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Abstract 
 

Fuzzy identity-based cryptography introduces the threshold structure into identity-based 

cryptography, changes the receiver of a ciphertext from exact one to dynamic many, makes a 

cryptographic scheme more efficient and flexible. In this paper, we propose the first fuzzy 

identity-based signcryption scheme in lattice-based cryptography. Firstly, we give a fuzzy 

identity-based signcryption scheme that is indistinguishable against chosen plaintext attack 

under selective identity model. Then we apply Fujisaki-Okamoto method to obtain a fuzzy 

identity-based signcryption scheme that is indistinguishable against adaptive chosen 

ciphertext attack under selective identity model. Thirdly, we prove our scheme is existentially 

unforgeable against chosen message attack under selective identity model. As far as we know, 

our scheme is the first fuzzy identity-based signcryption scheme that is secure even in the 

quantum environment. 
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1. Introduction 

In public key cryptography, a user has a pair of public key and a private key, and this pair is 

bounded with the user by a trusted third party. For security consideration, the user and the 

matching public/private key should be updated frequently, and it is complicated to maintain 

public key infrastructure to support key authenticity. In order to solve this problem, Shamir 

introduced identity-based cryptography[1]. In identity-based cryptography, a user’s identity is 

viewed as his public key, and the associated private key is generated by a private key generator, 

and the relation between a user and his public/private key is natural. Identity-based 

cryptography doesn’t depend on the complex public key infrastructure, simplifies the user key 

management, and leads to more practical cryptosystems[2, 3]. 

However, one person must ascertain the receiver, in public key cryptography and 

identity-based cryptography, when he encrypts a message. The truth of the matter is that, the 

sender couldn’t ascertain the receiver in such situations as pay-TV systems and cloud storages, 

for the group of receivers is of a dynamic change. To adapt to this environment, we may 

introduce access control structure in encryption, and allow people, who are admitted by the 

access control structure, to decrypt the ciphertext. When the access control structure is specific 

to threshold structure, it is fuzzy identity-based cryptography. Fuzzy identity-based 

cryptography is an error-tolerant identity-based cryptography. In other words, a ciphertext or 

signature obtained via an identity id can be decrypted or verified via an identity id   if and 

only if the difference between id and id   is within a certain range, and the range is the 

threshold value. 

Fuzzy identity-based encryption(FIBE) was introduced by Sahai and Waters[4]. Sahai and 

Waters formalized the model of fuzzy identity-based encryption and provided two fuzzy 

identity-based encryption schemes which are secure against chosen plaintext attack under 

selective identity model. Subsequently, Baek et al. gave two more efficient fuzzy 

identity-based encryption schemes[5] using Pirretti et al.’s results[6], and Li et al. proposed a 

fuzzy identity-based encryption scheme with dynamic threshold[7]. 

When it comes to digital signature, Yang et al. firstly introduced the notion of fuzzy 

identity-based signature(FIBS)[8] and gave a specific construction based on Sahai and 

Waters’s fuzzy identity-based encryption schemes[4]. Afterward, Wang proposed a fuzzy 

identity-based signature scheme with shorter parameters and more efficient verification[9], 

and Wu also proposed a fuzzy identity-based signature scheme with the generalized selective 

identity security[10]. 

Aiming at further improvement in the practicability of cryptographic system, Zheng 

introduced the notion of signcryption to combine encryption and signature[11]. Signcryption 

is a cryptographic primitive that can perform the functions of public key encryption and digital 

signature in a logic step, so that it cuts down the cost of computation and communication 

without security compromise. To meet the needs of biometric identity, Zhang et al.[12] and Li 

et al. [13] introduced fuzziness property into signcryption respectively, and proposed fuzzy 

signcryption schemes. 

So far, all the literatures mentioned above are based on the traditional numerical 

assumptions, and Shor’s groundbreaking results[14] show that these schemes are not secure in 

the quantum era. Thus, it is a rewarding work to build quantum secure cryptographic schemes. 

Lattice-based cryptography is an outstanding representative of post-quantum cryptography, 

and there exist many public key encryption schemes[15, 16, 17] and digital signature 
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schemes[18, 19, 20] based on lattice theory. But as far as we know, there aren’t fuzzy 

identity-based signcryption schemes based on lattice assumptions. 

In this paper, we give the first fuzzy identity-based signcryption scheme based on lattice 

assumptions. According to the technique in [21], we take the signature associated with the 

message as an error vector, to disturb the lattice point associated with the message. As a result, 

we bind the encrypted message and the signature to realize confidentiality and authentication 

simultaneously. And we reduce the frequency of sampling errors compare with the generic 

sign-then-encrypt method. To accomplish ukeyExtract queries in the proof of existential 

unforgeability against chosen message attack under selective identity model, we introduce 

identity information to public key for encryption. In order to further decrease the length of the 

ciphertext, we make use of the technique of the lattice basis delegation in fixed dimension[16]. 

In addition, we apply the Fujisaki-Okamoto method[22] to increase our scheme’s security 

from indistinguishability against chosen plaintext attack under selective identity 

model(IND-sID-CPA) to indistinguishability against adaptive chosen ciphertext attack under 

selective identity model(IND-sID-CCA2). 

The following is the roadmap of our paper. Section 2 includes preliminaries that are 

necessary in our construction, Section 3 gives the formal definition of a fuzzy identity-based 

signcryption scheme. Section 4 introduces the security definitions of a fuzzy identity-based 

signcryption scheme. Section 5 gives our new scheme and its consistency analysis. Section 6 

gives the security analysis of our scheme. Section 7 provides its efficiency analysis and 

performance comparison with other related schemes. Finally, Section 8 is summary and 

conclusions. 

2. Preliminaries 

In this section, we give an overview of basic notions and results that are involved in our 

construction about lattice-based cryptography. We refer readers to [15, 16, 23] for more 

details.  

Definition 2.1 A lattice is a discrete addition subgroup in 
mR , and if it is generated by n  

linearly independent vectors 
1, , m

na a R , then matrix 1= [ | | ]nA a a  is a basis of the 

lattice, and the lattice can be denoted by ( )A .  

Definition 2.2 Two integer lattices, as well as a lattice shift, are often used in lattice-based 

cryptography, and we give their definitions as follows. For 
n m

qA Z  and 
n

quZ ,  

 ( ) = { | = (mod )}m n

q qA e s such that e A s q   Z Z  

 ( ) = { | = 0(mod )}                        m

q A e Ae q Z  

 ( ) = { | = (mod )}                        u m

q A e Ae u q Z   

Definition 2.3 For 
m  Z , 

mc R ,  R , let 

2

, 2
( ) = ( )c

x c
x exp 




 , 

, ,( ) = ( )c cx
x  


  , then 

,

, ,

,

( )
, ( ) =

( )
c

c

y
y y










 



cD  is a discrete Gaussian 

distribution over  , whose center is c  and parameter is  . When = 0c  or = 1 , we can 

omit them.  

Lemma 2.4 With integer 3q  , logm Cn q , where > 1C  is a fixed constant, algorithm 
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TrapGen outputs 
n m

qA Z  and 
m mT Z , which satisfy the following properties.  

1. The statistical distance between the distribution of A  and uniform distribution on 
n m

q

Z  is 

negligible.  

2. = 0(mod )AT q .  

3.  ( log )T O n q  and  ( log ) =T O n q L .  

Definition 2.5 Let = ( log )R L m  , 
m mD  is the distribution 

,
( )m

m
R

Z
D  and if 

m mR D , then R  is 
q Z invertible.  

