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Abstract

In this work, we revisit the fundamental and well-studied problem of approximate pattern
matching under edit distance. Given an integer k, a pattern P of length m, and a text T
of length n ≥ m, the task is to find substrings of T that are within edit distance k from P .
Our main result is a streaming algorithm that solves the problem in Õ(k5) space and Õ(k8)
amortised time per character of the text, providing answers correct with high probability.
(Hereafter, Õ(·) hides a poly(log n) factor.) This answers a decade-old question: since the
discovery of a poly(k log n)-space streaming algorithm for pattern matching under Hamming
distance by Porat and Porat [FOCS 2009], the existence of an analogous result for edit
distance remained open. Up to this work, no poly(k log n)-space algorithm was known even
in the simpler semi-streaming model, where T comes as a stream but P is available for read-
only access. In this model, we give a deterministic algorithm that achieves slightly better
complexity.

Our central technical contribution is a new space-efficient deterministic encoding of two
strings, called the greedy encoding, which encodes a set of all alignments of cost ≤ k with
a certain property (we call such alignments greedy). On strings of length at most n, the
encoding occupies Õ(k2) space. We use the encoding to compress substrings of the text that
are close to the pattern. In order to do so, we compute the encoding for substrings of the
text and of the pattern, which requires read-only access to the latter.

In order to develop the fully streaming algorithm, we further introduce a new edit dis-
tance sketch parametrised by integers n ≥ k. For any string of length at most n, the sketch
is of size Õ(k2) and it can be computed with an Õ(k2)-space streaming algorithm. Given
the sketches of two strings, in Õ(k3) time we can compute their edit distance or certify that
it is larger than k. This result improves upon Õ(k8)-size sketches of Belazzougui and Zhu
[FOCS 2016] and very recent Õ(k3)-size sketches of Jin, Nelson, and Wu [STACS 2021].

1 Introduction

In the pattern matching problem, given two strings, a pattern P of length m and a text T of
length n, one must find all substrings of the text equal to the pattern. This is a fundamental
problem of string processing with a myriad of applications in such fields as computational
biology, information retrieval, and signal processing, to mention just a few. However, in many
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Fellowship.
†Partly supported by the grant ANR-20-CE48-0001 from the French National Research Agency (ANR).
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applications, retrieving substrings that are exactly equal to the pattern is not enough, and one
must search for substrings merely similar to the pattern. This task, which is often referred
to as approximate pattern matching problem, can be formalised in the following way: for each
position i in the text, compute the smallest distance di between P and any substring of T
that ends at position i. In string processing, the two most popular distances are the Hamming
distance and the edit distance. Recall that the Hamming distance between two equal-length
strings is the number of mismatching pairs of characters of the strings. The edit distance of two
strings, not necessarily of equal lengths, is the smallest number of edits (character insertions,
deletions, and substitutions) needed to transform one string into the other. Due to its practical
importance, the approximate pattern matching problem has been extensively studied in the
literature, originally in the classic setting with input strings explicitly stored in memory.

In general, computing Hamming distance is easier and can be considered as a preliminary
step towards tackling edit distance. The first solution for approximate pattern matching under
the Hamming distance was given by Abrahamson [2] and, independently, Kosaraju [40]; based
on the fast Fourier transform, it spends O(n

√
m logm) time to compute the Hamming distance

between the pattern and all the length-m substrings of the text. Up to date, no algorithms
improve upon this time complexity for the general version of approximate pattern matching
under Hamming distance, but there are better solutions when one is interested only in the
distances not exceeding a given k, a variant known as the k-mismatch problem. The first
algorithm for the k-mismatch problem was given by Landau and Vishkin [42], who improved
the running time to O(kn) via so-called “kangaroo jumps”, a technique utilising the suffix
tree to compute the longest common prefix of two suffixes of a string in constant time. This
bound was further improved by Amir et al. [3] who showed two solutions, one with running
time O(n

√
k log k) and one with running time Õ(n + k3n/m)-time algorithm1. Continuing

this line of research, Clifford et al. [14] presented an Õ(n + k2n/m)-time algorithm, while
Gawrychowski and Uznański [31] demonstrated a smooth trade-off between the latter and the
solution of Amir et al. by designing an Õ(n + kn/

√
m)-time algorithm. Very recently, Chan

et al. [11] shaved off most of the polylogarithmic factors and achieved the running time of
O(n+ min(k2n/m, kn

√
logm/

√
m)) at the cost of Monte-Carlo randomization.

For the edit distance, a detailed survey of previous solutions can be found in [49], and here
we only discuss the landmark results of the theoretical landscape. For the general variant of
the problem, the first algorithm was given by Sellers [56]. The algorithm was based on dynamic
programming and used O(nm) time. Masek and Paterson [46] improved the running time of
the algorithm to O(nm/ log n) via the Four Russians technique. On the lower bound side, it is
known that there is no solution with strongly subquadratic time complexity unless the Strong
Exponential Time hypothesis [36] is false, even for the binary alphabet [5, 8]. Abboud et al. [1]
gave a more precise bound under a weaker assumption: Namely, they showed that even shaving
an arbitrarily large polylog factor would imply that NEXP does not have non-uniform NC1

circuits. Finally, Clifford et al. [15] showed that, in the cell-probe model with the word size
w = 1, any randomised algorithm that computes the edit distances between the pattern and

the text online must spend Ω(
√

logn
(log logn)3/2

) expected amortised time per character of the text.

Similarly to the Hamming distance, one can define the threshold variant of approximate
pattern matching, which we refer to as approximate pattern matching with k edits. The first
algorithm for this variant of the problem was developed by Landau and Vishkin [43]; this
by-now classical algorithm solves the problem in O(nk) time. The current best result was
achieved by a series of work [55, 17] with the running time (for some range of parameters)
O(n + k4n/m). Very recently, Charalampopoulos et al. [12] studied the problem for both

1Hereafter, Õ(·) hides a factor of poly(logn).
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distances in the grammar-compressed setting. Their result, in particular, implies an O(k4)-
space and O(nk4)-time algorithm for the read-only model, where random access to characters
in P and T is allowed and one accounts only for the “extra” space, the space required beyond
the space needed to store the pattern and the text.

In this work, we focus on developing algorithms for approximate pattern matching with k
edits that use as little space as possible. In particular, we consider the streaming model of
computation. In this model, we assume that the input arrives as a stream, one character at a
time. We define the space complexity of the algorithm to be all the space used, in other words,
we cannot store any information about the input without accounting for it.

The field of streaming algorithms for string processing is relatively recent but, because of
its practical interest, it has received a lot of attention in the literature. It started with a
seminal paper of Porat and Porat in FOCS 2009 [52], who showed streaming algorithms for
exact pattern matching and for the k-mismatches problem. The result of Porat and Porat was
followed by a series of works on streaming pattern matching [7, 13, 34, 14, 57, 33, 30, 16, 32, 53],
search of repetitions in streams [20, 18, 19, 28, 48, 47, 29], and recognising formal languages in
streams [45, 24, 25, 22, 23, 27, 4, 21, 26].

All known streaming algorithms for approximate pattern matching under the Hamming
distance [52, 14, 16] are based on some rolling hash — a hash on strings of fixed length that
can be efficiently updated when we delete the first character of a string and append a new one
to the end of the string, such as, for example, the famous Karp–Rabin fingerprint, which allows
computing the Hamming distance between two strings or certify that it exceeds k. The current
best algorithm was demonstrated by Clifford et al. in SODA 2019 [16]. The algorithm uses only
O(k log m

k ) space, which is optimal up to a logarithmic factor, and spends O(log m
k (
√
k log k +

log3m)) time per character. The algorithm is necessarily randomised and can err with high
probability2. In other words, approximate pattern matching under the Hamming distance in
the streaming model is essentially fully understood.

On the other hand, for the edit distance there are no small-space solutions, in particular,
because there are no rolling hashes that allow to compute the edit distance between strings.
When k is small, the state-of-the-art solution [57] uses O(k8√m log6m) space and O((k2√m+
k13) · log4m) worst-case time per symbol. Again, the algorithm is randomised and outputs all
substrings at edit distance at most k from the pattern with high probability. Another interesting
result is that of Chakraborty et al. [9], who developed an algorithm for the general version of
approximate pattern matching under edit distance in the model where the text is streaming,
but the pattern is read-only. They showed a randomised algorithm that, for every position i
of the text T , computes the smallest edit distance di between P and a suffix of T [1 . . i] with
constant multiplicative and m8/9-additive approximation (in other words, the algorithm returns
a number between di and c ·di+m8/9, where c ≥ 1 is a predetermined constant). The algorithm
receives the text online and uses O(m1−1/54) extra space, in addition to the space required to
store the pattern.

Naturally, a question arises: is the true complexity of streaming approximate pattern match-
ing under edit distance is on par with that of the Hamming distance? In this work, we answer
this question affirmatively.

1.1 Our results

The main result of our work is a fully streaming algorithm for approximate pattern matching
under the edit distance that uses Õ(k5) space and Õ(k8) amortized time per character of the text
(Theorem 7.6). The algorithm is randomised and its answers are correct with high probability.

2With high probability means with probability at least 1− 1/nc for any predefined constant c > 1.
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As a stepping stone, we also consider a simpler semi-streaming model introduced in [9]. In
this model, we assume that the text arrives in a stream, but the pattern is read-only, which
means that, at any moment, the algorithm can access any character of the pattern in constant
time (but re-writing characters is prohibited). The space complexity of the algorithm is defined
as the total space used on top of the read-only memory holding the pattern. In this setting, we
show a deterministic algorithm for approximate pattern matching under the edit distance that
uses Õ(k5) space and Õ(k6) amortized time per character of the text (Theorem 7.5).

Additionally, we design a new sketch for retrieving the exact edit distance (capped with a
threshold k) between strings of length at most n (Theorem 3.17). The sketch is of size Õ(k2),
and it can be built using a streaming algorithm that costs Õ(nk) total time and uses Õ(k2)
space. Given the sketches of two strings X,Y , in Õ(k3) time and Õ(k2) space, we can compute
the edit distance between X,Y or certify that it is larger than k. The answer is correct with
a large constant probability (with standard amplification, we then achieve high probability of
success). This improves upon the Õ(k8)-size sketches of Belazzougui and Zhang [6] and the
Õ(k3)-size sketches of Jin, Nelson, and Wu [37] developed independently.

The conceptual contribution of our work is described in the technical overview (Section 3).

2 Preliminaries

We assume an integer alphabet Σ = {1, 2, . . . , σ} with σ characters. A string Y is a sequence of
characters numbered from 1 to n = |Y |. By Y [i] we denote the i-th symbol of Y . For a string Y
of length n, we denote its reverse Y [n]Y [n− 1] . . . Y [1] by Y . We define Y [i . . j] to be equal to
Y [i] . . . Y [j] which we call a fragment of Y if i ≤ j and to the empty string ε otherwise. We also
use notations Y [i . . j) and Y (i . . j] which naturally stand for Y [i] . . . Y [j−1] and Y [i+1] . . . Y [j],
respectively. We call a fragment Y [1] . . . Y [j] a prefix of Y and use a simplified notation Y [. . i],
and a fragment Y [i] . . . Y [n] a suffix of Y denoted by Y [i . .]. We say that X is a substring of Y
if X = Y [i . . j] for some 1 ≤ i ≤ j ≤ |Y |. The fragment Y [i . . j] is called an occurrence of X.

For a string Y , we define Y m to be the concatenation of m copies of Y . We also define
Y∞ to be an infinite string obtained by concatenating infinitely many of copies of Y . We say
that a string X of length x is a period of a string T if X = T [1 . . x] and T [i] = T [i + x]
for all i = 1, . . . , |T | − x. By per(T ) we denote the length of the shortest period of T . The
string T is called periodic if 2 per(T ) ≤ |T |. For a string Y ∈ Σn, we define a forward rotation
rot(Y ) = Y [2] · · ·Y [n]Y [1]. In general, a cyclic rotation rots(Y ) with shift s ∈ Z is obtained
by iterating rot or the inverse operation rot−1. A non-empty string X ∈ Σn is primitive if it is
distinct from its non-trivial rotations, i.e., if X = rots(X) holds only when s is a multiple of n.

We say that a fragment X[i . . i+ `) is a previous factor if X[i . . i+ `) = X[i′ . . i′ + `) holds
for some i′ ∈ [1 . . i). The LZ77 factorization of X is a factorization X = F1 · · ·Fz into non-
empty phrases such tht the jth phrase Fj is the longest previous factor starting at position
1 + |F1 · · ·Fj−1|; if no previous factor starts there, then Fj consists of a single character. In the
underlying LZ77 representation, every phrase Fj = T [j . . j + `) that is a previous fragment is
encoded as (i′, `), where i′ ∈ [1 . . i) satisfies X[i . . i+ `) = X[i′ . . i′+ `). The remaining length-1
phrases are represented by the underlying character. We use LZ(X) to denote the underlying
LZ77 representation and |LZ(X)| to denote its size (the number of phrases).

2.1 Edit Distance Alignments

The edit distance ed(X,Y ) between two strings X and Y is defined as the smallest number of
character insertions, deletions, and substitutions required to transform X to Y . The Hamming
distance hd(X,Y ) allows substitutions only (and we assume hd(X,Y ) =∞ if |X| 6= |Y |).
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Definition 2.1. A sequence (xt, yt)
m
t=1 is an alignment of X,Y ∈ Σ∗ if (x1, y1) = (1, 1),

(xm, ym) = (|X| + 1, |Y | + 1), and (xt+1, yt+1) ∈ {(xt + 1, yt + 1), (xt + 1, yt), (xt, yt + 1)} for
t ∈ [1 . .m).3

Given an alignment A = (xt, yt)
m
t=1 of strings X,Y ∈ Σ∗, for every t ∈ [1 . .m):

• If (xt+1, yt+1) = (xt + 1, yt), we say that A deletes X[xt],
• If (xt+1, yt+1) = (xt, yt + 1), we say that A deletes Y [yt],
• If (xt+1, yt+1) = (xt + 1, yt + 1), we say that A aligns X[xt] and Y [yt], denoted X[xt] ∼A
Y [yt]. If additionally X[xt] = Y [yt], we say that A matches X[xt] and Y [yt], denoted
X[xt] 'A Y [yt]. Otherwise, we say that A substitutes X[xt] for Y [yt].

The cost of an edit distance alignment A is the total number characters that A deletes
or substitutes. We denote the cost by costX,Y (A), omitting the subscript if X,Y are clear
from context. The cost of an alignment A = (xt, yt)

m
t=1 is at least its width width(A) =

maxmt=1 |xt− yt|. Observe that ed(X,Y ) can be defined as the minimum cost of an alignment of
X and Y . An alignment of X and Y is optimal if its cost is equal to ed(X,Y ).

Given an alignment A = (xt, yt)
m
t=1 of X,Y ∈ Σ+, we partition the elements (xt, yt) of A into

matches (for which X[xt] 'A Y [yt]) and breakpoints (the remaining elements). We denote the
set of matches and breakpoints byMX,Y (A) and BX,Y (A), respectively, omitting the subscripts
if the strings X,Y are clear from context. Observe that |BX,Y (A)| = 1 + cost(A).

We call M ⊆ [1 . . |X|]× [1 . . |Y |] a non-crossing matching of X,Y ∈ Σ∗ if X[x] = Y [y] holds
for all (x, y) ∈ M and there are no distinct pairs (x, y), (x′, y′) ∈ M with x ≤ x′ and y ≥ y′.
Note that, for every alignment A of X,Y , the set M(A) is a non-crossing matching of X,Y .

Example 2.2. Consider strings X = abbaabcb and Y = acabaabab and a cost-4 alignment

A : (1, 1), (2, 2), (3, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 8), (8, 9), (9, 10).

X: a
1

b
2

b
3

a
4

a
5

b
6

c
7

b
8

Y : a
1

c
2

a
3

b
4

a
5

a
6

b
7

a
8

b
9

The breakpoints are B(A) = {(2, 2), (3, 3), (7, 8), (8, 8), (9, 10)};
the first 4 breakpoints correspond to a substitution of X[2] for
Y [2], a deletion of Y [3], a deletion of X[7], and a deletion of
Y [8], respectively. Graphically, the alignment is depicted on
the right; the aligned pairs of characters are connected with
an edge, and the substituted pair is highlighted.

Given an alignment A = (xt, yt)
m
t=1 of X and Y , for every `, r ∈ [1 . .m] with ` ≤ r, we

say that A aligns X[x` . . xr) and Y [y` . . yr), denoted X[x` . . xr) ∼A Y [y` . . yr). If there is no
breakpoint (xt, yt) with t ∈ [` . . r), we further say that A matches X[x` . . xr) and Y [y` . . yr),
denoted X[x` . . xr) 'A Y [y` . . yr).

An alignment A = (xt, yt)
m
t=1 of X,Y ∈ Σ∗ naturally induces a unique alignment of any two

fragments X[x . . x′) and Y [y . . y′). Formally, the induced alignment A[x. .x′),[y. .y′) is obtained by
removing repeated entries from (max(x,min(x′, xt))− x+ 1,max(y,min(y′, yt))− y + 1)mt=1.

Fact 2.3. If an alignment A satisfies X[x . . x′) ∼A Y [y . . y′), then |x− x′|, |y − y′| ≤ width(A)
and |(x′ − x)− (y′ − y)| ≤ ed(X[x . . x′), Y [y . . y′)) ≤ cost(A[x. .x′),[y. .y′)) ≤ cost(A).

3 Technical Overview

In this section, we provide an overview of our conceptual and technical contribution. Let us
start with a formal statement of the pattern matching with k edits problem. We say that

3This definition is rather complex, but it is equivalent to the standard definition given in the textbooks. We
chose this particular formulation as it allowed us to introduce notions essential for this work in a rigorous way.
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T [` . . r] is a k-edit occurrence of P if ed(P, T [` . . r]) ≤ k, and we denote the set of the right
endpoints of the k-edit occurrences of P in T by OCCEk (P, T ).

Problem 3.1 (Pattern matching with k edits). Given a pattern P of length m over an alphabet
Σ, a text T of length n over Σ, and an integer k, compute OCCEk (P, T ).

We solve an online version of the problem, where the text arrives in a stream (character by
character) and the algorithm must decide whether r ∈ OCCEk (P, T ) while processing T [r]. The
pattern is preprocessed in advance (consistently with [52], in the current version of this paper
we do not account for this preprocessing in the complexity analysis). We consider two settings:

1. In the streaming setting, the algorithm can no longer access P or T [1 . . r) while process-
ing T [r]. In other words, all the information regarding these strings needs to be stored
explicitly and accounted for in the space complexity of the algorithm.

2. In the semi-streaming setting, the algorithm can no longer access T [1 . . r) while process-
ing T [r], but it is given an oracle providing read-only constant-time access to individual
characters of P . This oracle is not counted towards the space complexity of the algorithm.

For the semi-streaming setting, we provide a deterministic solution, whereas our solution for
the streaming setting is Monte-Carlo randomized. Both algorithms are designed for the w-bit
word RAM model, where w = Ω(log n), and integer alphabets Σ = [0 . . nO(1)).

3.1 (Semi-)Streaming Algorithm for Pattern Matching with k Edits

Our algorithms solve a slightly stronger problem: every element r ∈ OCCEk (P, T ) is augmented
with the smallest integer k′ ∈ [0 . . k] such that r ∈ OCCEk′(P, T ). At a very high-level, we reuse
the structure of existing streaming algorithms for exact pattern matching and the k-mismatch
problem [52, 7, 14, 16]. Namely, we consider O(logm) prefixes Pi = P [1 . . `i] of exponentially
increasing lengths `i. The algorithms are logically decomposed into O(logm) levels, with the
ith level receiving OCCEk (Pi−1, T ) and producing OCCEk (Pi, T ). In other words, the task of the
ith level is determine which k-edit occurrences of Pi−1 can be extended to k-edit occurrences
of Pi. When the algorithm processes T [r], the relevant positions p ∈ OCCEk (Pi−1, T ) are those
satisfying |r−p−(`i−`i−1)| ≤ k. Since each p ∈ OCCEk (Pi−1, T ) is reported when the algorithm
processes T [p], we need a buffer storing the active k-edit occurrences of Pi−1. We implement it
using a recent combinatorial characterization of k-edit occurrences [12], which classifies strings
based on the following notion of approximate periodicity:

Definition 3.2 (k-periodic string). A string X is k-periodic if there exists a primitive string
Q with |Q| ≤ |X|/128k such that the edit distance between X and a prefix of Q∞ is at most 2k.
We call Q a k-period of X.

The main message of [12] is that only k-periodic strings may have many k-edit occurrences.

Corollary 3.3 (of [12, Theorem 5.1]). Let X ∈ Σm, k ∈ [1 . .m], and Y ∈ Σn with n ≤ 2m. If
X is not k-periodic, then |OCCEk (X,Y )| = O(k2).

In particular, if Pi−1 is not k-periodic, then it has O(k2) active k-edit occurrences. For
each active occurrence p ∈ OCCEk (Pi−1, T ), we maintain an edit-distance sketch skEk (T (p . . r])
and combine it with a sketch skEk (P (`i−1 . . `i]) (constructed at preprocessing) in order to derive
ed(T (p . . r], P (`i−1 . . `i]) or certify that this distance exceeds k. Since we have stored the smallest
k′ ∈ [0 . . k] such that p ∈ OCCEk′(P, T ), this lets us check whether any k-edit occurrence of Pi−1

ending at position p extends to a k-edit occurrence of Pi ending at position r. With existing
k-edit sketches [6, 37], this already yields an poly(k log n)-space implementation in this case.

The difficulty lies in k-periodic strings whose occurrences form chains.

6



Definition 3.4 (Chain of occurrences). Consider strings X,Y ∈ Σ∗ and an integer k ∈ Z≥0.
An increasing sequence of positions p1, . . . , pc forms a chain of k-edit occurrences of X in Y if:

1. there is a difference string D ∈ Σ∗ such that D = Y (pj . . pj+1] for j ∈ [1 . . c), and
2. there is an integer k′ ∈ [0 . . k] such that pj ∈ OCCEk′(X,Y )\OCCEk′−1(X,Y ) for j ∈ [1 . . c].

Corollary 3.5 (of [12, Theorem 5.2, Claim 5.16, Claim 5.17]). Let X ∈ Σm, k ∈ [1 . .m], and
Y ∈ Σn with n ≤ 2m. If X is k-periodic with period Q, then OCCEk (X,Y ) can be decomposed
into O(k3) chains whose differences are of the form rots(Q) with |m− s| ≤ 10k.

In the following discussion, assume that Pi−1 is k-periodic with period Qi−1. Compared
to the previous algorithm, we cannot afford maintaining a sketch skEk (T (p . . r]) for all active
p ∈ OCCEk (P, T ). If skEk were a rolling sketch (like the k-mismatch sketches of [16]), we would
compute skEk (D) at preprocessing time for all O(k) feasible chain differences D and then, for
any two subsequent positions pj , pj+1 in a chain with difference D, we could use skEk (D) =
skEk (T (pj . . pj+1]) to transform skEk (T (pj . . r]) into skEk (T (pj+1 . . r]). However, despite extensive
research, no rolling edit distance sketch is known, which remains the main obstacle in designing
streaming algorithms for approximate pattern matching with k edits.

Our workaround relies on a novel encoding qGR(X,Y ) that, for a pair of strings X,Y ∈ Σ∗,
represents a large class of low-distance edit distance alignments between X,Y . In the prepro-
cessing phase of our algorithm, we build qGR(P (`i−1 . . `i], D

∞[1 . . `i − `i−1]) for every feasible
chain difference D. In the main phase, for subsequent positions pj ∈ OCCEk (Pi−1, T ) in a chain
with difference D, we aim to build qGR(T (pj . . r], D

∞[1 . . `i−`i−1]) when necessary, i.e., |r−pj−
(`i − `i−1)| ≤ k. We then combine the two encodings to derive qGR(P (`i−1 . . `i], T (pj . . r]) and
ed(P (`i−1 . . `i], T (pj . . r]). Except for such products (transitive compositions), our encoding sup-
ports concatenations, i.e., qGR(X1, Y1) and qGR(X2, Y2) can be combined into qGR(X1X2, Y1Y2).
Consequently, it suffices to maintain qGR(T (pc . . r], D

∞[1 . . r−pc−k]) (where pc is the rightmost
element of the chain). When necessary, we prepend (j−c) copies of qGR(D,D) (merged by dou-
bling) and append qGR(ε,D∞(r−pj−k . . `i−`i−1]) to derive qGR(P (`i−1 . . `i], D

∞[1 . . `i−`i−1]).
In the semi-streaming setting, we extend qGR(T (pc . . r], D

∞[1 . . r − pc − k]) one character
at a time using read-only random access to D∞. In the streaming setting, we cannot afford
storing D, so we append the entire difference D in a single step and utilize a new edit-distance
sketch skq that allows retrieving qGR(T (r − |D| . . r], D) from skq(T (r − |D| . . r]) and skq(D).
The sketch skq(D) is constructed in the preprocessing phase, whereas skq(T (r−|D| . . r]) is built
as the algorithm scans T . Similarly, we can (temporarily) append any of the O(k) prefixes that
of D may arise when qGR(T (pc . . r], D

∞[1 . . r − pc − k]) is necessary. A complete presentation
of our algorithms is provided in Section 7. Below, we outline the ideas behind our two main
conceptual and technical contributions: the encoding qGR(·, ·) and the sketch skq(·).

