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Abstract—Spiking Neural Networks (SNNs) are known as a 

branch of neuromorphic computing and are currently used in 
neuroscience applications to understand and model the 
biological brain. SNNs could also potentially be used in many 
other application domains such as classification, pattern 
recognition, and autonomous control. This work presents a 
highly-scalable hardware platform called POETS, and uses it 
to implement SNN on a very large number of parallel and 
reconfigurable FPGA-based processors. The current system 
consists of 48 FPGAs, providing 3072 processing cores and 
49152 threads. We use this hardware to implement up to four 
million neurons with one thousand synapses. Comparison to 
other similar platforms shows that the current POETS system 
is twenty times faster than the Brian simulator, and at least two 
times faster than SpiNNaker. 
 

Index Terms—Parallel distributed system, reconfigurable 
architecture, spiking neural networks. 
 

I. INTRODUCTION 

Artificial Neural Networks (ANNs) are a flexible and 
robust computing means for solving complex problems. 
However due to frequent accesses to memory, it suffers 
from a memory bottleneck when running on the 
conventional hardware plat-forms [1]. Spiking Neural 
Networks (SNNs) use biologically plausible neuronal 
models, and are a promising approach for hardware 
implementation of neural networks with capability of 
overcoming inefficient memory accessing by having the 
processor unit next to the memory [2]-[4]. SNNs are 
potentially capable of modeling complex information 
processing in the brain, in addition to other potential 
applications in accelerators, robotic brains, low-power 
mobile processors, deep learning [5], [6], or Medtech [7], 
[8]. 

Several pure software SNN simulators have been 
developed, such as NEURON [9], NEST [10], or BRIAN 
[11], and these are widely used as research tools in the 
community of computational neuroscience. Although these 
tools have been used to train, model and simulate 
biologically plausible neuronal networks, they are faced 
with hardware performance constraints such as power, speed, 
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flexibility, memory accessing latency. Consequently, 
simulation of large-scale networks requires explicitly 
parallel processing [12]. In recent years advancements in 
high performance computing have led to the development of 
several large-scale hardware platforms dedicated to SNN 
applications, known as neuromorphic architectures. The 
most widely known large-scale neuromorphic systems are 
SpiNNaker [2], IBM TrueNorth [4], NeuroGrid [13], and 
BrainScales [14] projects. 

Because of the parallel nature of neural networks, these 
large-scale concurrent systems are more efficient for data 
communication and spike transport compared to 
conventional platforms. However, the drawback is the 
programming complexity for these parallel systems, plus the 
need for analog or mixed analog/digital also increases 
complexity. In this work, we present the POETS (Partial 
Ordered Event Triggered Systems) [15] machine as a route 
to SNN simulation; POETS is a computation platform using 
an event-driven parallel programming model, backed by a 
custom FPGA many-core platform. POETS uses concepts 
from graph theory to provide a programming abstraction 
that makes programming this concurrent system manageable. 
This abstraction splits problems or applications into graphs, 
with events captured as messages moving between nodes in 
the graph, with events implementing both control- and 
data-flow. This allows for a high degree of concurrency and 
allows us to get very large numbers of CPUs to work closely 
together on a single application. The current POETS system 
consists of 48 FPGAs, providing 3072 processing cores and 
49152 threads. Our contributions in this work are: 
 investigating and explaining the POETS architecture, 

and how it is used to implement SNNs; 
 hardware modeling of two neuron models, LIF (Leaky- 

Integrate-and-Fire) and Izhikevich, and a comparison of 
two models in a large-scale network; 

 a demonstrator showing 4 million neurons, with each 
neuron connected to 1000 synapse, for a total of 4 
billion synapses; 

 a comparison between POETS and state-of-the-art 
simulators and large-scale platforms. 

 

II. POETS HARDWARE ARCHITECTURE 

POETS is a project focusing on hardware support for an 
event-driven parallel programming model. Applications 
running on POETS must first be transformed into graphs, in 
which vertices construct computation units, while edges 
represent communication links which sending and receiving 
messages. Somewhat similar programming models are 
Google’s Pregel model [16] and GraphStep model [17], 
which provide a computing abstraction using both 
synchronous and asynchronous way of passing the messages; 
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while the synchronous computing approach is deadlock-free 
and generally easier to program, the asynchronous approach 
can enable huge parallelism and scalability.  

