reduces the number of passes required
to generate an adversarial example to one. Yet, even
with the improvement of run time, it is still notably
slower than regular training [121]. Other papers suggest
using FGSM [3] with random initialization is sufficient
to defend against PGD [103] attacks and with a much
lower computational cost. This approach can be further

improved by coupling it with several efficient training
procedures shown in [179] such as mixed-precision
arithmetic [180], and cyclic learning rate [181].

2) Lack of benchmark algorithms: Adversarial training
techniques are generally tested and compared based on
empirical experiments. Therefore, a possible improve-
ment is to provide rigorous and theoretical guarantees
to their effectiveness against the attacks.

3) NLP vs computer vision: The vast majority of adversar-
ial attack and defense techniques are mainly concerned
with computer vision applications. Thus, they can not
be arbitrarily applied to NLP domains. In view of this
limitation, an seemingly beneficial area of research is
to investigate how to exploit the research outcomes
already attained in computer vision and accustom them
to be suitable for NLP application areas.

4) Size of training dataset and models complexity: The
majority of the discussed methods are not tested on
large datasets such as ImageNet, neither on complex
models [122].

5) This suggests the need for investigating robustness
against adversarial attacks on more complex and larger
datasets.

6) RESEARCH TRENDS VISUALIZATION
Many studies have been conducted in adversarial machine
learning for text generation problems, with various focus

VOLUME 10, 2022 17071



I. Alsmadi et al.: Adversarial Machine Learning in Text Processing: Literature Survey

FIGURE 9. Related keywords ranking in machine learning for text generation tasks.

and subjects, where finding and reviewing relevant articles
is a time-consuming process while preparing a research arti-
cle. Keywords are used by most electronic search engines,
databases, and journal websites to determine whether to show
a research article to interested readers. One of the primary
functions of keywords in a research paper is to assist other
researchers in locating articles relevant to their research topic,
where the article’s keywords define the field, sub-field, topic,
and research concern. Similarly, in research articles, it is
essential to incorporate the most relevant keywords to help
other authors find your paper and improve article citation.
Therefore, we produced a graph using the indexed keywords
from the research articles reviewed in this survey extracted
from the Scopus database. This graph illustrates the most
prevalent keywords to assist future researchers in finding
relevant publications in online resources present machine
learning for text generation research topics. Figure 8 shows
the machine learning for text generation tasks related key-
words graph.

To this end, it is interesting to consider the tasks of
applications in the papers surveyed in this review. For this
purpose, we show the most repetitive keywords appear-
ing these references in Figure 8. The figure reveals that
the following are the most frequently appearing keywords:
(1) Deep learning, (2) Adversarial networks, (3) Machine
learning, (4) Text processing, and (5) Learning algo-
rithms. Furthermore, we present the keyword ranking in
Figure 9.

In text processing, adversarial machine learning creates
fierce competition among researchers. As more researchers
decide to pursue this field of study, the number of available
information increases. We expect that by listing the most
used keywords in this field, future researchers will be able
to find relevant articles to use in their research on adversarial
machine learning in text processing.
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