3.2 Greedy Alignments and Encodings

Recall that the encoding qGR(·, ·) needs to support the following three operations:

Capped edit distance: given qGR(X,Y ), compute ed(X,Y ) or certify that ed(X,Y ) is large;
Product: given qGR(X,Y ) and qGR(Y, Z), retrieve qGR(X,Z);

Concatenation: given qGR(X1, Y1) and qGR(X2, Y2), retrieve qGR(X1X2, Y1Y2).

Our encoding is parameterized with a threshold k ∈ Z+ such that ed(·, ·) > k is considered
large, and the goal is to achieve Õ(kO(1)) encoding size. In fact, whenever ed(X,Y ) > k, we
shall simply assume that qGRk(X,Y ) is undefined (formally, qGRk(X,Y ) = ⊥). Consequently,
products and concatenations will require sufficiently large thresholds in the input encodings so
that if either of them is undefined, the output encoding is also undefined.
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In order to support concatenations alone, we could use so-called semi-local edit distances.
For now, suppose that we only need to encode pairs of equal-length strings.4 Through a sequence
of concatenations, we may only extend qGRk(X,Y ) to qGRk(X

′, Y ′) so that X = X ′[` . . r) and
Y = Y ′[` . . r). For any alignment A′ of X ′, Y ′ with cost(A′) ≤ k, consider the induced alignment
A := A′[`. .r),[`. .r). Note that A mimics the behavior of A′ except that it deletes some characters

at the extremes of X and Y (which A′ aligns outside Y and X, respectively). By Fact 2.3,
we have cost(A) ≤ k and, in particular, A deletes at most k characters at the extremes of X
and Y . If, after performing these deletions, we replace A with an optimal alignment between
the remaining fragments of X and Y , this modification may only decrease cost(A) and cost(A′).
Consequently, it suffices to store the O(k) characters at the extremes of X,Y and the O(k4)
edit distances5 between long fragments of X and Y . In a sense, this encoding represents O(k4)
alignments between X,Y that are sufficient to derive an optimal alignment of any extension.

The main challenge is to handle products, for which we develop a greedy encoding GRk(X,Y )
that compactly represents the following family GAk(X,Y ) of greedy alignments of X,Y .

Definition 3.6 (Greedy alignment). We say that an alignment A of two strings X,Y ∈ Σ∗ is
greedy if X[x] 6= Y [y] holds for every (x, y) ∈ B(A) ∩ ([1 . . |X|] × [1 . . |Y |]). Given k ≥ 0, we
denote by GAk(X,Y ) the set of all greedy alignments A of X,Y satisfying cost(A) ≤ k.

Intuitively, whenever a greedy alignment encounters a pair of matching characters X[x] and
Y [y], it must (greedily) match these characters (it cannot delete X[x] or Y [y]). As stated below,
this restriction does not affect the optimal cost. (All claims are proved in Section 5.)

Fact 3.7. For any two strings X,Y ∈ Σ∗, there is an optimal greedy alignment of X,Y .

For strings X,Y ∈ Σ∗ and an integer k ≥ ed(X,Y ), we define a set Mk(X,Y ) of common
matches of all alignments A ∈ GAk(X,Y ); formally Mk(X,Y ) =

⋂
A∈GAk(X,Y )MX,Y (A). In

our greedy encoding, we shall mask out all the characters involved in the common matches.
Below, this transformation is defined for an arbitrary non-crossing matching of X,Y .

Definition 3.8. Let M be a non-crossing matching of strings X,Y ∈ Σ∗. We define XM , YM

to be the strings obtained from X,Y by replacing X[x] and Y [y] with # /∈ Σ for every (x, y) ∈M .
We refer to # as a dummy symbol and to maximal blocks of #’s as dummy segments.

The following lemma proves that masking out common matches does not affect ed(X,Y ) or
Mk(X,Y ) provided that we enumerate the dummy symbols, that is, any string Z is transformed
to num(Z) by replacing the ith leftmost occurrence of # with a unique symbol #i /∈ Σ.

Lemma 3.9. Consider strings X,Y ∈ Σ∗, an integer k ≥ ed(X,Y ), and a set M ⊆Mk(X,Y ).
Then, ed(X,Y ) = ed(num(XM ), num(YM )) and Mk(X,Y ) =Mk(num(XM ), num(YM )).

At the same time, after masking out the common matches, the strings become compress-
ible. Intuitively, this is because once two greedy alignments converge, they stay together until
they encounter a mismatch. Moreover, when two alignments proceed in parallel without any
mismatch, this incurs a small period (at most 2k) that is captured by the LZ factorization.

Lemma 3.10. Let M =Mk(X,Y ) for strings X,Y ∈ Σ∗ and a positive integer k ≥ ed(X,Y ).
Then, |LZ(XM )|, |LZ(YM )| = O(k2), and XM , YM contain O(k) dummy segments.

4Pairs of strings of any lengths can be supported in the same way provided that concatenations require larger
input thresholds (compared to the output threshold) to accommodate length differences.

5In fact, O(k2) edit distances suffice and they can be encoded in O(k) space using techniques of Tiskin [58].
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Consequently, for k ≥ ed(X,Y ), we could define the greedy encoding GRk(X,Y ) so that it
consists of LZ(XM ) and LZ(YM ). Instead, we use a more powerful compressed representation
(developed in Section 4) that supports more efficient queries concerning XM and YM .

Even though GRk(X,Y ) is small, GAk(X,Y ) may consist of 2Θ(k) alignments, which is why
constructing GRk(X,Y ) in poly(k) time is far from trivial. The following combinatorial lemma
lets us obtain an O(k5)-time algorithm in Section 5.2. Intuitively, the alignments in GAk(X,Y )
can be interpreted as paths in a directed acyclic graph with O(k5) branching vertices.

Lemma 3.11. For all X,Y ∈ Σ∗ and k ∈ Z+, the set Bk(X,Y ) =
⋃

A∈GAk(X,Y )

B(A) is of size O(k5).

The reason why GRk(X,Y ) supports products is that every greedy alignment of X,Z can
be interpreted as a product of a greedy alignment of X,Y and a greedy alignment of Y,Z.

Definition 3.12. Consider strings X,Y, Z ∈ Σ∗, an alignment AX,Y of X,Y , an alignment
AY,Z of Y,Z, and an alignment AX,Z of X,Z. We say that AX,Z is a product of AX,Y and AY,Z
if, for every (x, z) ∈ AX,Z , there is y ∈ [1 . . |Y |+ 1] such that (x, y) ∈ AX,Y and (y, z) ∈ AY,Z .

Lemma 3.13. Consider strings X,Y, Z ∈ Σ∗ and k ∈ Z≥0. Every alignment AX,Z ∈ GAk(X,Z)
is a product of alignments AX,Y ∈ GAd(X,Y ) and AY,Z ∈ GAd(Y, Z), where d = 2k+ ed(X,Y ).

As a result, GRd(X,Y ) and GRd(Y,Z) contain enough information to derive GRk(X,Z). The
underlying algorithm propagates the characters of Y stored in GRd(X,Y ) and GRd(Y,Z) along
the matchingsMd(Y,Z) andMd(X,Y ), respectively. Then, GRk(X,Z) is obtained by masking
out all the characters corresponding to Mk(X,Y ) (see Section 5.4 for details).

To support concatenations, we extend the family GAk(X,Y ) of greedy alignments to a family
qGAk(X,Y ) of quasi-greedy alignments, which are allowed to delete a prefix ofX or Y in violation
of Definition 3.6. The quasi-greedy encoding qGRk(X,Y ) is defined analogously to GRk(X,Y ).
Equivalently, qGAk(X,Y ) can be derived from GAk+1($1X, $2Y ), where $1 6= $2 are sentinel
symbols outside Σ, by taking the alignments induced by X,Y . The latter characterization
makes all our claims regarding GA and GR easily portable to qGA and qGR (see Section 5.3).
In particular, this is true for the sketches, described in the following subsection for GR only.

3.3 Edit Distance Sketches

Recall that we need an edit-distance sketch skE allowing to retrieve GRk(X,Y ) from skEk (X)
and skEk (Y ) for any strings X,Y ∈ Σ≤n and any threshold k ∈ [0 . . n]. Furthermore, we need
to make sure that skEk (S) can be computed given streaming access to S ∈ Σ≤n, and that the
encoding and decoding procedures use poly(k, log n) space. While the existing sketches [6, 37]
are designed to compute the exact edit distance ed(X,Y ) capped with k, we believe that they
could be adapted to output qGRk(X,Y ). Nevertheless, these sketches are relatively large (taking
Õ(k8) and Õ(k3) bits, respectively), and we would need to strengthen the bulk of their analyses
to prove that, in principle, they provide enough information to retrieve qGRk(X,Y ). Hence, to
further demonstrate the power of our techniques, we devise a novel Õ(k2)-size sketch specifically
designed to output qGRk(X,Y ). We note that the Õ(k2) size is optimal for qGRk(X,Y ), but
we are not aware of a matching lower bound for retrieving ed(X,Y ) capped with k.

Just like the sketches of [6, 37], ours relies on the embedding of Chakraborty, Goldenberg,
and Koucký [10]. The CGK algorithm performs a random walk over the input string (with
forward and stationary steps only). In abstract terms, such walk can be specified as follows:

Definition 3.14 (Complete walk). For a string S ∈ Σ∗, we say that (st)
m+1
t=1 is an m-step

complete walk over S if s1 = 1, sm+1 = |S|+ 1, and st+1 ∈ {st, st + 1} for t ∈ [1 . .m].
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For any two strings X,Y ∈ Σ∗, the two walks underlying CGK(X) and CGK(Y ) can be
interpreted as an edit distance alignment using the following abstract definition:

Definition 3.15 (Zip alignment). The zip alignment of m-step complete walks (xt)
m+1
t=1 and

(yt)
m+1
t=1 over X,Y ∈ Σ∗ is obtained by removing repeated entries in (xt, yt)

m+1
t=1 .

The key result of [10] is that the cost of the zip alignment of CGK walks over X,Y ∈ Σ∗

is O(ed(X,Y )2) with good probability, which is then exploited to derive a metric embedding
(mapping edit distance to Hamming distance) with quadratic distortion. In our sketch, we also
need to observe that the CGK alignment is greedy and that its width is O(ed(X,Y )) with good
probability. The following proposition, proved in Section 6.1, provides a complete black-box
interface of the properties of the CGK algorithm utilized in our sketches. It also encapsulates
Nisan’s pseudorandom generator [50] that reduces the number of (shared) random bits.

Proposition 3.16. For every constant δ ∈ (0, 1), there exists a constant c and an algorithm
W that, given an integer n, a seed r of O(log2 n) random bits, and a string S ∈ Σ≤n, outputs
a 3n-step complete walk W(n, r, S) over S satisfying the following property for all X,Y ∈ Σ≤n

and the zip alignment AW of W(n, r,X) and W(n, r, Y ):

Pr
r

[
AW ∈ GAc·ed(X,Y )2(X,Y ) and width(AW) ≤ c · ed(X,Y )

]
≥ 1− δ.

Moreover, W is an O(log2 n)-bit streaming algorithm that costs O(n log n) time and reports any
element st ∈ [1 . . |S|] of W(n, r, S) while processing the corresponding character S[st].

Next, we analyze the structural similarity between AW and any alignment A ∈ GAk(X,Y ).
Based on Proposition 3.16, we may assume that AW ∈ GAO(k2)(X,Y ) and width(AW) = O(k).

Consider the set M =M(A)∩M(AW) of the common matches of A and AW and the string XM

obtained by masking out the underlying characters of X. Whereas Lemma 3.10 immediately
implies that the LZ factorization of XM consists of O(k4) phrases, a more careful application
of the same technique provides a refined bound of O(k2) phrases. Furthermore, there are O(k)
dummy segments in XM and, if X[x] is not masked out in XM (for some x ∈ [1 . . |X|]), then
there is a breakpoint (x′, y′) ∈ BX,Y (AW) with x′ ∈ [1 . . x] and |LZ(X[x′ . . x])| = O(k). Intu-
itively, this means that A and AW diverge only within highly compressible regions following
the breakpoints BX,Y (AW). We call these regions forward contexts (formally, a forward context
is the longest fragment starting at a given position and satisfying certain compressiblity condi-
tion). Since our choice of A ∈ GAk(X,Y ) was arbitrary, any two alignments A,A′ ∈ GAk(X,Y )
diverge only within these forward contexts. Hence, in order to reconstruct GRk(X,Y ) and, in
particular, XMk(X,Y ), the sketch should be powerful enough to retrieve all characters in forward
contexts of breakpoints BX,Y (AW). Even though BX,Y (AW) could be of size Θ(k2), due to the
aforementioned bounds on |LZ(XM )| and the number of dummy segments in XM , it suffices to
take O(k) among these forward contexts to cover the unmasked regions of XM and XMk(X,Y ).
Each context can be encoded in Õ(k) bits, so this paves a way towards sketches of size Õ(k2).

Nevertheless, while processing a string X ∈ Σ≤n, we only have access to the string X and
the m-complete walk (xt)

m
t=1 = W(n, r,X) over X. In particular, depending on Y , any position

in X could be involved in a breakpoint. A naive strategy would be to build a context encoding
CE(X)[1 . .m] that stores at t ∈ [1 . .m] (a compressed representation of) the forward context
starting at X[xt], and then post-process it using a Hamming-distance sketch. This is sufficiently
powerful because X[xt] 6= Y [yt] holds for any (xt, yt) ∈ B(AW) (recall that AW is greedy).
Unfortunately, this construction does not guarantee any upper bound on hd(CE(X),CE(Y ))
in terms of k. (For example, if X is compressible, modifying its final character of X affects
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the entire CE(X).) Hence, we sparsify CE(X) by placing a blank symbol ⊥ at some positions
CE(X)[t] so that just a few forward contexts stored in CE(X)[t] cover any single position in X.

This brings two further challenges. First, if X[x] is involved in a breakpoint, then we are only
guaranteed that it is covered by some forward context X[p . . q) of CE(X)[t] (i.e., x ∈ [p . . q)).
In particular, the forward context starting at position x could extend beyond X[x . . q). Hence,
the string CE(X)[t] actually stores double forward contexts X[p . . r) = X[p . . q)X[q . . r) defined
as the concatenation of the forward contexts of X[p] and X[q]. We expect this double forward
context X[p . . r) to cover the entire forward context of X[x]. Unfortunately, this is not neces-
sarily true if we use the Lempel–Ziv factorization to quantify compressibility: we could have
|LZ(X[x . . r))| < |LZ(X[q . . r))| because LZ(·) is not monotone. Instead, we use an ad-hoc com-
pressibility measure defined as maxLZ(S) = max[`. .r)⊆[1. .|S|] LZ(S[` . . r)). Here, maximization
over substrings guarantees monotonicity whereas reversal helps designing an efficient streaming
algorithm constructing contexts (beyond the scope of this overview).

Another challenge is that the sparsification needs to be consistent between CE(X) and
CE(Y ): assuming ed(X,Y ) ≤ k, we should have hd(CE(X),CE(Y )) = Õ(k), which also accounts
for mismatches between ⊥ and a stored double forward context. This rules out a naive strategy
of coveringX from left to right using disjoint forward contexts: any substitution at the beginning
of X could then have a cascade of consequences throughout CE(X). Hence, we opt for a memory-
less strategy that decides on CE(X)[t] purely based on the forward contexts X[xt−1 . . x

′
t−1)

and X[xt . . x
′
t). For example, we could set CE(X)[t] = ⊥ unless the smallest dyadic interval

containing [xt−1 . . x
′
t−1) differs from the smallest dyadic interval containing [xt . . x

′
t) (a dyadic

interval is of the form [i2j . . (i + 1)2j) for some integers i, j ≥ 0). With this approach, each
position of X is covered by at least one and at most O(log |X|) forward contexts. Furthermore,
substituting any character in X does not have far-reaching knock-on effects. Unfortunately,
insertions and deletions are still problematic as they shift the positions xt. Thus, the decision
concerning CE(X)[t] should be independent of the numerical value of xt. Consequently, instead
of looking at the smallest dyadic interval containing [xt . . x

′
t), we choose the largest t′ such that

[xt . . x
′
t) = [xt . . xt′), and we look at the smallest dyadic interval containing [t . . t′).

With each forward context X[xt . . x
′
t) retrieved, we also need to determine the value xt (so

that we know which fragment of X we can learn from CE(X)[t]). To avoid knock-on effects, we
actually store differences xt − xu with respect to the previous index satisfying CE(X)[u] 6= ⊥.
This completes the intuitive description of the context encoding CE studied in Section 6.2.

Our edit-distance sketch contains the Hamming-distance sketch of CE(X). For this, we use
an existing construction [16], augmented in a black-box manner to support large alphabets
(recall that the each forward contexts takes Õ(k) bits). Furthermore, to retrieve the starting
positions xt (rather than just the differences xt − xu), we use a hierarchical Hamming-distance
sketch similar to those used in [6, 37]. This way, given sketches of X and Y , we can recover all
characters that remain unmasked in XMk(X,Y ) and YMk(X,Y ). The tools of Section 5 are then
used to compute ed(X,Y ) (or certify ed(X,Y ) > k) and retrieve the greedy encoding GRk(X,Y )
(see Section 6.4). We summarize the properties of the edit distance sketches below:

Theorem 3.17. For every constant δ ∈ (0, 1), there is a sketch skEk (parametrized by integers
n ≥ k ≥ 1, an alphabet Σ = [0 . . nO(1)), and a seed of O(log2 n) random bits) such that:

(a) The sketch skEk (S) of a string Σ≤n takes O(k2 log3 n) bits. Given streaming access to S,
it can be constructed in Õ(nk) time using Õ(k2) space.

(b) There exists an Õ(k2)-space decoding algorithm that, given skEk (X), skEk (Y ) for X,Y ∈
Σ≤n, with probability at least 1−δ outputs GRk(X,Y ) and min(ed(X,Y ), k+1). Retrieving
GRk(X,Y ) costs Õ(k5) time, whereas computing min(ed(X,Y ), k + 1) costs Õ(k3) time.
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4 Compressed String Representation

In this section, we develop a data structure that stores a string X in O(|LZ(X)| log2 |X|) space,
supporting various operations in a relatively efficient way (the log |X| factors are not optimized).

Our data structure can be constructed not only from LZ(X), but from any LZ-like represen-
tation describing a factorization X = F1 · · ·Ff into non-empty phrases such that each phrase
Fj with |Fj | > 1 is a previous factor (unlike LZ77, the phrases do not need to be a maximal).

Observation 4.1. Every LZ-like factorization of a string X ∈ Σ∗ has at least |LZ(X)| phrases.
Moreover, |LZ(X)| ≤ |LZ(XY )| ≤ |LZ(X)|+ |LZ(Y )| holds for all strings X,Y ∈ Σ∗.

Proposition 4.2. In the w-bit word RAM model, every string X ∈ Σn satisfying w = Ω(log n+
log |Σ|), z = |LZ(X)|, and z = |LZ(X)| has a representation D(X) that uses O(z log2 n) space
and supports the following queries:

(a) retrieve n = |X|, in O(1) time;
(b) given i ∈ [1 . . n], retrieve X[i], in O(log n) time;
(c) given i, j ∈ [1 . . n], compute LCE(X[i . . n], X[j . . n]), in O(log n) time;
(d) given i, j ∈ [1 . . n], compute LCE(X[i . . n], X[j . . n]), in O(log n) time;
(e) compute LZ(X), in O(z log4 n) time;
(f) compute LZ(X), in O(z log4 n) time;
(g) given i, j ∈ [1 . . n] with i ≤ j, compute D(X[i . . j]), in O(z log4 n) time.

Moreover, D(X) can be constructed:

(h) in O(f log2 n) time given an f -phrase LZ-like representation of X or X;
(i) in O(z log4 n) time given D(X[1 . . i)) and D(X[i . . n]) for some i ∈ [1 . . n].

Before proving Proposition 4.2, we need to introduce several more compression schemes.
These concepts are not used any of the subsequent sections.

A straight-line grammar is a tuple G = (S,Σ, rhs, S), where S is a finite set of symbols,
Σ ⊆ S is a set of terminal symbols, rhs : (S \ Σ) → S∗ is the production (or right-hand side)
function, and S ∈ S is the start symbol. We further require existence of an order ≺ on S such
that B ≺ A if B occurs in rhs(A).

The expansion function exp : S → Σ+ is defined recursively:

exp(A) =

{
A if A ∈ Σ,

exp(B1) · · · exp(Bk) if rhs(A) = B1 · · ·Bk,

We say that G is a grammar-compressed representation of exp(S).
The parse tree T (A) of a symbol A ∈ S is a rooted ordered tree with each node ν associated

to a symbol s(ν) ∈ S. The root of T (A) is a node ρ with s(ρ) = A. If A ∈ Σ, then ρ has no
children. Otherwise, if rhs(A) = B1 · · ·Bk, then ρ has k children, and the subtree rooted at the
ith child is (a copy of) T (Bi). The parse tree of a grammar G is defined as the parse tree T (S)
of the starting symbol S, and the height of G is defined as the height of T (S).

Each node ν of T (A) is associated with an occurrence exp(ν) of exp(s(ν)) in exp(A).
For the root ρ, we define exp(ρ) = exp(A)[1 . . | exp(A)|] to be the whole exp(A). Moreover,
if exp(ν) = exp(A)[` . . r), rhs(s(ν)) = B1 · · ·Bk, and ν1, . . . , νk are the children of ν, then
exp(νi) = exp(A)[ri−1 . . ri), where ri =

∑i
j=1 | exp(Bj)| for 0 ≤ i ≤ k. This way, the fragments

exp(νi) form a partition of exp(ν), and exp(νi) is indeed an occurrence exp(s(νi)) in exp(A).
A straight-line program (SLP) is a straight-line grammar G = (S,Σ, rhs, S) such that

|rhs(A)| = 2 holds for each nonterminal A ∈ S \ Σ. In a run-length straight-line program
(RLSLP), productions of the form rhs(A) = Bk, with B ∈ S and k ∈ Z≥2, are also allowed.
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An RLSLP G of size g (with g symbols) representing a string of length n can be stored in
O(g) space (O(g log(n+ g)) bits) with each non-terminal A ∈ S \Σ storing rhs(A) (represented
by (B, k) if rhs(A) = Bk) and | exp(A)|. This representation allows for efficiently traversing the
parse tree TG : given a node ν represented as a pair (s(ν), exp(ν)), it is possible to retrieve in
constant time an analogous representation of any child of ν.

Fact 4.3. Let G be an RLSLP of size g representing a string X.

(a) An LZ-like factorization of X can be constructed in O(g) time.
(b) For every fragment X[i . . j], an RLSLP representing X[i . . j] can be constructed in O(g)

time.

Proof. We traverse the parse tree T (S) in pre-order, skipping some subtrees depending on the
application.

(a) For each symbol A, we maintain an already visited node ν with symbol s(ν) = A, if any.
When visiting a node ν, we first check whether any node ν ′ with s(ν ′) = s(ν) has already been
visited. If so, we retrieve the expansion exp(ν ′) = X[i′ . . i′ + `), and we output (i′, `) as a part
of the LZ-like representation. Otherwise, we save ν as an already visited node with symbol s(ν)
and proceed as follows:

• If ν is a leaf, then we output s(ν) ∈ Σ as a part of the LZ-like representation.
• If ν has two children, we process them recursively.
• If ν has k ≥ 3 children, we process the first child ν1 recursively, retrieve exp(ν1) =
X[i . . i+ `), and output (i, (k − 1)`) as a part of the LZ-like representation.

The overall running time O(g) is amortized by the number of distinct symbols visited.
(b) Here, an intermediate goal is to construct a sequence (A1,m1), . . . , (At,mt) with Ap ∈ S

and mp ∈ Z≥1 such that exp(A1)m1 · · · exp(At)
mt = X[i . . j] and t = O(g). We only visit nodes

ν such that exp(ν) intersects X[i . . j].

• If exp(ν) is contained in X[i . . j], we simply output (s(ν), 1) and skip the subtree of ν.
• Otherwise, we determine the children ν`, . . . , νr of ν whose expansions intersect X[i . . j].

Then, we recurse into ν`, output (s(ν`), r− `− 1) if r > `+ 1, and recurse into νr if r > `.

The number of visited nodes is proportional to the height of G and thus this traversal takes
O(g) time. In the post-processing, for each pair (Ap,mp), we create a new symbol Bp with
rhs(Bp) = A

mp
p (if mp ≥ 2) or set Bp as an alias of Ap (if mp = 1). Next, we set C1 to be an

alias of B1 and, for p ∈ [2 . . t], create a new symbol Cp with rhs(Cp) = Cp−1Bp−1. Finally, we
return the extended RLSLP with Ct as the new starting symbol.

Theorem 4.4 (I [35]). Let G be a size-g SLP representing a string X ∈ Σn and let g∗ be the
minimum size of an SLP representing X. Given G, in O(g log n) time, one can construct a
size-O(g∗ log n) RLSLP representing X and a size-O(g∗ log n) data structure that answers the
following queries in O(log n) time:

Access: Given i ∈ [1 . . n], retrieve S[i];
LCE queries: Given i, j ∈ [1 . . n], compute LCE(S[i . . n], S[j . . n]).

Proof of Proposition 4.2. We define D(X) so that it consists of two instances of the data struc-
ture of Theorem 4.4, one for X and one for X, including the RLSLPs representing X and X.
Thus, the size of D(X) is O(g∗ log n), where g∗ is the minimum size of an SLP representing X
(it is the same for X).

To implement (h), we first use [39, Theorem 6.1] and build a size-O(f log n) SLP representing
X or X. By reversing the right-hand sides of all the productions, we obtain an analogous SLP
representing X or X, respectively. Finally, we pass these SLPs to the construction algorithm
of Theorem 4.4. Overall, the running time is O(f log2 n).
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In (i), given D(X[1 . . i)) and D(X[i . . n]), we convert the underlying RLSLPs to LZ-like
representations (Fact 4.3), concatenate them into an O(g∗ log n)-phrase LZ-like representation
of X, and apply (h). Overall, this takes O(g∗ log3 n) = O(z log4 n) time.