Lemma 2.6 For 
n m

qA Z  with rank n , 
m mR D , a short basis AT  of ( )q A , and 

Gaussian parameter 
2 2

1 > ( )logL m m   , algorithm BasisDel outputs a basis BT  of 

( )q B  for 
1=B AR
, where 

3
22 ( )logBT L m m   .  

Lemma 2.7 Algorithm SampleRwithBasis ( )A  is important in security proof. Its input is a 

matrix A , which comes from 
n m

q

Z  uniformly and randomly. Its output are matrices R  and 

T , where R  follows the distribution 
m mD , T  is a short basis of 

1( )q AR  .  

Lemma 2.8 For 
n m

qB Z , a short basis BT  of ( )q B , 
n

quZ , and Gaussian parameter 

2 ( log )BT m   , algorithm SamplePre outputs some 
meZ  such that 2e m   

and = (mod )Be u q .  

Definition 2.9 For a size parameter 1n  , a modulus 2q  , and an appropriate normal 

distribution X  on qZ , ,sA X  is the distribution obtained by selecting a vector 
n

qaZ  

uniformly, sampling x : X , and outputting ( , ) n

q qa a s x   Z Z . 

An ( , , )q n Z X LWE problem instance is composed of access to an unspecified challenge 

oracle O , which is, either, a pseudo-random sampler 
sO  associated with some random secret 

n

qsZ , or, a random sampler uO .  

:sO  outputs such samples as ( , ) = ( , ) n

i i i i i q qa b a a s x   Z Z , where ia  follows uniform 

distribution on 
n

qZ , ix  follows distribution X .  

:uO  outputs such samples as ( , )i ia b  which follows uniform distribution on 
n

q qZ Z . 

Given an ( , , )q n Z X LWE problem instance, if there is an efficient algorithm to decide 

which oracle is accessed, then there is an efficient algorithm to approximate the SIVP and 

GapSVP problems in the worst case.  

Definition 2.10 The ( , , , )n m q   small integer solution problem , , ,n m qSIS   is that for 

n m

qA Z , and a real  , find a vector 
meZ  such that = 0(mod )Ae q  and 

2
0 < e  , 

where 
2
  is the Euclidean norm. 
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Given an 
, , ,n m qSIS   problem instance, if there is an efficient algorithm to find its small 

integer solution e , then there is an efficient algorithm to approximate the SIVP problem in the 

worst case.  

3. Formal definition of a fuzzy identity-based signcryption 

In this section, we give the formal definition of a fuzzy identity-based signcryption. 

A fuzzy identity-based signcryption scheme has five PPT algorithms as follows.   

•  Setup (1 , , )n d d  – On input system security parameter 1n
, two thresholds d  and d  , this 

algorithm outputs public parameter PP  and master secret key msk .  

•  uKeyExtract ( , )msk id  – On input master secret key msk , an identity id , this algorithm 

outputs the unsigncryption key iduk .  

•  sKeyExtract ( , )msk id  – On input master secret key msk , an identity id , this algorithm 

outputs the signature key idsk .  

•  Signcrypt ( , , )id e
s

M sk id  – On input a message M , an identity eid  for encryption, an 

identity sid  as well as its signature key id
s

sk , this algorithm outputs a ciphertext C .  

•  Unsigncrypt ( , , )id v
u

C uk id  – On input a ciphertext C , an identity vid  for verification, an 

identity uid  as well as its unsigncryption key id
u

uk , if | |u eid id d   and | |v sid id d  , 

this algorithm gets the message M , and verifies the validity of the message and its signature. 

If verification is successful, this algorithm returns the message M , otherwise returns  .  

These five algorithms must satisfy consistency property of a fuzzy identity-based 

signcryption, that is, if = ( , , )id e
s

C Signcrypt M sk id , and | |u eid id d  , | |v sid id d  , 

then we should have = ( , , )id v
u

M Unsigncrypt C uk id .  

4. Security notions 

The security of a fuzzy identity-based signcryption scheme includes two factors: message 

confidentiality and ciphertext unforgeability, which are illuminated in detail as follows. 

4.1 Message confidentiality 

With regard to the message confidentiality of a fuzzy identity-based signcryption scheme, we 

define two definitions of different security levels: indistinguishability against chosen plaintext 

attack under selective identity model(IND-sID-CPA), and indistinguishability against 

adaptive chosen ciphertext attack under selective identity model(IND-sID-CCA2). 

The following game between a challenger C  and an adversary A  describes the 

indistinguishability against adaptive chosen ciphertext attack under selective identity 

model(IND-sID-CCA2).   

•  Target – The adversary A  decides an identity 
*id  to be his attack target, and returns it to 

the challenger C .  

•  Setup – The challenger C  inputs secure parameter 1n
, two thresholds d  and d  , invokes  
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Setup (1 , , )n d d  algorithm to get public parameter PP  and master secret key msk . Public 

parameter PP  is sent to the adversary A  and master secret key msk  is kept secret.  

•  Phase 1 – In this phase, the adversary A  has the right to ask the following queries with a 

number of polynomial bounded, and the challenger C  must return reasonable answers.   

uKeyExtract ( )id  – The adversary A  asks for the unsigncryption key for an identity id  with 

*| |<id id d . The challenger C  invokes algorithm  uKeyExtract ( , )msk id  and returns its 

result to A .  

sKeyExtract ( )id  – The adversary A  asks for the signature key for an identity id . The 

challenger C  invokes algorithm  sKeyExtract ( , )msk id  and returns its result to A .  

Unsigncrypt ( , , )u vC id id  – The adversary A  provides a ciphertext C , an identity uid  for 

unsigncryption, and an identity vid  for verification. The challenger C  computes id
u

uk =  

uKeyExtract ( )uid , then invokes algorithm  Unsigncrypt ( , , )id v
u

C uk id  and returns its result 

to A .  

•  Challenge – When Phase 1 ends, the adversary A  selects two messages 
0M , 

1M  with 

same length, and an identity 
*

sid  for signature, sends all of them to the challenger C  for 

challenge ciphertext. C  selects a bit b  randomly, computes the signature key *id
s

sk = 

sKeyExtract
*( )sid  and returns 

*C = Signcrypt
*

*( , , )b id
s

M sk id  to A .  

•  Phase 2 – The adversary A  repeats what he did in Phase 1, with the exception that he 

couldn’t execute  Unsigncrypt query on 
*( , , )u vC id id  with 

*| |uid id d   and 

*| |v sid id d   .  

•  Guess – The adversary A  gives his guess b  for b  which the challenger C  used in 

Challenge phase. If =b b , we say the adversary A  wins the game.  

The advantage of adversary A  in this game is denoted as 
1

( ) =| [ = ] |
2

Adv Pr b b A .  

Definition 4.1  If all polynomially bounded adversaries have negligible advantages in the 

above game, then a fuzzy identity-based signcryption scheme is indistinguishable against 

adaptive chosen ciphertext attack under selective identity model. In other words, a fuzzy 

identity-based signcryption scheme is IND-sID-CCA2 secure.  

If the  Unsigncrypt query is forbidden in the above game, then the game and the associated 

definition 4.1 describe the indistinguishability against chosen plaintext attack under selective 

identity model(IND-sID-CPA).  

4.2  Ciphertext unforgeability 

With regard to the ciphertext unforgeability of a fuzzy identity-based signcryption scheme, we 

define the following game between a challenger C  and an adversary A  to describe the 

existential unforgeability against chosen message attack under selective identity 

model(EUF-sID-CMA).   

