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MDADP: A webserver integrating database and
prediction tools for microbe-disease associations
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Abstract— More and more evidence has demonstrated
that microbiota play important roles in the life processes
of the human body. In recent years, various computational
methods have been proposed for identifying potentially
disease-associated microbes to save costs in traditional
biological experiments. However, prediction performances
of these methods are generally limited by outdated and
incomplete datasets. And moreover, until now, there are
limited studies that can provide visual predictive tools for
inferring possible microbe-disease associations (MDAs) as
well. Hence, in this manuscript, a novel webserver called
MDADP will be proposed to identify latent MDAs, in which,
a new MDA database together with interactive prediction
tools for MDAs studies will be designed simultaneously.
Especially, in the newly constructed MDA database, 2019
known MDAs between 58 diseases and 703 microbes have
been manually collected first. And then, through adopt-
ing the average ranking method and the co-confidence
method respectively, eight representative computational
models have been integrated together to identify potential
disease-related microbes. As a result, MDADP can pro-
vide not only interactive features for users to access and
capture MDAs entities, but also effective tools for users
to identify candidate microbes for different diseases. To
our knowledge, MDADP is the first online platform that
incorporates a new MDA database with comprehensive
MDA prediction tools. Therefore, we believe that it will be
a valuable source of information for researches in microbi-
ology and disease-related fields. MDADP can be accessed
at http://mdadp.leelab2997.cn.

Index Terms— microbe, disease, association prediction
tool, asscoiation database.

I. INTRODUCTION

M ICROORGANISMS in human bodies consist mainly of
bacteria, archaea, fungi, viruses and protozoa, which

are usually parasitized in various human organs such as the
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gastrointestinal tract, respiratory tract, oral cavity, stomach,
skin and genitourinary tract [1]. Since microbiota are ubiqui-
tous in human bodies, they are also known as another vital
organ of the human body [2]. In recent years, more and
more evidence has proven that microbiota play important roles
in certain physiological processes of human bodies, such as
improving metabolism, enhancing immunity and maintaining
the ecological balance of the body [3], [4]. In addition, they
can as well be central or causative agents of many diseases
[5]. For instance, studies showed that microorganisms are
associated with about 20% of human malignancies [6]. Up to
now, with rapid advances in clinical biotechnologies and se-
quencing technologies, researches on microbiome have expe-
rienced exponential growth, which lead to mounting microbe-
disease associations (MDAs) being uncovered [7], [8]. Mining
potential MDAs can reveal more useful biomedical informa-
tion in disease-related areas (e.g., disease-causing genes and
drugs) and is expected to provide new strategies for disease
diagnosis and treatment [9]. For example, in the field of drug
repurposing, it has been hypothesized and verified that drugs
used to treat type 2 diabetes can also be used to treat colorectal
cancer, due to the strong microbe correlation between these
two diseases [10], [11]. Thus, understanding microbe-disease
associations may be very useful for the diagnosis and treatment
of complex diseases such as gastrointestinal inflammation,
diabetes, and even cancer.

However, using traditional wet experimental methods to
identify MDAs is quite expensive and time-consuming [12],
[13]. For the past few years, with rapid developments of
complex network technologies, machine learning and artificial
intelligence techniques, in order to reduce the time, labor and
cost of traditional biological experiments methods have been
successively proposed to infer potential MDAs. For instance,
Ma et al. constructed the first human microbe-disease associ-
ation database (HMDAD) in 2017 based on known microbe-
disease associations in publications of microbe-related studies,
in which, contained 483 associations between 39 diseases and
292 microbes were selected from 61 publications [9]. Based
on these known MDAs from HMDAD, Chen et al. proposed a
microbe-disease association prediction model called KATZH-
MDA [14], and since then, lots of computational methods have
been developed in succession by adopting diverse strategies.
However, by far, few studies can provide visualized MDA
prediction tools, which are not conducive to subsequent re-
searches of MDA. In addition, almost all studies can only
validate their prediction performances based on the HMDAD
database, so that predictive performances of these models may
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Fig. 1. Statistical chart of MDADP. (A) Statistics of the number of different disease related microbes in MDADP. (B) Statistics of the number of
different microbe related diseases in MDADP.

to some degree be unreliable. Furthermore, limited by the
number of combinations between microbes and diseases in
HMDAD (there are only 39 diseases and 292 microbes in
HMDAD), the difference between those potentially associated
microbe-disease pairs identified by different models will be
very small, even if the prediction performances differ signif-
icantly between them, which may severely restrict the appli-
cation capabilities of those superior computational models. In
addition, considering that the data in the HMDAD database
are very limited and to some extent obsolete, it is possible
that potential MDAs recommended by these predictive models
may no longer be time-sensitive.