As for (a), we note that |X| can be trivially retrieved from the RLSLP representing X.
Queries (b), (c), and (d) are implemented directly using Theorem 4.4.

In (e), we construct an index of [39, Theorem 6.11] that, given a fragment X[i . . i + `), in
O(log3 n) time locates the leftmost position i′ with X[i′ . . i′ + `) = X[i . . i+ `). This index can
be constructed in O(g∗ log3 n) time: it is already based on the RLSLP of Theorem 4.4, and the
extra construction time is O(log2 n) per RLSLP symbol; see [39, Lemma 6.9]. This way, each
phrase Fj of the LZ77 parsing of X can be constructed, by binary search, with O(log n) queries
to the index, for a total of O(z log4 n) time (see also [51, Section 5]). The algorithm for (f) is
symmetric.

As for (g), we construct an O(g∗ log n)-phrase LZ-like representation of X[i . . j] using
Fact 4.3, and then apply (h). Overall, this takes O(g∗ log3 n) = O(z log4 n) time.

5 Greedy Alignments and Encodings

Definition 3.6 (Greedy alignment). We say that an alignment A of two strings X,Y ∈ Σ∗ is
greedy if X[x] 6= Y [y] holds for every (x, y) ∈ B(A) ∩ ([1 . . |X|] × [1 . . |Y |]). Given k ≥ 0, we
denote by GAk(X,Y ) the set of all greedy alignments A of X,Y satisfying cost(A) ≤ k.

Fact 3.7. For any two strings X,Y ∈ Σ∗, there is an optimal greedy alignment of X,Y .

Proof. Let A = (xt, yt)
m
t=1 be an optimal alignment maximizing the sum

∑m
t=1(xt + yt). For a

proof by contradiction, suppose that A is not greedy. Then, there exists i ∈ [1 . .m] such that
(xi, yi) ∈ B(A) ∩ ([1 . . |X|] × [1 . . |Y |]) and X[xi] = Y [yi]. Observe that xi+1 = xi or yi+1 = yi
and, by symmetry, assume xi+1 = xi without loss of generality. Let us define j > i so that
xi = · · · = xj < xj+1 and consider two cases depending on whether yj = yj+1:

• If yj = yj+1, we define an alignment A′ obtained from A by deleting (xj , yj). It is easy to
see that A′ is a valid alignment. Moreover, B(A′) ⊆ B(A) and B(A) \ B(A′) = {(xj , yj)},
so cost(A′) < cost(A), contradicting the choice of A as an optimal alignment.
• If yj < yj+1, we define an alignment A′ = (x′t, y

′
t)
m
t=1 obtained from A by incrementing

xt for t ∈ (i . . j]. Moreover, B(A) \ B(A′) ⊆ {(xt, yt) : t ∈ [i . . j)} and B(A′) \ B(A) =
{(x′t, y′t) : t ∈ (i . . j]}, so cost(A′) ≤ cost(A). Furthermore,

∑m
t=1(x′t + y′t) = j − i +∑m

t=1(xt+yt), contradicting the choice ofA as an optimal alignment maximizing
∑m

t=1(xt+
yt).

For strings X,Y ∈ Σ∗ and an integer k ≥ ed(X,Y ), we define a set

Mk(X,Y ) =
⋂

A∈GAk(X,Y )

MX,Y (A)

of common matches of all alignmentsA ∈ GAk(X,Y ); note that it forms a non-crossing matching
of X,Y .

Definition 3.8. Let M be a non-crossing matching of strings X,Y ∈ Σ∗. We define XM , YM

to be the strings obtained from X,Y by replacing X[x] and Y [y] with # /∈ Σ for every (x, y) ∈M .
We refer to # as a dummy symbol and to maximal blocks of #’s as dummy segments.

Additionally, for a string Z ∈ (Σ ∪#)∗, we define num(Z) as a string obtained from Z by
replacing the ith leftmost occurrence of # in it with a unique dummy symbol #i /∈ Σ.
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Fact 5.1. Let X,Y ∈ Σ∗. For each non-crossing matching M of X,Y , we have ed(X,Y ) ≤
ed(num(XM ), num(YM )).

Proof. For every (x, y) ∈ [1 . . |X|]× [1 . . |Y |], if num(XM )[x] = num(YM )[y], then X[x] = Y [y].
Thus, costX,Y (A) ≤ costnum(XM ),num(YM )(A) holds for all alignments A of X,Y .

Lemma 3.9. Consider strings X,Y ∈ Σ∗, an integer k ≥ ed(X,Y ), and a set M ⊆Mk(X,Y ).
Then, ed(X,Y ) = ed(num(XM ), num(YM )) and Mk(X,Y ) =Mk(num(XM ), num(YM )).

Proof. Denote X ′ = num(XM ) and Y ′ = num(YM ), and let A ∈ GAk(X,Y ). We shall first
prove that MX,Y (A) ⊆MX′,Y ′(A). Suppose that (x, y) ∈ MX,Y (A), i.e., X[x] 'A Y [y]. Note
that MX,Y (A) is a non-crossing matching of X,Y and a superset of M , so either (x, y) ∈ M ,
and then X ′[x] = Y ′[y] is a dummy symbol, or M contains no pair involving x or y, and then
X ′[x] = X[x] = Y [y] = Y ′[y]. In both cases, we have X ′[x] 'A Y ′[y], i.e., (x, y) ∈ MX′,Y ′(A).
This completes the proof that MX,Y (A) ⊆ MX′,Y ′(A), from which we derive BX′,Y ′(A) ⊆
BX,Y (A) and costX′,Y ′(A) ≤ costX,Y (A) ≤ k.

Next, we shall prove that A ∈ GAk(X
′, Y ′). Suppose that X ′[x] = Y ′[y] holds for some

(x, y) ∈ A. Then, we have X[x] = Y [y] because either (x, y) ∈ M or X[x] = X ′[x] = Y ′[y] =
Y [y]. Since A is a greedy alignment of X,Y , this implies (x, y) ∈MX,Y (A), i.e., X[x] 'A Y [y].
Due to the assumption X ′[x] = Y ′[y], we conclude that X ′[x] 'A Y ′[y], i.e., (x, y) ∈MX′,Y ′(A).
This proves A ∈ GAk(X

′, Y ′).
Now, let A ∈ GAk(X

′, Y ′). We shall first prove that MX′,Y ′(A) ⊆ MX,Y (A). Suppose
that (x, y) ∈ MX′,Y ′(A), i.e., X ′[x] 'A Y ′[y]. In particular, X ′[x] = Y ′[y], which implies
X[x] = Y [y] because either (x, y) ∈ M or X[x] = X ′[x] = Y ′[y] = Y [y]. Hence, X[x] 'A Y [y],
i.e., (x, y) ∈MX,Y (A). This completes the proof that MX′,Y ′(A) ⊆MX,Y (A), from which we
derive BX,Y (A) ⊆ BX′,Y ′(A) and costX,Y (A) ≤ costX′,Y ′(A) ≤ k.

Next, we shall prove that A ∈ GAk(X,Y ). For a proof by contradiction, suppose that X[x] =
Y [y] holds for some (x, y) ∈ BX,Y (A); if there are several such breakpoints, let us choose the
leftmost one. Note that X[1 . . x) ∼A Y [1 . . y) and X[x . . |X|] ∼A Y [y . . |Y |]. Let us construct
an alignment A′ obtained from A by replacing the induced alignment A[x. .|X|],[y. .|Y |] with an
optimum greedy alignment of X[x . . |X|], Y [y . . |Y |] (see Fact 3.7). By the choice of (x, y), the
induced alignment A′[1. .x),[1. .y) = A[1. .x),[1. .y) is a greedy alignment of X[1 . . x), Y [1 . . y) and

thus A′ is a greedy alignment of X,Y . Due to costX,Y (A′) ≤ costX,Y (A) ≤ k, this implies
A′ ∈ GAk(X,Y ). Hence, MX,Y (A′) is a non-crossing matching of X,Y and a superset of
M . The construction of A′ further guarantees (x, y) ∈ MX,Y (A′), so either (x, y) ∈ M , and
then X ′[x] = Y ′[y] is a dummy symbol, or M contains no pair involving x or y, and then
X ′[x] = X[x] = Y [y] = Y ′[y]. In both cases, we have X ′[x] = Y ′[y] and, since A is a greedy
alignment of X ′, Y ′, we derive X ′[x] 'A Y ′[y] and (x, y) ∈ MX,Y (A). This contradicts the
choice of (x, y), completing the proof that A ∈ GAk(X,Y ).

Overall, we conclude that GAk(X,Y ) = GAk(X
′, Y ′) and that every alignment A in this

family satisfies both MX,Y (A) = MX′,Y ′(A) and costX,Y (A) = costX′,Y ′(A). Consequently,
Mk(X,Y ) =Mk(X

′, Y ′) and, due to Fact 3.7, ed(X,Y ) = ed(X ′, Y ′).

Proposition 5.2. Consider a string S ∈ (Σ∪{#})n with s dummy segments. Given the sorted
list of dummy segments in S, one can in O(s) time construct a data structure RS#(S) supporting
the following queries in O(log s) time:

1. rank#(S, i): Given i ∈ [1 . . n+ 1], return |{i′ ∈ [1 . . i) : S[i′] = #}|.
2. select#(S, j): Given j ∈ [1 . . rank#(S, n)], return the jth smallest element of {i ∈ [1 . . n] :

S[i] = #}.
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Proof. For each dummy segment S[` . . r), the data structure stores a tuple (`, r, rank#(S, `)).
These tuples are stored in a sorted array (note that the order is the same for all coordinates).
To compute rank#(S, i), we binary search for the rightmost segment S[`∗ . . r∗) such that `∗ ≤ i.
If there is no such segment, we return rank#(S, i) = 0. Otherwise, rank#(S, i) = rank#(S, `∗) +
min(i, r∗)− `∗.

To compute select#(S, j), we binary search for the rightmost segment S[`∗ . . r∗) such that
rank#(S, `∗) < j. Then, select#(S, j) = `∗ + j − 1− rank#(S, `∗).

Definition 5.3. For a non-crossing matching M of strings X,Y ∈ Σ∗ we set (cf. Proposi-
tion 4.2):

EM (X,Y ) :=
(
D(XMYM ),RS#(XM ),RS#(YM )

)
.

Lemma 5.4. Let X ′ = num(XM ) and Y ′ = num(YM ) for a non-crossing matching M of
strings X,Y ∈ Σ≤n. The encoding EM (X,Y ) allows answering LCE queries on the suffixes of
X ′, Y ′ and on the suffixes of X ′, Y ′ in O(log n) time.

Proof. Consider a query asking for LCE(X ′[x . .], Y ′[y . .]). Observe that LCE(X ′[x . .], Y ′[y . .]) =
LCE(XM [x . .], YM [y . .]) if rank#(XM , x) = rank#(YM , y). Otherwise, LCE(X ′[x . .], Y ′[y . .]) =
min(LCE(XM [x . .], YM [y . .]), select#(XM , rank#(XM , x) + 1)− x, select#(YM , rank#(YM , y) +
1) − y). In either case, the query can be answered in O(log n) time using Propositions 5.2
and 4.2(c). The values LCE(X ′[x . .], Y ′[y . .]) are answered in a similar way.

Corollary 5.5. Given an integer k > 0 and the encoding EM (X,Y ) for a non-crossing matching
M of strings X,Y ∈ Σ≤n, one can in O(k2 log n) time compute a integer d ∈ [0 . . k + 1] such
that

d =

{
ed(X,Y ) if ed(X,Y ) ≤ k and M ⊆Mk(X,Y ),

k + 1 if ed(X,Y ) > k.

Proof. We compute d := min(k + 1, ed(num(XM ), num(YM ))) using the Landau–Vishkin al-
gorithm [42], with O(k2) LCE queries on suffixes of num(XM ), num(YM ) implemented us-
ing Lemma 5.4. Due to Fact 5.1, we have d ≥ min(k + 1, ed(X,Y )) and, in particular,
d = k + 1 if ed(X,Y ) > k. If ed(X,Y ) ≤ k and M ⊆ Mk(X,Y ), then Lemma 3.9 yields
d = min(k + 1, ed(X,Y )) = ed(X,Y ).

5.1 Greedy Encoding and Its Size

Definition 5.6. For strings X,Y ∈ Σ∗ and an integer k, we define the greedy encoding

GRk(X,Y ) =

{
EMk(X,Y )(X,Y ) if k ≥ ed(X,Y ),

⊥ otherwise.

Lemma 3.10. Let M =Mk(X,Y ) for strings X,Y ∈ Σ∗ and a positive integer k ≥ ed(X,Y ).
Then, |LZ(XM )|, |LZ(YM )| = O(k2), and XM , YM contain O(k) dummy segments.

Proof. We show the claim of the lemma for XM , the claim for YM follows by symmetry.
As ed(X,Y ) ≤ k, by Fact 3.7 GAk(X,Y ) 6= ∅, and therefore there is an alignment A ∈

GAk(X,Y ) of cost at most k betweenX and Y . We consider yet another graphical representation
of an alignment. Namely, we represent A as a set of at most k horizontal segments, where a
horizontal segment I = [i . . j; ∆] from (i,∆) to (j,∆) means that X[i . . j] 'A Y [i+ ∆ . . j + ∆]
(see Fig. 1). This representation induces a partitioning of X = f1 · · · fz, where z = O(k), and
each factor f` is either a single character deleted under A or a fragment X[i . . j] corresponding
to a horizontal segment I = [i . . j; ∆].
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Figure 1: Graphical representations of two greedy alignments A,A′′ ∈ GA5(X,Y ), where X =
abababcbcbc and Y = abbabcbcbc. The alignment A (red) has cost 1 (we delete X[3]), and
the alignment A′′ cost 5 (we delete X[5], X[10], X[11], Y [3], Y [6]). The alignments imply that
X[6 . . 9] = Y [7 . . 10] = X[8 . . 11].

If |GAk(X,Y )| = 1, then every factor f` with |f`| ≥ 2 is replaced with an equal length string
of dummy symbols. The upper bound on |LZ(XM )| follows by sub-additivity of the Lempel–Ziv
encoding, and the upper bound on the number of dummy segments is trivial.

Suppose now that |GAk(X,Y )| > 1. We show that in this case the Lempel–Ziv encoding
of any factor f` has size O(k). Fix `. If f` is a single character, the claim obviously holds.
Suppose now that the factor f` of the partitioning defined above corresponds to a horizontal
segment I = [i . . j; ∆]. Let us show that there is i ≤ q ≤ j such that XM [i . . q] = X[i . . q]
and XM [q + 1 . . j] = ## . . .#. This follows immediately from the following observation. Let
A′ 6= A be another alignment ∈ GAk(X,Y ). The alignment A′ is greedy, and therefore, if for
some i ≤ p ≤ j the alignment A′ matches X[p] and Y [p+ ∆], then it also matches X[p+ 1] and
Y [p + 1 + ∆], . . . , X[j] and Y [j + ∆]. We obtain an upper bound on the number of dummy
segments as an immediate corollary, but an upper bound on LZ(XM ) requires more work.

Consider an alignment A′′ ∈ GAk(X,Y ) realising q. We have XM [q + 1 . . j] = ## . .#,
and therefore |LZ(XM [q + 1 . . j])| = O(1). Consider now XM [i . . q] = X[i . . q]. Consider
the set of the horizontal segments corresponding to A′′ that contain positions in [i . . q]. We
claim that either all segments in the set have height less than ∆, or all segments have height
larger than ∆. Suppose that there are two consecutive horizontal segments [i1 . . j1; ∆1] and
[i2 . . j2; ∆2] such that one of them is above I and the other is below. A′′ must delete the
characters X[j1 + 1], X[j1 + 2], . . . , X[i2 − 1] and Y [j1 + ∆1], Y [j1 + ∆1 + 1], . . . , Y [i2 + ∆2 − 1]
in some order. As it deletes the characters one by one, at some moment it arrives to a pair
X[x], Y [x+ ∆], where i < x < q. However, since A′′ is greedy, from this pair it must follow the
segment I, a contradiction.

We now use this property to show that |LZ(X[i . . q])| = O(k). First, consider the case
when the segments corresponding to A′′ are below I. Let I ′ = [i′ . . j′; ∆′] be one such segment,
where i ≤ i′ ≤ j′ ≤ q, and −k ≤ ∆′ < ∆. Let i′′ = max{i + 2k, i′}. If i′′ ≤ j′, we have
X[i′′ . . j′] = Y [i′′ + ∆′ . . j′ + ∆′], and the alignment A implies that Y [i′′ + ∆′ . . j′ + ∆′] =
X[i′′+ (∆′−∆) . . j′+ (∆′−∆)]. Consequently, X[i′′ . . j′] = X[i′′+ (∆′−∆) . . j′+ (∆′−∆)] is
a previous factor as ∆′ −∆ < 0. It follows that A′′ defines a partitioning of X[i . . q] = t1 · · · tz,
where z = O(k) and each factor ti is either a single character, or a previous factor. By Fact 4.1,
we obtain that |LZ(X[i . . q])| = O(k).

The proof for the complementary case is similar. There are at most k horizontal segments
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corresponding to A′ that contain positions in [i . . q], denote them by [i′` . . j
′
`; ∆′`]. For all `, we

have k ≥ ∆′` > ∆. Let j′′` = min{j′`, q−2k}. If i′` ≤ j′′` , we have X[i′` . . j
′′
` ] = Y [i′`+∆′` . . j

′′
` +∆′`]

(from the alignment A′′), and Y [i′′` + ∆′` . . j
′′
` + ∆′`] = X[i′` + (∆′` − ∆) . . j′′` + (∆′` − ∆)].

Consequently, X[i′` + (∆′` −∆) . . j′′` + (∆′` −∆)] = X[i′` . . j
′′
` ] is a previous factor as ∆′` −∆ >

0. As the cost of A′′ is bounded from above by k, we have
∣∣[i . . q] − ∪`[i′` . . j′′` ]

∣∣ ≤ k and∑
` |∆′` −∆′`+1| ≤ k. Therefore,

∣∣[i . . q] − ∪`[i′` + (∆′` −∆) . . j′′` + (∆′` −∆))
∣∣ = O(k), and we

can conclude as above.
The claim follows.

Corollary 5.7. For every X,Y ∈ Σ≤n and k ∈ Z+, the encoding GRk(X,Y ) takes O(k2 log2 n)
space.

Proof. Follows immediately from Propositions 4.2 and 5.2 and Lemma 3.10.

5.2 Construction of greedy encodings

In this section, we give a deterministic approach to construction of GRk(X,Y ). We start with
a combinatorial lemma that is a key to this approach.

Lemma 3.11. For all X,Y ∈ Σ∗ and k ∈ Z+, the set Bk(X,Y ) =
⋃

A∈GAk(X,Y )

B(A) is of size O(k5).

Proof 6. We prove Bk(X,Y ) ≤ 136k5 by induction on |X|. In the base case of |X| ≤ 42k4, we
have |Bk(X,Y )| ≤ (2k+ 1)|X| ≤ 136k5 since each (x, y) ∈ Bk(X,Y ) satisfies |x− y| ≤ k. Thus,
we assume that |X| > 42k4, GAk(X,Y ) 6= ∅ (otherwise, Bk(X,Y ) = ∅), and the claim holds for
shorter strings.

Case 1. If Mk(X,Y ) contains two adjacent pairs (x − 1, y − 1), (x, y), then we construct
strings X∗ and Y ∗ by deleting X[x] and Y [y], respectively, aiming to prove that |Bk(X,Y )| ≤
|Bk(X∗, Y ∗)| ≤ 136k5. For this, consider an alignment A ∈ GAk(X,Y ). Due to (x − 1, y −
1), (x, y) ∈ M(A), the pairs (x − 1, y − 1), (x, y), and (x + 1, y + 1) are three consecutive
elements of A. Let X∗ be the string obtained by removing X[x] from X, and Y ∗ be the
string obtained by removing Y [y] from Y . We define an alignment A∗ of X∗, Y ∗ by removing
(x, y) and shifting all pairs to the right of (x, y) by one position to the left. Each breakpoint
(x′, y′) ∈ B(A) is preserved (along with X[x′] 6= Y [y′]), if it is located to the left of (x, y),
or shifted by 1 position to the left (along with X[x′] 6= Y [y′]), if it is located to the right of
(x, y). Consequently, A∗ ∈ GAk(X

∗, Y ∗) and, since the shifts are independent of A, we derive
|Bk(X∗, Y ∗)| ≥ |Bk(X,Y )|.

Case 2: If Mk(X,Y ) does not contain any two adjacent pairs, we first prove the following
claim:

Claim 5.8. There are alignments A,A′ ∈ GAk(X,Y ) such that X[a . . a + 9k2) 'A Y [i . . i +
9k2) 'A′ X[b . . b+ 9k2) holds for some positions a 6= b.

Proof. Consider k + 1 disjoint fragments of X, each of length 21k3 ≤ |X|/(k + 1). Each
A ∈ GAk(X,Y ) aligns at least one fragment without mismatches: X[s . . t] 'A Y [s′ . . t′] for some
positions s, t, s′, t′. Due to X[t] = Y [t′], if (t − 1, t′ − 1) ∈ Mk(X,Y ), then (t, t′) ∈ Mk(X,Y )
holds by the greedy nature of the considered alignments. Consequently, there is A′ ∈ GAk(X,Y )
such that X[t− 1] 6'A′ Y [t′ − 1].

Next, consider k+1 disjoint parts of Y [s+k . . t−k), each of length 9k2 ≤ (21k3−1−2k)/(k+
1). By Fact 2.3, A aligns the entire Y [s+k . . t−k) without mismatches to a fragment of X[s . . t).

6The authors would like to thank Panagiotis Charalampopoulos for an early write-up of the proof of this
lemma, which was originally meant to be included into [12].
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Moreover, A′ aligns at least one part without mismatches. Denote this part Y [i . . i+9k2), and fix
positions a, b so that X[a . . a+ 9k2) 'A Y [i . . i+ 9k2) 'A′ X[b . . b+ 9k2). Note that a ∈ [s . . t)
and thus X[a . . t) 'A Y [i . . t′). Now, if a = b, then we would have X[a] 'A′ Y [i] and the
greedy nature of A′ would guarantee X[a . . t) 'A′ Y [i . . t′), contradicting X[t−1] 6'A′ Y [t′−1].
Consequently, a 6= b.

By Fact 2.3, we have p := per(Y [i . . i + 9k2)) ≤ |a − b| ≤ |i − a| + |i − b| ≤ 2k. Moreover,
due to 7k2 ≥ 2p, the fragment X[i+ k2 . . i+ 8k2) has the same period (up to cyclic rotation).

Claim 5.9. For every A′′ ∈ GAk(X,Y ), we have X[i + 3k2 . . i + 8k2) 'A′′ Y [v . . v + 5k2) for
some v ∈ [i+ 2k2 . . i+ 4k2].

Proof. Consider k + 1 disjoint parts of X[i + k2 . . i + 3k2 + p), each of length p (note that
(k + 1)p ≤ 2k2 + p). Each A′′ ∈ GAk(X,Y ) matches at least one part without mismatches:
X[j . . j + p) 'A′′ Y [u . . u + p) for some j ∈ [i + k2 . . i + 3k2] and u ∈ [j − k . . j + k]. Note
that X[j . . i + 8k2) and Y [u . . i + 9k2) have, up to cyclic rotation, the same string period of
length p. This string period is primitive, so X[j . . j + p) = Y [u . . u+p) implies that the periods
synchronize, i.e., X[j . . i + 8k2) = Y [u . . u + (i + 8k2 − j)]. By the greedy nature of A′′, we
must have X[j . . i+ 8k2) 'A′′ Y [u . . u+ (i+ 8k2 − j)], and therefore X[i+ 3k2 . . i+ 8k2) 'A′′
Y [v . . v + 5k2] for v = u+ i+ 3k2 − j ∈ [i+ 3k2 − k . . i+ 3k2 + k].

Consider fragments Q := X[i + 3k2 . . i + 8k2) and F := Y [i + 4k2 . . i + 7k2), where F
is contained in all fragments Y [v . . v + 5k2) with v ∈ [i + 2k2 . . i + 4k2]. We observe that
|Q| ≥ |F | = 3k2 > p and construct X∗ and Y ∗ by removing X[i + 8k2 − p . . i + 8k2) and
Y [i+ 7k2 − p . . i+ 7k2). For every A′′ ∈ GAk(X,Y ), we derive A∗ by removing the pairs (x, y)
with y ∈ [i + 7k2 − p . . i + 7k2), and shifting all the subsequent pairs by p positions to the
left. We conclude from Claim 5.9 that the breakpoints (x′, y′) ∈ B(A) are preserved (along with
X[x′] 6= Y [y′]), if located to the left of (i+3k2, i+4k2), or shifted by p positions to the left (along
with X[x′] 6= Y [y′]), if located to the right of (i+8k2, i+7k2). Consequently, A∗ ∈ GAk(X

∗, Y ∗)
and, since the shifts are independent of A′′, we derive |Bk(X,Y )| ≤ |Bk(X∗, Y ∗)| ≤ 136k5 from
the inductive assumption.

Algorithm 1 is the key procedure for computing greedy encodings.