•  Target – The adversary A  decides an identity 
*id  to be his attack target, and returns it to 

the challenger C .  
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•  Setup – The challenger C  inputs secure parameter 1n
, two thresholds d  and d  , invokes  

Setup (1 , , )n d d  algorithm to get public parameter PP  and master secret key msk . Public 

parameter PP  is sent to the adversary A  and master secret key msk  is kept secret.  

•  Query – In this phase, the adversary A  has the right to ask the following queries with a 

number of polynomial bounded, and the challenger C  must return reasonable answers.  

uKeyExtract ( )id  – The adversary A  asks for the unsigncryption key for an identity id . The 

challenger C  invokes algorithm  uKeyExtract ( , )msk id  and returns its result to A .  

sKeyExtract ( )id  – The adversary A  asks for the signature key for an identity id , which 

satisfy 
*| |<id id d . The challenger C  invokes algorithm  sKeyExtract ( , )msk id  and 

returns its result to A .  

Signcrypt ( , , )s eM id id  – The adversary A  provides a message M , an identity sid  for 

signature, an identity eid  for encryption. The challenger C  computes id
s

sk = 

sKeyExtract ( )sid , then invokes algorithm  Signcrypt ( , , )id e
s

M sk id  and returns its result to 

A .  

•  Forge – The adversary A  replies to C  with a ciphertext 
*C  as well as an encryption 

identity 
*

eid . If adversary A ’s reply is valid, that is to say, there exist uid  and vid  which 

satisfy 
*| |u eid id d   and 

*| |vid id d   ,  Unsigncrypt
*( , , ) =id v

u
C uk id M   for 

id
u

uk = uKeyExtract ( )uid  and A  didn’t make  Signcrypt
* *( , , )eM id id  query, then we say 

the adversary A  wins the game.  

The advantage of adversary A  in this game is denoted by ( ) = [  ]Adv Pr winsA A .  

Definition 4.2 If all polynomially bounded adversaries have negligible advantages in the 

above game, then a fuzzy identity-based signcryption scheme is existentially unforgeable 

against chosen message attack under selective identity model. In other words, a fuzzy 

identity-based signcryption scheme is EUF-sID-CMA secure.  

5.  Our fuzzy identity-based signcryption scheme 

At first, we give an IND-sID-CPA secure fuzzy identity-based signcryption scheme – 

Construction 1, then we apply Fujisaki-Okamoto method to Construction 1 to obtain an 

IND-sID-CCA2 secure fuzzy identity-based signcryption scheme – Construction 2.  

5.1  Construction 1 

• Setup ( , , )n d d   On input security parameter 

1

=n l  , where l  is the length of an identity, 

(0,1)   is a constant, and two thresholds d  and d  ,  

1. For = ( )q poly n  and 
6 5 6 5[ 2 ,2 2 ]l lpq n n   , let 

1.5=m n , 

0 = ( log( )) ( log )O n pq m  , 
2

= ( log( )) ( )logO n pq m m  , 

3 5
2 2= ( log( )) ( )logO n pq m m  , = { : }m

n e e m  ZD . 
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2. For [ ], {0,1}i l b  , invoke algorithm TrapGen ( )n  to obtain 
, ,( , )i b i bA T , with the 

condition that 

(a) ,

n m

i b pqA Z  follows uniform distribution with overwhelming probability. 

(b)
,i bT  is a short basis of ,( )pq i bA  and , ( log( ))i bT O n pq . 

3. For message space = {0,1}kM , let [ ]t k , select 1= ( , , ) n

t t tn pqu u u Z  uniformly and 

randomly. 

4. Let 
m mD  be the Gaussian distribution 

,
0

( )m

m Z
D , 

*

1 2, :{0,1} m mH H D , and 

*

3 :{0,1} n

pH  Z  are three different hash functions. 

5. Output , [ ], {0,1} [ ] 1 2 3= ({ } ,{ } , , , )i b i l b t t kPP A u H H H    and , [ ], {0,1}= ({ } )i b i l bmsk T   . 

• uKeyExtract ( , )msk id  On input , [ ], {0,1}= ({ } )i b i l bmsk T    and an identity 

1= ( , , )lid id id , the unsigncryption key iduk  is obtained as follows. 

1. For [ ]t k , select a random polynomial vector 
n

tf R  of degree 1d   such that 

= [ ]pq xZR  and (0) =t tf u . Let = ( ) n
ti t pqu f i Z  for [ ]i l . By Shamir’s ( , )d l  threshold 

scheme, for [ ]I l  such that | |I d , = (mod )tit i I iu L u pq  , where iL  is the associated 

Lagrangian coefficient. 

2. For [ ]i l , let , 1= ( )i id i
i

R H id iP , invoke algorithm , , ,( , , , )i id i id i id
i i i

BasisDel A R T   to get 

a short basis , 'i id
i

T  for lattice 
,( )pq i id

i
B , where 

1

, , ,=i id i id i id
i i i

B A R
. 

3. For [ ], [ ]t k i l  , run , ,( , ', , )tii id i id
i i

SamplePre B T u    to get 
m

tie Z  satisfying 

, = tii id ti
i

B e u . 

4. Output the unsigncryption key for the identity id  as [ ], [ ]{ }ti t k i le   . 

• sKeyExtract ( , )msk id  On input , [ ], {0,1}= ({ } )i b i l bmsk T    and an identity 

1= ( , , )lid id id , the signature key idsk  is obtained as follows. 

1. For [ ]i l , let , 2= ( )id id i
i

R H id id i , invoke algorithm 

, , ,( , , , )i id id id i id
i i i

BasisDel A R T   to get a short basis , 'id id
i

T  for lattice ,( )pq id id
i

B , where 

1

, , ,=id id i id id id
i i i

B A R
. 

2. Output the signature key for the identity id  as , [ ]{ '}id id i l
i

T  . 

• Signcrypt ( , , )id e
s

M sk id  On input the message {0,1}kM  , the signature key 

, [ ]= { ' }id id id i l
s s si

sk T   for sid , and 
1= ( , , )e e elid id id  used for encryption, 

1. Let 
2= ( !)D l , 3= ( )u H M . 

2. Select a random polynomial vector 
nf A  of degree 1d    such that = [ ]p xZA  and 

(0) =f u . Let = ( ) n
j pu f j Z  for [ ]j l . By Shamir’s ( , )d l  threshold scheme, for 
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[ ]J l  such that | |J d  , = (mod )jj J ju L u p  , where 
jL  is the associated Lagrangian 

coefficient. 

3. For [ ]i l , compute , 2= ( )id id s si
s si

R H id id i , 
1

, , ,=id id i id id id
s si si s si

B A R
. 

4. For [ ]i l , sample , ,= ( , ' , , ) m
ii id id id id

s si s si
e SamplePre B T qu   Z . 

5. Select 
n

pqsZ  randomly, compute =c s qu . 

6. For [ ]t k , let 
0 =

2
t t t t

pq
c u s Dx M     , where 

,tx   ZD . 

7. For [ ]i l , let , 1= ( )i id ei
ei

R H id iP , 
1

, , ,=i id i id i id
ei ei ei

B A R
. 

8. For [ ]i l , let 
,=i i id i

ei
c B s De  . 

9. Output the ciphertext 0 [ ] [ ]= ( , , ,{ } ,{ } )e s t t k i i lC id id c c c  . 

• Unsigncrypt ( , , )id v
u

C uk id  On input the ciphertext 0 [ ] [ ]= ( , , ,{ } ,{ } )e s t t k i i lC id id c c c  , the 

unsigncryption key [ ], [ ]= { }id ti t k i l
u

uk e    for uid , and 
1= ( , , )v v vlid id id  used for 

verification, 

1. Let = u eI id id  denote the set of matching bits in uid  and eid , and = v sJ id id  

denote the set of matching bits in vid  and sid . If | |<I d  or | |<J d  , output   and reject. 

