
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-9 Issue-3, January 2020

2495

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: K12940981119/2020©BEIESP

DOI: 10.35940/ijitee.K1294.019320

Abstract: Interaction and integration complexities of various

pieces of codes play a vital role in the overall behavior of software.

As the code count increases the interaction level of software also

increases as per the requirements of the software. In this paper we

propose a metric to assess the actual number of interactions made

by components in component-based software. On the basis of

interactions among components we define an Interaction-graph.

Interaction-graph contains ‘Links’ and ‘Components’. To assess

the actual interactions we define inner and outer interactions of

particular components. Links are further categorized as straight

and circuitous links. Proposed interaction metric is easy to

calculate and contains information about the component which is

used by designers and developers of the component-based

software for future development.

Index Terms: Component-based software, metric,

Interaction-graph, Links, Inner-Interactions, Outer-Interactions.

I. INTRODUCTION

 In general, complexity is termed as the assessment of

hardware and software resources needed by software. In

software development, complexity is treated as an indirect

measurement unlike the direct measurements like

lines-of-code or cost-estimation [1]. Internal as well external

interactions contribute a major role in software complexity. In

the context of software development, interaction behaviour of

various parts of program is used to measure the complexity.

These parts may be single line code, a group of line of codes

(functions), a group of functions (modules) or ultimately

components. As the size of parts of s software increases, the

count of interactions will also increase, as well as the

complexity.

Software Engineering principles are applicable on the

applications developed through either development

paradigm. Component-based software development (CBSD)

emphasizes “development with reuse” as well as

“development for reuse”. Development with reuse focuses on

the identification, selection and composition of reusable

components. The property of reusability is not applied only to

develop the whole system but also to develop the individual

components. The development for reuse is concerned with the

development of such components that may be used and then

reused in many applications, in similar and heterogeneous

contexts.

After discussing the introduction of work in section 1, we

have summarized the interaction and integration issues in

Revised Manuscript Received on January 05, 2020

Umesh Kumar Tiwari, Computer Science and Engineering, Graphic

Era Deemed to be University, Dehradun, India.

Santosh Kumar, Computer Science and Engineering, Graphic Era

Deemed to be University, Dehradun, India.

section 2. In section 3, we have performed the survey on the

literature available. Section 4 includes the proposed work. It

also includes an exemplar case study to implement the

proposed work. Finally section 5 concludes this work.

II. INTEGRATION AND INTERACTION ISSUES

 Software applications are composed of dependent or

independently deployable components. Assembling of these

components has a common intension to contribute their

functionalities to the system. Technically this assembling is

referred to as integration of and interaction among

components. We have sufficient number of measures and

metrics to assess the complexity of stand alone programs as

well as small-sized conventional software, suggested and

practiced by numerous practitioners [2]-[8]. In literature,

complexity of programs and software is treated as a

“multidimensional construct” [3], [9].

III. LITERATURE SURVEY

A. Thomas J. McCabe’s Cyclomatic Complexity

Thomas J. McCabe [10] developed a method to assess the

Cyclomatic complexity of a program. He used control-flow

graph of code to compute the complexity. McCabe used graph

theoretic notations to draw the control-flow graph where a

graph denoted as „G‟ having „n‟ number of nodes, „e‟ number

of connecting edges and „p‟ number of components.

Cyclomatic complexity V(G) calculated as, V(G) = e - n + 2p,

where 2 is the “result of adding an extra edge from the exit

node to the entry node of each component module graph” [2].

In control-flow graph, a sequential block of code or a single

statement is represented as a node, and control flows among

these nodes are represented as edges. Cyclomatic complexity

metric is easy to compute and maintenance, gives relative

complexity of various designs.

Method:

McCabe used a set of programs developed in FORTRAN

language to illustrate his implementations. McCabe used

graph theoretic notations to draw the control-flow graph

where a graph denoted as „G‟ having „n‟ number of nodes, „e‟

number of connecting edges and „p‟ number of components.

Cyclomatic complexity V(G) calculated as,

V(G) = e - n + 2p,

where, 2 is the “result of adding an extra edge from the exit

node to the entry node of each component module graph” [2].

In a structured program where we have predicate nodes,

complexity is defined as,

Actual Interactions for Component-Based

Software using Straight and Circuitous Links

Umesh Kumar Tiwari, Santosh Kumar

Actual Interactions for Component-Based Software using Straight and Circuitous Links

2496

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: K12940981119/2020©BEIESP

DOI: 10.35940/ijitee.K1294.019320

V(G) = number of predicate nodes + 1

Where predicate nodes are the nodes having two and only

two outgoing edges.

In his implementations, McCabe has defined the value of

Cyclomatic complexity of a program as less than 10 as

reasonable. If a program has hierarchical structure, that is, one

subprogram is calling other one, the Cyclomatic complexity is

the summation of individual complexities of these two

subprograms and is given as,

V(G) = v(P1 + P2) = v(P1) + v(P2),

where, P1 and P2 are two subprograms and P1 is calling P2.