Hence, in order to address the above-mentioned issues, in
this study, a novel webserver called MDADP was designed
by integrating a new MDA database with effective MDA
prediction tools. In MDADP, we first manually collected 2019
known associations between 58 diseases and 703 microbes
to construct the new MDA database. And then, through
screening and integrating eight representative MDA prediction
algorithms, we proposed two kinds of different predictive
tools based on the average ranking method (MDADP AR)
and the co-confidence method (MDADP CC) separately to
recommend more reliable potential MDAs. To the best of
our knowledge, MDADP is the first webserver that integrates
a new MDA database and visualized MDA prediction tools.
Hence, we believe that it may become a useful tool for future
researches in microbiology and disease-related fields. The
major contributions of this paper are as follows:

• A new MDA database consisting of 2019 known as-
sociations between 58 diseases and 703 microbes was
constructed based on which, a novel MDA dataset with
a scale of 1767 non-redundant known associations for
identification of potential MDAs was built.

• By integrating and analyzing eight representative MDA
prediction models, two kinds of effective identification
models were designed to recommend reliable potential

MDAs separately.
• Based on the newly constructed MDA database and

identification models, a visualized platform was provided,
in which, lots of functions including searching, sorting,
filtering, visualization, and downloading of MDAs are
implemented simultaneously. To our knowledge, MDADP
is the first online platform that can provide visualized
tools together with a new database for prediction of
potential MDAs, which may be a useful tool for future
research in microbiology and disease-related fields.

II. MATERIALS AND METHODS
A. Construction of the new MDA database

For constructing the new MDA database, a series of key-
words to search the Pubmed database for human microbe-
related publications, including but not limited to ”Human”,
”Microbiome”, ”Disease”, ”Microbe”, ”Neoplasms”, ”Can-
cer”, etc., were adopted to search for human microbe-related
publications in the Pubmed database. After preliminary screen-
ing of publications published before the start of our study
(September 2020), in final, more than 500 candidate publi-
cations were extracted. Subsequently, 261 publications were
refined by reading the abstracts and results of them. All infor-
mation of these selected studies was recorded into tabular files
by meticulous manual management according to following
rules: (1) All diseases will be named and classified in a
standardized way according to the vocabulary provided by the
MeSH database, (2) All microbes will be classified according
to the NCBI taxonomy, (3) Regulatory relationships between
microbes and diseases will be recorded (positive or negative)
in the new database (4) Information on experimental methods
and samples used in these publications will be recorded in the
new database. Ultimately, 2019 validated MDAs between 58
different diseases and 703 different microbes were collected
from 261 publications, among them, there were 1012 positive
associations and 1007 negative associations. And besides, all
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these 58 diseases would be classified into 15 categories, such
as Cardiovascular Diseases, Chemically-Induced Disorders,
Digestive System Diseases, Endocrine System Diseases, Im-
mune System Diseases, Infections, Mental Disorders, Mental
Disorders, Nervous System Diseases, Nervous System Dis-
eases, Pathological Conditions, Signs and Symptoms, Patho-
logical Conditions, Signs and Symptoms, Skin and Connective
Tissue Diseases, Stomatognathic Diseases and Urogenital Dis-
eases. Meanwhile, according to the NCBI taxonomy, microbes
would be further classified into phylum, class, order, family,
genus, species, and no rank. As a result, the numbers of
different disease-associated microbes and different microbe-
associated diseases in MDADP are statistically presented in
Fig.1, while the 30 most common diseases and microbes in
MDADP are shown in Fig.2. As can be seen in Fig.2(A),
the most common disease is Type 1 Diabetes Mellitus, with
more than 170 microbes associated with it. Additionally, the
second and third common diseases are Breast Neoplasms
and Lung Neoplasms separately, with 156 and 99 associated
microbes. Besides, other kinds of human diseases recorded
by MDADP can be found in different human organs, such as
colon (Colorectal Neoplasms), oral cavity (Mouth Neoplasms),
intestine (Irritable Bowel Syndrome), pancreas (Pancreatic
Neoplasms), kidney (Kidney Disease), and so on. As can be
seen in Fig.2(B), it is obvious that the most common microbe
is Bacteroides. Besides, all these 30 most common microbes
have more than 13 related diseases.