Otherwise, continue. 

2. For [ ]i l , let , 1= ( )i id ui
ui

R H id iP , 
1

, , ,=i id i id i id
ui ui ui

B A R
. By Shamir’s ( , )d l  threshold 

scheme, we have , = (mod )i I i i id ti t
ui

L B e u pq  for [ ]t k . 

3. For [ ]t k , compute 0= (mod )t t i ti ii I
r c L e c pq


 . Let [ , )

2 2
t

pq pq
r       Z . If 

| |<
4

t

pq
r , output = 0tM , otherwise output = 1tM . In this step, we retrieve the message 

M . 

4. Compute 
3= ( )s c qH M . 

5. For [ ]i l , compute , 1= ( )i id ei
ei

R H id iP , 
1

, , ,=i id i id i id
ei ei ei

B A R
, and 

1

,= ( )i i i id
ei

e D c B s  . 

6. For [ ]i l , compute , 2= ( )id id s si
s si

R H id id iP P , 
1

, , ,=id id i id id id
s si si s si

B A R
. 

7. Verify whether , 3= ( )j J j id id j
s sj

L B e qH M  and j ne D  for [ ]j l . If all conditions 

hold, accept M  as a valid message. Otherwise, output   and reject.  

5.2  Consistency of Construction 1 

Let = u eI id id  denote the set of matching bits in uid  and eid , = v sJ id id  denote the 

set of matching bits in vid  and sid , and | |I d , | |J d  . Then for = 1, ,t k ,  

0 = (mod )t t i ti ii I
r c L e c pq


   
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,    = ( )(mod )
2

t t t i ti i id ii I ei

pq
u s Dx M L e B s De pq  


        

,    = ( )(mod )
2

t t t i ti i id ii I ui

pq
u s Dx M L e B s De pq  


        

,    = ( ( ) ) ( )(mod )
2

t t i i id ti t i ti ii I i Iui

pq
M u s L B e s Dx DL e e pq  

 
         

    = ( ) ( )(mod )
2

t t t t i ti ii I

pq
M u s u s Dx DL e e pq  


        

    = ( )(mod )
2

t t i ti ii I

pq
M Dx DL e e pq


     

According to parameters setting in Setup of our scheme, 

2| | | | | |<
4

t i ti i t i I ti ii I

pq
Dx DL e e D x D e e 


    with overwhelming probability, then 

( )(mod )
2 2

t t i ti i ti I

pq pq
M Dx DL e e pq M


       . Therefore, if | |<

4
t

pq
r , then 

= 0tM ; otherwise = 1tM . And 
1= ( , , )kM M M . 

Then 
3= ( )s c qH M  and 

1

,= ( )i i i id
ei

e D c B s   for [ ]i l . Because of 

, ,= ( , ' , , )ii id id id id
s si s si

e SamplePre B T qu    and 3= ( ) = (mod )jj J ju H M L u p  , we have 

, 3= ( )j J j id id j
s sj

L B e qH M  and j ne D  for [ ]j l . 

As a result, as long as the ciphertext is got following our scheme religiously, a valid 

unsigncrypter can obtain the original message with overwhelming probability. 

5.3  IND-sID-CPA security of Construction 1 

Theorem 5.1  Assuming that the LWE problem is hard, Construction 1 is indistinguishable 

against chosen plaintext attack under selective identity model (IND-sID-CPA).  

Proof. We prove Theorem 5.1 by contradiction. Suppose that there exists a PPT adversary A  

who can attack the IND-sID-CPA security of Construction 1, we can construct a challenger C  

to solve an LWE problem instance, which is a contradiction with the hardness of the LWE 

problem. In other words, Construction 1 is IND-sID-CPA secure under the hardness of the 

LWE problem. 

To end this aim, the adversary A  and the challenger C  behave as follows. 

•  Target – The adversary A  decides an encryption identity 
*id  to be his attack target, and 

returns 
*id  to the challenger C . 

•  Instance – The challenger C  requests samples from the oracle O  to get 

( , ) n

t t pq pqw v  Z Z  for = 1, ,t k , and 
( ) ( ) ( ) ( )

1 1 2 2{( , ), ( , ), ,i i i iw v w v  

( ) ( )( , )} { }i i n m

m m pq pqw v  Z Z for [ ]i l . These samples follow LWE oracle 
sO  or uniform 

distribution oracle uO , which will be decided by challenger C  with the aid of A ’ attack 

ability to Construction 1. 

•  Setup – The public parameter PP  is given by challenger C  in the following manner. 
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1. Matrices 
( ) ( ) ( )

* 1 2,
' = {( ), ( ), , ( )}i i i

mi id
i

A w w w  for [ ]i l . 

2. Sample l  random matrices 
* *

1 , , l m mR R D , and let 
*

* *, ,
= ' ii id i id

i i

A A R  for [ ]i l . 

3. For [ ]i l , *,1i id
i

A


 is obtained by algorithm TrapGen , together with a short basis *,1i id
i

T


 

for 
*,1

( )pq i id
i

A


 . 

4. Vectors =t tu w  for [ ]t k . 

Then , [ ], {0,1} [ ]= ({ } ,{ } )i b i l b t t kPP A u    is returned to the adversary A . 

•  Phase 1 – In this phase, the adversary A  has the right to ask the following queries with a 

number of polynomial bounded, and the challenger C  must return reasonable answers.  

  1H  queries – The adversary A  asks for 
1( )H id  for an identity 

1= ( , , )lid id id , and 

the challenger C  answers as follows.  

For ( )iid iP , [ ]i l , 

1. If 
*=i iid id , let 

*

1( ) =i iH id i RP . 

2. If 
*

i iid id , sample ,i id m m
i

R  D  randomly, let 1 ,( ) =i i id
i

H id i RP . 

Then save 1 [ ]( , (( ), ( )) )i i i lid id i H id i P P  in list 
1H  and return 1 [ ](( ), ( ))i i i lid i H id i P P . 

  2H  queries – The adversary A  asks for 
2 ( )H id  for an identity 

1= ( , , )lid id id , and 

the challenger C  answers as follows.  

For ( )iid id iP P , [ ]i l , 

1. If 
*=i iid id , run algorithm SampleRwithBasis *,

( )
i id

i

A  to obtain a random ,id id m m
i

R  D  

and a short basis , 'id id
i

T  for lattice 
,( )pq id id

i
B , where 

1

, * ,,
=id id id idi idi ii

B A R
. 

Let 2 ,( ) =i id id
i

H id id i RP P . 

2. If 
*

i iid id , sample ,id id m m
i

R  D  randomly, let 2 ,( ) =i id id
i

H id id i RP P , invoke 

algorithm , , ,( , , , )i id id id i id
i i i

BasisDel A R T   to get a short basis , 'id id
i

T  for lattice 
,( )pq id id

i
B , 

where 
1

, , ,=id id i id id id
i i i

B A R
. 

Then save , , , [ ]( , (( ), , , ') )i id id id id id id i l
i i i

id id id i R B T P P  in list 2H  and return 

, [ ](( ), )i id id i l
i

id id i R P P . 

  uKeyExtract queries – The adversary A  asks for the unsigncryption key for an identity 

id  with 
*

0| |=| |= <id id I d d . The challenger C  does the following steps to reply.  

