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Abstract—In the paper the new formulation of the Broyden
restricted convex class of updates involving oblique projections
is introduced. It is a sum of two terms: the first one containing
special oblique projection and the second standard term ensuring
verification of the quasi-Newton condition (it is also an oblique
projection multiplied by appropriate scalar). The applied oblique
projection involves vector defined as the convex, linear com-
bination of the difference between consecutive iterative points
and the image of the previous inverse hessian approximation
on the corresponding difference of derivatives, i.e. gradients.
Formula relating coefficient in the convex combination of vectors
in the oblique projection with its counterpart in the standard
representation of the Broyden convex class is presented.

Some preliminary numerical experiments results on two twice
continuously differentiable strictly convex functions with increas-
ing dimension are included.

I. INTRODUCTION

PROBLEM considered in the current paper is the uncon-

strained minimization of a sufficiently smooth function

min
x∈IRn

f(x) (1)

Solution method assumes that given starting point x0 every

consecutive approximate solution point is generated according

to the following iterative formula

xk+1 = xk + αkdk, ∀k ≥ 0 (2)

where αk > 0 is the stepsize coefficient found in the

directional minimization and the search direction dk is equal

to

dk = −Hkgk (3)

Matrix Hk+1 is calculated at each step with the aid of vectors:

sk = xk+1 −xk, rk = ∇f(xk+1)−∇f(xk) and the previous

matrix Hk.

Problems of unconstrained functions minimization arise first

of all as the result of the least squares approach to solve

sets of nonlinear equations (see for instance the problem

of determining stresses in RC ring sections with openings

in Lechman and Stachurski [11] and Stachurski and Lech-

man [20]) and identification of parameters appearing in the

model in a nonlinear way (as for instance in the augmented

Gurson model describing the creation and growth of voids in

the porous material considered in Nowak and Stachurski in

the sequence of publications [12]- [16]).

Broyden convex class of updates is usually expressed in the

following way (see for instance Sun and Yuan [25])

Hk+1 = Hk +

(

1 + Φ

(

rk
)T

Hkrk

(rk)
T
sk

)

sk
(

sk
)T

(rk)
T
sk

− (1− Φ)
Hkrk

(

rk
)T

Hk

(rk)
T
Hkrk

−Φ
sk
(

rk
)T

Hk +Hkrk
(

sk
)T

(rk)
T
sk

(4)

where Φ is a scalar belonging to the interval [0, 1].
In the consecutive section we shall show an alternate

updating formula of the form

Hk+1 = PTHkP+ β •Q

where P and Q are oblique projections, i.e. P sets to null

any vector collinear with rk and Q nullifies any vector

orthogonal to sk and PP = P and QQ = Q. Parameter β
is a positive scalar changing from one iteration to another.

Reader interested in the theory of oblique projections and their

properties may find more infromation for instance in Afriat [1]

or Szyld [24].

Section III contains some preliminary computational results

obtained with the aid of quasi-newton methods with updates

defined by the discussed formula with parameter Θ = 1, 0
and 1

2
. Testing examples are two strictly convex functions con-

structed in the way permitting easily increase their dimensions.

In the last section IV conclusions and comments following

from the numerical experiments and of general theoretical

character are presented.

II. OBLIQUE PROJECTIONS IN THE FORMULA OF THE

BROYDEN CLASS UPDATES

Broyden convex class may be equivalently represented by

the following updating formula

Hk+1 =
(

Pk
)T

HkPk +
sk
(

sk
)T

(rk)
T
sk

(5)

where Pk is the projection matrix defined as follows

Pk = I−
rk
[

Θsk + (1 −Θ)Hkrk
]T

(rk)
T
(Θsk + (1−Θ)Hkrk)

(6)
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and parameter Θ ∈ [0, 1]. Parameters Φ and Θ are mutually

connected by the following formula

Φ = Θ2

(

rTk sk
)2

(

rTk uk

)2
(7)

Formal prove showing that when equality (7) holds then

formulae (4) and (5) are equivalent will be presented in the

forthcoming paper.

A. Involved oblique projections

First, let’s show that Pk is the projection matrix transform-

ing vector rk to the null vector 0

Pkrk =

(

I−
rk
[

Θsk + (1−Θ)Hkrk
]T

(rk)
T
(Θsk + (1−Θ)Hkrk)

)

rk

= rk − rk

[

Θsk + (1−Θ)Hkrk
]T

rk

(rk)
T
(Θsk + (1−Θ)Hkrk)

= 0

(8)

Matrix Pk is an oblique projection (definition and properties

of such projections may be found for instance in Afriat [1] or

Szyld [24]), because

PkPk

=

(

I−
rk
[

Θsk + (1− Θ)Hkrk
]T

(rk)
T
(Θsk + (1−Θ)Hkrk)

)
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T
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(
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)T (

Θsk + (1−Θ)Hkrk
)
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T
(Θsk + (1 −Θ)Hkrk)

−
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(Θsk + (1−Θ)Hkrk)

= Pk

Second term in formula (5) is also an oblique projection

sk
(

sk
)T

‖sk‖2
(9)

multiplied by a scalar

β =
‖sk‖2

(rk)
T
sk

(10)

It is not difficult to show that formula (9) defines an oblique

projection.