Fig. 2. (A) The 30 most common diseases in MDADP. (B) The 30 most
common microbes in MDADP.

Obviously, these experimentally supported microbe-disease
associations not only can serve as a source of data for predic-
tive models but also can inspire bioinformatics researchers to
mine more useful biological information in future studies. For
example, Zhang et al. analyzed associations between autism
and other diseases based on data downloaded from HMDAD
[15]. Long et al. designed a computational method to identify
microbe-drug associations based on HMDAD [16] as well.

B. MDA dataset

According to above description, it is easy to know that the
MDADP database contains 2019 validated MDAs between
58 diseases and 703 microbes. After removing duplicated
associations, we finally obtained 1767 non-redundant known
MDAs. And for convenience, we refer to the dataset of 58
human diseases as SD, and the i-th disease in SD as di,
and similarly, we refer to the dataset of 703 microbes as
SM , and the j-th microbes in SM as mj . Thereafter, a
58×703 dimensional association matrix A can be constructed

as follows: for any given disease di and microbe mj , if and
only if there is a known association between them, there
is A(i, j)=1, otherwise, there is A(i, j)=0. Fig.3 shows the
bipartite network graph consisting of microbe nodes, disease
nodes and edges (associations) in MDADP respectively.

In order to avoid random results caused by a single dataset,
during experiments, HMDAD will be utilized as the alternative
data source to verify the reliability of competitive computa-
tional models. HMDAD is a MDA database constructed by
Ma et al. in 2017, which contains 483 associations between
39 diseases and 292 microbes. After removing duplicated data,
there are 450 non-redundant MDAs in HMDAD. Table.I shows
the comparison between datasets of MDADP and HMDAD.
The scatter plots of the interaction distribution for these two
datasets are drawn in Fig.4. It is obvious that comparing with
the MDADP dataset, the HMDAD dataset has less data and is
obviously sparser.

TABLE I
COMPARISON BETWEEN THE MDADP DATASET AND THE HMDAD

DATASET.
Dataset Number

of
microbes

Number of
diseases

Number of
MDAs

Average number
of associations per

disease

Average number of
associations per

microbe
MDADP 703 58 1767 30.47 2.51
HMDAD 292 39 450 11.54 1.54

C. Construction of effective models for potential MDA
prediction

Recently, researchers have developed a variety of sophis-
ticated MDAs prediction models based on the HMDAD
database. Zhao et al. classified current MDAs computational
models into four types, namely score function-based mod-
els, network algorithm-based models, machine learning-based
models and experimental analysis-based models [13]. These
models aim to identify potential MDAs by adopting vari-
ous computational algorithms and further recommend top-k
candidate MDAs. Although considerable successes have been
achieved, the performances and applications of these models
in different databases still deserve further investigation.

In this section, we will first select eight state-of-the-art
MDA computational models to compare their performances
based on the MDADP. Through comprehensive consideration
of predictive performances, algorithm characteristics, code
availability and reproducibility of all existing state-of-the-
art models, the following eight models including two score
function-based models (BWNMHMDA [17], KATZHMDA
[14]), four network algorithm-based models (BiRWHMDA
[17], NBLPHMDA [18], BiWMP [19] and HMDA-Pred [20])
and two machine learning-based models (LRLSHMDA [21],
BPNNHMDA [22]) are selected as our final competitive mod-
els. And for the sake of fairness, while calculating potential
similarities between diseases and microbes, all parameters of
these competitive models will be assigned to default values
given by their proposers. In addition, for convenience, we
adopt the sequence numbers 1 to 8 to represent models of
BWNMHMDA, KATZHMDA, BiRWHMDA, NBLPHMDA,
BiWMP, LRLSHMDA, BPNNHMDA and HMDA-Pred sepa-
rately. Thus, we can define the 58×703 dimensional predicted
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Fig. 3. Bipartite network graph based on the MDADP database.

Fig. 4. Scatterplots of the HMDAD dataset and the MDADP dataset.

score matrix obtained by the k-th competitive model as Sk.
And then, it is obvious that Sk(i, j) represents the predicted
score of potential association between a pair of given disease
di and microbe mj obtained by the k-th model. Thereafter,
by ranking all predicted scores in Sk in terms of diseases,
we can obtain a new ranking matrix Rk, where Rk(i, j)
denotes the ranking of the given microbe mj in all candidate
microbes relating to the given disease di. Specifically, for a
given unknown microbe-disease pair, the smaller its ranking
value, the higher its potential relevance.