Lemma 5.10. Given two strings X,Y ∈ Σ∗ and integer k ≥ ed(X,Y ), Algorithm 1 computes
the dummy segments in XMk(X,Y ). Moreover, it can be implemented in O(|Bk(X,Y )|(t+log k))
time and Õ(k) space, provided with an oracle that, given x ∈ [1 . . |X|+ 1] and y ∈ [1 . . |Y |+ 1],
in O(t) time computes LCE(X[x . .], Y [y . .]) and min(k + 1, ed(X[x . .], Y [y . .])).

Proof. To show correctness of Algorithm 1, consider an (imaginary set) of alignments G gen-
erated by the algorithm. First, associate with each point in [1 . . |X|] × [1 . . |Y |] an empty
set of alignments. Let (x, y) be the latest point extracted from Q and G[(x, y)] the set of
alignments associated with it. In line 7 (if the algorithm executes it), we create a new set
of alignments containing all alignments in G[(x, y)] extended by (x + 1, y) (deletion of X[x]),
(x + 1, y), (x + 2, y + 1), . . . (x + `, y + ` − 1), where ` = LCE(X[x + 1 . .], Y [y . .]) (matching of
X[x+1 . . x+`] and Y [y . . y+`−1]). We union the resulting set of alignments with G[x+`, y+`−1]
and push (x+ `, y + `− 1) to Q. In lines 9 and 11 we process G[(x, y)] analogously. Finally, we
define G = G[|X|, |Y |]. We claim that G = GAk(X,Y ). First note that all alignments in G are
greedy by construction: an alignment can only delete X[x], Y [y], or substitute X[x] for Y [y] if
X[x] 6= Y [y]. In other words, for every breakpoint (x, y) we have X[x] 6= Y [y]. Additionally,
the cost of every alignment in G is at most k as at each call of GreedyMatch credit decreases by
one. Hence, G = GAk(X,Y ).

19



1 Greedy(k)
2 Q = ∅;
3 GreedyMatch(Q, 1, 1, k);
4 while Q is not empty do
5 (x, y), credit = Q.extract-min();
6 if x ≤ |X| then
7 GreedyMatch(Q, x+ 1, y, credit− 1); // delete X[x]

8 if y ≤ |Y | then
9 GreedyMatch(Q, x, y + 1, credit− 1); // delete Y [y]

10 if x ≤ |X| and and y ≤ |Y | then
11 GreedyMatch(Q, x+ 1, y + 1, credit− 1); // substitute X[x] for Y [y]

12 GreedyMatch(Q, x, y, credit):
13 if ed(X[x . .], Y [y . .]) ≤ credit then
14 ` = LCE(X[x . .], Y [y . .]); // match X[x] and Y [y],..., X[x + `− 1] and Y [y + `− 1]

15 x = x+ `; y = y + `;
16 Push(Q, (x, y), credit);
17 if |Q| = 1 then output [x− `, x− 1];

18 Push(Q, (x, y), credit)
19 if (x, y) /∈ Q then Q[(x, y)] = credit;
20 else Q[(x, y)] = max{Q[(x, y)], credit}; // points are ordered lexicographically.

Algorithm 1: The algorithm receives as an input strings X,Y , and integer k. Lexi-
cographic order on points is defined in the following way: (x1, y1) < (x2, y2) if either
x1 < x2 or x1 = x2 and y1 < y2.

We define successors and predecessors in the lexicographic order in a standard way. For an
alignment A ∈ G and a point (x, y) ∈ B(A), define creditA(x, y) as the difference between k and
the number of edits that A makes to reach (x, y). Algorithm 1 satisfies the following properties:

1. The set P of the points that are ever added to Q is equal to B(G), and when we process
a point (x, y), the credit associated with it equals maxA∈G:(x,y)∈B(A) creditA(x, y);

2. When we process a point (x, y), Q = ∪A∈G{(x′, y′) is the successor of (x, y) in B(A)}.
3. If Q contains points p1 = (x1, y1) and p2 = (x2, y2) such that x1 − y1 = x2 − y2, then
p1 = p2.

To show the properties, we exploit the fact that the points are processed in the lexicograph-
ical order: When we process a point q ∈ Q, it is the lexicographically smallest point in Q, and
all the points that we add to Q while processing q are larger than it.

Property 1. We first prove that P ⊇ B(G) and that when we process a point (x, y), the
credit associated with it is at least maxA∈G:(x,y)∈B(G) creditA(x, y). Let (x, y) ∈ B(G) be the
lexicographically smallest point which either does not belong to P or such that the credit
associated with it is smaller than maxA∈G:(x,y)∈B(A) creditA(x, y). Consider an alignment A ∈ G
such that (x, y) ∈ B(A) and let (x′, y′) be the predecessor of (x, y) in B(A). When we process
(x′, y′), which happens before we process (x, y) as we process the points in the lexicographic
order, the credit associated with it is at least creditA(x′, y′) ≥ ed(X[x′ . .], Y [y′ . .]), and therefore
(x, y) is added to Q with credit at least creditA(x′, y′) − 1 = creditA(x, y). As it holds for any
A ∈ G, we obtain a contradiction.

We now show the opposite direction. Consider a point (x, y) ∈ Q associated with the edit
distance credit c. Suppose that c is achieved when we process a point (x′, y′). By the induction
assumption, there is a greedy alignment A ∈ G such that the credit c + 1 associated with
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(x′, y′) equals creditA(x′, y′). Consider a greedy alignment A′ that behaves as A until (x′, y′)
(k − creditA(x′, y′) edits), then proceeds to (x′, y′) (one edit), and ends as an arbitrary optimal
greedy alignment between X[x′ . .] and Y [y′ . .]. The cost of the latter is ed(X[x′ . .], Y [y′ . .]) ≤ c.
Therefore, the cost of A′ is at most k and it is in G. It follows that (x′, y′) ∈ B(A′) and that
c = creditA′(x

′, y′), finishing the proof.
Property 2. Let (x, y) be the lexicographically smallest point in B(G) such that when we

process it Q 3 (u, v) /∈ ∪A∈G{(x′, y′) is the successor of (x, y) in B(A)}. Suppose that (u, v)
was added to Q when we processed a point (u′, v′). Similarly to above, we can construct an
alignment A ∈ G such that (u′, v′), (u, v) ∈ B(A). As we processed (u′, v′) before (x, y), we must
have that (u′, v′) is lexicographically smaller than (x, y), while (u, v) is lexicographically larger
than (x, y), and therefore (u, v) is the successor of (x, y) in B(A), a contradiction. On the other
hand, if (u, v) is the successor of (x, y) in B(A) for some A ∈ G, then it must be in Q when we
process (x, y): if (u′, v′) is the predecessor of (u, v) in B(A), then (u′, v′) is at most (x, y), and
when we process it, we add (u, v) to Q.

Property 3. We show the property by induction. It is true at initialisation. Suppose that
the property is violated when we process a point (x, y) ∈ Q. Recall that we extract (x, y)
and call GreedyMatch for a subset of points {(x + 1, y + 1), (x + 1, y), (x, y + 1)}. The point
(x + 1, y + 1) is in the same diagonal as (x, y) that we extract from Q, and therefore the call
for it does not violate the property. Consider now the point (x + 1, y) (resp., (x, y + 1)) and
assume that the diagonal containing it also contains a point (x′, y′) ∈ Q. If we added (x′, y′)
to Q when we called GreedyMatch for a point (x′′, y′′), we have that (x′′, y′′) is in the same
diagonal, X[x′′ . . x′ − 1] = Y [y′′ . . y′ − 1], and X[x′] 6= Y [y′]. As we process the points in the
lexicographic order, at least one of the points (x′′−1, y′′−1), (x′′−1, y′′), (x′′, y′′−1) is strictly
smaller than (x, y). By considering each of the cases, from the definition we obtain that (x′′, y′′)
is at most (x+ 1, y) (resp., (x, y + 1)). As all three points (x′′, y′′), (x+ 1, y) (resp., (x, y + 1)),
(x′, y′) are on the same diagonal, it follows that GreedyMatch for (x+ 1, y) outputs (x′, y′).

Correctness and complexity. [x, x′] is a dummy segment in XMk(X,Y ) iff there exists −k ≤
δ ≤ k such that the following three conditions are satisfied, where y = x+ δ and y′ = x′ + δ:

1. B(G) does not contain any points with the x-coordinate in [x . . x′] or the y-coordinate
in [y . . y′];

2. B(G) contains q = (x′ + 1, y′ + 1);
3. The predecessor p of q in B(G) is one of the points (x− 1, y − 1), (x− 1, y), (x, y − 1).

Therefore, if [x, x′] is a maximal dummy segment, then by Property 2, after we have pro-
cessed p, Q contains a single point q that is obtained by calling GreedyMatch for the point
(x, y). Hence, the implementation creates the dummy segment [x, x′]. On the other hand, if
the implementation creates a segment [x, x′], then B(G) satisfies all three conditions and hence
[x, x′] is a maximal dummy segment.

Algorithm 1 implements the set Q as a binary search tree. By Lemma 3.11 and Property 1,
we process |B(G)| = |Bk(X,Y )| points, spending O(log k + t) time per point, which gives the
desired time complexity. To show the space complexity, it suffices to show that at any moment
|Q| = O(k). By Fact 2.3, for any (x, y) ∈ Q we have y = x + δ for some −k ≤ δ ≤ k, in other
words, the point belongs to one of 2k + 1 diagonals of the grid. By Property 3, each of the
diagonals contains at most one point from Q, which concludes the proof.

We proceed with an auxiliary claim that allows constructing an edit distance oracle.

Claim 5.11. Given two strings U, V , and a data structure of size s that can answer the LCE
queries on the suffixes of U, V in t time. We can build in O(k2t) time a data structure that
occupies O(k2) space and can retrieve min(k + 1, ed(U [u . .], V [v . .])) in O(log n) time.
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Proof. The data structure is based on the Landau–Myers–Schmidt algorithm [41]. Consider
a table D of size |U | × |V | such that D[i, j] = ed(U [|U | − i + 1 . .], V [|V | − j + 1 . .]) =
ed(U [1 . . i], V [1 . . j]). By Fact 2.3, if D[i, i + δ] ≤ h, then −h ≤ δ ≤ h. Let Lh(δ) =
max{i : D[i, i + δ] ≤ h}. The data structure consists of 2k + 1 sorted arrays containing
L0(δ), L1(δ), . . . , Lk(δ), −k ≤ δ ≤ k. The arrays occupy O(k2) space and allow to retrieve
ed(U [u . .], V [v . .]) in Õ(1) time by simple binary search. The data structure can be computed
via the following recurrence, where Slideδ(u) = u+ LCE(U [u . .], V [u+ δ . .]).

Lh(δ) = Slideδ

max


Lh−1(δ − 1), δ > −h;

Lh−1(δ) + 1, always;

Lh−1(δ + 1) + 1, δ < h.

 (1)

Therefore, given Lh−1, Lh(δ) can be computed via three LCE queries on the suffixes of U, V .
As a corollary, the arrays {L0(δ), L1(δ), . . . , Lk(δ)}, −k ≤ δ ≤ k, can be built in Õ(k2) time.

Proposition 5.12. Consider a non-crossing matching M of strings X,Y ∈ Σ≤n and an integer
k ∈ Z+ such that M ⊆ Mk(X,Y ) holds if ed(X,Y ) ≤ k. Given k and EM (X,Y ), the greedy
encoding GRk(X,Y ) can be computed in Õ(zk + k2 + |Bk(X,Y )|) time and Õ(z + k2) space,
where z = |LZ(XMYM )|.

Proof. First, we pass k and EM (X,Y ) to the procedure of Corollary 5.5. Observe that the
returned value d satisfies d ≤ k if and only if ed(X,Y ) ≤ k. If ed(X,Y ) > k, then we simply
return GRk(X,Y ) = ⊥. In this case, the running time and the space complexity are Õ(k2).

Otherwise, our strategy is to compute Mk(X,Y ) and then mask out the corresponding
characters of XM and YM to obtain XMk(X,Y ) and YMk(X,Y ). By Lemma 3.9, we have
Mk(X,Y ) = Mk(X

′, Y ′), where X ′ = num(XM ) and Y ′ = num(YM ). Hence, we shall use
Lemma 3.11 to compute the dummy segments corresponding toMk(X

′, Y ′). For this, we need
to support LCE queries and edit distance queries on the suffixes of X ′, Y ′. As for LCE queries,
we rely on Lemma 5.4, which provides O(log n)-time LCE queries on the suffixes of X ′, Y ′ and
on the suffixes of X ′, Y ′. We use the latter queries to build a component of Claim 5.11 for the
edit distance queries. After O(k2 log n)-time preprocessing, these queries can be answered in
O(log k) time. Overall, constructing the dummy segments corresponding to Mk(X

′, Y ′) costs
Õ(k2 + |Bk(X,Y )|) time and O(k2) working space.

Our next goal is to convert D(XMYM ) to D(XMk(X,Y )YMk(X,Y )). For this, we need to place
#s within each of the computed dummy segments. Consider updating a working string Z by set-
ting Z[` . . r) := #r−`. To implement this operation, we build LZ(#r−`) (of size at most 2), derive
D(#r−`) (Proposition 4.2(h)), extract D(Z[1 . . `)) and D(Z[r . . |Z|]) (Proposition 4.2(g)), and
finally concatenate into D(Z[1 . . `)#r−`Z[r . . |Z|]) (Proposition 4.2(i)). Overall, each dummy
segment is processed in O((z + k) log4 n) time and space, for a total of Õ(zk + k2) time and
Õ(z + k) space across all segments.

Finally, RS#(XMk(X,Y )) and RS#(YMk(X,Y )) are constructed in O(k) time and space using
Proposition 5.2.

Corollary 5.13. Given an integer k ∈ Z+ and two strings X,Y ∈ Σ≤k
2
, one can compute

GRk(X,Y ) in Õ(k3) time and Õ(k2) space.

Proof. We shall construct E∅(X,Y ) and then derive GRk(X,Y ) from Proposition 5.12. Hence,
we build a trivial LZ-like representation of XY (with length-1 phrases) and derive D(XY ) =
D(X∅Y ∅) using Proposition 4.2(h). This costs O(k2 log2 k) time and space. The components
RS#(X∅) and RS#(Y ∅) are trivial (there are no dummy segments). Using Proposition 5.12
costs Õ(k3 + |Bk(X,Y )|) time and Õ(k2) space. To finish the proof, note that Bk(X,Y ) can
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only contain pairs (x, y) such that 1 ≤ x ≤ |X|, 1 ≤ y ≤ |Y |, and |x − y| ≤ k, which implies
|Bk(X,Y )| = O(|X|k) = O(k3).

5.3 Concatenations and Quasi-greedy Alignments

Definition 5.14 (Quasi-greedy alignment). We say that an alignment A of two strings X,Y ∈
Σ∗ is quasi-greedy if it satisfies at least one of the following symmetric conditions:

• there exists δ ∈ [1 . . |X|+ 1] such that (δ, 1) ∈ A and X[x] 6= Y [y] holds for every (x, y) ∈
B(A) ∩ ([δ . . |X|]× [1 . . |Y |]);
• there exists δ ∈ [1 . . |Y |+ 1] such that (1, δ) ∈ A and X[x] 6= Y [y] holds for every (x, y) ∈
B(A) ∩ ([1 . . |X|]× [δ . . |Y |]);

Given k ≥ 0, we denote by qGAk(X,Y ) the set of all quasi-greedy alignments A of X,Y with
cost(A) ≤ k.

Lemma 5.15. Consider an alignment A ∈ qGAk(XpXs, YpYs), where Xp, Xs, Yp, Ys ∈ Σ∗

and k ∈ Z≥0. Then, A[1. .|Xp|+1),[1. .|Yp|+1) ∈ qGAk+||Xs|−|Ys||(Xp, Yp) and A[|Xp|+1. .],[|Yp|+1. .] ∈
qGAk+||Xp|−|Yp||(Xs, Ys).

Proof. For brevity, let X = XpXs, Y = YpYs; np = |Xp|, ns = |Xs|, n = |X|, mp = |Yp|,
ms = |Ys|, m = |Y |.

Let A = (xt, yt)
q
t=1 and let (xip , yip) be the leftmost pair (x, y) ∈ A such that x > np or y >

mp. By symmetry, we assume without loss of generality that xip = np + 1; see Fig. 2. Observe

that Ap := A[1. .np+1),[1. .mp+1) is the union of (xt, yt)
ip−1
t=1 and (np + 1, y)

mp+1
y=yip . Furthermore,

B(Ap) = {(xt, yt) ∈ B(A) : t ∈ [1 . . p)} ∪ {(np + 1, y) : y ∈ [yp . .mp + 1]}. Let kp be the size of
the former component. Then, k ≥ cost(A) ≥ kp+ed(Xs, Yp[yip . .]Ys) ≥ kp+|Yp[yip . .]|+ms−ns,
so that cost(Ap) = kp + |Yp[yp . .]| ≤ k + ns −ms ≤ k −

∣∣|Xs| − |Ys|
∣∣. It remains to prove that

Ap is a quasi-greedy alignment. By Definition 3.6 applied to A, we have two possibilities:

• There exists δ ∈ [1 . . n+ 1] such that (δ, 1) ∈ A and X[x] 6= Y [y] holds for every (x, y) ∈
B(A)∩([δ . . n]×[1 . .m]). If δ ≤ np+1, then we also have that (δ, 1) ∈ Ap and Xp[x] 6= Yp[y]
holds for every (x, y) ∈ B(Ap) ∩ ([δ . . np]× [1 . .mp]). Otherwise, (xip , yip) = (np + 1, 1) ∈
Ap, so Ap is trivially quasi-greedy.
• There exists δ ∈ [1 . .m + 1] such that (1, δ) ∈ A and X[x] 6= Y [y] holds for every

(x, y) ∈ B(A) ∩ ([1 . . n] × [δ . .m]). If δ ≤ yip , then we also have that (1, δ) ∈ Ap and
Xp[x] 6= Yp[y] holds for every (x, y) ∈ B(Ap) ∩ ([1 . . np] × [δ . .mp]). Otherwise, np = 0
because (1, δ) cannot cross (np + 1, yp). Hence, Ap is trivially quasi-greedy.

Now, let (xis , yis) be the leftmost pair (x, y) ∈ A such that x > np and y > mp. By
symmetry, we assume without loss of generality that yis = mp + 1; see Fig. 2. Observe that

As := A[np+1. .],[mp+1. .] is the union of (x, 1)
xis−np−1
x=1 and (xt − np, yt −mp)

q
t=is

. Furthermore,
B(As) = {(xt−ns, yt−ms) ∈ B(A) : t ∈ [is . . q]}∪{(x, 1) : x ∈ [1 . . xis−np)}. Let ks be the size of
the former component. Then, k ≥ cost(A) ≥ ks−1+ed(XpXs[1 . . xis−np), Yp) ≥ ks−1+xis−mp,
so that cost(As) = ks− 1 + xis −np ≤ k+mp−np ≤ k−

∣∣|Xp| − |Yp|
∣∣. It remains to prove that

As is a quasi-greedy alignment. By Definition 3.6 applied to A, we have two possibilities:

• There exists δ ∈ [1 . . n+ 1] such that (δ, 1) ∈ A and X[x] 6= Y [y] holds for every (x, y) ∈
B(A) ∩ ([δ . . n] × [1 . .m]). If δ ≤ xis , then (xis − np, 1) ∈ As and Xs[x] 6= Ys[y] holds
for every (x, y) ∈ B(As) ∩ ([xis − np . . ns] × [1 . .ms]). Otherwise, (δ − np, 1) ∈ As and
Xs[x] 6= Ys[y] holds for every (x, y) ∈ B(As) ∩ ([δ − np . . ns]× [1 . .ms]).
• There exists δ ∈ [1 . .m + 1] such that (1, δ) ∈ A and X[x] 6= Y [y] holds for every

(x, y) ∈ B(A)∩ ([1 . . n]× [δ . .m]). If δ ≤ mp+1, then (xis−np, 1) ∈ As and Xs[x] 6= Ys[y]
holds for every (x, y) ∈ B(As)∩ ([xis −np . . ns]× [1 . .ms]). Otherwise, xis = 1 and np = 0
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because (1, δ) cannot cross (xis ,mp + 1). Hence, (1, δ −mp) ∈ A and Xs[x] 6= Ys[y] holds
for every (x, y) ∈ B(As) ∩ ([1 . . ns]× [δ −mp . .ms]).

np + 1 xis1
XpXs :

1 mp + 1yip
YpYs :

Figure 2: Alignment A ∈ qGAk(XpXs, YpYs).

For strings X,Y ∈ Σ∗ and an integer k ≥ ed(X,Y ), we define a set

qMk(X,Y ) =
⋂

A∈qGAk(X,Y )

MX,Y (A)

of common matches of all alignments A ∈ qGAk(X,Y ).

Definition 5.16. For strings X,Y ∈ Σ∗ and an integer k, we define the quasi-greedy encoding

qGRk(X,Y ) =

{
EqMk(X,Y )(X,Y ) if ed(X,Y ) ≤ k,
⊥ otherwise.

Corollary 5.17. Consider strings X,Y ∈ Σ≤n. Define X ′ = $1X and Y ′ = $2Y , where $1 6= $2

are special symbols not in Σ. Let M ′ = Mk+1(X ′, Y ′) and M = qMk(X,Y ). The following
properties hold:

(a) Given the dummy segments for one of the strings XM , (X ′)M
′
, the dummy segments for

the other string can be constructed in O(k) time and space;
(b) Given one of the encodings qGRk(X,Y ),GRk+1(X ′, Y ′), the other encoding can be con-

structed in O(k2 log4 n) time and space;
(c) The quasi-greedy encoding qGRk(X,Y ) occupies O(k2 log4 n) space.

Proof. Let us first show that A′ 7→ A′[2. .],[2. .] bijectively maps GAk+1(X ′, Y ′) to qGAk(X,Y ).

Consider a greedy alignment A′ ∈ GAk+1(X ′, Y ′) and let A = A′[2. .],[2. .]. Lemma 5.15

yields A ∈ qGAk+1(X,Y ). However, we actually have cost(A) ≤ k because M(A′) = {(x, y) :
(x+ 1, y + 1) ∈M(A)} holds due to X ′[1] 6= Y ′[1].

We now show the opposite direction. Let A ∈ qGAk(X,Y ). Suppose that there is δ ∈
[1 . . |Y |] such that (1, δ) ∈ A and X[x] 6= Y [y] holds for every (x, y) ∈ B(A) ∩ ([1 . . |X|] ×
[δ . . |Y |]) (the other case is symmetrical). It follows in particular that A contains elements
{(1, 1), (1, 2), . . . , (1, δ)}. We start by replacing each element (x, y) of A with (x+ 1, y+ 1). We
add an element (1, 1) to A and replace each element (2, i), 2 ≤ i ≤ δ + 1, with (1, i). Finally,
we add an element (2, δ + 1). We claim that the resulting alignment A′, that we treat as an
alignment of X ′ and Y ′, is greedy. For every element (x, y) ∈ B(A′)∩([2 . . |X ′|]×[δ+1 . . |Y ′|]) we
have (x−1, y−1) ∈ B(A)∩([1 . . |X|]× [δ . . |Y |]) and hence from quasi-greediness of A we obtain
X ′[x] = X[x− 1] 6= Y [y − 1] = Y ′[y]. For every element (1, i) ∈ A′ we have X ′[1] = $1 6= Y [i].
It follows that A′ is greedy. In addition, the cost of A′ equals the cost of A plus one and hence
is bounded by k + 1. Finally, note that M(A′) = {(x, y) : (x− 1, y − 1) ∈M(A)}.

Let M ′ =Mk+1(X ′, Y ′) and M = qMk(X,Y ). From above, we obtain M ′ = {(x+1, y+1) :
(x, y) ∈M}. Therefore, (X ′)M

′
[2 . .] = XM and (Y ′)M

′
[2 . .] = YM .
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It follows that we can obtain the dummy segments for XM by subtracting one from the
endpoints of each dummy segment of (X ′)M

′
, and analogously for YM . The reverse claim is

obtained analogously, by adding one to the endpoints. As the number of the dummy segments
in XM and (X ′)M

′
is O(k) by Lemma 3.10, (a) follows.

From (a) it follows that given the rank data structures for one pair of strings XM , YM

and (X ′)M
′
, (Y ′)M

′
, the rank data structures for the other pair can be built in O(k) time

and space. We now must show that given the D data structure for one of the two strings
XMYM , (X ′)M

′
(Y ′)M

′
, we can construct the D data structure for the other string efficiently.

Assume that we are given D((X ′)M
′
(Y ′)M

′
), the other case is analogous. We extract all non-

dummy segments using Proposition 4.2(g) and concatenate them using Proposition 4.2(i). In
total, it takes O(k2 log4 n) time and space, giving (b).

(c) follows immediately from (b).

From Corollaries 5.13 and 5.17 it immediately follows that:

Claim 5.18. Given an integer k ∈ Z+ and strings X,Y ∈ Σ≤k
2
, one can compute qGRk(X,Y )

in Õ(k3) time and Õ(k2) space.

Corollary 5.19. Consider a non-crossing matching M of strings X,Y ∈ Σ≤n and an integer
k ∈ Z+ such that M ⊆ qMk(X,Y ) if ed(X,Y ) ≤ k. Given k and EM (X,Y ), the quasi-
greedy encoding qGRk(X,Y ) can be computed in Õ(k5 + zk) time and Õ(k2 + z) space, where
z = |LZ(XMYM )|.

Proof. Let $1 6= $2 be auxiliary symbols not in Σ ∪ {#}. We construct M ′ = {(x + 1, y +
1) : (x, y) ∈ M} and EM

′
($1X, $2Y ). Note that M ′ is a non-crossing matching of $1X, $2Y .