Efficient communication is a major strength of FPGA 
platforms, mainly due to an ability to process network traffic 
with minimal latency overheads. However, a major 
impediment to the wider adoption of FPGA platforms is the 
level of knowledge that is needed to develop in HDL 
(Hardware Description Language) effectively. Therefore, a 
promising solution is to provide a compiler/interpreter for 
FPGA developers to be able to use a higher level of 
abstraction for programming without taking the FPGA 
programming into consideration.  

 

 
Fig. 1. a) One POETS box, each box has 7 FPGAs, 6 workers connected to 
an X86 GPP via one intermediate FPGA. b) A default configuration of the 
Tinsel Network on Chip (NoC) on a single FPGA. c) Default structure of a 
Tinsel tile; the cores are highly reconfigurable soft-processors using the 
Tinsel micro-architecture. 

 
The POETS architecture currently consists of 8 boxes, 

where each box has an x86 server and 7 interconnected 
DE5-Net FPGA boards, as shown in Fig. 1a. Each DE5-Net 
supports 24GB DDR3 DRAMs, 48MB QDRII+ SRAMs, 
and 410G SFP+ ports. One FPGA is used as a PCIe to 
SFP+ bridge board, providing a fast connection between the 
x86 and remaining six worker FPGAs (Fig. 1a). The system 
supports both asynchronous and synchronous message 
exchanges between the cores. Each FPGA DE5-Net has 16 
tiles, with each tile having 4 cores, and each core having 16 
threads, so there are 1024 threads in each FPGA. 

The computational heart of the POETS hardware is called 
Tinsel, which is a multithreaded RISC-V architecture 
optimised for FPGA implementation. When a thread 
executes an instruction with high latency, it is suspended 
and will resume after instruction completion. The system is 
highly-pipelined and parallel, using a design-time specific 
number of threads per core. The default number of threads 
per core is 16 and it is extensible to 32. Tinsel uses a 2D 
tiled network-on-chip (NoC), with each tile containing a 
single mailbox and some number of cores (4 by default), one 
FPU (floating-point unit), and caches. A data cache is used 
to access off-chip memory on each DE5, providing access to 
the two DDR3 DRAMS and four QDRII+ SRAMS (see Fig. 
1b and Fig. 1c). If we assume a memory access occurs every 
four instructions, a single DDR3 DRAM can satisfy a 
maximum of 64 cores (32-bit) running at 250MHz. As is 
shown in Fig. 1c, a mailbox mechanism is used to send and 
receive the messages between the soft-processors. 
Mailboxes are connected together to establish a distributed 
network which a thread can send a message to any other 
threads. FPU operations are executed using Altera IP blocks 
and have 14 cycles latencies at 250MHz [18]. More detailed 
information including messaging, codding, interconnection, 

resource utilization for the Tinsel can be found in [19].  
 

III. MODEL OF NEURONS 

We will now discuss the two SNN model which we have 
mapped into the POETS system. 

A. Leaky Integrate-and-Fire Model 

LIF models are fast to simulate, and particularly attractive 
for large-scale network simulations [20]. Neurons integrate 
the spike inputs from other connected neurons, with each 
arriving input spike changing the internal potential of the 
neuron, known as neuron’s membrane potential or state 
variable. When the integrated inputs cause the membrane 
potential to pass a threshold voltage, the action potential 
occurs – in other words, the neuron fires. 

 

τn
dv
dt

= − v (t )+RI syn (t )
 

(1)
 

I syn( t)= ∑
j

gij∑
n

α (t− t j
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where: v(t) represents the membrane potential at time t; τn 
=RC is the membrane time constant; and R is the membrane 
resistance. The total input current, Isyn(t), is generated by the 
activity of pre-synaptic neurons. The total input current 
injected into a neuron is the sum over all current pulses, 
which is calculated in Equation 2. Time t(

j
n) represents the 

time of the nth spike of post-synaptic neuron j, and gij is the 
conductance of synaptic efficacy between neuron i and 
neuron j. Function α(t) = q.δ(t), where q is the injected 
charge to the artificial synapse and δ(t) is the Dirac pulse 
function. If Isyn(t) is big enough then the action potential can 
pass the threshold voltage, so the neuron fires. When there 
are no or only a few spikes in a time window, the neuron is 
in the leaky phase and the state variable decreases 
exponentially. The duration of this time window depends on 
τn= RC. 