Considering that for any given candidate MDA, the pre-
dicted scores obtained by different models may vary greatly,
hence, it is problematic to achieve better predictive perfor-
mance by simply summing together these predicted scores
obtained by all competitive models. Hence, in this section, we
will adopt the following two kinds of strategies to combine
these eight representative models together to further construct
two kinds of novel predictive models called MDADP AR and
MDADP CC respectively:

(1) Average Ranking strategy based Model (named
MDADP AR): In MDADP AR, the top K competitive models
with the best predictive performances will be selected out first

according to experimental results. And then, let M denote
the set of sequence numbers of these K selected models, an
average ranking matrix Rav will be obtained according to the
following Equation (1):

Rav(i, j) =

∑
k∈M Rk(i, j)

K
(1)

Obviously, the parameter K has key impact on the predic-
tive performance of MDADP AR. According to experimental
results, MDADP AR can achieve the best predictive perfor-
mance while K is set to 3, and correspondingly, the top 3
competitive models with the best predictive performances are
BWNMHMDA, NBLPHMDA and HMDA-Pred separately.

(2) Co-confidence strategy based Model (named
MDADP CC): In MDADP CC, for a candidate MDA
between any given disease di and microbe mj , its co-
confidence value will be obtained according to the following
Equation (2):

Rcc(i, j) =

8∑
k=1

Wk(i, j) (2)

Where,

Wk(i, j) =

{
1 : ifRk(i, j) ⩾ δ

0 : otherwise
(3)

Obviously, values of elements in above matrix Rcc will vary
from 1 to 8, and the parameter δ affects the strictness of the co-
confidence strategy. To ensure a stricter synergy confidence, δ
will be set to 100 (about %14 of the total number of microbes)
in MDADP CC. Specifically, for a given unknown microbe-
disease pair, the larger its co-confidence value, the higher its
potential relevance.

Through analyzing above two strategies, it is easy to know
that the advantage of MDADP AR is that it can achieve
better error tolerance by combining results obtained by top
K competitive models with the best predictive performances,
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while the advantage of MDADP CC is that it can make models
with poor prediction performances work well by obtaining co-
confidence values of candidate MDAs.

In MDADP webserver, above eight representative predictive
models and two strategies for ranking potential MDAs have
been integrated for researchers to query more conveniently.

D. Implementation of the server
MDADP webserver with Model-View-Controller architec-

ture is realized by using Python language and Flask front-
end framework, and the platform has been deployed on
Alibaba Cloud Elastic Computing Service. In addition, data
of microbe-disease associations is stored in MDADP by
MySQL database. Moreover, in the webserver, lots of func-
tions including searching, sorting, filtering, visualization,
and downloading of MDAs are implemented simultaneously.
MDADP can be accessed at http://mdadp.leelab2997.cn. All
MDAs datasets curated in this paper can be downloaded at
https://github.com/HaoLeextu/MDADP.

III. RESULT

A. Assessment of predictive performance

Fig. 5. (A) Performances achieved by eight candidate methods un-
der frameworks of LOOCV based on the MDADP. (B) Performances
achieved by eight candidate methods under frameworks of 5-Fold CV
based on the MDADP dataset.

The leave-one-out cross validation (LOOCV) and 5-fold
cross validation (5-Fold CV) are two widely used frameworks
for assessing performance of predictive models, in this section,
we will adopt these two kinds of frameworks to evaluate
performances of above competitive methods based on the
MDADP dataset and the HMDAD dataset respectively. In
LOOCV, all unknown MDAs are considered as candidate
samples. Each known MDA will be excluded in turn as a
test sample, and the remaining known associations are used
as training samples. After executing the computational model,
the predicted values of test samples are ranked against the
predicted values of all candidate samples, and the test sample
with ranking above a given threshold will be considered as a
successful prediction. Obviously, different true positive rates
(TPR, sensitivity) and false positive rates (FPR, 1-specificity)
can be obtained when different thresholds are set. Here, the
TPR refers to the percentage between the number of test
samples with rankings above a given threshold and the number
of known MDAs. Meanwhile, the FPR indicates the percentage
of candidate samples ranked above a given threshold. Using
the FPRs and TPRs under different thresholds as the x-axis
and y-axis, respectively, the receiver operating characteristic

Fig. 6. The PR curve of eight candidate methods in LOOCV.