Moreover, if M ⊆ qMk(X,Y ), then M ′ ⊆ Mk+1($1X, $2Y ) holds by Corollary 5.17. Hence,
we can construct GRk+1($1X, $2Y ) using Proposition 5.12. Then, we derive qGRk(X,Y ) using
Corollary 5.17 again. By Lemma 3.11, we have |Bk+1($1X, $2Y )| = O(k5), which gives the
desired time bound.

Observation 5.20. Let k′ ≤ k. Given qGRk(X,Y ), the encoding qGRk′(X,Y ) can be computed
in Õ(k5) time and Õ(k2) space.

Proof. For k′ ≤ k, we have qMk(X,Y ) ⊆ qMk′(X,Y ) by definition. The claim follows
from Corollary 5.19.

We now show that the quasi-greedy encodings are concatenatable.

Lemma 5.21. Consider strings Xp, Yp, Xs, Ys ∈ Σ≤n and k ∈ Z+. Assume max{
∣∣|Xp| −

|Yp|
∣∣, ∣∣|Xs|−|Ys|

∣∣} = O(k). Given qGRk+||Xs|−|Ys||(Xp, Yp) and qGRk+||Xp|−|Yp||(Xs, Ys), one can

compute qGRk(XpXs, YpYs) in Õ(k5) time and Õ(k2) space.

Proof. For brevity, let Mp = qMk+||Xs|−|Ys||(Xp, Yp) and Ms = qMk+||Xp|−|Yp||(Xs, Ys). Let
also X = XpXs, Y = YpYs.

By Lemma 5.15, if ed(X,Y ) ≤ k, then M := Mp ∪ {(x + |Xp|, y + |Yp|) : (x, y) ∈ Ms} ⊆
qMk(X,Y ). Hence, we shall construct EM (X,Y ) and then apply Corollary 5.19.

For this, we extract D(X
Mp
p ),D(XMs

s ),D(Y
Mp
p ),D(YMs

s ) using Proposition 4.2(g), and then

concatenate them to D(XMYM ) = D(X
Mp
p XMs

s Y
Mp
p YMs

s ) using Proposition 4.2(i). Overall,
this takes O(k2 log4 n) time. Then, we use Proposition 5.2 to build RS#(XM ) and RS#(YM )
in Õ(k) time.

Finally, we note that using Corollary 5.19 costs Õ(k5) time and Õ(k2) space (here we use
the fact that

∣∣|Xp| − |Yp|
∣∣ = O(k)).
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Finally, as a corollary we derive an algorithm that can compute the quasi-greedy encoding
of arbitrarily long strings.

Corollary 5.22. Assuming constant-time random access to a string X ∈ Σ` and streaming
access to a string Y ∈ Σ`, where ` ≤ n, there is an algorithm that constructs qGRk(X,Y ) with
a delay of at most k2 characters in Õ(k3) amortised time per character and Õ(k2) space. The
delay means that at the moment when the y-th character of Y arrives, the algorithm knows
qGRk(X[. . y′], Y [. . y′]), where |y − y′| ≤ k2.

Proof. If ` ≤ k2, construct qGRk(X,Y ) via Claim 5.18 in Õ(k3) (total) time and Õ(k2) space.
Otherwise, partition the strings into non-overlapping blocks X = X1 · · ·Xp and Y = Y1 · · ·Yp
so that |Xi| = |Yi| = k2 for all i ∈ [1 . . p) and |Xp| = |Yz| = ` mod k2. Suppose that we have
computed qGRk(X1 · · ·Xi−1, Y1 · · ·Yi−1) for i ∈ [1 . . p). Compute qGRk(X1 · · ·Xi, Y1 · · ·Yi) in
the following manner: first, compute qGRk(Xi, Yi) inO(k5) time andO(k2) space via Claim 5.18,
and then compute qGRk(X1 · · ·Xi, Y1 · · ·Yi) in Õ(k5) time and Õ(k2) space via Lemma 5.21.

5.4 Products of Greedy Alignments

Definition 3.12. Consider strings X,Y, Z ∈ Σ∗, an alignment AX,Y of X,Y , an alignment
AY,Z of Y,Z, and an alignment AX,Z of X,Z. We say that AX,Z is a product of AX,Y and AY,Z
if, for every (x, z) ∈ AX,Z , there is y ∈ [1 . . |Y |+ 1] such that (x, y) ∈ AX,Y and (y, z) ∈ AY,Z .

Lemma 3.13. Consider strings X,Y, Z ∈ Σ∗ and k ∈ Z≥0. Every alignment AX,Z ∈ GAk(X,Z)
is a product of alignments AX,Y ∈ GAd(X,Y ) and AY,Z ∈ GAd(Y, Z), where d = 2k+ ed(X,Y ).

Proof. We proceed by induction on |X| + |Y | + |Z|. In the base case, when at least one of
the strings X,Y, Z is empty, we set AX,Y and AY,Z to be any greedy optimal alignments of
X,Y and Y, Z, respectively, so that cost(AX,Y ) = ed(X,Y ) and cost(AY,Z) = ed(Y, Z) ≤
ed(X,Y )+ed(X,Z) ≤ ed(X,Y )+cost(AX,Z). Moreover, it easy to check that AX,Z is a product
of AX,Y and AY,Z because two out of these three alignments simply delete all characters of the
non-empty string.

In the inductive step, we assume that all strings X,Y, Z are non-empty, and we consider
several cases.

1. X[1] = Z[1] = Y[1].
We recurse on X ′ = X[2 . .], Y ′ = Y [2 . .], Z ′ = Z[2 . .], and AX′,Z′ = AX,Z[2. .],[2. .], which is

greedy due to X[1] 'AX,Z Z[1]. This yields greedy alignments AX′,Y ′, AY ′,Z′ of cost at
most d′ = 2cost(AX,Z) + ed(X,Y ) = d. We extend them so that X[1] 'AX,Y Y [1] and
Y [1] 'AY,Z Z[1], obtaining alignments of cost up to d.

2. X[1] = Z[1] 6= Y[1].
In this case, we have ed(X,Y ) > min(ed(X[2 . .], Y [2 . .]), ed(X[2 . .], Y ), ed(X,Y [2 . .])).

(a) If ed(X,Y ) > ed(X[2 . .], Y [2 . .]), we recurse on X ′ = X[2 . .], Y ′ = Y [2 . .], Z ′ =
Z[2 . .], and AX′,Z′ = AX,Z[2. .],[2. .], which is greedy due to X[1] 'AX,Z Z[1]. This yields

greedy alignments AX′,Y ′, AY ′,Z′ of cost at most d′ = 2cost(AX,Z) + ed(X,Y ) − 1 =
d − 1. We extend them so that X[1] ∼AX,Y Y [1] and Y [1] ∼AY,Z Z[1], obtaining
alignments of cost up to d.

(b) If ed(X,Y ) > ed(X[2 . .], Y ), we recurse on X ′ = X[2 . .], Y ′ = Y , Z ′ = Z[2 . .],
and AX′,Z′ = AX,Z[2. .],[2. .], which is greedy due to X[1] 'AX,Z Z[1]. This yields greedy

alignments AX′,Y ′, AY ′,Z′ of cost at most d′ = 2cost(AX,Z)+ed(X,Y )−1 = d−1. We
extend them so that AX,Y deletes X[1] and AY,Z deletes Z[1], obtaining alignments
of cost up to d.
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(c) If ed(X,Y ) > ed(X,Y [2 . .]), we recurse on X ′ = X, Y ′ = Y [2 . .], Z ′ = Z, and
AX′,Z′ = AX,Z . This yields greedy alignments AX′,Y ′, AY ′,Z′ of cost at most d′ =
2cost(AX,Z) + ed(X,Y )− 1 = d− 1. We extend them so that AX,Y and AY,Z both
delete Y [1], obtaining alignments of cost up to d.

3. X[1] 6= Z[1] = Y[1].

(a) If AX,Z deletes X[1], we recurse on X ′ = X[2 . .], Y ′ = Y , Z ′ = Z, and AX′,Z′ =
AX,Z[2. .],[1. .]. This yields greedy alignments AX′,Y ′, AY ′,Z′ of cost ≤ d′ = 2cost(AX,Z)−
2 + ed(X ′, Y ′) ≤ d − 1. We derive AY,Z = AY ′,Z′ and extend AX′,Y ′ so that AX,Y
deletes X[1], obtaining an alignment of cost up to d.

(b) If AX,Z deletes Z[1], we recurse on X ′ = X, Y ′ = Y [2 . .], Z ′ = Z[2 . .], and AX′,Z′ =
AX,Z[1. .],[2. .]. This yields greedy alignments AX′,Y ′, AY ′,Z′ of cost ≤ d′ = 2cost(AX,Z)−
2+ed(X ′, Y ′) ≤ d−1. We extend them so thatAX,Y deletes Y [1] and Y [1] 'AY,Z Z[1],
obtaining alignments of cost up to d.

(c) If X[1] ∼AX,Z Z[1], we recurse on X ′ = X[2 . .], Y ′ = Y [2 . .], Z ′ = Z[2 . .], and
AX′,Z′ = AX,Z[2. .],[2. .]. This yields greedy alignments AX′,Y ′, AY ′,Z′ of cost ≤ d′ =

2cost(AX,Z)− 2 + ed(X ′, Y ′) ≤ d− 1. We extend them so that X[1] ∼AX,Y Y [1] and
Y [1] 'AY,Z Z[1], obtaining alignments of cost up to d.

4. X[1] 6= Z[1] 6= Y[1]. (Note that this case allows both X[1] = Y [1] and X[1] 6= Y [1].)

(a) If AX,Z deletes X[1], we recurse on X ′ = X[2 . .], Y ′ = Y [2 . .], Z ′ = Z, and
AX′,Z′ = AX,Z[2. .],[1. .]. This yields greedy alignments AX′,Y ′, AY ′,Z′ of cost at most

d′ = 2cost(AX,Z)− 2 + ed(X ′, Y ′) ≤ d− 2. We extend them so that X[1] ∼AX,Y Y [1]
and AY,Z deletes Y [1], obtaining alignments of cost up to d− 1.

(b) If AX,Z deletes Z[1], we recurse on X ′ = X, Y ′ = Y , Z ′ = Z[2 . .], and AX′,Z′ =
AX,Z[1. .],[2. .]. This yields greedy alignments AX′,Y ′, AY ′,Z′ of cost ≤ d′ = 2cost(AX,Z)−
2 + ed(X,Y ) = d − 2. We derive AX,Y = AX′,Y ′ and extend AY ′,Z′ so that AY,Z
deletes Z[1], obtaining an alignment of cost up to d− 1.

(c) If X[1] ∼AX,Z Z[1], we recurse on X ′ = X[2 . .], Y ′ = Y [2 . .], Z ′ = Z[2 . .], and
AX′,Z′ = AX,Z[2. .],[2. .]. This yields greedy alignments AX′,Y ′, AY ′,Z′ of cost ≤ d′ =

2cost(AX,Z)− 2 + ed(X ′, Y ′) ≤ d− 2. We extend them so that X[1] ∼AX,Y Y [1] and
Y [1] ∼AY,Z Z[1], obtaining alignments of cost up to d− 1.

In all the cases above, AX,Y is greedy because AX′,Y ′ is greedy and AX,Y matches X[1]
with Y [1] whenever X[1] = Y [1]. Similarly, AY,Z is greedy because AY ′,Z′ is greedy and AY,Z
matches Y [1] with Z[1] whenever Y [1] = Z[1]. Moreover, AX,Z is a product of AX,Y and AY,Z
because each alignment starts with (1, 1) and since AX′,Z′ is a product of AX′,Y ′ and AY ′,Z′ .

Assume that we are given three strings X,Y, Z. Let d = ed(X,Y ) + 2k, and define
GX = GRd(X,Y ) and GZ = GRd(Y, Z). We show that given GX and GZ , we can compute
an optimal alignment between X and Z efficiently if its cost is at most k. Let M = {(x, z) :
∃y such that (x, y) ∈Md(X,Y ) and (y, z) ∈Md(Y,Z)}.

Lemma 5.23. If ed(X,Z) ≤ k, then M ⊆Mk(X,Z).

Proof. Suppose that (x, y) ∈ Md(X,Y ) and (y, z) ∈ Md(Y,Z). For a proof by contradiction,
suppose that X[x] 6∼A Z[z] for some A ∈ GAk(X,Z). Then, there exists (x′, z′) ∈ A such that
either x′ ≤ x and z′ > z, or x′ > x and z′ ≤ z. By symmetry, without loss of generality,
we consider the first alternative. By Lemma 3.13, A is a product AX,Y ∈ GAd(X,Y ) and
AY,Z ∈ GAd(Y,Z). According to Definition 3.12, this means that there exists y′ such that
(x′, y′) ∈ AX,Y and (y′, z′) ∈ AY,Z . If y′ ≤ y, then (y, z), (y′, z′) ∈ AY,Z implies that AY,Z
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deletes Z[z], contradicting (y, z) ∈ M(AY,Z). Similarly, if y′ > y, then (x, y), (x′, y′) ∈ AX,Y
implies that AX,Y deletes Y [y], contradicting (x, y) ∈M(AX,Y ). This completes the proof that
X[x] ∼A Z[z] for every A ∈ GAk(X,Z). Due to X[x] = Y [y] = Z[z], we also have X[x] 'A Z[z]
for every A ∈ GAk(X,Z), i.e., (x, y) ∈Mk(X,Z) holds as claimed.

Lemma 5.24. If ed(X,Y ) = O(k) and GX ,GZ 6= ⊥, EM (X,Z) can be computed in Õ(k3) time
and Õ(k2) space.

Proof. Let us first explain how XM can be constructed. Consider a position x ∈ [1 . . |X|]
such that (x, z) /∈ M for every z ∈ [1 . . |Z|]. If XMd(X,Y )[x] 6= #, then XM [x] = X[x] =
XMd(X,Y )[x]. Otherwise, (x, y) ∈ Md(X,Y ) for some y ∈ [1 . . |Y |]. By Lemma 5.23, we
have (y, z) /∈ Md(Y, Z) for every z ∈ [1 . . |Z|]. Hence, YMd(Y,Z)[y] 6= #, and we have X[x] =
Y [y] = YMd(Y,Z)[y]. In words, non-dummy characters of XM can be retrieved from non-dummy
characters of XMd(X,Y ) and non-dummy characters of YMd(Y,Z).

Thus, for each dummy segment [` . . r) in XMd(X,Y ) and its counterpart [`′ . . r′) in YMd(X,Y ),
we need to set XM [` . . r) := YMd(Y,Z)[`′ . . r′). Such a copy-paste operation can be implemented
using Proposition 4.2(g)(i), in O(k2 log4 n) time per dummy segment. We can also keep track of
the dummy segments in XM within the same procedure. The algorithm for ZM is symmetric,
and thus we can construct D(XMZM ) along with the dummy segments in Õ(k3) time and Õ(k2)
space. Finally, we build RS#(XM ) and RS#(ZM ) in O(k) time.

Corollary 5.25. Given GX and GZ . If ed(X,Y ) = O(k), then we can compute min(k +
1, ed(X,Z)) in Õ(k3) time and Õ(k2) space.

Proof. If GX or GZ equals to ⊥, then ed(X,Z) > k by Lemma 3.13. Otherwise, construct
EM (X,Z) using Lemma 5.24. Finally, we pass k and EM (X,Z) to the algorithm of Corollary 5.5,
and we return the resulting value d.

Note that M is a non-crossing matching of X,Z, so d = k + 1 is correctly returned if
ed(X,Z) > k. If ed(X,Z) ≤ k, then Lemma 5.23 impliesM ⊆Mk(X,Z), and thus d = ed(X,Z)
holds as claimed.

The overall runtime and space complexity are dominated by the procedure of Lemma 5.24.

Remark 5.26. Using Proposition 5.12 instead of Corollary 5.5, we could construct GRk(X,Z).

Corollary 5.27. Consider three strings X,Y, Z. Let d = ed(X,Y ) + 2k, and assume that we
are given qGRd(X,Y ) and qGRd(Y,Z). If ed(X,Y ) = O(k), then we can compute min(k +
1, ed(X,Z)) in Õ(k3) time and Õ(k2) space.

Proof. We compute GX = GRd+1($1X, $2Y ) and qGRd+1($2Y, $3Z) in Õ(k2) time and space
via Corollary 5.17, and apply Corollary 5.25 to compute min(k+2, ed($1X, $2Z))−1 = min(k+
1, ed(X,Z)) in Õ(k3) time and Õ(k2) space.

6 Edit Distance Sketches

6.1 CGK embedding

In this section, we prove Proposition 3.16 based on the CGK embedding introduced in [10].
Recall that the Hamming distance between the embeddings of two strings X,Y ∈ Σ≤n is
bounded in terms of the edit distance ed(X,Y ), which allows using Hamming distance sketches
to approximate edit distance.
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Definition 6.1 (CGK embedding [10]). Consider an alphabet Σ, a sentinel character ⊥ /∈ Σ,
and a 2-independent family H of hash functions h : Σ → {0, 1}. For an integer n ∈ Z+,
a (uniformly random) sequence R ∈ H3n, and a string S ∈ Σ≤n, the CGK walk WCGK(S) =
(st)

3n+1
t=1 and the CGK embedding CGK(S) ∈ (Σ∪{⊥})3n are defined by the following algorithm:

Input: An integer n ∈ Z+, a string S ∈ Σ≤n.
Randomness: A sequence R ∈ H3n of 2-independent hash functions Σ→ {0, 1}.
Output: The CGK walk WCGK(S) = (st)

3n+1
t=1 and the CGK embedding CGK(S).

1 s1 := 1;
2 for t := 1 to 3n do
3 if st ≤ |S| then
4 CGK(S)[t] := S[st];
5 st+1 := st +Rt(S[st]);

6 else
7 CGK(S)[t] := ⊥;
8 st+1 := st;

Algorithm 2: The CGK algorithm

Recall from Definition 3.14 that an m-step walk over S is complete if sm+1 = |S|+ 1.

Fact 6.2 ([10, Theorem 4.1]). Each S ∈ Σ≤n satisfies PrR[WCGK(S) is complete] ≥ 1− e−Ω(n).

The following result summarizes the central property of the CGK embedding.

Fact 6.3 ([10, Theorem 4.3]). For every X,Y ∈ Σ≤n and every constant c > 0, the embeddings
CGK(X), CGK(Y ) satisfy PrR∈H3n [hd(CGK(X),CGK(Y )) > c · ed(X,Y )2] < 12√

c
.

If WCGK(X) and WCGK(Y ) are complete, Definition 3.15 yields an edit-distance alignment of
X,Y , which we call the CGK alignment of X,Y . that they induce an edit-distance alignment

Fact 6.4 (see also [10, Theorem 4.2]). If WCGK(X) and WCGK(Y ) are complete for some X,Y ∈
Σ≤n and R ∈ H3n, then the CGK alignment of X,Y belongs to GAhd(CGK(X),CGK(Y ))(X,Y ).

Proof. Let A be the CGK alignment of X,Y , i.e., the zip alignment of WCGK(X) = (xt)
3n+1
t=1 and

WCGK(Y ) = (yt)
3n+1
t=1 . Consider (xt, yt) ∈ B(A), with t ∈ [1 . . 3n+ 1] chosen so that t = 3n+ 1

or (xt+1, yt+1) 6= (xt, yt). If t = 3n+ 1, then (xt, yt) = (|X|+ 1, |Y |+ 1) by the assumption that
WCGK(X) andWCGK(Y ) are complete. If (xt+1, yt+1) = (xt+1, yt+1), then we have CGK(X)[t] =
X[xt] 6= Y [yt] = CGK(Y )[t]. The remaining possibility xt+1 − xt 6= yt+1 − yt holds only in the
following three cases: if xt = |X|+1 and yt ≤ |Y | (when CGK(X)[t] = ⊥ 6= CGK(Y )[t] = Y [yt]),
if xt ≤ |X| and yt = |Y | + 1 (when X[xt] = CGK(X)[t] 6= ⊥ = CGK(Y )[t]), or if xt ≤ |X|,
yt ≤ |Y |, and Rt(X[xt]) 6= Rt(Y [yt]) (when CGK(X)[t] = X[xt] 6= Y [yt] = CGK(Y )[t]). Overall,
we have X[xt] 6= Y [yt] whenever (xt, yt) ∈ [1 . . |X|] × [1 . . |Y |], and CGK(X)[t] 6= CGK(Y )[t]
whenever t ∈ [1 . . 3n]. Consequently, A ∈ GAhd(CGK(X),CGK(Y ))(X,Y ).

The final property of the CGK alignment required in this work is that its width is within
O(ed(X,Y )) with good probability. For this, we first prove a fact about random walks:

Fact 6.5. Let (wi)i≥0 be an unbiased lazy random walk (that is, w0 = 0, and, for every i ≥ 1,
we have Pr[wi+1 = wi | w0, . . . , wi] = 1

2 , Pr[wi+1 = wi + 1 | w0, . . . , wi] = Pr[wi+1 = wi − 1 |
w0, . . . , wi] = 1

4). Then, for every m, ` ∈ Z+, we have Pr[maxmi=0 |wi| ≥ `] ≤ m
`2

.
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Proof. By the reflection principle [44, Excercise 2.10], we have Pr[maxmi=0 |wi| ≥ `] ≤ 2 Pr[|wm| ≥
`] = 2 Pr[w2

m ≥ `2]. By Markov’s inequality,

2 Pr[w2
m ≥ `2] ≤ 2E[w2

m]

`2
=

2E[(w1 − w0)2 + · · ·+ (wm − wm−1)2]

`2
=
m

`2
.

Corollary 6.6. For every constant δ ∈ (0, 1), there exists a constant c such that for sufficiently
large n, all strings X,Y ∈ Σ≤n, and their CGK alignment A, the probability over R ∈ H3n

that WCGK(X),WCGK(Y ) are complete, A ∈ GAc·ed(X,Y )2(X,Y ), and width(A) ≤ c · ed(X,Y ) is
at least 1− δ.

Proof. By Fact 6.2, Pr[WCGK(S) is incomplete] ≤ δ
4 holds for every S ∈ Σ≤n and sufficiently

large n = Ω(log 1
δ ). By Fact 6.3, there is a constant c such that Pr[hd(CGK(X),CGK(Y )) >

c·ed(X,Y )2] ≤ δ
4 . We may take arbitrarily large c, so we shall also assume that c ≥ 4

δ . Moreover,
by Fact 6.4, if WCGK(X) and WCGK(Y ) are complete and hd(CGK(X),CGK(Y )) ≤ c · ed(X,Y )2,
then A ∈ GAc·ed(X,Y )2(X,Y ).

To bound width(A), let us analyze the CGK walks WCGK(X) = (xt)
3n+1
t=1 and WCGK(Y ) =

(yt)
3n+1
t=1 . Let T be the first step such that xT = |X| + 1, yT = |Y | + 1, or T = 3n + 1. Note

that it suffices to bound Pr[maxTt=1 |xt − yt| ≥ ck], where k = ed(X,Y ).
Let A = {1}∪{t+1 : t ∈ [1 . . T ) and X[xt] 6= Y [yt]}. Observe that xt−yt = xt−1−yt−1 holds

for t ∈ [1 . . T ] \A, so we may focus on bounding Pr[maxt∈A |xt− yt| ≥ ck]. Let A = {t0, . . . , ta}
with t0 < · · · < ta, and let di = xti − yti for i ∈ [0 . . a]. Observe that (di)

a
i=0 is an a-step

unbiased lazy random walk and that a ≤ hd(CGK(X),CGK(Y )). Moreover, if we extend (di)
a
i=0

to an infinite unbiased lazy random walk (di)
∞
i=0, then Fact 6.5 yields Pr[max

bck2c
i=0 |di| ≥ ck] ≤

ck2

c2k2
= 1

c ≤
δ
4 . Therefore,

Pr

[
a

max
i=0
|di| ≥ ck

]
≤ Pr

[
hd(CGK(X),CGK(Y )) > ck2

]
+ Pr

[
bck2c
max
i=0
|di| ≥ ck

]
.

Consequently, if CGK(X) and CGK(Y ) are complete, hd(CGK(X),CGK(Y )) ≤ ck2, and the

random walk satisfies Pr
[
max

bck2c
i=0 |di| < ck

]
, then the alignment A satisfies the lemma. The

total probability of the complementary events is at most δ, so this completes the proof.

To complete the proof of Proposition 3.16 (repeated below), it remains to reduce the number
of random bits using Nisan’s pseudorandom generator [50].

Proposition 3.16. For every constant δ ∈ (0, 1), there exists a constant c and an algorithm
W that, given an integer n, a seed r of O(log2 n) random bits, and a string S ∈ Σ≤n, outputs
a 3n-step complete walk W(n, r, S) over S satisfying the following property for all X,Y ∈ Σ≤n

and the zip alignment AW of W(n, r,X) and W(n, r, Y ):

Pr
r

[
AW ∈ GAc·ed(X,Y )2(X,Y ) and width(AW) ≤ c · ed(X,Y )

]
≥ 1− δ.

Moreover, W is an O(log2 n)-bit streaming algorithm that costs O(n log n) time and reports any
element st ∈ [1 . . |S|] of W(n, r, S) while processing the corresponding character S[st].

Proof. Let c6.6 and n6.6 be the constant and threshold (respectively) of Corollary 6.6 for δ6.6 = δ
2 .