Key Findings:

 Complexity does not depend on the size, but the

coding structure of the program.

 If a program has only one statement then it has

complexity 1. That is, V(G) ≥ 1.

 Cyclomatic complexity V(G) actually defines the

number of independent logics/paths in the program.

Metrics Used:

 Lines of code,

 Control flow of statements,

 Interaction among statements,

 Independent paths from source to destination,

 Vertices and edges.

Factors affecting Interaction and Integration

Complexity:

 Structure of the program,

 Forward and backward loops,

 Branching statements,

 Switch cases in the program.

Critique:

 Same program written in different languages or with

different coding style or structure may have different

complexities.

 Intra-module complexity of simple structured

programs can be achieved easily, but for inter-module

complexity, this metric produces misleading output.

B. Halstead's Software Science

Halstead's [5] identified a complete set of metrics to

measure the complexity of a program considering various

factors. These metrics include the program vocabulary,

length, volume, potential volume, and program level.

Halstead proposed methods to compute the total time and

effort to develop the software. These metrics are based on the

lines of codes of the program. He defined program vocabulary

as the count of distinct operators and distinct operands used in

the program. The count of total operators and operands used

in a program is proposed as the Program length. The Program

volume has been defined as the storage volume required

representing the Program, and the representation of program

in the shortest way without repeating operators and operands

is known as potential volume. Halstead has also defined the

relationship between these factors and metrics of programs.

Method:

Halstead proposed software science to examine the

algorithms developed in ALGOL and FORTRAN. Halstead

considered the algorithms/programs as a collection of

„tokens‟, that is, operators and operands. He defined program

vocabulary as the count of distinct operators and distinct

operands used in the program. The count of total operators

and operands used in a program is proposed as the Program

length. The Program volume has been defined as the storage

volume required representing the Program, and the

representation of program in the shortest way without

repeating operators and operands is known as potential

volume.

Program vocabulary: n = n1 + n2,

where n1 and n2 are the count of unique operators and

operands respectively,

Program length N = N1+ N2,

where N1 and N2 are the count of total operators and

operands respectively.

They further proposed if the program is assumed to contain

binary encoding then the size is defined as program volume

and can be defined as-

Program volume V= N × log2 n = (N1+ N2) × log2 (n1 + n2),

where log2 n is used for binary search method.

An algorithm can be implemented in various efficient and

compact ways. They defined the most competent and compact

length of the program as potential volume. For a program

potential volume can be attained by specifying signature

(name and parameters) of functions and subprograms

previously defined and formulated as-

Potential volume V* = (2 + n2*) × log2 (2 + n2*),

where, 2 represents the two operators (one for name of the

function and other the separator used to distinguish the

number of parameters) and n2* represents the operand used

for the count of input and output parameters.

Next he defined the level of a program where level is the

possible minimum size of the program. A program having

volume V and potential volume V*, the program level is

defined as-

Program Level (L) L = V*/V

Where 0 ≤ L ≤ 1, 0 denotes the maximum possible size and

1 denotes the minimum possible size of the program.

On the basis of level of program, Halstead defined the

difficulty of writing a program as-

D = 1/L

Where, difficulty is the inverse of the program level.

Further he defined the effort metric to develop a program

as-

E = V/L = D × V

As the volume and difficulty of program increases, the

effort of development increases.

Key Findings:

 A range of complex metrics and their values are

achieved using simple measures including operators,

operands and size of the algorithm.

 There is no in-depth analysis requirement of structure

of the logic code; hence the ease of computation makes

proposed metrics achievable and can be comfortably

automated.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-9 Issue-3, January 2020

2497

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: K12940981119/2020©BEIESP

DOI: 10.35940/ijitee.K1294.019320

 Metrics Used:

 Operators and Operands,

 Functions and subprograms,

 Input/Output parameters.

Factors affecting Interaction and Integration

Complexity:

Count of operators, operands, function names and similar

measures.

Critique:

 Originally software science was proposed to

investigate the complexity of algorithms not the

programs, therefore these metrics are static measures.

 Halstead tested their metrics on small scale programs

even less than 50 statements. So applicability on large

programs is questionable. These small scale metrics

cannot be generalize with respect to large,

multi-module programs/software.

In his theory Halstead calculated each occurrence of

GOTO statement as a distinct operator whereas he treated all

the occurrences of an IF statement as single operator. Treating

and counting different operators as different may create

ambiguity.

C. Alan Albrecht’s Function Point Analysis

Alan Albrecht [6] proposed Function-point analysis

technique to measure the size of a system in terms of

functionalities provided by the system. FPA categorizes all

the functionalities provided by the software in five specific

functional units: External inputs provided to the software,

External outputs provided by the software, External inquiries

of the system under consideration, Internal logical files

presents data and content residing in the system, and External

interface files are the data and contents residing with other

systems and can be called to system under consideration.