1. For simplicity, we assume that the first 0d  bits of id  and 
*id  are equal, then the challenger 

C  has trapdoors for the matrices associated with the set I , where 0| |=I l d .  

2. For [ ]t k , let the shares of tu  be 
2 1

1 2 1= d
ti t t t tdu u a i a i a i 

    , where 

1 1, ,t tda a 
 are vector variables with length n .  
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3. For [ ]i l , execute 1H ( )id  query to obtain , 1= ( )i id i
i

R H id iP , and let 
1

, , ,=i id i id i id
i i i

B A R
.  

4. For [ ]t k , 
0[ ]i d , select 

,ti me
 


Z
D , and let ,=ti i id ti

i
u B e .  

5. For [ ]t k , 0{ 1, , 1}i d d   , choose 01d d   shares 1 1
0

, ,td tdu u   randomly, 

then the values for 
1 1, ,t tda a 

 are fixed and all l  shares 1, ,t tlu u  are known.  

6. For [ ]t k , 
0{ 1, , }i d l  , since ,i id

i
T  is known, invoke algorithm 

, , ,( , , , )i id i id i id
i i i

BasisDel A R T   to get a short basis , 'i id
i

T  for lattice 
,( )pq i id

i
B , then invoke 

algorithm , ,( , ', , )tii id i id
i i

SamplePre B T u    to get 
m

tie Z  satisfying , = tii id ti
i

B e u .  

7. Return the unsigncryption key for the identity id  as 
[ ], [ ]{ }ti t k i le  

.  

  sKeyExtract queries – The adversary A  asks for the signature key for an identity id . 

The challenger C  executes 
2 ( )H id  query to obtain , , , [ ](( ), , , ')i id id id id id id i l

i i i
id id i R B T  , 

then returns , [ ]{ '}id id i l
i

T  .  

•  Challenge – When Phase 1 ends, the adversary A  selects two messages 
(0)M  and 

(1)M  

with same length, and a signature identity 
*

sid , sends all of them to the challenger C  for 

challenge ciphertext. C  selects {0,1}b  randomly, does the following steps. 

1. Let 
( )

0 =
2

b

t t t

pq
c Dv M    for [ ]t k . 

2. Let 
( ) ( ) ( )

1 2= ( , , , )i i i

i mc Dv Dv Dv  for [ ]i l . 

3. Select 
n

pqcZ  randomly. 

Then 
* *

0 [ ] [ ]( , , ,{ } ,{ } )s t t k i i lid id c c c   is returned.  

•  Phase 2 – The adversary A  repeats what he did in Phase 1.  

•  Guess – The adversary A  gives his guess b  for b  which the challenger C  used in 

Challenge phase. If =b b , C  decides the samples follow LWE oracle 
sO ; otherwise, C  

decides the samples follow uniform distribution oracle uO .  

5.4  Construction 2 

We apply Fujisaki-Okamoto method to Construction 1 to obtain an IND-sID-CCA2 secure 

fuzzy identity-based signcryption scheme – Construction 2, which is illustrated as follows. 

• Setup ( , , )n d d   On input security parameter 

1

=n l  , where l  is the length of an identity, 

(0,1)   is a constant, and two thresholds d  and d  ,  

1. For = ( )q poly n  and 
6 5 6 5[ 2 ,2 2 ]l lpq n n   , let 

1.5=m n , 

0 = ( log( )) ( log )O n pq m  , 
2

= ( log( )) ( )logO n pq m m  , 

3 5
2 2= ( log( )) ( )logO n pq m m  , = { : }m

n e e m  ZD . 

2. For [ ], {0,1}i l b  , invoke algorithm TrapGen ( )n  to obtain , ,( , )i b i bA T , with the 
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condition that 

(a) ,

n m

i b pqA Z  follows uniform distribution with overwhelming probability. 

(b)
,i bT  is a short basis of ,( )pq i bA  and , ( log( ))i bT O n pq . 

3. Let ( , )E D  be a one-time secure symmetric encryption scheme, whose message space is 

*' = {0,1}M , key space is ={0,1}kK . 

4. Let :{0,1} {0,1}k kG


  and 
* *:{0,1} {0,1}H   be hash functions. For [ ]t k , select 

1= ( , , ) n

t t tn pqu u u Z  uniformly and randomly. 

5. Let 
m mD  be the Gaussian distribution 

,
0

( )m

m Z
D , 

*

1 2, :{0,1} m mH H D  and 

*

3 :{0,1} n

pH  Z  are three different hash functions. 

6. Output , [ ], {0,1} [ ] 1 2 3= ({ } ,{ } , , , , , )i b i l b t t kPP A u G H H H H    and , [ ], {0,1}= ({ } )i b i l bmsk T   . 

• uKeyExtract ( , )msk id  This algorithm is same as the uKeyExtract algorithm in 

Construction 1. 

• sKeyExtract ( , )msk id  This algorithm is same as the sKeyExtract algorithm in 

Construction 1. 

• Signcrypt ( , , )id e
s

M sk id  On input the message 
*{0,1}M  , the signature key 

, [ ]= { ' }id id id i l
s s si

sk T   for sid , and 
1= ( , , )e e elid id id  used for encryption, 

1. Select random {0,1}k , let = ( ( ), )Mc G ME , = ( , )Mh H c . 

2. Let 
2= ( !)D l , 

3= ( , )u H M  . 

3. Using randomness h , execute Construction 1. Signcrypt. step 2 – step 5. 

4. For [ ]t k , let 
0 =

2
t t t t

pq
c u s Dx      , where ,tx   ZD . 

5. For [ ]i l , let , 1= ( )i id ei
ei

R H id iP , 
1

, , ,=i id i id i id
ei ei ei

B A R
. 

6. For [ ]i l , let 
,=i i id i

ei
c B s De  . 

7. Output the ciphertext 0 [ ] [ ]= ( , , , ,{ } ,{ } )e s M t t k i i lC id id c c c c  . 

• Unsigncrypt ( , , )id v
u

C uk id  On input the ciphertext 0 [ ] [ ]= ( , , , ,{ } ,{ } )e s M t t k i i lC id id c c c c  , 

the unsigncryption key [ ], [ ]= { }id ti t k i l
u

uk e    for uid , and 
1= ( , , )v v vlid id id  used for 

verification, 

1. Let = u eI id id  denote the set of matching bits in uid  and eid , and = v sJ id id  

denote the set of matching bits in vid  and sid . If | |<I d  or | |<J d  , output   and reject. 

Otherwise, continue. 

2. For [ ]i l , let , 1= ( )i id ui
ui

R H id iP , 
1

, , ,=i id i id i id
ui ui ui

B A R
. By Shamir’s ( , )d l  threshold 

scheme, we have , = (mod )i I i i id ti t
ui

L B e u pq  for [ ]t k . 

3. For [ ]t k , compute 0= (mod )t t i ti ii I
r c L e c pq


 . Let [ , )

2 2
t

pq pq
r       Z . If 
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| |<
4

t

pq
r , output = 0t , otherwise output = 1t . In this step, we retrieve  . 

4. Let = ( ( ), )MM G cD  and = ( , )Mh H c . 

5. Using randomness h , execute the above Signcrypt. step 3 – step 6 again. If 

0 [ ] [ ]( ,{ } ,{ } )t t k i i lc c c 
 obtained here is same as 

0 [ ] [ ]( ,{ } ,{ } )t t k i i lc c c 
 in the ciphertext, 

continue. Otherwise, reject and output  . 