If n < max(10
δ , n6.6), we set W(n, r, S) = (min(t, |S| + 1))3n+1

t=1 for all S ∈ Σ≤n so that
W(n, r, S) is trivially a 3n-step complete walk over S. Now, consider strings X,Y ∈ Σ≤n and
the zip alignment AW of W(n, r,X) and W(n, r, Y ). Observe that AW ∈ GA0(X,Y ) if X = Y
and AW ∈ GAn(X,Y ) otherwise. Moreover, width(AW) =

∣∣|X|−|Y |∣∣ ≤ ed(X,Y ). Consequently,
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the claimed conditions are (deterministically) satisfied for c ≥ n6.6. The construction algorithm
uses O(log n) bits and O(n) time.

If n ≥ max(10
δ , n6.6), we first develop an algorithm W′ that uses Θ(n log σ) random bits,

interpreted as a sequence R ∈ H3n. Specifically, each hash function Rt is specified by an
dlog σe-bit integer ht so that Rt(a) counts (modulo 2) the set bits in a xor ht.

We set W′(n,R, S) = (max(t−3n+|S|, st))3n+1
t=1 based on the CGK walk WCGK(S) = (st)

3n+1
t=1

for all S ∈ Σ≤n. Observe that this modification guarantees that W′(n,R, S) is a complete walk
over S and that W′(n,R, S) = WCGK(S) if WCGK(S) is already complete. Consequently, by
Corollary 6.6, the claimed conditions are satisfied with probability at least 1− δ6.6 = 1− δ

2 for
c ≥ c6.6. The construction algorithm uses O(log n) bits, costs O(n) time, reads the random bits
(ht)

3n+1
t=1 from left to right, and outputs the elements of W′(n,R, S) when required.
In order to use Nisan’s pseudorandom generator [50], we need to argue that we only care

about properties testable using O(log n)-bit algorithms with one-way access to the random-
ness R. As in [10], our testers are given two (read-only) strings X,Y ∈ Σ≤n and a stream of
random bits representing R (the sequence (ht)

3n
t=1). Observe that the following properties of the

zip alignment A′ of W′(n,R,X) = (xt)
3n+1
t=1 and W′(n,R, Y ) = (yt)

3n+1
t=1 are testable in O(log n)

bits and O(n) time:

• whether A′ is greedy;
• whether cost(A′) ≤ k for a given integer k ∈ [0 . . n];
• whether width(A′) ≤ w for a given integer w ∈ [0 . . n].

All these testers simply construct triples (t, xt, yt) for subsequent t ∈ [1 . . 3n+ 1].
In this setting, Nisan’s pseudorandom generator [50], given a sequence r of O(log2 n) random

bits, constructs a sequence PRG(r) of pseudorandom bits in O(1) amortized time per bit, using
O(log2 n) bits of working space. Moreover, for every tester, the probabilities of accepting a given
input I with randomness R and PRG(r) differ by at most 1

n2 [10, Theorem 5]. Consequently,
setting W(n, r, S) = W′(n,PRG(r), S), we can guarantee that the claimed condition is satisfied

with probability at least 1− 1
2δ −

(2n+3)
n2 ≥ 1− δ. The streaming construction algorithm takes

O(log2 n) bits and O(n log n) time, dominated by the generation of PRG(r).

6.2 Context encoding

For a string S ∈ Σ∗, define maxLZ(S) = max[`. .r)⊆[1. .|S|] |LZ(S[` . . r))|.

Observation 6.7. Consider a string S ∈ Σ∗ and an integer k ∈ Z+. If maxLZ(S[` . . r)) ≤ k
holds for a non-empty fragment S[` . . r), then:

(a) maxLZ(S[` . . r]) ≤ k if and only if LZ(S[` . . r]) ≤ k;
(b) maxLZ(S[`+ 1 . . r)) ≤ k;
(c) maxLZ(S[` . . r]) ≤ k + 1.

Proof. The first two parts follow from the fact that the size of the LZ-factorisation of a prefix of
a string is bounded by the size of the LZ-factorisation of the string itself. The third claim follows
from the optimality of the LZ77 parsing among all LZ-like parsings (Observation 4.1).

Definition 6.8 ((Double) Context). Consider a string S ∈ Σ∗ and an integer k ∈ Z+. For a
position p ∈ [1 . . |S|], we define the context Ck(S, p) as the longest prefix S[p . . q) of S[p . . |S|]
such that maxLZ(S[p . . q)) ≤ k and the double context C2

k(S, p) as the longest prefix S[p . . q) of
S[p . . |S|] such that maxLZ(S[p . . r)) ≤ k and maxLZ(S[r . . q)) ≤ k for some r ∈ [p . . q].

For integers t < v, let µ(t, v) denote the integer w ∈ [t . . v) divisible by the largest power of 2.
We say that a position S[s] is covered by a fragment S[` . . r) if ` ≤ s < r.

31



Input: An integer k ∈ Z≥0, a string S ∈ Σ∗, and a complete walk (st)
m+1
t=1 over S.

Output: The string CEk(W )[1 . .m].

1 CEk(W ) := ⊥m, where ⊥ = (LZ(ε), 0);
2 s0 := 0; µ0 := 0; u := 0;
3 for t := 1 to m do
4 if st ≤ |S| then
5 µt := µ(t,min{v ∈ [1 . .m+ 1] : sv = st + |Ck(S, st)|});
6 if µt > µt−1 then

7 CEk(W )[t] :=
(

LZ
(
C2
k(S, st)

)
, st − su

)
;

8 u := t;

9 return CEk(W );

Algorithm 3: Function CE

Lemma 6.9. Consider CEk(W ) constructed for an integer k ∈ Z≥0 and an m-complete walk
W = (st)

m+1
t=1 over S ∈ Σ∗. Each position s ∈ [1 . . |S|] satisfies

1 ≤ |{t ∈ [1 . .m] : CEk(W )[t] 6= ⊥ and Ck(S, st) covers S[s]}| ≤
≤ |{t ∈ [1 . .m] : CEk(W )[t] 6= ⊥ and C2

k(S, st) covers S[s]}| ≤ O(logm)

Proof. Let us first bound the covering number from below. Consider an index t ∈ [1 . .m]
such that s = st, and let t′ ∈ [1 . .m] be the smallest index such that µt′ = µt. Note that
sµt′ < st′ + |Ck(S, st′)| and sµt ≥ st by definition of µ and monotonicity of the walk W . Due to
µt′ = µt, this implies st′ ≤ st < st′ + |Ck(S, st′)|, i.e., that S[st] is covered by Ck(S, st′). Due to
µt′−1 6= µt, this guarantees CEk(S)[t′] 6= ⊥.

As for the upper bound, note that the indexes t ∈ [1 . .m] with CEk(S)[t] 6= ⊥ have distinct
values µt. Let us further classify them into O(log n) groups depending on the largest power of
two dividing µt. Consider two indexes t < t′ in the same group. Since µt < µt′ are divisible
by the same largest power of two, there is a number ν ∈ (µt . . µt′) divisible by a strictly larger
power of two. By definition of µt, we have sν ≥ st + |Ck(S, st)| and, by definition of µt′ , we
have sν < st′ . Consequently, st′ > st + |Ck(S, st)|, i.e., the contexts Ck(S, st) and Ck(S, st′) are
disjoint. By monotonicity of maxLZ, this also means that st + |C2

k(S, st)| ≤ st′ + |Ck(S, st′)|. In
particular, each position s ∈ [1 . . |S|] is covered by at most one context Ck(S, st) and at most
two double contexts C2

k(S, st) for t ∈ [1 . .m] belonging to a single group.

Let A be an alignment between X,Y ∈ Σ∗. We define BX(A) = {x : (x, y) ∈ B(A)} ∩
[1 . . |X|]. Moreover, for two alignments A,A′ between X,Y ∈ Σ∗, we define ∆X(A,A′) to
contain x ∈ [1 . . |X|] unless (x, y) ∈M(A) ∩M(A′) for some y ∈ [1 . . |Y |].

Lemma 6.10. Let b ∈ Z+ and A,A′ be greedy alignments of strings X and Y . The positions in
∆X(A,A′) can be covered by at most cost(A) + 1

b cost(A′) contexts Cwidth(A)+width(A′)+2b(X, ·).
Moreover, if b > cost(A′), then the positions in ∆X(A,A′) can be covered by contexts

Cwidth(A)+width(A′)+2b(X,x) with x ∈ BX(A).

Proof. Let w = width(A) and w′ = width(A′). Without loss of generality, we may trim the
longest common prefix of X and Y ; this is feasible because both A and A′ match the common
prefix, so ∆X(A,A′) only contains positions following the prefix. Moreover, we assume that
X 6= ε; otherwise ∆X(A,A′) = ∅ and the lemma is trivial.
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In the remaining case, we are guaranteed that 1 ∈ BX(A). Let BX(A) = {x1, . . . , xm}, where
1 = x1 < · · · < xm, and let xm+1 = |X| + 1. This yields a decomposition X = X1 · · ·Xm into
m non-empty substrings Xi := X[xi . . xi+1). The alignment A′ further yields a decomposition
Y = Y1 · · ·Ym into m (possibly empty) substrings Yi := Y [yi . . yi+1) so that Xi ∼A′ Yi and
|xi − yi| ≤ w′ for i ∈ [1 . .m]. Moreover, the cost of A′ can be expressed as cost(A′) =

∑m
i=1 c

′
i,

where c′i denotes the cost of A′ restricted to Xi and Yi.

Claim 6.11. For every i ∈ [1 . .m], the set ∆X(A,A′) ∩ [xi . . xi+1) can be covered by at most
d1
b (c
′
i + 1)e contexts Cw+w′+2b(X, ·) including Cw+w′+2b(X,xi).

Proof. Let qi = max(∆X(A,A′)∩ [xi . . xi+1)). We may assume that qi ≥ xi+w+w′; otherwise,
the claim holds trivially. We shall prove that X[xi + 1 . . qi − (w+w′)] can be decomposed into
at most 2c′i + 1 phrases, each of which is a single character or has another occurrence at most
w + w′ positions to the right. Accounting for X[xi], this yields a decomposition of X[xi . . qi −
(w+w′)] into at most 2c′i+2 such phrases. The maxLZ measure of the concatenation of every 2b
subsequent phrases and w+w′ following single characters does not exceed w+w′ + 2b. Hence,
X[xi . . qi] can be covered by d1

b (c
′
i + 1)e contexts Cw+w′+2b(X, ·) including Cw+w′+2b(X,xi).

Thus, it remains to construct the decomposition of X[xi + 1 . . qi − (w + w′)] into phrases.
By definition of BX(A), we have X[xi + 1 . . xi+1) 'A Y [xi + 1 + d . . xi+1 + d) for some shift
d ∈ [−w . . w]. We consider two cases.

In the first case, we assume that (xi + 1, ȳ) ∈ A′ holds for some ȳ ≥ xi + 1 + d. The
greedy nature of A′ then guarantees that if (x, y) ∈ A′ with x ∈ [xi + 1 . . qi), then y > x + d.
We decompose X[xi + 1 . . qi − (w + w′)] (which is contained in Xi) into maximal phrases
X[x . . x′] satisfying X[x . . x′] 'A′ Y [x+ d′ . . x′+ d′] for some d′ ∈ (d . . w′] and remaining single
characters (deleted or substituted by A′). Observe that this yields at most 1 + c′i phrases
and at most c′i single characters. Moreover, we have X[x . . x′] 'A′ Y [x + d′ . . x′ + d′] 'A
X[x+(d′−d) . . x′+(d′−d)] due to xi+1 ≤ x ≤ x+(d′−d) and x′+(d′−d) ≤ x′+(w′+w) ≤ qi.
Hence, each phrase X[x . . x′] has another occurrence located d′ − d ∈ [1 . . w + w′] positions to
the right.

In the second case, we assume that (xi + 1, ȳ) ∈ A′ holds for some ȳ ≤ xi + 1 + d. The
greedy nature of A′ then guarantees that if (x, y) ∈ A′ with x ∈ [xi + 1 . . qi), then y < x + d.
We decompose Y [xi + 1 + d . . qi− (w+w′) + d] (which is contained in Yi) into maximal phrases
Y [y . . y′] satisfying Y [y . . y′] 'A′ X[y− d′ . . y′− d′] for some d′ ∈ [−w . . d) and remaining single
characters (deleted or substituted by A′). Observe that this yields at most 1 + c′i phrases and
at most c′i single characters. Moreover, we have Y [y . . y′] 'A′ X[y− d′ . . y′ − d′] 'A Y [y+ (d−
d′) . . y+(d−d′)] due to xi+1 ≤ xi+1+d−d′ ≤ y−d′ and y′−d′ ≤ qi−(w+w′)+d−d′ ≤ qi. Hence,
each phrase Y [y . . y′] has another occurrence located d−d′ ∈ [1 . . w+w′] characters to the right.
Since Y [xi+1+d . . qi+d] = X[xi+1 . . qi], this decomposition of Y [xi+1+d . . qi−(w+w′)+d]
gives an analogous decomposition of X[xi + 1 . . qi − (w + w′)].

The set ∆X(A,A′) can be covered by
∑m

i=1d
1
b (c
′
i + 1)e ≤ m + cost(A′)

b ≤ cost(A) + cost(A′)
b

contexts Cw+w′+2b(X, ·). If b ≥ cost(A′) + 1, then the contexts starting at positions in BX(A)
are sufficient.

Lemma 6.12. Let AW be the zip alignment of m-complete walks WX = (xt)
m+1
t=1 , WY = (yt)

m+1
t=1

over strings X,Y ∈ Σ∗, and let k′ ∈ Z+. If AW is greedy, then BX(AW ) ⊆ PX , where PX is
the set of positions x ∈ [1 . . |X|] such that X[x] is covered by C2

k′(X,xt) for some t ∈ [1 . .m]
with ⊥ 6= CEk′(WX)[t] 6= CEk′(WY )[t]. Moreover, for every positive integer k ≥ ed(X,Y ) such
that k′ ≥ width(AW ) + 5k:

• every A ∈ GAk(X,Y ) satisfies ∆X(A,AW ) ⊆ PX ,
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• hd(CEk′(X),CEk′(Y )) ≤ c(k + 1
kcost(AW )) logm holds for a sufficiently large constant c.

Proof. Consider a position x ∈ BX(AW ). By Lemma 6.9, there is an index t ∈ [1 . .m] such
that CEk′(WX)[t] 6= ⊥ and C2

k′(X,xt) covers X[x]. To conclude that x ∈ PX , it remains to
prove CEk′(WX)[t] 6= CEk′(WY )[t]. For a proof by contradiction, suppose that CEk′(WX)[t] =
CEk′(WY )[t]. This implies C2

k′(X,xt) = C2
k′(Y, yt). Since AW is greedy, we derive X[xt . . xt +

|C2
k′(X,xt)|) 'AW

Y [yt . . yt + |C2
k′(Y, yt)|), which contradicts x ∈ BX(AW ).

In the remainder of the proof, we assume that k ≥ ed(X,Y ) and k′ ≥ width(AW ) + 5k.
Next, consider a greedy alignment A with cost(A) ≤ k and a position x ∈ ∆X(A,AW ). Due to
k′ ≥ width(AW ) + width(A) + 4k, Lemma 6.10 shows that there exists a position r ∈ BX(AW )
such that Ck′(X, r) covers X[x] and, by Lemma 6.9, there exists a position t ∈ [1 . .m] such that
CEk′(X)[t] 6= ⊥ and Ck′(X,xt) covers X[r − 1]. Since maxLZ(X[xt . . r)),maxLZ(X[r . . x]) ≤ k′,
we conclude that both r and x are covered by C2

k′(X,xt). We shall prove that CEk′(X)[t] 6=
CEk′(Y )[t]. For a proof by contradiction, suppose that CEk′(WX)[t] = CEk′(WY )[t], which im-
plies C2

k′(X,xt) = C2
k′(Y, yt). Let us fix the smallest t′ ∈ [t . .m+1] such that (xt′ , yt′) ∈ B(AW ).

Observe that X[xt . . xt′) 'AW
Y [yt . . yt′) and, by the greedy nature of AW , X[xt . . xt′) =

Y [yt . . yt′) is the longest common prefix of X[xt . .] and Y [yt . .]. At the same time, due to
xt < r ∈ BX(AW ), we have xt′ ≤ r, so X[xt . . xt′ ] is a prefix of C2

k′(X,xt). However, X[xt . . xt′ ]
is not a prefix Y [yt . .], so C2

k′(X,xt) is not a prefix of Y [yt . .] and C2
k′(X,xt) 6= C2

k′(Y, yt). The
contradiction completes the proof.

Finally, we bound hd(CEk′(X),CEk′(Y )) using several claims. Consider a set M of indices
t ∈ [1 . .m] such that CEk′(X)[t] and CEk′(Y )[t] differ on the first coordinate.

Claim 6.13. If t ∈M satisfies CEk′(X)[t] 6= ⊥, then

[xt−1 . . xt + |C2
k′(X,xt)|] ∩ (BX(AW ) ∪ {|X|+ 1}) 6= ∅.

Proof. For a proof by contradiction, suppose that [xt−1 . . xt + |C2
k′(X,xt)|]∩ (BX(AW )∪{|X|+

1}) = ∅. Let L be the length of the longest common prefix of X[xt . .] and Y [yt . .]. Note that
(xt + L, yt + L) ∈ B(AW ), so xt + L ∈ BX(AW ) ∪ {|X|+ 1}. Consequently, L > |C2

k′(X,xt)| ≥
|Ck′(X,xt)|, and therefore X[xt . . xt + |C2

k′(X,xt)|] = Y [yt . . yt + |C2
k′(Y, yt)|] and X[xt . . xt +

|Ck′(X,xt)|] = Y [yt . . yt + |Ck′(Y, yt)|]. In particular, C2
k′(X,xt) = C2

k′(Y, yt).
If t = 1, then we note that CEk′(X)[t] 6= ⊥ 6= CEk′(Y )[t], so C2

k′(X,xt) = C2
k′(Y, yt) contra-

dicts t ∈M .
In the following, we assume that t ≥ 2. Due to (xt−1, yt−1) /∈ B(AW ), either (xt−1, yt−1) =

(xt, yt), or (xt−1, yt−1) = (xt − 1, yt − 1) and X[xt − 1] = Y [yt − 1]. In either case, we
have X[xt−1 . . xt−1 + |Ck′(X,xt−1)|] = Y [yt−1 . . yt−1 + |Ck′(Y, yt−1)|] due to X[xt−1 . . xt +
|Ck′(X,xt)|] = Y [yt−1 . . yt + |Ck′(Y, yt)|] and by Observation 6.7. Consequently, min{u ∈
[1 . .m] : xu = xt−1 + |Ck′(X,xt−1)|} = min{u ∈ [1 . .m] : yu = yt−1 + |Ck′(Y, yt−1)|} and,
by a similar reasoning, min{u ∈ [1 . .m] : xu = xt + |Ck′(X,xt)|} = min{u ∈ [1 . .m] : yu =
yt + |Ck′(Y, yt)|}. Hence, the assumption CEk′(X)[t] 6= ⊥ implies CEk′(Y )[t] 6= ⊥. Therefore,
C2
k′(X,xt) = C2

k′(Y, yt) contradicts t ∈M .

Claim 6.14. There are O((k + 1
kcost(AW )) logm) positions t ∈M such that CEk′(X)[t] 6= ⊥.

Proof. Let O be an optimum greedy alignment between X and Y . Due to k′ ≥ width(O) +
width(AW ) + 4k, from Lemma 6.10 it follows that ∆X(O,AW ) can be covered by O(cost(O) +
1
kcost(AW )) = O(k + 1

kcost(AW )) contexts Ck′(X, ·). Let us fix such the smallest family C of
contexts covering BX(AW ) ⊆ ∆X(O,AW ).

Define a set RX = {|X|} ∪
⋃
X[q. .r]∈C{q − 1, r + 1} and note that |RX | = O(|C|). We shall

prove that, if t ∈ M and CEk′(X)[t] 6= ⊥, then C2
k′(X,xt) covers at least one position in RX .
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This is sufficient to derive the claim because, by Lemma 6.9, every position in X is covered by
at most O(logm) double contexts C2

k′(X,xt) with CEk′(X)[t] 6= ⊥.
By Claim 6.13, we have [xt−1 . . xt+ |C2

k′(X,xt)|]∩ (BX(AW )∪{|X|+1}) 6= ∅. If {|X|+1} ∈
[xt−1 . . xt + |C2

k′(X,xt)|], then |X|+ 1 = xt + |C2
k′(X,xt)|. Hence, C2

k′(X,xt) covers the position
|X| ∈ RX . Thus, we may assume that [xt−1 . . xt + |C2

k′(X,xt)|] contains a position in BX(AW ).
Note that the fragment X[q . . r] ∈ C covering that position in BX(AW ) satisfies r ≥ xt−1 and
q ≤ xt + |C2

k′(X,xt)|. In particular, r+ 1 ≥ xt and q− 1 < xt + |C2
k′(X,xt)|. Now, if C2

k′(X,xt)
covers q − 1 or r + 1, then we are done. Otherwise, q − 1 < xt and r + 1 ≥ xt + |C2

k′(X,xt)|,
so q ≤ xt and r ≥ xt + |C2

k′(X,xt)|, i.e., C2
k′(X,xt) is contained in X[q . . r] and, since maxLZ is

monotone, maxLZ(C2
k′(X,xt)) ≤ k′. Consequently, C2

k′(X,xt) = Ck′(X,xt) is a suffix of X, so
C2
k′(X,xt) covers the position |X| ∈ RX .

A symmetric argument shows that there are O((k + 1
kcost(AW )) logm) positions t ∈ M

such that CEk′(Y )[t] 6= ⊥. Consequently, |M | = O((k + 1
kcost(AW )) logm). We bound

hd(CEk′(X),CEk′(Y )) using the following claim.

Claim 6.15. hd(CEk′(X),CEk′(Y )) ≤ 2|M |.

Proof. Let M ′ = {t ∈ [1 . .m] : CEk′(X)[t] 6= CEk′(Y )[t]}. Note that M ⊆ M ′, so the claim is
equivalent to |M ′ \M | ≤ |M |. For every t ∈ M ′ \M , we shall prove that t is not the leftmost
position in M ′ and that the preceding position in M ′ belongs to M .

The assumption t ∈M ′ \M implies CEk′(X)[t] 6= ⊥ 6= CEk′(Y )[t]. We define t′ as the largest
position in [1 . . t) such that CEk′(X)[t′] 6= ⊥ or CEk′(Y )[t′] 6= ⊥. To see that t′ is well defined,
note that t > 1 and CEk′(X)[1] 6= ⊥.

Now, suppose that t′ /∈ M . Consequently, we have CEk′(X)[t′] 6= ⊥ 6= CEk′(Y )[t′]. Due
to CEk′(X)[t′ + 1 . . t) = ⊥t−t′−1, Lemma 6.9 implies that Ck′(X,xt′) covers X[xt − 1], that is,
maxLZ(X[xt′ . . xt)) ≤ k′, and hence X[xt′ . . xt] is a prefix of C2

k′(X,xt′). Moreover, C2
k′(X,xt′) =

C2
k′(Y, yt′) implies X[xt′ . . xt] 'AW

Y [yt′ . . yt′ + xt − xt′ ] by the greedy nature of AW . As
(xt, yt) ∈ AW , we conclude that yt = yt′+xt−xt′ . At the same time, since CEk′(X)[t′+1 . . t) =

⊥t−t′−1 = CEk′(Y )[t′ + 1 . . t), we have CEk′(X)[t] = (LZ(C2
k′(X,xt)), xt − xt′) and CEk′(Y )[t] =

(LZ(C2
k′(Y, yt)), yt − yt′). Thus, CEk′(X)[t] = CEk′(Y )[t], which contradicts t ∈M ′.

Consequently, t′ ∈ M . In this case, M ′ ∩ [t′ . . t] = {t′, t}, so t′ is the position of M ′

preceding t. Our goal was to show that such a position exists and belongs to M , so this
completes the proof of the claim.

Overall, we conclude that hd(CEk′(X),CEk′(Y )) ≤ 2|M | = O((k + 1
kcost(AW )) logm).

Lemma 6.16. Given integers n ≥ k ≥ 1, a seed r of O(log2 n) random bits, and streaming
access to a string S ∈ Σ≤n, the string CEk(W(S, n, r)) can be computed in Õ(k) space and Õ(nk)
time.

Proof. Let us start with an auxiliary subroutine:

Claim 6.17. There is a streaming algorithm that computes D(Ck(S, p)) for subsequent positions
p ∈ [1 . . |S|]. The algorithm uses Õ(k) space and Õ(nk) time. Moreover, if Ck(S, p) = S[p . . q),
then D(Ck(S, p)) is reported while the algorithm processes S[q] (or the end-of-string token if
q = |S|+ 1).

Proof. The algorithm maintains a fragment S[p . . q) satisfying maxLZ(S[p . . q)) ≤ k and the
encoding D(S[p . . q)). Initially, S[p . . q) = S[1 . . 1) = ε.

In each iteration, we read S[q], compute D(S[p . . q]) (using Proposition 4.2(i)), and check
whether |LZ(S[p . . q])| ≤ k (using Proposition 4.2(f)). By Observation 6.7(a), this condition
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is equivalent to maxLZ(S[p . . q]) ≤ k. If maxLZ(S[p . . q]) ≤ k, we discard D(S[p . . q)) and
increment q. Otherwise, we are guaranteed that S[p . . q) = Ck(S, p), so we output D(S[p . . q)),
compute D(S[p + 1 . . q)) (using Proposition 4.2(g)), discard D(S[p . . q)) and D(S[p . . q]), and
increment p. By Observation 6.7(b), we are guaranteed that the invariant maxLZ(S[p . . q)) ≤ k
remains satisfied. In the special case of q = |S|+ 1, we proceed as if maxLZ(S[p . . q]) > k.