Three complexity weights High, Low and Medium are

associated with these functional units using a set of

pre-defined values. In function-point analysis, 14 complexity

factors have been defined, which have a rating from 0 to 5. On

the basis of these factors, Alan calculated the values of

unadjusted function-point, complexity adjustment factors,

and finally the value of function points [2].

Method:

FPA categorizes all the functionalities provided by the

software in five specific functional units:

External inputs are the number of distinct data inputs

provided to the software or the control information inputs that

modifies the data in internal logical files. Same inputs

provided with the same logic are not included in the count for

every occurrence. All the repeated formats are treated as one

count.

External outputs are the number of distinct data or control

outputs that are provided by the software. Same outputs

achieved with the same logic are not included in the count for

every occurrence. All the repeated formats are treated as one

count.

External inquiries are the number of inputs or outputs

provided to or achieved from the system under consideration

without making any change in the internal logical files. Same

inputs/outputs with the same logic are not included in the

count for every occurrence. All the repeated formats are

treated as one count.

Internal logical files presents the number of user data and

content residing in the system or control information

produced or used in the application.

External interface files are the number of communal data,

contents, files or control information that is accessed,

provided or shared among the various applications of the

system.

These five functional units are categorized into three levels

of complexity: low/simple, average/medium, or

high/complex. Albrecht identified and defined weights for

these complexities with respect to all the five functional units.

Now these functional units and corresponding weights are

used to count the unadjusted function points, as-

Where, „i‟ denotes the five functional units and „j‟ denotes

the level of complexity.

Similarly, Albrecht defined the Complexity adjustment

factors on the basis of 14 complexity factors on a scale of 0 to

5. Adjustment factors provide an adjustment of +/- 35%

ranging from 0.65 to 1.35. These complexity factors

include-reliable backup and recovery, requirement of

communication, distributed processing, critical performance,

operational environment, online data entry, multiple screen

inputs, updation of master files, complex functional units,

complex internal processing, reused code, conversions,

distributed installations, and ease of use. Complexity factors

are rated as-no influence (0), Incidental (1), Moderate (2),

Average (3), Significant (4), and Essential (5).

Complexity adjustment factor is defined as-

Now the function point is defined as the product of

Unadjusted FP and Complexity adjustment factor.

Key Findings:

 Function point technique does not depend on tools,

technologies or languages used to develop the program

or software. Two dissimilar programs having different

lines of code may provide same number of function

points.

 These estimations are not based on lines of code hence

estimations can be made early in the development

phase, even after the commencement of the

requirements phase.

Metrics Used:

 Count of inputs, outputs, internal logical files, external

interfaces and enquiries.

 Weights of corresponding functional unit on the scale

of low, medium and high.

 14 complexity factors on the rating of values 0 to 5.

Actual Interactions for Component-Based Software using Straight and Circuitous Links

2498

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: K12940981119/2020©BEIESP

DOI: 10.35940/ijitee.K1294.019320

Factors affecting Interaction and Integration

Complexity:

Count of functions in the software.

Critique:

 To compute correct count of function points, proper

analysis of requirements by trained analysts is

required.

 Analysis, counts of functional units and computation

of function points are not as simple as counting of lines

of code.

D. Henry and Kafura’s Complexity Metric

Henry and Kafura [11] proposed a set of complexity

computation method for software modules. Author‟s

suggested a “Software Structure Metrics Based on

Information Flow that measures complexity as a function of

fan-in and fan-out” [12]. Authors proposed the complexity as

“the procedure length multiplied by the square of fan-in

multiplied by fan-out." This method is used to calculate the

count of “local information flows” coming to (fan-in) and

going from (fan-out) the module. Henry and Kafura defined a

length of the module as the procedure length which calculated

with the help of LOC or McCabe's complexity metric. This

metric can be computed comparatively early stage of the

development.

Method:

Henry and Kafura defined three categories of data flow in

their work:

Global flow- It is defined when a global data structure is

involved between two modules. One module submits its data

to the global data structure and the other module accesses that

submitted data from the data structure.

Direct local flow- Flow of data between two modules is

direct local if one module directly calls another module.

Indirect local flow- Flow of data between two modules is

indirect if one module uses data as an input returned by some

other module or both these modules were called by some third

module.

Complexity metrics are defined on the basis of two types of

information flow for a particular module or procedure-

Fan-In- It defines the sum of number of local flows coming

to the module and the count of data structures used to access

the information.

Fan-Out- It defines the sum of number of local flows going

from the module and the count of data structures modified by

the module.

Authors proposed the local flow complexity as “the

procedure length multiplied by the square of fan-in multiplied

by fan-out." This method is used to calculate the count of

“local information flows” coming to (fan-in) and going from

(fan-out) the module. That is-

Complexity in terms of local flows = length of the module

(fan-in flows of the module * fan-out flows of the module)
2

High values of fan-in and fan-out indicates the high

coupling among modules which leads the problem of

maintainability.