B. Izhikevich Model 

Another well investigated simple model of neuron that 
has been simulated in our work is Izhikevich [21] model. 
Izhikevich model reproduces the physiological plausibility 
of Hodgkin-Huxley-type neuron yet are almost as 
computationally effective as the LIF neuron. The model is: 

 

dv
dt

= 0. 04 v2+5 v+140− u+I (t)
 

(3)

du (t)
dt

=a (bv− u )
 

(4)

 

v is the membrane potential and I is the sum of the 
synaptic currents from different nodes connected to the 
neuron in Equation 3, whereas Equation 4 represents the u 
that is the membrane recovery variable. When v has reached 
its threshold then the neuron fires, and then reset happens 
according to Equation 4. The Izhikevich spiking model has 
the potential to generate several different firing patterns, 
which can be selected using four dimensionless parameters 
a, b, c, and d: 
 a represents the time scale of the recovery variable u, 

where a smaller value means slower recovery; 

International Journal of Machine Learning and Computing, Vol. 11, No. 4, July 2021

282



 

 

v (v>vth)  =c, u(v>vth)=u+d
 

 

 b represents the sensitivity of the recovery variable u to 
possible sub-threshold of the membrane potential v. 
Larger values indicated that v and u are strongly 
dependent on each other; 

 c presents the reset value of v after spiking;  
 d is the reset value of u after spiking. 

 

Fig. 2. An overview of a neuron section to be represented as a graph and 
read by compiler as an xml format file. 

 

IV.  MAPPING SYNCHRONOUS PROBLEM ON AN 

ASYNCHRONOUS PLATFORM  

The idea of the POETS system is to implement a highly 
scalable many-core system out of lots of tiny cores. 
Therefore, applications defining large numbers of simple 
devices with low computing complexity and a high degree 
of parallelism are desirable. Thus, this fact is considered in 
designing a neuron node consisting of four fan-in, fan-out, 
clock and computing devices. In this work, a finite state 
machine (FSM) is controlling the states of neuron 
synchronously, however the message propagation is 
performed asynchronously. An overview of neuron unit 
including different devices and states is depicted in Fig. 2. 
From a software developers point of view, the users and 
developer will not need to develop low-level FPGA code. A 
high-level python program is used to generate XML that 
represents the networks, the network elements, the number 
of neuron and connections from one to other neurons, 
according to parameters that are set by users. The POETS 
compiler will take care of the intermediate compilation and 
loading the network into an FPGA.  

The aim of designing a neuromorphic architecture on 
POETS is to simulate large-scale SNNs in a reconfigurable, 
flexible and scalable platform. The sequential development 
procedure of the POETS compilation flow is shown in Fig. 3. 
Vertices in the network represent the neurons, and edges 
between vertices represent synaptic weight connections. A 
graph-based application called Graph Schema is used to 
create a network of neurons, with spike messages used to 
transfer data between neurons with a high degree of 
parallelism. The general approach is to decompose the graph 
into clusters of reconfigurable devices, where the amount of 
intra-cluster edges is large. Similar to the previous works for 
designing SNN on FPGA [22], [23], while also taking 
advantages of Tinsel for high speed access from FPGA 
cores to the memory (10 Gbps Ethernet MAC), the system is 
capable of large-scale networks simulation at high speed. 
After creating the network graph and the connections, an 
XML format file will be generated that is a representation of 
the network graph. This graph is then transferred to network 

instances and simulated on local or remote conventional 
GPP machines. The POETS compiler can also translate this 
file into FPGA-specific files which can be executed on 
Tinsel. Due to efficient data caching, in addition to the 
effective communication between threads via their mailbox, 
neuron devices in the bottom part of Fig. 3 receive and send 
messages synchronously via a high-speed network and 
transfer the neuron parameters and weight connection 
modifications to and from memory. 

 

Fig. 3. An overview of the design flow, from high-level neural model down 
to implementation in FPGA. 

 

 
Fig. 4. A running time comparison of two LIF and Izhikevich models of 

neuron in POETS using small number of neurons with different numbers of 
synapses for each neuron. 