By Observation 6.7(c), we store D(X) only for strings X satisfying |maxLZ(X)| ≤ k + 1, so
the space usage and the per-iteration running time is Õ(k). Each iteration increments either p
or q, so the algorithm reads S in a streaming fashion and the amortized running time is Õ(k)
per character.

We maintain two instances of the algorithm of Claim 6.17 and two instances of the algorithm
of Proposition 3.16. We feed the first instance of Claim 6.17 with the input stream S, obtaining
D(Ck(S, q)) for subsequent positions q ∈ [1 . . |S|]. Upon retrieving D(Ck(S, q)), we extract S[q]
using Proposition 4.2(b) and forward S[q] to the first instance of Proposition 3.16, which lists
indices v ∈ [1 . . 3n] such that sv = q. We also forward S[q] to the second instance of Claim 6.17,
obtaining D(Ck(S, p)) for all subsequent positions p such that D(Ck(S, p)) = S[p . . q). Upon
retrieving D(Ck(S, p)), we extract S[p] using Proposition 4.2(b) and forward S[p] to the second
instance of Proposition 3.16, which lists indices t ∈ [1 . . 3n] such that st = q. For each such
position t, we have C2

k(S, st) = Ck(S, p)Ck(S, q). We compute µt = µ(t,min{v ∈ [1 . . 3n] : sv =
q}) based on the output of the first instance of Proposition 3.16. If µt > µt−1, we construct

LZ
(
C2
k(S, st)

)
using Proposition 4.2(i) and Proposition 4.2(f).

By Propositions 4.2 and 3.16 and Claim 6.17, the algorithm uses Õ(k) space and Õ(nk)
time.

6.3 Applications of Hamming distance sketches

Let us start by reminding the fingerprints (sketches) for testing string equality.

Fact 6.18 (see e.g. [38]). There exists a fingerprint ψ (parameterized by an integer n ∈ Z+, a
threshold δ with 1 ≥ δ ≥ n−O(1), an alphabet Σ = [0 . . nO(1)), and a seed of O(log n) random
bits) such that:

1. The fingerprint ψ(S) of a string S ∈ Σ≤n takes O(log δ−1) bits. Given streaming access
to S, it can be constructed in O(|S|) time using O(log n) bits of space.

2. For all strings X,Y ∈ Σ≤n, we have Pr[ψ(X) = ψ(Y )] ≤ δ if X 6= Y (and ψ(X) = ψ(Y )
otherwise).

For two equal-length strings X,Y , the set of mismatch positions is defined as MP(X,Y ) =
{i ∈ [1 . . |X|] : X[i] 6= Y [i]} and the mismatch information MI(X,Y ) = {(i,X[i], Y [i]) : i ∈
MP(X,Y )}. Below, we adapt the Hamming sketches of [16] to large alphabets.

Theorem 6.19. For every constant δ ∈ (0, 1), there exists a sketch skHk (parameterized by
integers n ≥ k ≥ 1, an alphabet Σ = [0 . . σ), and a seed of O(log(n log σ)) random bits) such
that:

1. The sketch skHk (S) of a string S ∈ Σn takes O(k log(nσ)) bits. Given streaming access to
S, it can be constructed in O(n log(nσ) log(n log σ)) time using O(k log(nσ)) bits of space.

2. There exists a decoding algorithm that, given skHk (X) and skHk (Y ) for strings X,Y ∈ Σn,
with probability at least 1− δ either returns MI(X,Y ) or certifies that hd(X,Y ) > k. The
algorithm uses O(k log(nσ) log2(n log σ)) time and O(k log(nσ)) bits of space.

Proof. The construction of [16] satisfies the required conditions provided that σ = nO(1). Hence-
forth, we assume without loss of generality that σ is a power of two satisfying σ ≥ n log σ.
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We interpret each character in Σ as a block of b = dlogn log σ σe characters in [0 . . n log σ).

Moreover, we consider the fingerprints ψ of Fact 6.18 with δ6.18 = δ
2n and n6.18 = σ6.18 = n log σ.

This construction uses O(log n6.18) = O(log(n log σ)) random bits and produces fingerprints of
O(log δ−1

6.18) = O(log n) bits.
Given a string S ∈ Σn, we define a string S̄[1 . . nb] so that S̄[ib− j + 1] = (S[i][j], ψ(S[i]))

for i ∈ [1 . . |S|] and j ∈ [1 . . b]. Consequently, we set skHk (S) := skH
k̄

(S̄) using the the sketch

of [16] with δ̄ = δ
2 , n̄ = nb, k̄ = kb, and σ̄ ≤ nO(1) log σ. Note that this is feasible since

σ̄ ≤ nO(1) ≤ n̄O(1) if n ≤ log σ and σ̄ ≤ logO(1) σ ≤ (loglog2 σ σ)O(1) ≤ bO(1) ≤ n̄O(1) otherwise.
This construction uses O(log n̄) = O(log(n log σ)) further random bits and produces a sketch of
O(k̄ log n̄) = O(kb log(nb)) = O(k logn log σ σ log(n log σ) = O(k log σ) bits.

The auxiliary string S̄ is constructed in O(n̄) = O(n log σ) time using O(log(nσ)) bits of
space. The stream representing S̄ is passed to the encoding algorithm of [16], which takes
O(n̄ log2 n̄) = O(n logn log σ σ log2(n log σ)) = O(n log(nσ) log(n log σ)) time and O(k̄ log n̄) =
O(k log σ) bits of space.

The decoding algorithm, given skH
k̄

(X̄) and skH
k̄

(Ȳ ), runs the decoding algorithm of [16]. If
the latter certifies hd(X̄, Ȳ ) > Ȳ , we certify that hd(X,Y ) > k. Otherwise, we interpret the
output as MI(X̄, Ȳ ). For each position i ∈ [1 . . |X|] such that (ib−b . . ib] ⊆ MP(X̄, Ȳ ) we retrieve
X[i][j] and Y [i][j] for each j ∈ [1 . . b] from (ib− j + 1, X̄[ib− j + 1], Ȳ [ib− j + 1]) ∈ MI(X̄, Ȳ ),
and then we output (i,X[i], Y [i]) ∈ MI(X,Y ).

As for correctness, with at most δ6.18 + nδ̄ = δ probability loss, we may assume that the
decoder of [16] is successful and that, for all i ∈ [1 . . |X|], we have ψ(X[i]) = ψ(Y [i]) if and
only if X[i] = Y [i]. The latter assumption yields MP(X̄, Ȳ ) =

⋃
i∈MP(X,Y )(ib− b . . ib] and thus

hd(X̄, Ȳ ) = b · hd(X,Y ). Hence, we correctly certify hd(X,Y ) > k if hd(X̄, Ȳ ) > k̄, and we
correctly reconstruct MI(X,Y ) otherwise.

The decoder uses O(k̄ log3 n̄) = O(k logn log σ σ log3(n log σ)) = O(k log σ log2(n log σ)) time
and O(k̄ log n̄) = O(k log σ) bits of space.

Next, consider an alphabet Σ̂ := Σ × Z≥0 and a function π : Σ̂ → Z≥0 defined so that

π((a, v)) = v for (a, v) ∈ Σ̂ and π(S) =
∑|S|

i=1 π(S[i]) for S ∈ Σ̂∗. For two strings X,Y ∈ Σ̂∗ of
the same length, we define the prefix mismatch information

PMI(X,Y ) = {(i, π(X[1 . . i)), π(Y [1 . . i))) : i ∈ MP(X,Y )}.

Proposition 6.20. For every constant δ ∈ (0, 1), there exists a sketch skPk (parameterized by
integers n ≥ k ≥ 1, an alphabet Σ̂ = [1 . . σ]× [0 . . nO(1)], and a seed of O(log(n log σ)) random
bits) such that:

1. The sketch skPk (S) of a string S ∈ Σ̂n takes O(k log2 n) bits. Given streaming access
to S, it can be constructed in O(n log n log(n log σ) + n log2 n) time using O(k log2 n +
log n log(n log σ)) bits of space.

2. There exists a decoding algorithm that, given the sketches skPk (X) and skPk (Y ) of strings
X,Y ∈ Σ̂n satisfying π(X), π(Y ) < n, with probability at least 1 − δ either returns
PMI(X,Y ) or certifies that hd(X,Y ) > k. The algorithm uses O(k log4 n) time and
O(k log2 n) bits of space.

Proof. Let us fix a complete binary tree T with n leaves, numbered with [1 . . n] in the left-to-
right order, and let v1, . . . , v2n−1 denote the nodes of T in the pre-order. For each node vi ∈ T ,
let [pi . . qi) ⊆ [1 . . n] be the indices of the leaves in the subtree of vi. Consider the fingerprints
ψ of Fact 6.18 parameterized by δ6.18 = δ

4n−2 , n6.18 = O(n log(nσ)), and σ6.18 = 2: Given a

string S ∈ Σ̂n, we define a string T (S)[1 . . 2n) so that T (S)[i] = (π(S[pi . . qi)), ψ(S[pi . . qi)))
for every i ∈ [1 . . 2n), where ψ expands each character of Σ̂ into a sequence of O(log(nσ)) bits.
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We set skPk (S) := skHk6.19(T (S)), where skHk6.19 is the sketch of Theorem 6.19 with δ6.19 = δ
2 ,

n6.19 = 2n− 1, k6.19 = min(kdlog(2n)e, n6.19), and σ6.19 ≤ 2O(log(n/δ6.18)) ≤ nO(1).
This construction uses O(log n6.18 + log(n6.19 log σ6.19)) = O(log(n log σ)) random bits and

produces sketches of O(k6.19 log(n6.19σ6.19)) = O(k log2 n) bits.
The encoding algorithm transforms S into T (S) and feeds T (S) into the encoding procedure

of Theorem 6.19. Construction of T (S) is organized in O(log n) layers, each responsible for
nodes vi ∈ T at a fixed level. The intervals [pi . . qi) corresponding to these nodes are disjoint
so, at any time, a layer produces a single character T (S)[i] and, by Fact 6.18, spends O(n log σ)
amortized time and uses O(log n) bits of space to process a single character S[j]. Since the
tree T is linearized in the post-order fashion, all levels can read the string S with a common
left-to-right pass and outputting T (S) does not require any buffers. Overall, construction of
T (S) takes O(n log n log(n log σ)) time and uses O(log n log(n log σ)) bits of space. The encoder
of Theorem 6.19 takes O(n6.19 log(n6.19σ6.19) log(n6.19 log σ6.19)) = O(n log2 n) time and uses
O(k6.19 log(n6.19σ6.19)) = O(k log2 n) bits of space.

The decoding algorithm first retrieves MI(T (X), T (Y )) from skHk6.19(T (X)) and skH6.19(T (Y ))
using the decoder of Theorem 6.19. If the output of that subroutine can be interpreted as
MI(T (X), T (Y )), then we use Claim 6.21 below to retrieve MI(X,Y ). If the size of the obtained
set does not exceed k, we return the set. In the remaining cases, we certify that hd(X,Y ) > k.

Claim 6.21. For every X,Y ∈ Σ̂n, the set PMI(X,Y ) can be extracted from MI(T (X), T (Y ))
in time and space O(hd(X,Y ) log n) with success probability at least 1− δ

2 .

Proof. We assume that, for every i ∈ [1 . . 2n), the equality ψ(X[pi . . qi)) = ψ(Y [pi . . qi)) implies
X[pi . . qi) = Y [pi . . qi). By Fact 6.18, each of the implications fails with probability at most
δ6.18, so the overall failure probability can be bounded by δ6.18 · (2n− 1) = δ

2 .
Our assumption yields

MP(T (X), T (Y )) = {i ∈ [1 . . 2n) : [pi . . qi) ∩MP(X,Y ) 6= ∅}.

In particular, MP(X,Y ) = {pi : vi is a leaf and i ∈ MP(T (X), T (Y ))}. Thus, it remains to
describe how to extract π(X[1 . . p)) and π(Y [1 . . p)) for each p ∈ MP(X,Y ); by symmetry,
we focus on π(X[1 . . p)). For this, we process subsequent nodes vi on the path from the root
of T to the leaf vj such that {p} = [pj . . qj) maintaining π(X[1 . . pi)). Note that the values
π(X[pi . . qi)) can be extracted from MI(T (X), T (Y )) due to p ∈ [pi . . qi).

If vi is the root, then π(X[1 . . pi)) = π(ε) = 0. If vi is the left child of vi′ , then pi = pi′ , so
π(X[1 . . pi)) = π(X[1 . . pi′)) has already been computed. If vi is the right child of vi′ , then
qi = qi′ , so π(X[1 . . pi)) + π(X[pi . . qi)) = π(X[1 . . qi)) = π(X[1 . . qi′)) = π(X[1 . . pi′)) +
π(X[pi′ . . qi′)). Consequently, π(X[1 . . pi)) can be retrieved from π(X[1 . . pi′)), which has
already been computed, as well as π(X[pi . . qi)) and π(X[pi′ . . qi′)), which are available in
MI(T (X), T (Y )). When this process reaches vj , it results in the sought value π(X[1 . . p)) =
π(X[1 . . pj)).

It remains to analyze correctness of the decoding algorithm. The decoder of Theorem 6.19
fails with probability at most δ6.19 = δ

2 and the procedure of Claim 6.21 fails with probability

at most δ
2 . Thus, with at most δ probability loss, we may assume that both calls are successful.

If hd(T (X), T (Y )) ≤ k6.19, then the decoder of Theorem 6.19 retrieves MI(T (X), T (Y ))
and the procedure of Claim 6.21 results in MI(X,Y ). Depending on whether hd(X,Y ) =
|MI(X,Y )| ≤ k or not, our decoding algorithm thus correctly returns MI(X,Y ) or certifies that
hd(X,Y ) > k.

Otherwise, the algorithm of Theorem 6.19 certifies hd(T (X), T (Y )) > k6.19, and the whole
decoding procedure certifies hd(X,Y ) > k. This is correct because of hd(T (X), T (Y )) ≤

38



hd(X,Y )dlog(2n)e. To see this, observe that [pi . . qi) ∩ MP(X,Y ) = ∅ implies X[pi . . qi) =
Y [pi . . qi) and T (X)[i] = T (Y )[i]. However, every leaf of T has at most dlog(2n)e ancestors
(including itself). Consequently, for every j ∈ MP(X,Y ), there are at most dlog(2n)e nodes vi
such that j ∈ [pi . . qi).

6.4 Edit Distance Sketches

We are now ready to show the main result of this section.

Theorem 3.17. For every constant δ ∈ (0, 1), there is a sketch skEk (parametrized by integers
n ≥ k ≥ 1, an alphabet Σ = [0 . . nO(1)), and a seed of O(log2 n) random bits) such that:

(a) The sketch skEk (S) of a string Σ≤n takes O(k2 log3 n) bits. Given streaming access to S,
it can be constructed in Õ(nk) time using Õ(k2) space.

(b) There exists an Õ(k2)-space decoding algorithm that, given skEk (X), skEk (Y ) for X,Y ∈
Σ≤n, with probability at least 1−δ outputs GRk(X,Y ) and min(ed(X,Y ), k+1). Retrieving
GRk(X,Y ) costs Õ(k5) time, whereas computing min(ed(X,Y ), k + 1) costs Õ(k3) time.

Proof. Let c3.16 be the constant of Proposition 3.16 for δ3.16 = δ
3 , and let c6.12 be the constant

of Lemma 6.12. We shall use CEk′(W ) with k′ = (c3.16 + 5)k and W = W(n, r, S), where r
is a random seed of O(log2 n) bits. Observe that the alphabet of CEk′(W ) can be interpreted

as [0 . . nO(k)) × [0 . . n] because the |LZ(C2
k′(S, s))| = O(k) for each s ∈ [1 . . |S|]. We shall use

Theorem 6.19 and Proposition 6.20 with n6.19 = n6.20 = 3n, δ6.19 = δ6.20 = δ
3 , k6.19 = k6.20 =

min(n6.19, bc6.12(1 + c3.16)k log(3n)c), and σ6.19 = σ6.20 = nO(k).
The sketch skEk (S) of a string S ∈ Σ≤n consists of |S| as well as the sketches skHk6.19(CEk′(W ))

and skPk6.20(CEk′(W )). This construction uses

O(log2 n+ log(n6.19 log σ6.19) + log(n6.20 log σ6.20)) = O(log2 n+ log(nk log n)) = O(log2 n)

random bits and produces sketches of bit-size

O(k6.19 log(n6.19σ6.19) + k6.20 log2 n6.20) = O(k log n log(nO(k)) + k log3 n) = O(k2 log3 n).

The encoding algorithm uses Lemma 6.16 to transform the input stream representing S
to an auxiliary stream representing CEk′(W ), which we forward to the encoders constructing
skHk6.19(CEk′(S)) and skPk6.20(CEk′(W )). Thus, it takes Õ(nk′ + n6.19 log σ6.19 + n6.20) = Õ(nk)

time and uses Õ(k′ + k6.19 log σ6.19 + k6.20) = Õ(k2) space.

Decoding Algorithm Let AW be the zip alignment of walks WX = (xt)
3n+1
t=1 = W(n, r,X)

and WY = (yt)
3n+1
t=1 = W(n, r, Y ) over strings X,Y ∈ Σ≤n.

Given sketches skEk (X), skEk (Y ), we run the decoders for skHk6.19(CEk′(WX)), skHk6.19(CEk′(WY ))

and skPk6.20(CEk′(WX)), skPk6.20(CEk′(WY )). We certify ed(X,Y ) > k if either procedure certifies
hd(CEk′(WX),CEk′(WY )) > k6.19 = k6.20. Otherwise, the decoder interprets the outputs as
MI(CEk′(WX),CEk′(WY )) and PMI(CEk′(WX),CEk′(WY )), respectively. In this case, we con-
struct EM (X,Y ) for M = {(x, y) ∈ MX,Y (AW) : x ∈ PX or y ∈ PY }, where PX and PY are
defined in the statement of Lemma 6.12. Finally, we compute GRk(X,Y ) using Proposition 5.12
or min(ed(X,Y ), k + 1) using Corollary 5.5.

Claim 6.22. Given MI(CEk′(WX),CEk′(WY )) and PMI(CEk′(WX),CEk′(WY )), the encoding
EM (X,Y ) can be constructed in Õ(k3) time using Õ(k2) space. Moreover, |LZ(XMYM )| =
Õ(k2).
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Proof. We proceed in two phases. In the first phase, we construct the compressed representation
D(X ′) of a string X ′ ∈ (Σ∪{#})|X| such that X ′[x] = X[x] if x ∈ PX and X ′[x] = # otherwise.
We initialize X ′ := #|X| (via LZ(#|X|) using Proposition 4.2(h)). Next, we iterate over positions

t ∈ [1 . . 3n] such that ⊥ 6= CEk′(WX)[t] 6= CEk′(WY )[t]. We retrieve xt and LZ
(
C2
k′(X,xt)

)
from

the mismatch information, convert LZ
(
C2
k′(X,xt)

)
to D(C2

k′(X,xt)) (Proposition 4.2(h)), and
update D(X ′), setting X ′[xt . . xt + |C2

k′(X,xt)|) := C2
k′(X,xt) (Proposition 4.2(g)(i)). We also

symmetrically construct the compressed representation D(Y ′) of a string Y ′ ∈ (Σ∪{#})|Y | such
that Y ′[y] = Y [y] if y ∈ PY and Y ′[y] = # otherwise.

In the second phase, we convert D(X ′) to D(XM ). Here, the goal is make sure that XM [x] =
# not only for x ∈ PX , but also when X[x] 'AW

Y [y] for some y ∈ PY . For this, we iterate over
dummy segments Y ′[y . . y′). By Lemma 6.12, AW matches Y [y . . y′) to a fragment of X[x . . x′).
Hence, we shall identify the shift x− y and set XM [x . . x′) := #x′−x (Proposition 4.2(h)(g)(i)).
Let MPCE := MP(CEk′(WX),CEk′(WY )). Define u, v ∈ [1 . . 3n + 1] so that u = v = 3n + 1
if π(CEk′(WY )[1 . . t]) 6= y′ for all t ∈ MPCE; otherwise, u is the smallest index in MPCE with
π(CEk′(WY )[1 . . u]) = y′, whereas v is the smallest index MPCE with π(CEk′(WY )[1 . . v)) =
π(CEk′(WY )[1 . . u)). We claim that x− y = π(CEk′(WX)[1 . . v))− π(CEk′(WY )[1 . . v)).

If y′ ≤ |Y |, then y′ − 1 /∈ PY and y′ ∈ PY . Hence, Y [y′] is covered by C2
k′(Y, yt) for some

t ∈ MPCE with CEk′(WX)[t] 6= ⊥, whereas Y [y′ − 1] is not covered by C2
k′(Y, yt). Hence, there

is t ∈ MPCE with yt = y′, and therefore yu = y′. Similarly, yu = y′ holds if y′ = |Y | + 1. Let
w ∈ [1 . . 3n] be the smallest index such that CEk′(WY )[w] 6= ⊥ and C2

k′(Y, yt) covers Y [y′ − 1]
(such an index exists by Lemma 6.9). Due to y′−1 ∈ PY , we have CEk′(WX)[w] = CEk′(WY )[w],
and hence x− y = xw − yw. Definition of w further yields CEk′(WY )[w+ 1 . . v) = ⊥u−w−1, and
thus π(CEk′(WY )[1 . . v)) = yw. Moreover, since π(CEk′(WY )[1 . . t)) = yw for t ∈ [w + 1 . . v],
we have π(CEk′(WX)[1 . . v)) = xw by definition of v. This completes the proof that x − y =
π(CEk′(WX)[1 . . v))− π(CEk′(WY )[1 . . v)).

To derive EM (X,Y ), it suffices to convert D(Y ′) to D(YM ) (symmetrically), and to construct
D(XMYM ) using Proposition 4.2(i). Since maxLZ(C2

k′(X,xt)),maxLZ(C2
k′(Y, yt)) = O(k) holds

for all t ∈ [1 . . 3n+ 1] and since |MPCE| = O(k log n), the maxLZ(·) measure of all intermediate
strings is Õ(k2). Consequently, the Õ(k) applications of Proposition 4.2 cost Õ(k3) time and
use Õ(k2) space.

To complete the complexity analysis, observe that the decoding procedure of Theorem 6.19
uses O(k6.19 log(n6.19σ6.19) log2(n6.19 log σ6.19)) = Õ(k2) time and O(k6.19 log(n6.19σ6.19)) =
Õ(k2) bits of space. The procedure of Proposition 6.20 uses O(k6.20 log2 n6.20) = Õ(k) bits
of space and costs O(k6.20 log4 n6.20) = Õ(k) time. Finally, due to |LZ(XMYM )| = Õ(k2) and
|Bk(X,Y )| = O(k5) (Lemma 3.11), the algorithm of Proposition 5.12 uses Õ(k2) space and
costs Õ(k5) time (dominating the overall decoding complexity). If we only aim to retrieve
min(ed(X,Y ), k+ 1), the algorithm of Corollary 5.5 takes Õ(k2) time and space (in which case
the overall decoding uses Õ(k2) space and costs Õ(k3) time.

It remains to argue that the decoding algorithm is correct. With δ3.16 = δ
3 probability

loss, we may assume that AW ∈ GAc3.16(ed(X,Y ))2(X,Y ) and width(AW) ≤ c3.16ed(X,Y ). With

δ6.19 + δ6.20 = 2δ
3 further probability loss, we may assume that the decoders of Theorem 6.19

and Proposition 6.20 are successful. If ed(X,Y ) > k, then the correctness follows from Propo-
sition 5.12 and Corollary 5.5 because M ⊆MX,Y (AW) is a non-crossing matching. Otherwise,
Proposition 3.16 guarantees cost(AW) ≤ c3.16k

2 and width(AW) ≤ c3.16k so, in particular,
k′ ≥ width(AW) + 5k. By Lemma 6.12, we thus have hd(CEk′(WX),CEk′(WX)) ≤ c6.12(1 +
c3.16)k log(3n). Hence, the decoders of Theorem 6.19 and Proposition 6.20 report the mismatch
information. Lemma 6.10 further implies that ∆X(A,AW) ⊆ PX and ∆Y (A,AW) ⊆ PY for
all A ∈ GAk(X,Y ). In particular, MX,Y (A) ⊆ M , and therefore Mk(X,Y ) ⊆ M . Conse-
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quently, the algorithms of Proposition 5.12 and Corollary 5.5 correctly compute GRk(X,Y ) and
min(ed(X,Y ), k + 1), respectively.

Next, we boost the success probability and strengthen the sketches so that we can retrieve
qGRk(X,Y ) instead of GRk(X,Y ).

Corollary 6.23. There is a sketch skqk (parametrized by δ ∈ (0, 1
2), integers n ≥ k ≥ 1, an

alphabet Σ = [0 . . nO(1)), and a seed of O(log2 n log(1/δ)) random bits) such that:

(a) The sketch skqk(S) of a string Σ≤n takes O(k2 log3 n log(1/δ)) bits. Given streaming access

to S, it can be constructed in Õ(nk log(1/δ)) time using Õ(k2 log(1/δ)) space.
(b) There exists a decoding algorithm that, given skqk(X), skqk(Y ) for X,Y ∈ Σ≤n, with prob-

ability at least 1− δ computes qGRk(X,Y ). The algorithm takes Õ(k5 log(1/δ)) time and
uses Õ(k2 log(1/δ)) space.