Global flow complexity is defined in terms of possible

read, write and read-write operations made by the procedures

of the module. That is-

Global information in terms of access and update = (write *

read) + (write * read-write) + (read-write * read) + (read-write

* (read-write - 1))

Key Findings:

 The type, nature, number, format of the information

which is going to transit among the software

components are identified and defined much before

the actual implementation. Therefore these metrics can

be applied and estimated at the time of design phase.

 These design phase metrics can be used to identify the

shortcomings and flaws in the construction of design

of procedures and ultimately of modules.

 Through their metrics authors argued that the size of

the code plays negligible role in complexity

estimation.

Metrics Used:

 Data and information transit among modules.

 Number of parameters used to access and to provide

information.

Factors affecting Interaction and Integration

Complexity:

 Number of incoming and outgoing flows

 Number of parameters used to access and modify data

structure

 Number of operations updating the data structure.

Critique:

 Author‟s computed length with the help of McCabe‟s

formula or Halstead‟s formula, that is, length of the

code plays a vital role in the metrics.

 If the module has no interaction with other modules

then the complexity of that module becomes zero.

In global information flow, only update operations are

participating in the complexity.

E. Cho et al. ’s Complexity Metric

Cho et al. [13] developed some measures to quantify the

quality and complexity of CBSE components. In their work,

authors defined three categories of complexity measures:

complexity, customizability and reusability of a component.

Some of these measures are applicable to design phase while

others can be implemented after the component installation

phase. Author‟s take the help of UML diagrams as well as

source code to show their work. Their argument is that the

component should have customization properties in order to

increase the reusability. In their proposed metrics author‟s

used McCabe‟s Cyclomatic complexity and Alan‟s function

points as the base to compute the complexity and reusability

of a particular program or method.

Method:

Cho et al. categorised their quality estimation measures

into three categories: Complexity, Customizability, and

Reusability.

Complexity metrics: Author‟s proposed four classes of

complexity metrics for components- plain, static, dynamic,

and Cyclomatic.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-9 Issue-3, January 2020

2499

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: K12940981119/2020©BEIESP

DOI: 10.35940/ijitee.K1294.019320

Plain metrics- It is defined on the basis number of classes,

abstract classes, interfaces, methods, complexities of

individual classes, methods, corresponding weights, attributes

and arguments.

In their work, author‟s identified two types of classes:

internal and external classes. Internal classes are defined in

the component whereas external classes are called from other

components or libraries. Similarly there are two types of

methods: internal and external methods. Internal methods are

defined within the class whereas external methods are called

from other classes. Weights are assigned to only internal

classes and internal methods.

Static Complexity metrics- Static complexity is measured

considering the internal structure of the component on the

basis of associations among classes, as-

Component Static Complexity = Summation of (number of

associations among classes * weight of corresponding

association).

Five types of associations are identified and are assigned

weight according to their precedence in order composition,

generalization, aggregation, and dependency. These

associations are computed two classes at a time.

Dynamic Complexity metrics- Dynamic complexity is

measured by taking the number of messages passed between

the classes into account, within the component, as-

Component Dynamic Complexity = Summation of

(Number of messages * frequency of messages) + (summation

of count of number of single parameter + Complexity of each

message (summation of (number of complex parameters *

weight of corresponding parameter)).

This metric is dynamic in nature since the number of

parameters depends on the nature of execution.

Cyclomatic Complexity metric- It is defined with the help

of source code developed. Author‟s used McCabe‟s

Cyclomatic complexity to assess the complexity of each

method existing in a class.

Customizability Metrics: Customizability is an attribute of

a component that assures the level of reuse of that component.

They identified three categories of customizable units in a

method and arranged in their priority order as- attribute,

behaviour, and workflow. Considering the level of

complexity, author‟s assigned corresponding weights to the

behaviour and workflow methods. To estimate the

customization level, author‟s suggested a formula as-

Reusability metrics: Reusability metric is defined at two

levels. First is at component level which assesses the

reusability of a component in various applications and second

is the reusability of components at the individual application

level.

Key Findings:

 Defined metrics covers static as well as dynamic

aspects of the component and the application, which

are applicable to design and post implementation time

of the development.

 As the value of plain complexity increases, the value

of component Cyclomatic complexity increases.

Dynamic complexity metrics exhibit more accurate

results than static complexity metrics.

 Size, effort, cost and development time of component

and component based applications can me measured

early and easily in the development phase.

Metrics Used:

 McCabe‟s Cyclomatic complexity.

 Alan Albrecht‟s function point analysis.

 UML class diagrams, component diagrams, and

deployment diagrams.

 Structure of the code

Factors affecting Interaction and Integration

Complexity:

 Number of internal and external classes, internal and

external methods, and In-out interfaces.

 Weights of internal classes, complex attributes,

complex parameters, and methods.

 Number of associations and their weights.

 Number of messages, and their frequency.

Critique:

 Dynamic complexities are based on lines of code and

function points. These metrics are have their own

problems and are heavily criticized by practitioners.