 

V. RESULTS 

We have used this approach to model networks of 
neurons ranging from 50 to 500000 for one box, and up to 4 
million neurons in 8 boxes. In all networks 20 percent of 
neurons are inhibitory neurons. Both the Izkikevich and LIF 
models of neuron have been used in the network, but the 
implementation costs (including running and mapping times) 
show little difference between Izhikevich or LIF model, as 
shown in Fig. 4. Another interesting result that can be 
extracted from the same data is the amount of parallelism. 
The hardware latency performance implementing anywhere 
from 50 to 1000 neurons is almost the same, as the nodes 
can be assigned to different threads, which compute 
simultaneously. More specific hardware characteristics are 
presented in Table I. Speed is a significant parameter has 
been evaluated in this platform, particularly when the 
number of neurons is increased. The maximum number of 
neurons that could be implemented on one box so far is 500 
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thousand. Therefore using 8 whole boxes, we are able to 
simulate 4 million neurons. 
 

 
Fig. 5. A running time comparison of two LIF and Izhikevich models of 

neuron in POETS using scalable number of neurons with different number 
of synapses for each neuron. 

 

For instance, the implementation time for 100000 neurons 
is only 4.05 second, however, this does not take into account 
compilation time, which could be longer where we use a 
conventional host computer. Running outputs for scalable 
devices are depicted in Fig. 5. We compare our outputs with 
the Brian simulator and the SpiNNaker hardware network in 
Fig. 6. The results demonstrate that poets is 20 times faster 
than Brian simulator version II. Compared to SpiNNaker, 

POETS is slightly slower for small networks, and more than 
two times faster for large neural networks. 

 
TABLE I: CHARACTERISTICS OF ONE FPGA BOARD 

FPGA Model   DE5-Net 
Core   64 
 Threads   1024 
 DRAM    2 × 4GB DDR3   
 SRAM 4 × 8M B QDRII+  
FPGA Clock Frequency   250 MHz  
Power  <50 W  

 
Fig. 6. Speed comparison of implementation among Brian simulator, 

SpiNNaker machine and POETS. 

 
TABLE II: COMPARISON OF THE LARGE-SCALE NEUROMORPHIC SYSTEMS 

Model/Properties TrueNorth Neurogrid BrainScales SpiNNaker POETS 
Technology      Digital Analog Analog Digital Digital (FPGA)
Feature size  28 nm 180 nm 180 nm 130 nm 28 nm 

Chips  16 16 325 48 48 
Power  3.2 W 3 W 500 W 80 W 42.8 w 

Interconnect  2D mesh-unicast Tree-multicast Hierarchical 2D mesh-unicast 2D-mesh-unicast 
Neuron model  Configurable LIF  Adaptive IF Adaptive IF Programmable LIF/Izhikevich 

Neurons 16 M 1 M 200 K 768 K 4 M 
Synapses 4 G 4 G 40 M 768 M  4 G 

 

VI. CONCLUSION 

Spiking Neural Network is a promising approach for 
future computing platforms, with the ability of learning 
which could be used in three different scenarios: 
 An accelerator in GPP platforms to overcome the Von 

Neumann memory bottleneck, for example in robotic 
brains, or low-power mobile processors, [24], [25]. 

 Direct implementation of spiking neural network on 
hardware, taking advantage of low-cost computing for 
the same purposes as ANN (e.g., Deep Learning) 
applications such as prediction, detection and 
recognition [5], [26]. 

 In the long term, understanding properties of biological 
neural networks could be used as a hippocampal 
prosthesis to be connected to the biological network or 
to replace a damaged biological memory, for example 
in the Alzheimer effected memory [8], [17]. 

Several large-scale spiking brain-like computing or 
neuromorphic hardware have been developed during recent 
years such as SpiNNaker, IBM TrueNorth, NeuroGrid and 
the BrainScales projects. In this work, we introduced 
POETS as a new large-scale neuromorphic system which is 
flexible using FPGA clusters, reliable with guaranty of 
receiving messages, and fast regarding to the parallel 

processing of data yet relatively low-power. The 
characteristics of large-scale systems are shown in the Table 
II to compare with POETS. In this work, we focused on 
scalability and architecture of system, while for future work 
we will investigate the accuracy of learning and neural 
network capabilities of POETS. 
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