Proof. We shall use µ = O(log(1/δ)) sketches skEk3.17 of Theorem 3.17 with δ3.17 = 1
3 , n3.17 =

n + 1, k3.17 = k + 1, and independent seeds. For each of the µ sketches skEk3.17 , the sketch

skqk(S) contains skEk3.17($1S), skEk3.17($2S), where $1, $2 /∈ Σ are two distinct symbols. This
construction uses O(µ log2 n3.17) = O(log2 n log(1/δ)) random bits and produces sketches of
O(µk2

3.17 log3 n3.17) = O(k2 log3 n log(1/δ)) bits.
The encoding algorithm calls 2µ instances of the encoding algorithm of Theorem 3.17. Hence,

it uses Õ(µk2
3.17) = O(k2 log(1/δ)) space and costs Õ(µn3.17k3.17) = Õ(nk log(1/δ)) time.

The decoding algorithm, given skqk(X), skqk(Y ) for X,Y ∈ Σ≤n, runs the decoder of Theo-
rem 3.17 for skEk3.17($1X), skEk3.17($1Y ) for each of the µ sketches skEk3.17 . This yields µ candidates
for GRk3.17($1X, $2Y ), which we convert to candidates for qGRk(X,Y ) using Corollary 5.17.
Finally, we determine the majority answer among the µ candidates. The equality test uses
Proposition 4.2(i)(c) to compare two candidates for D(XMYM ).

Recall that the decoding procedures of Theorem 3.17 use Õ(µk5
3.17) = Õ(k5 log(1/δ)) time

and Õ(µk2
3.17) = Õ(k2 log(1/δ)) space. The applications of Corollary 5.17 and the equality

tests take Õ(µk2
3.17) = Õ(k2 log(1/δ)) time and space. The entire decoding algorithm uses

Õ(k2 log(1/δ)) space and Õ(µk5
3.17) = Õ(k5 log(1/δ)) time.

As for correctness, since the µ sketches skEk3.17 are independent, by the Chernoff bound, the
majority answer is wrong with probability at most exp(−O(µ)). Setting µ = O(log(1/δ)) (with
a sufficiently large constant factor) guarantees a success probability of 1− δ.

7 Pattern Matching with k Edits

In this section, we present solutions for pattern matching with k edits in the semi-streaming
and streaming settings.

7.1 Periodicity under Edit Distance

We start by recalling combinatorial properties of strings periodic under the edit distance.

Definition 3.2 (k-periodic string). A string X is k-periodic if there exists a primitive string
Q with |Q| ≤ |X|/128k such that the edit distance between X and a prefix of Q∞ is at most 2k.
We call Q a k-period of X.

Claim 7.1. Suppose that a string X is a prefix of a string Y , where |X| < |Y | ≤ 2|X|. If X is
k-periodic with k-period Q, |Q| ≤ |X|/128k, then either Y is not k-periodic, or Y is k-periodic
with k-period Q.
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Proof. Suppose by contradiction that Y is k-periodic with k-period Q′ 6= Q. Let q = |Q| and
q′ = |Q′|. Assume first q ≤ q′. Fix an alignment of the smallest cost between Y and a prefix
of (Q′)∞. It induces an alignment A′ of cost at most 2k between X and a prefix of (Q′)∞ and
hence generates a partition X = X1X2 . . . Xz, where each Xi, 1 ≤ i ≤ z − 1, is aligned with Q′

and Xz is aligned with a prefix of Q′. From |Q| ≤ |X|/128k we obtain |X| ≥ 128k and therefore

z ≥ (|X| − 2k)/q′ ≥ 128− 2

128
|X|/(|Y |/128k)� 20k

Consider fragments X1X2X3X4, X5X6X7X8, and so on. The total number of such fragments is
at least (20k − 3)/4 > 4k, and at least 2k + 1 of them are not edited under A′. Fix an optimal
alignment A between X and a prefix Q∞. The cost of A is bounded from above by 2k, and
therefore there is at least one fragment X4i+1X4i+2X4i+3X4i+4 that is not edited. Consider one
such fragment F . On the one hand, F = Q′Q′Q′Q′. On the other hand, F = suff(Q)Qjpref(Q),
where suff(Q) and pref(Q) are some suffix and some prefix of Q, respectively.

Suppose first that q′ is a multiple of q. In this case, Q′ = (Q[`+ 1 . . q]Q[1 . . `])r, where
` = q − |suff(Q)| and an integer r, which contradicts the fact that Q′ is primitive. Otherwise,
consider the copy of Q that contains F [q′]. Consider also a substring QQQ of F formed by the
copy of Q that contains F [2q′], and the preceding and succeeding copies of Q. We then obtain
that there is an occurrence of Q in QQQ that is not aligned with any copy of Q (otherwise, q′

is a multiple of q), and therefore Q is not primitive, a contradiction.
The case q > q′ can be treated analogously.

Note that Claim 7.1 implies in particular that a string can have at most one k-period.

7.2 Semi-streaming Algorithm

We first present a deterministic algorithm for pattern matching with k edits in the semi-
streaming setting.

7.2.1 Preprocessing Stage

Consider a set Π of O(logm) prefixes Pi of P initialised to contain P itself as well as the
prefixes of length 2` for all 0 ≤ ` ≤ blog |P |c. Order the prefixes by lengths, and consider two
consecutive prefixes P ′, P ′′. If P ′ is k-periodic with k-period Q′ while P ′′ is not k-periodic, we
add two more prefixes to Π. Namely, if ` be the maximum integer such that P [1 . . `] is k-periodic
with k-period Q′, add to Π the prefixes P [1 . . `] and P [1 . . `+ 1]. Note that P [1 . . `+ 1] is not
k-periodic by Claim 7.1.

Let Π = {P1, P2, . . . , Pz} be the resulting set of prefixes. We assume that the patterns are
ordered in the ascending order of their lengths. During the preprocessing step, for each i such
that Pi is k-periodic, we compute its k-period Qi. We use notation `i = Pi and qi = |Qi|
(if defined). Importantly, we do not have to store Qi explicitly, we can simply memorize its
endpoints in Pi which takes O(logm) extra space in total. We also store, for each of the O(k)
rotations D of Qi that can be a difference of a chain of k-edit occurrences of Pi (Corollary 3.5),
the encodings qGR32k(D,D) and qGR30k(P [`i−1 + 1 . . `i], D

∞[1 . .∆i]), where ∆i = `i− `i−1 +k.

7.2.2 Main Stage

The main stage of the algorithm starts after we have preprocessed the pattern. During the main
stage, we receive the text as a stream, one character of a time. We exploit the following result:
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Fact 7.2 (cf. [59]). Given a read-only string X of length m and a streaming string Y . There
is a dynamic programming algorithm that correctly identifies all prefixes Y ′ of Y within edit
distance at most k ≤ m from X, as well as ed(Y ′, X) itself. The algorithm takes O(km) time
and O(k) space besides the space required to store X.

Chains of k-edit occurrences. During the main stage of the algorithm, we store the fol-
lowing information. Let r be the newly arrived position of the text T . For each 2 ≤ i ≤ z,
consider all k-edit occurrences of Pi−1 in T [r− `i − k + 1 . . r]. We call such occurrences active.
We denote the set of right endpoints of the active occurrences by aOCCEk (Pi−1, T ). By Corol-
laries 3.3 and 3.5, aOCCEk (Pi−1, T ) forms O(k3) chains. For each chain C, we store the following
information:

1. The leftmost position lp and the size |C| of C;
2. An integer ed(C) equal to the smallest edit distance from Pi−1 to a suffix of T [1 . . r] for

every endpoint r ∈ C;
3. If |C| ≥ 2, we store the shift ∆ of the difference D = Qi−1[1 + ∆ . . qi−1]Qi−1[1 . . qi−1] of C.
If p∗ is the first position added to C (it can be different from lp as we will update chains to

contain only active occurrences), then at the position (p∗ + 1) we start running the dynamic
programming algorithm for T [p∗ + 1 . .] and P [`i−1 + 1 . . `i] (Fact 7.2).

Furthermore, consider the moment when we detect the second position in C (if it exists) and
hence the difference D of the chain. Starting from this moment, for every newly added position
p ∈ C, at the position (p + 1) we start computing the greedy encoding qGR32k(T [p + 1 . . p +
∆i], D

∞[1 . .∆i]). We continue running the algorithm until either the computation is over or a
new position in the chain is detected. In the end, we compute the encoding for the rightmost
position in the chain.

Detecting new k-edit occurrences of Pi. We now explain how to detect new k-edit occur-
rences of the prefixes Pi. Let r be the latest arrived position of T . If i = 1, then since k ≥ 1,
r ∈ aOCCEk (P1, T ). Below we consider three possible cases for i ≥ 2: Pi−1 is k-periodic, Pi is
not k-periodic; Pi−1 is not k-periodic; Pi−1 and Pi are k-periodic.

Case 1: Pi−1 is k-periodic, Pi is not k-periodic. By construction, in this case `i−1+1 =
`i. The position r ∈ aOCCEk (Pi, T ) iff one of the following conditions is satisfied:

1. The smallest edit distance from Pi−1 to a suffix of T [1 . . r] is at most k−1 (this corresponds
to the case when the last character of Pi is deleted in an optimal alignment of a suffix of
T [1 . . r] and Pi);

2. The smallest edit distance from Pi−1 to a suffix of T [1 . . r − 1] is at most k − 1 and
Pi[`i] 6= T [r] (this corresponds to the case when the last character of Pi is substituted for
T [r] in an optimal alignment of a suffix of T [1 . . r] and Pi);

3. The smallest edit distance from Pi−1 to a suffix of T [1 . . r−1] is at most k and Pi[`i] = T [r]
(this corresponds to the case when the last character of Pi is matched with T [r] in an
optimal alignment of a suffix of T [1 . . r] and Pi);

4. The smallest edit distance from Pi to a suffix of T [1 . . r−1] is at most k−1 (this corresponds
to the case when T [r] is deleted in an optimal alignment of a suffix of T [1 . . r] and Pi).

We can decide which of the conditions is satisfied, and therefore whether r ∈ aOCCEk (Pi, T ) in
O(k3) time using aOCCEk (Pi−1, T ) and aOCCEk (Pi, T ). Moreover, we can compute the smallest
edit distance from Pi to a suffix of T [1 . . r] if it is bounded by k.

For the next two cases, we will use the following simple observation that follows from Fact 2.3:
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Observation 7.3. Let edi−1(r′) be the smallest edit distance from Pi−1 to a suffix of T [1 . . r′],
and define

d = min
r′∈aOCCE

k (Pi−1,T )
r′∈[r+1−∆i,r+1−∆i+2k]

{edi−1(r′) + ed(P [`i−1 + 1 . . `i], T [r′ + 1 . . r])} (2)

The smallest edit distance from Pi to T [1 . . r] is equal to d if d ≤ k and is larger than k otherwise.

It follows that to decide whether r ∈ aOCCEk (Pi, T ), it suffices to compute the value
min{d, k + 1}, where d is as defined above.

Case 2: Pi−1 is not k-periodic. In this case, aOCCEk (Pi−1, T ) is stored as O(k3) chains
of size one. Therefore, we can find the positions r′ from Eq. (2) in O(k3) time. Moreover, for
each position r′, we run the dynamic programming algorithm for T [r′+1 . .] and P [`i−1 +1 . . `i],
which outputs the edit distance between T [r′ + 1 . . r] and P [`i−1 + 1 . . `i] if it is at most k. As
we also know the smallest edit distance between Pi−1 and a suffix of T [1 . . r′], we can compute
d in O(k3) time.

Case 3: Pi−1 and Pi are k-periodic. We can identify all positions r′ from Eq. (2) in
O(k3) time. (It suffices to check each of the O(k3) chains that we store for Pi−1). We must
now test each of these positions. Consider a position r′ and let C be the chain containing it.
It suffices to compute the edit distance between P [`i−1 + 1 . . `i] and T [r′ + 1 . . r] as we already
know the smallest edit distance from Pi−1 to a suffix of T [1 . . r′]. If |C| = 1, the distance
has been computed by the dynamic programming algorithm. Otherwise, we use quasi-greedy
encodings. On a high level, our goal is to compute the edit distance between π = P [`i−1 . . `i] and
τ = T [r′+1 . . r] via a string µ = D∞[1 . .∆i], where D is the difference of C and ∆i = `i−`i−1+k.

Lemma 7.4. There is ed(π, µ) ≤ 26k.

Proof. As Pi−1 and Pi are k-periodic, by Claim 7.1 we obtain that Pi = P [1 . . `i] is k-periodic
with k-period Qi = Qi−1, that is, there is a prefix of Q∞i such that the edit distance between it
and Pi is at most 2k. By Fact 2.3, there is a substring Q∞i [r . . t] such that |r − `i−1| ≤ 2k and
|t− `i| ≤ 2k and ed(Q∞i [r . . t], π) ≤ 2k. By the triangle inequality, we obtain that ed(Q∞i [`i−1 +
1 . . `i], π) ≤ 6k. Let a = `i−1− 7k (mod qi) and b = `i−1 + 7k (mod qi). By Corollary 3.5, D is
a rotation of Qi−1 = Qi with shift ∆, where ∆ ∈ [a−3k, b+3k] if a ≤ b and ∆ ∈ [0, b+3k]∪ [a−
3k, qi) if a > b. It follows that D∞ = Q∞i [s . .], where |s − `i−1| ≤ 10k. As µ = D∞[1 . .∆i] =
Q∞i [s . . s+∆i−1], by the triangle inequality we obtain ed(µ,Q∞i [`i−1 +1 . . `i]) ≤ 20k. Applying
the triangle inequality one more time, we obtain the claim.

Let GP = qGR30k(π, µ) and GT = qGR30k(µ, τ). By Corollary 5.27, knowing GP and GT is
sufficient to compute the edit distance between π and τ . Note that we do not know GT yet, we
must compute it using the available information. Let p be the rightmost position in C.

1. Recall that at the position (p+1) we launched an algorithm that is computing qGR32k(T [p+
1 . . p+ ∆i], D

∞[1 . .∆i]) with a delay of k characters (Corollary 5.22). We have p+ ∆i ≥
r′ + ∆i ≥ r. Therefore, upon reaching r, we can use the memory of the algorithm
to compute GT,1 = qGR32k(T [p + 1 . . r], D∞[1 . . r − p]) in Õ(k5) time and Õ(k2) space
(Lemma 5.21).

2. By the definition of chains, T [r′ + 1 . . p] = Dj for some integer j. By Lemma 5.21,
we can use qGR32k(D,D) computed during the preprocessing step to compute GT,2 =
qGR32k(T [r′+ 1 . . p], Dj) in Õ(k5) time and Õ(k2) space. By applying Lemma 5.21 again,
we can compute qGR32k(T [r′ + 1 . . p], DjD∞[1 . . r − p]) in Õ(k5) time and Õ(k2) space.

44



3. Finally, we compute via Corollary 5.22 the encoding qGR30k(ε,D
∞[r−p+ 1 . .∆i]), where

ε is the empty string and ∆i− (r− p) ≤ 2k. We then apply Observation 5.20 to compute
qGR30k+(∆i−(r−p))(T [r′ + 1 . . p], DjD∞[1 . . r − p]) and further Lemma 5.21 to compute
qGR30k(T [r′ + 1 . . p], D∞[1 . .∆i]) = GT .

Updating the chains. When we detect a new k-edit occurrence of Pi, we must decide if it
should be added to some existing chain or if we must create a new chain for this occurrence.

To this end, for each 1 ≤ i ≤ z, we consider O(k) of its rotations of Qi that can be the
difference of a chain of k-edit occurrences of Pi in T (Corollary 3.5). For each rotation R, we run
a constant-space and linear-time deterministic pattern matching algorithm [54]. The algorithm
processes the text T as a stream and if there is an occurrence T [` . . r] of the rotation reports it
while reading T [r]. The algorithm uses O(1) space and O(1) amortised time per character of T .

Suppose that we detect a new right endpoint r of a k-edit occurrence T [` . . r] of Pi. We
must decide whether r belongs to an existing chain of k-edit occurrences of Pi or starts a new
one. In order to do this, we first find the chain C that contains r− qi + 1 if it exists by checking
each chain in turn. We then check that the smallest edit distance from a suffix of T [1 . . r] to Pi
equals to ed(C) and that T [r− qi + 1 . . r] is equal to the difference of the chain. (Recall that we
run the exact pattern matching algorithm for each rotation of Qi that can be the difference of
a chain so that both checks can be performed in O(1) time).

If these conditions are not satisfied, we create a new chain that contains r only. Otherwise,
we add r to C (i.e., increment the size of C). To finalize the update of the chains, we must delete
all k-edit occurrences that become inactive: for each i and for each chain of k-edit occurrences
of Pi, we “delete” the first k-edit occurrence if it starts before r − `i − k + 1. To “delete” a
k-edit occurrence, we simply update the endpoints of the first occurrence in the chain and the
total number of occurrences in the chain.

7.2.3 Analysis

We summarize the results of this section:

Theorem 7.5. Assume a read-only pattern P of length m and a streaming text T of length n.
There is a deterministic algorithm that finds the set OCCk(P, T ) using Õ(k5) space and Õ(k6)
amortised time per character of the text T .

Proof. Let us first upper bound the space complexity of the algorithm. For each i = 1, . . . , z =
O(logm), we store the set aOCCk(Pi, T ) as O(k3) chains. For each chain, we launch the dynamic
programming algorithm (Fact 7.2), which takes Õ(k2) space and Corollary 5.22 that takes Õ(k2)
space. The pattern matching algorithms for the rotations of Qi take Õ(k) space in total. Finally,
testing if a position of the text is the rightmost position of a k-edit occurrence of Pi requires
Õ(k2) space.

We now show the time bound. Updating the chains takes Õ(1) time. At any time, we run
Õ(k3) instances of Corollary 5.22 that takes O(k3) amortised time per character. To test each
position r, we spend Õ(k · k3) time.

7.3 Streaming Algorithm

We now modify the algorithm for the semi-streaming model to develop a fully streaming algo-
rithm. W.l.o.g., assume k ≤ m and take δ = 1/nc for c large enough.
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7.3.1 Preprocessing

We define the prefixes Pi and their periods Qi exactly in the same way as in Section 7.2. Recall
that `i = |Pi| and qi = |Qi|. For every i > 1, we store the following information, where
all sketches skq (Corollary 6.23) are parametrized by probability δ, maximal length ∆i, the
alphabet of P and T , and a seed of O(log2 n log(1/δ)) random bits:

1. P [`i] and the sketch skqk(P [`i−1 . . `i]);
2. For each of rotation D of Qi that can be a difference of a chain of k-edit occurrences of
Pi, the encoding qGR30k(P [`i−1 + 1 . . `i], D

∞[1 . .∆i]), where ∆i = `i − `i−1 + k;
3. For each of rotation D of Qi that can be a difference of a chain of k-edit occurrences of
Pi, the sketches skq32k(D) and skq32k(D[1 . .∆i (mod qi)]).

7.3.2 Main Stage

As in Section 7.2, for each i, we store aOCCEk (Pi−1, T ) in O(k3) chains. For each chain C, we
store the leftmost position lp in it, its size |C|, and the smallest edit distance, ed(C), from a
suffix of T [1 . . lp] to Pi−1. If |C| ≥ 2, we also store its difference (defined by the shift of the
rotation of Qi−1).

If p∗ is the first position added to C, then at the position (p∗ + 1), we start running the
streaming algorithm of Corollary 6.23(a) for computing the sketch skqk(T [past+ 1 . . past+ ∆i]).

Furthermore, consider the moment when we detect the second position in C (if it exists) and
hence the difference D of the chain. Starting from this moment, for every newly added position
p ∈ C, at the position (p+1) we start computing the quasi-greedy encoding qGR32k(T [p+1 . . p+
∆i], D

∞[1 . .∆i]) as follows: Assume that we have computed qGR32k(T [p+1 . . p+`·qi], D∞[1 . . `·
qi]). Suppose first that (`+1) ·qi ≤ ∆i. While reading T [p+` ·qi+1 . . p+(`+1) ·qi], we compute
skq32k(T [p+`·qi+1 . . p+(`+1)·qi]) again via the algorithm of Corollary 6.23(a). We then use this
sketch and skq32k+1(D) to compute qGR32k(T [p+` ·qi+1 . . p+(`+1) ·qi], D) (Corollary 6.23(b))
and then qGR32k(T [p+1 . . p+(`+1)·qi], D∞[1 . . (`+1)·qi]) (Lemma 5.21). If (`+1)·qi > ∆i, we
use the sketches skq32k(T [p+` ·qi . . p+∆i]) and skq32k(D[1 . .∆i (mod qi)]), the rest is analogous.
We continue running the algorithm until either the computation is completed or a new k-edit
occurrence in the chain has been detected. In other words, in the end we compute the encoding
for the rightmost position in the chain.

Detecting new k-edit occurrences of Pi. We now explain how we modify the algorithm for
detecting new k-edit occurrences of the prefixes Pi. The algorithm for Case 1 does not change.
Instead of the dynamic programming algorithm in Case 2, we use skqk and use Corollary 6.23(b)
and then Corollary 5.27 to compute the edit distance. It remains to explain how we modify the
algorithm for Case 3.

We exploit Eq. (2) again. We can find all positions r′ in O(k3) time. To test a position
r′, it suffices to compute the edit distance between P [`i−1 + 1 . . `i] and T [r′ + 1 . . r]. Let C
be the chain with difference D that contains r′. If |C| = 1, we use the edit distance sketch,
and otherwise the quasi-greedy encodings. By Lemma 7.4, ed(P [`i−1 . . `i], D

∞[1 . .∆i]) ≤ 26k
and hence by Corollary 5.27, the edit distance between P [`i−1 + 1 . . `i] and T [r′ + 1 . . r] can be
computed from the encodings GP = qGR30k(π, µ) and GT = qGR30k(µ, τ) for π = P [`i−1 . . `i],
µ = D∞[1 . .∆i], and τ = T [r′+ 1 . . r]. GP was computed during the preprocessing step and we
store it explicitly. Hence, we only need to explain how to compute GT . Let p be the rightmost
position in the chain C.

1. Recall that T [r′ + 1 . . p] = Dj for j = (p − r′)/qi. We first compute qGR32k(D,D)
from skq32k(D,D) via Corollary 6.23(b), and then GT,1 = qGR32k(T [r′ + 1 . . p], Dj) =

46



qGR32k(D
j , Dj) in Õ(k5) time and Õ(k2) space as in Section 7.2.

2. At the position (p + 1) we launched the streaming algorithm computing qGR32k(T [p +
1 . . p + ∆i], D

∞[1 . .∆i]) with a delay of qi characters. We have p + ∆i ≥ r′ + ∆i ≥ r.
Therefore, at a position p + ` · qi, where ` = b(r − p + 1)/qic, the algorithm computes
GT,2 = qGR32k(T [p+1 . . p+` ·qi], D∞[1 . . ` ·qi]). The algorithm then continues to compute
the sketch skq32k(T [p + ` · qi + 1 . . r]). We use this sketch and the sketch skq32k(D[1 . .∆i

(mod qi)]) to compute GT,3 = qGR30k(T [p + ` · qi + 1 . . r], D[1 . .∆i (mod qi)]) via Corol-
lary 6.23(b) and Observation 5.20.

3. We finally concatenate GT,1 and GT,2 to obtain qGR32k(T [r′+1 . . r′+(`+j)·qi], D∞[1 . . (`+
j) ·qi]), and then qGR32k(T [r′+1 . . r′+(`+j) ·qi], D∞[1 . . (`+j) ·qi]) and GT,3 to obtain GT
via Lemma 5.21 (note that the difference of lengths of strings in GT,3 is bounded by 2k).

Updating the chains. When we detect a new k-edit occurrence of Pi, we must decide if it
should be added to some existing chain or if we must create a new chain for this occurrence.
We use the algorithm of Section 7.2, but replace the constant-space pattern matching algorithm
with the streaming pattern matching algorithm [52] that for a rotation of Qi takes Õ(1) space
and Õ(1) time per character and retrieves all its occurrences correctly with probability at least
1− δ.

7.3.3 Analysis

We summarize the results of this section:

Theorem 7.6. Given a pattern P of length m and a text T of length n. There is a stream-
ing algorithm that finds the set OCCEk (P, T ) using Õ(k5) space and Õ(k8) amortised time per
character of the text T . The algorithm computes OCCEk (P, T ) correctly with high probability.

Proof. By Corollary 3.5, for a fixed i only O(k) rotations of Qi can be a difference of a chain of
occurrences of Pi. The sketch skq30k+1(·) takes Õ(k2) space (Corollary 6.23(a)) and qGR30k(·, ·)
Õ(k2) space as well (Corollary 5.17). Therefore, the information computed during the prepro-
cessing stage occupies Õ(k3) space. During the main stage, we store Õ(k3) chains. For each
chain, we run the algorithm of Corollary 6.23(a) that takes Õ(k2) space. The algorithm than
computes the quasi-greedy encoding (Corollary 6.23(b)) takes Õ(k2) space as well. In total, the
information we store for the chains occupies Õ(k5) space. When checking for new occurrences,
we apply Lemma 5.21 and Corollary 5.27, which require an overhead of Õ(k2) space. Finally,
the streaming pattern matching algorithms for the rotations of Qi that can be differences of
occurrences of Pi take Õ(k) space in total. The space bound follows.

At any time, we run Õ(k3) instances of the algorithm of Corollary 6.23(a) that takes Õ(k)
amortised time per character. In addition, for every character we run Õ(k3) instances of the
algorithms of Lemma 5.21 and Corollary 5.27 taking Õ(k8) time in total. The pattern matching
algorithms for the rotations of Qi take Õ(k) time per character.

Note that the only probabilistic procedures in the algorithm are streaming pattern match-
ing [52] and that of Corollary 6.23(b) that computes quasi-greedy encodings. These procedures
are called poly(n, k) = poly(n) times. By choosing the constant c in δ = 1/nc large enough, we
can guarantee that the algorithm is correct with high probability by the union bound.
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