 It is not clear that how the weights associated with

different entities during complexity estimations will be

computed or assigned.

F. Kenneth Morris’s Complexity Metric

Kenneth Morris [14] proposed some object-oriented

metrics to assess complexity and productivity metrics.

Author‟s identified some complexity factors like

Maintainability, Reusability, Extensibility, Testability,

Comprehensibility, Reliability and Authorability, that they

called “productivity impact variables". Morris proposed a

complete set of nine eligible metrics for Methods, Class,

Inheritance, Coupling and Cohesion.

G. Other Profound Complexity Metrics

Boehm [7] developed the „object-point‟ metric through

level of complexity of the amount of screenshots, reports and

components. The level of complexities is categorized as

simple, medium or difficult.

Chidamber and Kemerer's [15] proposed a metric suite for

object-oriented software called as CK Metrics-suite. This

metric suite is one of the most detailed and popular research

works for object-oriented applications. Authors defined

metric suite for complexity, coupling cohesion, depth of

inheritance, and response set. These metric set are used to

asses the complexity of an individual class as well as the

complexity of the entire software system. In their metrics,

Chidamber and Kemerer used Cyclomatic method for the

complexity computation of

individual classes.

Actual Interactions for Component-Based Software using Straight and Circuitous Links

2500

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: K12940981119/2020©BEIESP

DOI: 10.35940/ijitee.K1294.019320

Abreu and Rogerio Carapuca [16]-[18] proposed a metric

set named „Metrics for Object-Oriented Design‟. In this

metric suite, two fundamental properties of object-oriented

programming are used, attributes and methods. Authors

proposed metrics for the basic structural system of

object-oriented idea as encapsulation, inheritance,

polymorphism, and message passing. This suit consists of

metrics for methods and attributes as assessment method for

encapsulation.

Narasimhan et al. [19] suggested couple of metrics to

assess the complexity of Component-Based Software. The

packing density metric maps the count of integrated

components, and the interaction density metric is used to

analyse the interactions among components. They identified

some constituents of the component in their work; these

constituents include line of code, operations, classes, and

modules. Authors also suggested a set of criticality criteria

for component integration and interaction.

Vitharana et al. [20] developed a method for fabrication of

components. Authors suggested some managerial factors like

cost-efficiency; assembling easiness, customization,

reusability, and maintainability. These are used to estimate

technical metrics as coupling-cohesion, count, volume and

complexity of components. They developed „Business

Strategy-based Component Design‟ model.

Rashmi Jain et al. [21] assess the association and mappings

of cause-and-effect among the requirements of the system,

structural design of the system and the complexity of the

procedure of the systems integration. They argued the

requirement of fast integration of components so that the

complexity impact of integration on architectural design of

components can be controlled. Authors identified 5 major

factors to analyse the integration complexity of software

system. Further these factors are divided into 18 sub-factors

including commonality in hardware and software subsystems,

percentage of familiar technology, physical modularity, level

of reliability, interface openness, orthogonality, testability

and so on.

Trevor Parsons et al. [22] proposed some specific dynamic

methods for attaining and utilising interactions among the

components in component-based development. They also

proposed component-level interactions that achieve and

record communications between components at runtime and

at design time. For their work, authors used Java components.

Lalit and Rajinder [23] proposed a set of integration and

interaction complexity metrics to analyse the complexity of

Component-Based Software. They argue that complexity of

interaction have two implicit features, first within the

component, and second interaction from the other

components. Their complexity metrics include percentage of

component interactions, interaction percentage metrics for

component integration, actual interactions, and total

interactions performed, complete interactions in a

Component-Based Software.

Some complexity assessment techniques for CBSE are on

the basis of complexity properties including communication

among components, pairing, structure, and interface [24]. The

interaction and integration complexity measures available in

the literature are explored considering the development

paradigms like: Convention Software and Programs,

Objet-Oriented Software, and Component-Based Software.

IV. PROPOSED INTERACTION COMPLEXITY

ASSESSMENT TECHNIQUE

In this paper we propose a complexity computation method

for component-based software based on inner and outer

interactions. This technique is helpful to identify the number

of actual interactions for those components whose source

code may or may not be available.

A. Terminologies Used

First we define terminologies which are used to define the

interaction metric.

Interaction-Graph: On the basis of communication among

modules/components we draw an Interaction-Graph. We

define an Interaction-Graph as a graph containing vertices and

edges, where vertices represent modules/components and

edges denote links among them, as shown in Fig. 1.

Interaction-Graph depicts the flow and information among

modules/components from source to destination.

Component

C1

Component

C2

Straight-Link Component

C3

Circuitous-Link from Component C1 to C3

Straight-Link

Fig. 1. Interaction-Graph for three components

Links: In this work we define two types of links for an

Interaction-graph: Straight-links or Circuitous-links. These

links decide the level or arity of interaction between two

modules or components.

i. Straight-Links: Straight-links are the edges that connect

two modules or components directly. Straight-link is

shown in Fig. 1. From Component C1 to C2 there is a

straight-link.

ii. Circuitous-Links: Circuitous-links are the edges that do

not connect two modules or components directly.