6. Compute 
3= ( , )s c qH M  . 

7. For [ ]i l , compute , 1= ( )i id ei
ei

R H id iP , 
1

, , ,=i id i id i id
ei ei ei

B A R
, and 

1

,= ( )i i i id
ei

e D c B s  . 

8. For [ ]i l , compute , 2= ( )id id s si
s si

R H id id iP P , 
1

, , ,=id id i id id id
s si si s si

B A R
. 

9. Verify whether , 3= ( , )j J j id id j
s sj

L B e qH M   and j ne D  for [ ]j l . If all conditions 

hold, accept M  as a valid message. Otherwise, output   and reject.  

6. Security analysis of Construction 2 

6.1 Ciphertext indistinguishability of Construction 2 

Theorem 6.1 Assuming that the LWE problem is hard, Construction 2 is indistinguishable 

against chosen ciphertext attack under selective identity model (IND-sID-CCA2).  

Proof. We prove Theorem 6.1 by contradiction. Suppose that there exists a PPT adversary A  

who can attack the IND-sID-CCA2 security of Construction 2, we can construct a challenger 

C  to solve an LWE problem instance, which is a contradiction with the hardness of the LWE 

problem. In other words, Construction 2 is IND-sID-CCA2 secure under the hardness of the 

LWE problem. 

To end this aim, the adversary A  and the challenger C  behave as follows. 

•  Target – The adversary A  decides an encryption identity 
*id  to be his attack target, and 

returns 
*id  to the challenger C . 

•  Instance – The challenger C  requests samples from the oracle O  to get 

( , ) n

t t pq pqw v  Z Z  for = 1, ,t k , and 
( ) ( ) ( ) ( )

1 1 2 2{( , ), ( , ), ,i i i iw v w v  

( ) ( )( , )} { }i i n m

m m pq pqw v  Z Z for [ ]i l . These samples follow LWE oracle 
sO  or uniform 

distribution oracle uO , which will be decided by challenger C  with the aid of A ’ attack 

ability to Construction 2. 

•  Setup – The public parameter PP  is given by challenger C  in the following manner. 

1. Matrices 
( ) ( ) ( )

* 1 2,
' = {( ), ( ), , ( )}i i i

mi id
i

A w w w  for [ ]i l . 

2. Sample l  random matrices 
* *

1 , , l m mR R D , and let 
*

* *, ,
= ' ii id i id

i i

A A R  for [ ]i l . 

3. For [ ]i l , *,1i id
i

A


 is obtained by algorithm TrapGen , together with a short basis *,1i id
i

T


 

for 
*,1

( )pq i id
i

A


 . 

4. Vectors =t tu w  for [ ]t k . 
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Then 
, [ ], {0,1} [ ]= ({ } ,{ } )i b i l b t t kPP A u  

 is returned to the adversary A . 

•  Phase 1 – In this phase, the adversary A  has the right to ask the following queries with a 

number of polynomial bounded, and the challenger C  must return reasonable answers.  

  1H  queries – The adversary A  asks for 
1( )H id  for an identity 

1= ( , , )lid id id , and 

the challenger C  answers as follows.  

For ( )iid iP , [ ]i l , 

1. If 
*=i iid id , let 

*

1( ) =i iH id i RP . 

2. If 
*

i iid id , sample ,i id m m
i

R  D  randomly, let 1 ,( ) =i i id
i

H id i RP . 

Then save 1 [ ]( , (( ), ( )) )i i i lid id i H id i P P  in list 
1H  and return 1 [ ](( ), ( ))i i i lid i H id i P P . 

  2H  queries – The adversary A  asks for 
2 ( )H id  for an identity 

1= ( , , )lid id id , and 

the challenger C  answers as follows.  

For ( )iid id iP P , [ ]i l , 

1. If 
*=i iid id , run algorithm SampleRwithBasis *,

( )
i id

i

A  to obtain a random ,id id m m
i

R  D  

and a short basis , 'id id
i

T  for lattice 
,( )pq id id

i
B , where 

1

, * ,,
=id id id idi idi ii

B A R
. 

Let 2 ,( ) =i id id
i

H id id i RP P . 

2. If 
*

i iid id , sample ,id id m m
i

R  D  randomly, let 2 ,( ) =i id id
i

H id id i R , invoke 

algorithm , , ,( , , , )i id id id i id
i i i

BasisDel A R T   to get a short basis , 'id id
i

T  for lattice 
,( )pq id id

i
B , 

where 
1

, , ,=id id i id id id
i i i

B A R
. 

Then save , , , [ ]( , (( ), , , ') )i id id id id id id i l
i i i

id id id i R B T P P  in list 2H  and return 

, [ ](( ), )i id id i l
i

id id i R P P . 

  3H  queries – The adversary A  asks for 
3( , )H M   for some {0,1}M  and 

{0,1}k  , the challenger C  selects ,

n

M ph  Z  uniformly and randomly, saves 

,( , , )MM h   in list 3H  and returns 3 ,( , ) MH M h   . 

  G  queries – The adversary A  asks for ( )G   for some {0,1}k  , the challenger C  

selects 
'{0,1}kG  uniformly and randomly, saves ( , )G  in list G  and returns 

( )G G  . 

  H  queries –The adversary A  asks for ( , )MH c  for some {0,1}k  and {0,1}Mc  , 

the challenger C  selects , {0,1}
Mch

 uniformly and randomly, saves ,( , , )
MM cc h  in list 

H  and returns ,( , )
MM cH c h  . 

  uKeyExtract queries – The adversary A  asks for the unsigncryption key for an identity 

id  with 
*

0| |=| |= <id id I d d . The challenger C  does the following steps to reply.  

1. For simplicity, we assume that the first 0d  bits of id  and 
*id  are equal, then the challenger 
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C  has trapdoors for the matrices associated with the set I , where 
0| |=I l d .  

2. For [ ]t k , let the shares of tu  be 
2 1

1 2 1= d
ti t t t tdu u a i a i a i 

    , where 

1 1, ,t tda a 
 are vector variables with length n .  

3. For [ ]i l , execute 1H ( )id  query to obtain , 1= ( )i id i
i

R H id iP , and let 
1

, , ,=i id i id i id
i i i

B A R
.  

4. For [ ]t k , 
0[ ]i d , select 

,ti me
 


Z
D , and let ,=ti i id ti

i
u B e .  

5. For [ ]t k , 0{ 1, , 1}i d d   , choose 01d d   shares 1 1
0

, ,td tdu u   randomly, 

then the values for 
1 1, ,t tda a 

 are fixed and all l  shares 1, ,t tlu u  are known.  

6. For [ ]t k , 
0{ 1, , }i d l  , since ,i id

i
T  is known, invoke algorithm 

, , ,( , , , )i id i id i id
i i i

BasisDel A R T   to get a short basis , 'i id
i

T  for lattice 
,( )pq i id

i
B , then invoke 

algorithm , ,( , ', , )tii id i id
i i

SamplePre B T u    to get 
m

tie Z  satisfying , = tii id ti
i

B e u .  

7. Return the unsigncryption key for the identity id  as 
[ ], [ ]{ }ti t k i le  

.  

  sKeyExtract queries – The adversary A  asks for the signature key for an identity id . 

The challenger C  executes 
2 ( )H id  query to obtain , , , [ ](( ), , , ')i id id id id id id i l

i i i
id id i R B T P P , 

then returns , [ ]{ '}id id i l
i

T  .  

  Unsigncrypt queries – The adversary A  provides a ciphertext  

0 [ ] [ ]= ( , , , ,{ } ,{ } )e s M t t k i i lC id id c c c c  , an identity uid  for unsigncryption, and an identity 

vid  for verification. C  does the following steps to answer. 

