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The Importance of these States of Matter Derives from

their Wide Occurrence

LCLS

® Hot Dense Matter (HDM) occurs in:

e Supernova, stellar interiors,
accretion disks

e Plasma devices: laser
produced plasmas, Z-pinches

 Directly driven inertial fusion
plasma

® Warm Dense Matter (WDM)

occurs in:

e Cores of large planets

e Systems that start solid and
end as a plasma

« X-ray driven inertial fusion
implosion
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Highlight of Three Experimental Areas in the High-Density
Finite-temperature Regime LCLS

® Creating WDM
e Generate 10 eV solid density matter

* Measure the fundamental nature of the matter via equation of state

salid sample

10 pm S short pulse probe laser
LCLS e
Pt 100 gi1m1 e]

fat

® Probing resonances in HDM

e Measure kinetics process, redistribution rates, kinetic
models LCLS tuned to a resonance

~25pm” i cﬁggf later

,cf{ X-ray streak spectrometer
® Probing dense matter

e Perform, e.g., scattering from solid density matter

* Measure n_, T, <Z>, f(v), and damping rates
fdense heated sample

e s

back scattered signal = W‘J sm 2T forward scatlered signal

LCLS




LCLS, Uniquely, Can Both Create and Probe High-density
Finite-temperature Matter LCLS

* To create WDM requires rapid uniform bulk heating

e High photon numbers, high photon energy, and short pulse length =>
high peak brightness

* To pump/probe HDM requires an impulsive source of high energy photons

e Pump rate must be larger than competing rates
« No laser source has flux (laboratory x-ray lasers or otherwise)

* To measure plasma-like properties requires short pulses with
signal > plasma emission

* No existing source can probe HDM or create WDM to probe

* 10'% increase in peak brightness allows access to novel regimes



Theoretically the Difficulty with WDM is There are No Small

Parameters LCLS

® WDM is the regime where neither condensed matter (T = 0) methods nor
plasma theoretical methods are valid

® The equation of state (EOS) of Cu indicates the problems
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® Thermodynamically consistent EOS based on numerous schemes has
proved impossible (attempted from 70°’s)

® A single incomplete description is now employed (from 1988)



In the WDM Regime Information Leads to New Results —
LCLS Will Be Unique Source of Data

LCLS

® Experimental data on D, along the
Hugoniot shows theories were and

are deficient

® LCLS can heat matter rapidly and
uniformly to generate isochores
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Experiment 1: Using the LCLS to Create WDM LCLS

SGH?ﬁmple short pulse probe laser

10 prm
LCLS
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® Foral1l0x10x100 pum sample of Al

£

e Ensure the sample uniformly heated use 33% of beam energy
e Equating absorbed energy to total kinetic and ionization energy

3 0o : :
v :EneTe +a nl, where I, = ionization potential of stage i-1

® Generate a 10 eV solid density with n_ = 2x10%? cm® and <Z> ~0.3

® State of material on release can be measured with a short pulse
laser

e Estimated to be C, ~ 1.6x10° cm/s with pressure 4 Mb
« For 500 fs get surface movement by 80 A

® Material rapidly and uniformly heated releases isentropically



Experiment 2: LCLS Can Excite a Line Transition in HDM and

Provide Observable Results LCLS

® For HDM the plasma collision rates and
spontaneous decay rates are large
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LCLS Will Create Excitation Levels That Are
Observable in Emission L CLS

Observe emission with

. s X-ray streak camera

® Schematic experiment
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Experiment 3: LCLS Will Measure Properties of Solid Density

Finite Temperature Matter LCLS
Scattering and absorption from solid Al
/dense heated sample 1 04 I I I
LCLS / \ oo
back scattered signal 1%, 49;}1 2% forward scattered signal Photo-absorptir::—n
10°

® Scattering from free electrons
provides a measure of the Tg, ng, f(V),
and plasma damping
e structure alone not sufficient for
plasma-like matter
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® Due to absorption, refraction and
reflection visible lasers can not probe
high density
* no high density data

Absorption or Scattering Length (1/cm)

10°
® LCLS scattering signals will be well L [ Compton - inconerent weakly bound e-
above noise for both WDM and HDM L[ T Compton-incoherent unbound plasma e
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Scattering of LCLS Will Provide Data on Free, Tightly-, and
Weakly-bound Electrons LCLS

® Weakly-bound and tightly-bound electrons depend on their binding
energy relative to the Compton energy shift
 Those with binding energies less than the Compton shift are
categorized weakly bound.
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® Foraz25eV, 4x10%3 cm= plasma the LCLS produces104 photons from
the free electron scattering



Goal for WDM Experiments at the LCLS: Measure EOS and
Plasma-like Properties LCLS

® EOS measurements illuminate the microscopic
understanding of matter

 The state of ionization is extremely complex when
the plasma is correlated with the ionic structure

® Other properties of the system depend on the same
theoretical formulations

 For example, conductivity and opacity



Goal for HDM Experiments at the LCLS: Study Kinetics, Line
Shapes, and Plasma Formation LCLS

® Since the advent of HDM laboratory plasma quantitative data
has been scarce

 The rapid evolution of high T_ and n_, matter requires a
short duration, high intensity, and high energy probe =>
LCLS

® The LCLS will permit measurements of:
« Kinetics behavior —rates, model construction
 Plasma coupling — direct measurement of S(k, I)

* Line transition formation — line shapes, shifts, ionization
depression

« HED plasma formation — measure matter in the densest
regions