Circuitous-link includes two or more edges to connect

two modules or components. Circuitous-links are shown

in Fig. 1. From Component C1 to C3 there is a

circuitous-link.

Interactions: This method defines two types of

interactions:

i. Inner Interactions within a component (Cin): A

component is made up of different constructs like simple

statements, looping, branching and other similar

constructs. Inner interaction defines the number of

interactions made by the inner constructs of the

component. Inner interactions are intra-component

interactions. These

constructs may be

straight or circuitous

linked, as shown in Fig.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-9 Issue-3, January 2020

2501

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: K12940981119/2020©BEIESP

DOI: 10.35940/ijitee.K1294.019320

2.

ii. Outer Interactions among Components (Cout): Defines

the number of interactions shared by the two

components. Outer interactions are inter-component

interactions, as shown in Fig. 3.

M1

M4

M5

M3M2

Fig. 2. Interaction-Graph for inner interactions of a

component

M1

M4

M5

M3M2

M1

M4

M5

M1

M4

M6

M3

M2

M5

M7

C2

C1

C3

Fig. 3. Interaction-Graph of Example Case Study

exploring Outer Interactions of Components

 Straight-Circuitous-Link Matrix:

Straight-circuitous-link matrix is a row column matrix

containing total number of rows and columns as the number

of components in the interaction-graph, as shown in Table 1.

If there is a straight-link between two components then we

put „1‟ in the matrix. If the link is circuitous then the total

number of edges between these module/components will be

placed. These values are shown in Table 1.

i. Straight-Link value among modules/components:

There is a straight-link between C1 and C2,

therefore its corresponding value in the matrix is

„1‟.

ii. Circuitous-Link value among

modules/components: Component C1 and C3 are

linked circuitously. There is a straight-link

between component C1 and C2, so its value is „1‟.

Similarly components C2 and C3 are straight

linked; therefore its corresponding value is also

„1‟. Hence C1 to C3, there is a circuitous-link; its

value is 1+1=2.

Table 1 defines the Straight-circuitous-Links for the

individual component shown in Fig. 2. M1, M2, M3, M4, and

M5 represent modules and constructs of the component.

Table 1. Straight-Circuitous-Link Matrix for Component

shown in Fig. 2

Modules
M

1

M

2

M

3

M

4

M

5

Total

interactions

in which a

module is

involved

M1 1 1 1 2 3 8

M2 0 1 0 1 1 3

M3 0 0 1 1 2 4

M4 1 0 0 1 1 3

M5 0 0 0 0 1 1

 19

Table 2 shows the Straight-Circuitous-Link matrix for

example case study defined in Fig. 3. C1, C2, and C3

represent components involved in the case study. Each

component consists of internal constructs and has

inner-interactions.

Table 2. Straight-Circuitous-Link Matrix for Case Study

shown in Fig. 3

Components/

Modules
C1 C2 C3

Total interactions in

which a component is

involved

C1 1 1 1 3

C2 0 1 1 2

C3 0 0 1 1

 6

B. Calculation of Interactions

In this section we propose some computation metrics to

assess the interactions among modules/components.

Actual Interactions for Component-Based Software using Straight and Circuitous Links

2502

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: K12940981119/2020©BEIESP

DOI: 10.35940/ijitee.K1294.019320

Actual Interactions of Component (CTotal):

An actual interaction of component is defined as the

number of inner interactions made by a particular component.

We compute actual interaction as defined in Equation (1),

Actual Interactions of Component =

 (1)

Where „m‟ represents the number of modules in the

component, and Cin represents the total number of inner

interactions of the component.

From Table 1 we calculate the number of Inner-interactions

of Component = 17

Actual Interactions of Component-based software

(CBSTotal):

Actual Interactions of Component-based software is

defined as the number of inner-interactions made by the

particular component and the total number of

outer-interactions made by all the components in the CBS

application [25]. We assess actual interactions of CBS

application as defined in Equation (2),

Actual Interactions of CBS =

 (2)

Where, CBSTotal defines the actual interactions of

component-based software, „i‟ represents the number of

components in the CBS application, Cin and Cout defines total

inner and outer interactions of individual components

respectively.

Average Number of Interactions of Components in

Component-based software (CBSAvg):

Average number of interactions of made by components in

component-based software is defined as the ratio of Actual

Interactions of CBS and the total number of components

involved in the CBS application. We compute average

interactions of components in CBS as defined in Equation (3),

Average Interactions of CBS =

 (3)

Where, CBSAvg is the average interactions of

component-based software, „i‟ represents the number of

components in the CBS application, Cin and Cout defines total

inner and outer interactions of individual components

respectively.

C. Calculation of Interactions

To illustrate our proposed metrics we define an exemplar case

study containing three components, C1, C2, and C3. Each

component have inner interactions and outer interactions

containing straight-links as well as circuitous-links. Table 3

describes the Straight-Circuitous-Link Matrix for Component

C1 of case study defined in Fig. 3.