1. If 
*| |<uid id d , compute id

u
uk =  uKeyExtract ( )uid , then invoke algorithm  

Unsigncrypt ( , , )id v
u

C uk id  and return its result to A .  

2. If 
*| |uid id d  , | |u eid id d  and | | 'v sid id d  , search lists 3H , G  and H  to 

look for tuples ,( , , )MM h  , ( , )G  and ,( , , )
MM cc h , such that 

(1) = ( , )Mc G ME ; (2) Let ,= Ms c qh  , and 
1

,= ( )i i i id
ei

e D c B s   for [ ]i l ; 

(3) , ,=j J j id id j M
s sj

L B e qh   and j ne D  for [ ]j l .  

If such tuples exist, return M . Otherwise, output   and reject.  

•  Challenge – When Phase 1 ends, the adversary A  selects two messages 
(0)M  and 

(1)M  

with same length, and a signature identity 
*

sid , sends all of them to the challenger C  for 

challenge ciphertext. C  selects {0,1}b  randomly, does the following steps. 

1. Select random {0,1}k , let = ( ( ), )M bc G ME . 

2. Let 
0 =

2
t t t

pq
c Dv     for [ ]t k . 

3. Let 
( ) ( ) ( )

1 2= ( , , , )i i i

i mc Dv Dv Dv  for [ ]i l . 

4. Select 
n

pqcZ  randomly. 
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Then 
* *

0 [ ] [ ]( , , , ,{ } ,{ } )s M t t k i i lid id c c c c   is returned.  

•  Phase 2 – The adversary A  repeats what he did in Phase 1, with the exception that he 

couldn’t execute  Unsigncrypt query on 0 [ ] [ ]( , , , ,{ } ,{ } )u v M t t k i i lid id c c c c   with 

*| |uid id d   and 
*| |v sid id d   .  

•  Guess – The adversary A  gives his guess b  for b  which the challenger C  used in 

Challenge phase. If =b b , C  decides the samples follow LWE oracle 
sO ; otherwise, C  

decides the samples follow uniform distribution oracle uO .  

6.2 Ciphertext unforgeability of Construction 2 

Theorem 6.2 Let 
3= ( !)l md     . If the ,2 , ,n ml qSIS   problem is hard to solve, then 

Construction 2 is existentially unforgeable against chosen message attack under selective 

identity model. In other words, Construction 2 is EUF-sID-CMA secure under the hardness of 

the ,2 , ,n ml qSIS   problem. 

Particularly, let A  be a PPT adversary attacking EUF-sID-CMA security of Construction 2, 

then there exists a challenger C  that can solve an ,2 , ,n ml qSIS   problem instance. 

Proof. Let 
1 1= l lA U X U XP P P P , , n m

i i qU X Z . The challenger C  will construct a 

non-zero short vector 
** 2mle Z , such that 

** = 0Ae  and 
**

2
e  . 

To end this aim, the adversary A  and the challenger C  behave as follows.   

•  Target – The adversary A  decides a signature identity 
*id  to be his attack target, and 

returns 
*id  to the challenger C .  

•  Setup – The challenger C  gives the public parameter PP  in the following manner. 

1. For [ ]i l , select ', ' n m

i i pU X Z  randomly. Use the Chinese remainder theorem to obtain 

' n m

i pqU Z  , ' n m

i pqX Z such that ' = (mod )i iU U q , 

' = (mod )i iU U p
 , ' = (mod )i iX X q , ' = (mod )i iX X p

 . 

2. For [ ]i l , Sample 
* *

,0 ,1,i i m mR R D , let 
* *

,0 ,0 ,1 ,1= ' , = 'i i i i i iA U R A X R  . 

3. For [ ]t k , select 1= ( , , ) n

t t tn pqu u u Z  uniformly and randomly. 

4. Return the public parameter , [ ], {0,1} [ ]= ({ } ,{ } )i b i l b t t kPP A u   .  

•  Query – In this phase, the adversary A  has the right to ask the following queries with a 

number of polynomial bounded, and the challenger C  must return reasonable answers.  

  1H  queries – The adversary A  asks for 
1( )H id  for an identity 

1= ( , , )lid id id , and 

the challenger C  answers as follows.  

1. For 
1= ( , , )lid id id , [ ]i l , run algorithm SampleRwithBasis ,( )i id

i
A  to obtain a random 

,i id m m
i

R  D  and a short basis , 'i id
i

T  for lattice ,( )pq i id
i

B , where 
1

, , ,=i id i id i id
i i i

B A R
. 

2. Save , , , [ ]( , (( ), , , ') )i i id i id i id i l
i i i

id id i R B T P  in list 
1H  and return 1 , [ ]( ( ) = )i i id i l

i
H id i R P . 

  2H  queries – When A  asks for 
2 ( )H id  for an identity 

1= ( , , )lid id id , the challenger 
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C  performs as follows. 

1. If 
*=id id , for [ ]i l , when = 0iid , let 

*

2 ,0( ) =i iH id id i RP P ; when =1iid , 

let
*

2 ,1( ) =i iH id id i RP P . Save 
1

2 , 2 [ ]( , ( ( ), ( ) , ) )i i id i i l
i

id H id id i A H id id i 

 P P P P in list 

2H , and return 
2 [ ]( ( ))i i lH id id i P P . 

2. If 
*id id , for [ ]i l , invoke algorithm SampleRwithBasis( ,i id

i
A ) to obtain ,id id

i
R  and a 

short basis , 'id id
i

T  for lattice 
,( )pq id id

i
B , where 

1

, , ,=id id i id id id
i i i

B A R
. Save 

, , , [ ]( , ( , , ') )id id id id id id i l
i i i

id R B T   in list 2H , and return 2 , [ ]( ( ) = )i id id i l
i

H id id i R P P .  

  uKeyExtract queries – The adversary A  asks for the unsigncryption key of an identity 

1= ( , , )lid id id , and the challenger C  answers as follows. 

1. For [ ]t k , select a random polynomial vector 
n

tf R  of degree 1d   such that 

= [ ]pq xZR  and (0) =t tf u . Let = ( ) n
ti t pqu f i Z  for [ ]i l . By Shamir’s ( , )d l  threshold 

scheme, for [ ]I l  such that | |I d , = (mod )tit i I iu L u pq  , where iL  is the associated 

Lagrangian coefficient. 

2. Look for list 
1H  to get , , , [ ]( , (( ), , , ') )i i id i id i id i l

i i i
id id i R B T  . If the tuple doesn’t exist, 

execute 
1( )H id  query firstly. 

3. For [ ], [ ]t k i l  , run , ,( , ', , )tii id i id
i i

SamplePre B T u    to get 
m

tie Z  satisfying 

, = tii id ti
i

B e u . 

4. Return [ ], [ ]= { }id ti t k i luk e   .  

  sKeyExtract queries – When A  asks for the signature key of an identity 

1= ( , , )lid id id , the challenger C  performs as follows. 

1. If 
*| |id id d  , return  . 

2. If 
*| |<id id d , look for list 2H  to obtain , , , [ ]( , ( , , ') )id id id id id id i l

i i i
id R B T  , return 

, [ ]( ')id id i l
i

T  . If id  doesn’t exist in list 2H , execute 
2 ( )H id  query firstly.  

  Signcrypt queries – When A  asks for the ciphertext associated with message M , the 

signature identity sid , and the encryption identity eid , the challenger C  performs as follows. 