(ROC) can be further plotted. Thereafter, the area under curve
(AUC) can be taken to evaluate the prediction performance,
where the closer the AUC value is to 1 indicates the better
prediction performance. 5-Fold CV is similar to LOOCV,
except that it differs in dividing the samples. In the 5-Fold
CV, all samples are divided equally into 5 parts. One part
is selected as the testing set in each round, and the other 4
parts are used as the training set. Since the process of dividing
samples is random, the 5-Fold CV is executed 100 times,
and the stability of the prediction model is determined by
calculating the average of all AUCs as the final result and
calculating the standard deviation (STD). As another essential
evaluation metric, the area under the PR curves(AUPR) can
show the balance of recall and accuracy, and is therefore
suitable for evaluating the prediction performance of different
methods with unbalanced datasets [20]. We plotted the PR
curves of eight methods and calculated their AUPR values by
LOOCV.

ROC and PR curves for the eight candidate methods based
on the MDADP dataset are illustrated in Fig.5 and Fig.6,
respectively. Obviously, the first three models with the best
prediction performances are BWNMHMDA, NBLPHMDA,
and HMDA-Pred. For comparing the performance of these
candidate methods in recovering known MDAs, we statisti-
cally counted the number of true MDAs among the top 200,
500, 1000, 2000, and 5000 associations predicted by each
model in LOOCV, as illustrated in Fig.7. It can be seen from
Fig.7 that HMDA-Pred and BWNMHMDA achieved better
results at all thresholds. NBLPHMDA performed poorly at the
threshold of 200, but performed well at remaining thresholds.
It is remarkable that BiRWMP achieved relatively low AUCs
but performed relatively well in this metric.

In order to further verify the performances of these can-
didate models, we present ROC curves and AUC values in
LOOCV and 5-Fold CV for all candidate methods based on the
HMDAD dataset as well. Through observing Fig.5 and Fig.8,
it is easy to find that all candidate methods can achieve higher
AUCs in HMDAD. Among them, the AUCs of BPNNHMDA,
BWNMHMDA and NBLPHMDA are relatively higher than

http://mdadp.leelab2997.cn
https://github.com/HaoLeextu/MDADP
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Fig. 7. Performances achieved by eight candidate methods in recover-
ing known associations.

Fig. 8. (A) Performances achieved by seven candidate methods under
frameworks of LOOCV based on the HMDAD dataset. (B) Performances
achieved by seven candidate methods under frameworks of 5-Fold CV
based on the HMDAD dataset.

other four candidate methods. It is noteworthy that KATZH-
MDA performs poorly in MDADP. The main reason for
this disparity is that prediction results of KATZHMDA are
biased towards those well-investigated diseases and microbes.
For instance, KATZHMDA can achieve excellent prediction
performance (AUC value of 0.8382) for Type 1 Diabetes
Mellitus in HMDAD, since the associations relating to Type 1
Diabetes Mellitus account for more than one-third of the total
records in HMDAD (167 in 483 associations). However, this
biased advantage is not manifested in MDADP where the data
are relatively evenly distributed.

B. Case studies of MDADP AR and MDADP CC

To further confirm the validity of MDADP in predicting
potential MDAs, Alzheimer disease would be selected as the
case disease. During experiments, we selected and compared
the top 5 microbes associated with the case disease pre-
dicted by MDADP AR and MDADP CC for investigation.
The Alzheimer disease is one of the most common neurode-
generative diseases, affecting more than 50 million people
worldwide. It is extremely troublesome to human health and
is the fifth major cause of death [23]. Numerous studies have
suggested that the Alzheimer disease may begin in the gut and
is closely linked to dysbiosis of intestinal flora [24]. Top 5 mi-
crobes relating to the Alzheimer disease predicted by MDADP
based on average ranking method and co-confidence method
are shown in Table.II. Four of the top five microbes identified

by MDADP AR and MDADP CC as being associated with the
Alzheimer disease are confirmed by publications. Guo et al.
performed 16S ribosomal RNA sequencing on stool samples
from patients newly diagnosed with the Alzheimer disease and
healthy controls, and showed that Prevotella was significantly
increased at the genus level in AD patients [25]. Ivakhniuk
et al. explored the relationship between composition of the
intestinal microflora and Alzheimer’s disease, and they found
that patients with Alzheimer’s disease expressed significantly
decreased Lactobacillus in their gut microflora [26].