Table 3. Straight-Circuitous-Link Matrix for Component

C1

Modules
M

1

M

2

M

3

M

4

M

5

Total

interactions

in which a

module is

involved

M1 1 1 1 2 3 8

M2 0 1 0 1 2 4

M3 0 0 1 1 2 4

M4 1 0 0 1 1 3

M5 0 0 0 0 1 1

 20

Table 4 describes the Straight-Circuitous-Link Matrix for

Component C2 of case study defined in Fig. 3.

Table 4. Straight-Circuitous-Link Matrix for Component

C2

Modules
M

1

M

2

M

3

Total interactions in

which a module is

involved

M1 1 1 1 3

M2 1 1 1 3

M3 0 0 1 1

 7

Table 5 describes the Straight-Circuitous-Link Matrix for

Component C1 of case study defined in Fig. 3.

Actual interactions of Components:

From Table 3, 4, and 5 we compute the Inner-interactions

of each component of cases study defined in Fig. 3.

Inner-interactions of Component C1 = 20

Inner-interactions of Component C2= 7

 Inner-interactions of Component C3= 39

Actual interactions of Component-Based Software:

Therefore actual interactions made by the CBS application

defined in Fig. 3 is,

 = 20 + 7 + 39 + 6 = 72

Average number of interactions of components in

Component-Based Software:

Average Interactions of CBS =

= 72/3

= 2

Table 5. Straight-Circuitous-Link Matrix for Component

C3

M

1

M

2

M

3

M

4

M

5

M

6

M

7

Total

interactions

in which a

module is

involved

M

1
1 1 2 2 2 3 4 15

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-9 Issue-3, January 2020

2503

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: K12940981119/2020©BEIESP

DOI: 10.35940/ijitee.K1294.019320

M

2
0 1 1 1 1 2 3 9

M

3
0 0 1 0 0 1 2 4

M

4
0 0 0 1 0 1 2 4

M

5
0 0 0 0 1 1 2 4

M

6
0 0 0 0 0 1 1 2

M

7
0 0 0 0 0 0 1 1

 39

V. CONCLUSION

Methods and metrics proposed so far in the literature are

defined on the basis of interactions among instructions,

operations, procedures, and functions of individual and

standalone programs and codes. These metrics are

appropriate for small-sized codes. Some measures are also

defined for object-oriented software, but for CBSE

applications these methods are not inadequate. In the CBSE,

components have connections and communications with each

other to exchange services and functionalities. Interaction

edges are used to denote the connections among components.

In this work we define some simple metrics to assess the

interaction of component-based software. Metrics defined in

this work consider the individual interactions of components

as well as inter-component interactions. These metrics are

helpful to explore the non-functional attributes of components

and component-based software.

REFERENCES

1. B. W. Boehm, M. Pendo, A. Pyster, E. D. Stuckle, and R. D. William,

“An Environment for Improving Software Productivity,” IEEE

Computer. 1984.

2. Pressman Roger, Software Engineering A practitioners Approach. 6th

ed, TMH International edition, 2005.

3. Wake, and S. Henry, “A Model Based on Software Quality Factors

which Predict Maintainability”, in Proceedings of the Conference on

Software Maintenance. 1988, pp. 382-387.

4. R. Basili, and D. H. Hutchens, “An Empirical Study of a Syntactic

Complexity Family,” IEEE Trans. on Software Engineering. vol. 9, no.

6, 1983, pp. 664-672.

5. M. H. Halstead, Elements of Software Science. New York, Elsevier

North Holland, 1977.

6. Alan Albrecht, and J. E. Gaffney, “Software Function Source Line of

code and Development Effort Prediction: A Software Science

Validation,” IEEE Trans. on Software Engineering, SE-9. 1983, pp.

639-648.

7. B. Boehm, “Anchoring the Software Process,” IEEE Software. vol. 13,

no. 4, 1996, pp. 73-82.

8. M. M. Lehmam, and L. A. Belady, “Program Evolution - Processes of

Software Change,” 1985.

9. Usha Kumari, and S. Bhasin, “A composite complexity measure for

component-based systems,” ACM SIGSOFT Software Engineering

Notes. vol. 36, no. 6, 2011.

10. T. McCabe, “A complexity measure,” IEEE Trans. on Software

Engineering. vol. 2, no. 8, 1976, pp. 308–320.

11. S. Henry, and D. Kafura, “Software Structure Metrics Based on

Information Flow,” IEEE Trans. on Software Engineering. vol. 7, 1981,

pp. 510-518.

12. http://en.wikipedia.org/wiki/complexity.

13. E. S. Cho, M. S. Kim, and S. D. Kim, “Component Metrics to Measure

Component Quality, in Proceedings of the Eighth Asia-Pacific on

Software Engineering Conference (APSEC '01). IEEE Computer

Society, Washington, DC, USA, 2001, pp.419-426.