B. BFGS update and oblique projections

Representation (5) has appeared for the first time in

Stachurski [22]. It was proposed there as a new quasi-newton

update. Later the author has realized that it’s a new represen-

tation of the famous convex class of Broyden proposed for the

first time in [3]. Such representation is known for many years

for the BFGS update (name derived from the family names

of its authors Broyden [3], Fletcher [8], Goldfarb [10] and

Shanno [17])

Hk+1

BFGS = Hk

+

(

1 +

(

rk
)T

Hkrk

(rk)
T
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)

sk
(
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(rk)
T
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−
sk
(

rk
)T

Hk +Hkrk
(

sk
)T

(rk)
T
sk

(11)

In the limitted memory BFGS method (see for instance

Xiao [26]) the following representation of the BFGS update

is frequently used

Hk+1 =
(

I−
rk
(

sk
)T

(sk)
T
rk

)T

Hk

(

I−
rk
(

sk
)T

(sk)
T
rk

)

+
sk
(

sk
)T

(rk)
T
sk

(12)

It is easy to notice that formula (12) is represented by

formulae (5) and (6) with Θ = 1.

C. DFP update and oblique projections

The second famous update – DFP (proposed originally

by Davidon [5] and [6] and further developed by Fletcher

and Powell [7])

Hk+1

DFP = Hk −
Hkrk

(

rk
)T

Hk

(rk)
T
Hkrk

+
sk
(

sk
)T

(rk)
T
sk

(13)

may be also expressed with the aid of oblique projections as

follows

Hk+1 =
(

I−
rk
(

Hkrk
)T

(Hkrk)
T
rk

)T

Hk

(

I−
rk
(

Hkrk
)T

(Hkrk)
T
rk

)

+
sk
(

sk
)T

(rk)
T
sk

(14)

It is easy to observe that formula (12) is represented by formu-

lae (5) and (6) with Θ = 0. It was shown in Stachurski [21].

III. NUMERICAL EXPERIMENTS

In the current section the results of numerical calculations

are presented. They are realized by means of three variants of

updates specified by formulae (5-6) with parameter Θ equal

to 1 (corresponding to the BFGS method), 0 (DFP method)

and 1

2
. Three variants of directional minimization were tested:

Armijo directyional minimization ensuring verification of the

Armijo condition (identical with the first Godstein test) (it is
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denoted below in the results table by A.), directional minimiza-

tion ensuring verification of the Wolfe conditions (denoted

below by W.), directional minimization ensuring verification

of both Goldstein conditions (denoted by G. respectively).

The first directionasl minimization was realized by setting

the starting value of the directional stepsize and its con-

secutive reduction by some constant coefficient belonging

to the interval (0, 1) until the first Goldstein condition is

met. In the second directional minimization Wolfe conditions

were used as the stopping criterion and in the third variant

two Goldstein tests served as the stopping criterion for the

directional minimization. In the second and third variant of

the directional minimization consecutive approximations of the

stepsize length were generated as the minimum point of the

parabola approximating function f̃(α) = f(xk + α ∗ dk).

A. Test functions

Two stricly convex, n-dimensional functions with increasing

dimension were used for testing. Dimensions were equal to

n = 2, 10, 50, 100, 500, 1000, 2000. The first was obtained by

raising up to the second power values of a strictly convex

quadratic function with positive values (its minimal value was

positive)

f1(x) =
1

2
[fqua(x)]

2
, (15)

where

fqua(x) =
1

2
(x− e)

T
Q (x− e) + 1.0 (16)

Vector eT = [1, 1, . . . , 1] in formula (16) consists of ones, sec-

ond derivative matrix Q was generated randomly (some extra

operations ensuring its positive definiteness were involved).

First, quadratic matrix Q̄ of size n×n is created by invoking

MATLAB function rand. Its elements are numbers belonging

to the interval [0, 1]. Next, lower triangular matrix L is created

on the basis of matrix Q̄. It has entries with 0 values on the

main diagonal and its entries below the main diagonal were

identical with that of Q̄ matrix, i.e.

Lij = Q̄ij , ∀i < j,
Lij = 0, ∀i ≥ j

Finally, matrix Q is defined in the consecutive step by the

formula

Q̃ =
1

2

[

L+ LT
]

to which the diagonal matrix D defined as

Dii =
n
∑

j=1

Q̃ij + 1, i = 1, . . . n

is added. The resulting matrix Q = Q̃ +D was a diagonally

dominated matrix with nonnegative entries. All entries outside

the main diagonal belong to the interval [0, 1]. Furthermore, it

was positive definite. The last property was checked numeri-

cally to verify correctness.