IV. DISCUSSION AND FUTURE WORK

What role microorganisms play in the physiological and
pathological states of the human body is a current hot research
topic [27]. A growing number of studies show a close relation-
ship between microbes and human diseases. In recent years,
researchers around the world have been devoting to studying
the complex relationship between microbes and diseases to
provide new strategies for disease prevention, diagnosis and
treatment [24], [28], [29]. The utilization of computational
models to uncover MDAs can provide new perspectives to
reveal disease mechanisms, by playing a role in areas such as
the discovery of disease-causing genes and drug therapies [9].
Recent studies have found high similarities between type 2
diabetes and colorectal cancer, and based on their association
with microorganisms, it was hypothesized that both diseases
could be treated with the same drug [12]. This hypothesis was
successfully tested and validated by biomedical scientists [30],
[31]. Hence, the high-performing MDA computational model
by leveraging the similarity feature and diverse biomedical
data is expected to reduce the time, effort and cost of wet
labs’ projects by precisely narrowing the potential search space
for MDA for researchers. Therefore, the establishment of a
systematic MDA database and the provision of reliable MDA
prediction tools are of great significance to scientists working
in related fields.

In this paper, we present an online platform called MDADP
that incorporates a new MDA database with comprehen-
sive MDA prediction tools. In contrast to the recently pro-
posed Disbiome database [32] and HMDAD database [9],
our MDADP database uses structured criteria to organize
disease terms. When data collection was performed, the com-
plex aliases, extended descriptions (e.g. ”new-onset untreated
rheumatoid arthritis) and ambiguity between symptoms and
disease, allowing ambiguity in disease nomenclature [12].
This is not only detrimental to database expansion, but also
the integration of different databases. We organized disease
nomenclature using disease terms from the Mesh database
and hence allow to retrieve standardized disease terms from
different disease repositories in a consistent way. Moreover,
microbes in the MDADP database were classified and mapped
with NCBI taxonomy. This will facilitate the designers of
predictive models to predict potential microbe-disease associ-
ations based on classification levels to improve the reliability
of predictions.

Certainly, in the current version of MDADP, there are many
aspects that need to be improved. For example, although these
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TABLE II
TOP 5 ALZHEIMER DISEASE-ASSOCIATED MICROBES PREDICTED BY MDADP_AR AND MDADP_CC.

Ranks in MDADP AR Microbe Evidence Ranks in MDADP CC Microbe Evidence
1 Prevotella PMID: 33523001 1 Staphylococcus unconfirmed
2 Lactobacillus PMID: 34103438 2 Prevotella PMID: 33523001
3 Roseburia PMID: 32593306 3 Lactobacillus PMID: 34103438
4 Clostridium PMID: 29857583 4 Roseburia PMID: 32593306
5 Faecalibacterium unconfirmed 5 Dorea PMID: 31781354

selected MDA computational models could achieve high AUCs
on the HMDAD dataset, it did not perform well enough on
the MDADP dataset. We hope that researchers can design
more models with better predictive performance based on the
MDADP database in the future. In addition, parameters of in
these models were set to the optimal values given by their
proposers based on the HMDAD database. It is obvious that
the parameters could be optimized based on the MDADP
database as well. Moreover, these models could introduce
more diverse prior information about diseases and microbes,
such as disease symptom similarity [33], disease semantic
similarity [34], [35], and microbe functional similarity [36].
We observed that some researchers have proposed models
for predicting MDAs based on graph convolutional neural
networks (NinimHMDA [37]) recently, which have achieved
impressive prediction performances. In the future, we will
introduce more excellent computational models such as Nin-
imHMDA to MDADP, which will be particularly beneficial
for MDADP CC to infer potential MDAs with higher co-
confidence. Furthermore, we will keep expanding both the dis-
eases and their associated microbes for the MDADP database.
With the expansion of MDAs entries and prediction methods,
MDADP can rank and select potential microbe-disease pairs
on a larger scale for validation experiments in downstream
laboratories.

Since MDADP is a systematic online platform integrating
a database and prediction tools for MDAs, we believe it
will be a valuable source of information for scientists in
microbiology and disease-related fields. Furthermore, MDADP
promises to be a useful and effective platform in biomedical
research, which may inspire bioscientists and computational
scientists to form new research hypotheses about microbe-
disease interactions, refine existing experimental methods, and
validate their conclusions.
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