1. Select random id   such that | |sid id d   , search list 2H  to obtain 

, , , [ ]( , ( , , ') )id id id id id id i l
i i i

id R B T     
 . If id   doesn’t exist in list 2H , execute 

2( )H id  query 

firstly. 

2. Execute Signcrypt , [ ]( , ( ') , )id id i l e
i

M T id 
 to obtain the ciphertext C  and return it.  

•  Forge – The adversary A  replies to the challenger C  with a valid ciphertext 
*C  as well as 

an encryption identity 
*

eid . Then C  does the following steps to get a non-zero short vector 

** 2mle Z , such that 
** = 0Ae  and 

**

2
e  . 
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1. Look for list 
1H  to get 

* *

* * * [ ], , ,
( , (( ), , , ') )e ei i li id i id i id

ei ei ei

id id i R B T 
. If the tuple doesn’t exist, 

execute 
*

1( )eH id  query firstly. 

2. Execute Unsigncrypt
* *

* [ ],
( , ( ') , )i li id

ei

C T id
 to obtain a signature

* * * * *

1( , , ( , , ), )lM e e id .  

3. 
*C  is a valid ciphertext, so 

* * * * *

1( , , ( , , ), )lM e e id  is valid, that is to say, for [ ]i l , 

*

i ne D , and there is a subset [ ]J l , | |=J d  , such that 

* 1 * * *

* * 3, ,
( ) = ( , )j J j jj id j id

j j

L A R e qH M 

   . 

4. Without loss of generality, suppose = {1,2, , }J d  . For [ ]i d  , if 
* = 1iid , 

** *

1= [0 ; ]i m ie e
; if 

* = 0iid , 
** *

1= [ ;0 ]i i me e 
. 

5. Output 
** ** **

1 1= [ ; ; ;0; ;0]d de D L e D L e    as a solution to the ,2 , ,n ml qSIS   problem. 

The analysis is as follows. 

1. 
* * * * *

1( , , ( , , ), )lM e e id  is a valid signature, so 
*

i ne D , and 

** **

1 1 1 1( ) [ ; ; ;0; ;0] = 0(mod )l l d dU X U X L e L e q P P P P , namely, 

** **

1 1[ ; ; ;0; ;0] = 0(mod )d dA D L e D L e q    . 

2. For [ ]i d  , 
**

ie m   , and 
3| | ( !)iD L l  , then 

** 3( !)e l md     . 

3. The range of 3H  follows uniform distribution, the probability of 
3( , ) = 0H M   is 

negligible, so that the probability of 
** = 0e  is also negligible. 

Consequently, 
**e  is a solution to the ,2 , ,n ml qSIS   problem. 

7.  Efficiency analysis of the Construction 2 

In this section, we analyze the efficiency of the Construction 2 and make a performance 

comparison among our construction and the other two primary lattice-based signcryption 

schemes[24,25]. The details are shown in Table 1. 

 
Table 1. Performance comparison 

 

Items 

Schemes 

Public key cryptosystem Identity-based cryptosystem 

[24] [25] ours 

(master) 

Public key sizes 
3 312 logn q  

2 26 logn q  
2.5 2(2 log ) log( )ln n q pq  

(master) 

Private key 

sizes 

2 272 log

log( log )

n q

n q


 

2 236 log

log( log )

n q

n q


 32 log( log( ))ln n pq  

Ciphertext 

increments 
2(6 log 1)logn n q q  

26 logn q n  
0.5(1 log ) log( )q ln n pq   

Signcryption 

cost 

SP+ logn q (SD+MV) 

-SD 
SP MV l (SP+MV)+ n log q SD
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Unsigncryption 

cost 
( log 2)n q  MV 2 MV 

l (SP+ (2 n log )q MV) 

+ n log q SD 

Confidentiality IND-CCA2 IND-CCA2 IND-sID-CCA2 

Confidentiality 

base 
LWE LWE LWE 

Unforgeability SUF-CMA SUF-CMA EUF-sID-CMA 

Unforgeability 

base 
SIS SIS SIS 

Model RO RO RO 

Identity 

fuzziness 
N N Y 

Note: public key size, private key size and ciphertext increments are denoted by number of bits; SP 

denotes SamplePre algorithm; SD denotes the algorithm of sampling from a discrete Gaussian 

distribution over lattice; MV denotes matrix vector multiplication; and RO denotes the scheme is 

proved in the random oracle model. 

 

   The data of the former two columns come from Ref. [26], and we analyze the data of the 

third column in details as follows.  

   The parameters ( )q poly n , 
1.5m n , and 

6 5 6 5[ 2 ,2 2 ]l lpq n n   , where l  is the length 

of an identity. As in Ref. [26], we assume the length of the message is logn q   , which is 

denoted k  in our scheme. 

For master public key , [ ], {0,1} [ ]({ } ,{ } )i b i l b t t kA u   , ,

n m

i b pqA Z , 
n

t pqu Z , so that the size is 

2.52 log( ) log log( )ln pq n q n pq  2.5 2(2 log ) log( )ln n q pq  . For master private key 

, [ ], {0,1}({ } )i b i l bT   , 
m mT Z and 

,  ( log( ))i bT O n pq , let 
,  log( )i bT n pq , then the size 

is 
1.5 22 ( ) log( log( ))l n n pq 32 log( log( ))ln n pq . For ciphertext increments, we assume the 

symmetric encryption scheme ( , )E D  has no ciphertext increments, then the ciphertext 

increments include  

0 [ ] [ ]( ,{ } ,{ } )t t k i i lc c c  , =c s qu
n

pqZ , 

0 =
2

t t t t

pq
c u s Dx      pqZ , 

,=i i id i
ei

c B s De 
m

pqZ ,  

then the total increments are 
1.5log( ) log log( ) log( )n pq n q pq ln pq   0.5log( ) (1 log )n pq q ln    . 

   For computation cost, we lose sight of the simple operations such as addition, single vector 

inner product, hash, symmetric encryption, etc., and merely think about the following three 

operations: matrix vector multiplication, MV; sampling from a discrete Gaussian distribution 

over lattice, SD; SamplePre algorithm, SP. Note there is operation of matrix reverse, we 

ignore it because it can be precomputed in our scheme.  

Specific to signcryption cost, it is l (SP+MV)+ n log q SD; specific to unsigncryption cost, it 

is l (SP+ (2 n log )q MV)+ n log q SD.   

    In conclusion, Ref. [24] and Ref. [25] belong to public key cryptosystems and our scheme 

belongs to identity-based cryptosystems, and due to our scheme’s fuzziness property, we deal 

with messages bit by bit, therefore our scheme isn’t as efficient as Refs. [24] and [25]. But our 

scheme has its own advantages as follows: it doesn’t base on public key infrastructure; it has 
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more flexible unsigncryption users structure; and comparing with signature-then-encrypt 

mode, it is more efficient. 

8.  Summary and conclusions 

In this paper, we propose the first fuzzy identity-based signcryption scheme based on lattice 

assumptions. At first, we give a fuzzy identity-based signcryption scheme that has 

indistinguishability against chosen plaintext attack under selective identity model. Then we 

apply Fujisaki-Okamoto method to get a fuzzy identity-based signcryption scheme that has 

indistinguishability against adaptive chosen ciphertext attack under selective identity model. 

At last, we prove our scheme is existentially unforgeable against chosen message attack under 

selective identity model. As we know it, our scheme is the first fuzzy identity-based 

signcryption scheme that is secure even facing a quantum computer. However, our scheme is 

proved under the random oracle model, and it is valuable to build a fuzzy identity-based 

signcryption scheme from lattices under the standard model. 
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