Vector e is the unique, local and global minimum of the

function (15) constructed in this way. Its optimal value is 1/2.

Described construction makes use of the random numbers

generator, however data defining the generated problem of a

given size together with the starting point were stored in the

MATLAB data file with extension .dat by means of the save

command. The file has been loaded to the operational memory

during the start of any method by means of the load command.

It ensures compatibility of the computational results for vari-

ous methods which were tested. For any assumed dimension

– 2, 10, 50, 100, 500, 1000, 2000 an independent problem

has been generated. In any case, the way of generating the

problem was identical with that described above. Similarly, the

starting points were the same for any method for the problem

of the given dimension. All calculations were run on the 32-bit

personal computer with processor Intel(R) Pentium(R) 4 CPU

3.20GHz, with RAM memory of 1GB capacity, working under

the Windows XP Professional operational system.

In the second example function f2 is generated similarly.

The only difference is that instead of taking the second power

of the quadratic function fqua we assume its natural logarithm,

i.e.

f2(x) = ln(fqua(x)) (17)

B. Results obtained by means of selected members of the

Broyden convex class

Three variants of Broyden methods belonging to the convex

class in version with oblique projections defined by (5) were

implemented. The selected three variants are: BFGS method

with Θ = 1, DFP method with Θ = 0 and the third version

with Θ = 1

2
. Every method was implemented with three above

mentioned directional minimizations: Armijo (A.), Wolfe (W.)

and Goldstein (G.). Hence we considered altogether nine

variants of methods. Every method variant has been run with

the same MATLAB m-function implementing the directional

minimization and on the same set of test problems with

increasing dimesion, generated as described above. Stopping

criterions were also the same - on the derivative norm and on

the minimized function value. Let’s notice that we know the

optimum goal function value. The results for goal function f1
are collected in table I and for the second goal function f2 in

table II.

Symbol (M) placed instead of the number of iterations

means stop due to overcrossing the maximal number of

iterations, set by the user. Symbol (P) denotes the user break

by pressing simultaneously combinations of keys CTRL-C and

(O) stopping the calculations due to the zero value in the

denominator in the updating formula (something theoretically

impossible in the exact arithmetic, but on the computer we

never carry out calculations in the exact arithmetic). Later

appropriate safeguards were introduced.

The obtained results prove the BFGS method superiority

over the DFP and the third variant with Θ = 1

2
. Furthermore,

they have shown that for problems of larger dimension the

Armijo directional minimization (i.e. decreasing the stepsize

from given starting value by a constant coefficient until the

first Goldstein test is met) is totally unuseful. The directional

minimization with the Wolfe stopping conditions proved to

be the best one. Number of iterations of the BFGS method
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TABLE I
NUMBER OF ITERATIONS OF BROYDEN CONVEX CLASS WITH DIFFERENT

DIRECTIONAL MINIMIZATION FOR FUNCTION f1

Dir. Problem size n =

min. 2 10 50 100 500 1000 2000

BFGS method (Θ = 1)

A. 5 (M) (M) (M) (M) (M) –

W. 4 27 70 185 533 1080 821

G. 4 47 139 314 809 1728 1762

DFP method (Θ = 0)

A. 5 (M) (M) (M) (M) (M) –

W. 4 29 76 313 5652 (M) 2986(O)

G. 4 68 249 (M) (M) (M) (P)

variant with Θ =
1

2

A. 5 (M) (M) (M) (M) (P) –

W. 4 29 69 190 597 1443 1106

G. 4 58 185 582 1331 3254 3819

TABLE II
NUMBER OF ITERATIONS OF BROYDEN CONVEX CLASS WITH DIFFERENT

DIRECTIONAL MINIMIZATION FOR FUNCTION f2

Dir. Problem size n =

min. 2 10 50 100 500 1000 2000

BFGS method (Θ = 1)

A. 23 51 314 627 2787 (M) (M)

W. 4 17 37 48 116 406 768

G. 4 25 38 52 524 428 1655

DFP method (Θ = 0)

A. 23 51 311 (M) (M) (M) –

W. 4 17 38 48 116 (M) (M)

G. 4 20 53 67 289 419 1086

variant with Θ =
1

2

A. 23 51 501 (M) (M) (M) –

W. 4 17 40 48 116 (M) (M)

G. 4 20 60 75 285 534 906

implemented with the directional minimization ensuring veri-

fication of the Wolfe conditions was substantially smaller than

in all other considered variants. The only exception were the

problems of smallest size equal to 2.

IV. CONCLUSIONS AND COMMENTS

Updates representation with oblique projections gives a

deeper look into the structure of the existing variable metric

updates. It offers new possibilities in convergence analysis

of quasi-newton methods for minimization. It would be then

possible to exploit the existing rich algebraic theory of oblique

projections. Furthermore it opens the possibility to exploit in

context of the limitted memory methods any member of the

Broyden convex class. We are not restricted to the BFGS as

it was up till now.
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