14. K. Morris, Metrics for Object Oriented Software Development. Masters

thesis, M.I.T., Sloan school of management, Cambridge, MA, (1989).

15. S. Chidamber, and C. Kemerer, “A Metrics Suite for Object -Oriented

Design,” IEEE Trans. on Software Engineering. vol. 20, no. 6, 1994,

pp. 476-493.

16. F. B. Abreu, and Rogerio Carapuca, “Object-Oriented Software

Engineering: Measuring and Controlling the Development Process,” in

Proceedings of the 4th International Conference on Software Quality.

McLean, VA, USA, 1994. pp. 3-5.

17. F. B. Abreu, “Design Metrics for Object-Oriented Software System,” in

Proceedings. Workshop on Quantitative Methods ECOOP. 1995, pp.

l-30.

18. F. B. Abreu, and W. Melo, “Evaluating the Impact of Object- Oriented

Design on Software Quality,” in Proceedings of the 3rd International

Software Metrics Symposium. Berlin, Germany, 1996.

19. V. L. Narasimhan, and B. Hendradjaya, “Theoretical Considerations for

Software Component Metrics,” Trans. on Engineering, Computing and

Technology, vol. 10, 2005, pp. 169-174.

20. Padmal Vitharana, Hemant Jain, and Fatemeh Mariam, “Strategy-Based

Design of Reusable Business Components,” IEEE Trans. on Systems,

Man, and Cybernetics—PART C: Applications and Reviews. vol. 34,

no. 4, 2004.

21. Rashmi Jain, Anithashree Chandrasekaran, George Elias, and Robert

Cloutier. “Exploring the Impact of Systems Architecture and Systems

Requirements on Systems Integration Complexity,” IEEE Systems

Journal, vol. 2, no. 2, 2008.

22. Trevor Parsons, Adrian Mos, Mircea Trofin, Thomas Gschwind, and

John Murphy, “Extracting Interactions in Component-Based Systems,”

IEEE Trans. on Software Engineering, vol. 34, no. 6, 2008.

23. Latika Kharb, and Rajender Singh, “Complexity Metrics for

Component-Oriented Software Systems,” ACM SIGSOFT Software

Engineering Notes, vol. 33, no. 2, 2008.

24. Umesh Tiwari and Santosh Kumar, “Cyclomatic complexity for

component based software,” ACM SIGSOFT Software Engineering

Notes. vol. 39, pp. 1-6, 2014.
25. Umesh Tiwari and Santosh Kumar “In-Out Interaction Complexity

Metrics for Component-Based Software,” ACM SIGSOFT Software
Engineering Notes. vol. 39, 2014.

AUTHORS PROFILE

Dr. Umesh Kumar Tiwari is working as an

Associate Professor in Department of Computer

Science and Engineering in Graphic Era Deemed

to be University, Dehradun. He had received his

Ph.D. in 2016. He has more than 12 years of

experience in teaching/research of UG and PG

level degree courses as a Lecturer/Assistant

Professor/ Associate Professor in various

academic/research organizations. He is supervisor

of 02 PhD and 5 M. tech students who are working on specific domains of

software engineering and network security. His research is on

multidisciplinary topics and he has published 17 journal papers in reputable

international and national journals, and 12 conference papers in reputed

international and national conferences. His research interests are Wireless

Communication Networks, Network Security, and Software Engineering

topics with improved modeling, interaction-integration complexities, testing

and reliability models.

http://en.wikipedia.org/wiki/complexity

Actual Interactions for Component-Based Software using Straight and Circuitous Links

2504

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: K12940981119/2020©BEIESP

DOI: 10.35940/ijitee.K1294.019320

Dr. Santosh Kumar had received his Ph.D. from

IIT Roorkee (India) in 2012, M. Tech. (CSE)

from Aligarh Muslim University, Aligarh

(India)in 2007 and B.E. (IT) from C.C.S.

University, Meerut (India) in 2003. He has more

than 13 years of experience in teaching/research

of UG (B. Tech.) and PG (M.Tech.) level courses

as a Lecturer/Assistant Professor/ Associate Professor in various academic

/research organizations. He has supervised 01 Ph.D. Thesis, 20 M.Tech.

Thesis, 18 B.Tech projects and presently mentoring 06 Ph.D students, 03

M.Tech students and 04 B.Tech. students. He has also completed a

consultancy project titled “MANET Architecture Design for Tactical

Radios” of DRDO, Dehradun in between 2009-2011.He is an active

reviewer board member in various national/International Journals and

Conferences. He has memberships of ACM (Senior Member), IEEE,

IAENG, ACEEE, ISOC (USA) and contributed more than 46 research

papers in National and International Journals/conferences in the field of

Wireless Communication Networks, Mobile Computing and Grid

Computing and software Engineering. Currently holding position of

Associate professor in the Graphic Era Deemed to be University, Dehradun

(India). His research interest includes Wireless Networks, MANET, WSN,

IoT, and Software Engineering.

