LCLS

PLASMA AND WARM DENSE MATTER STUDIES

Richard W. Lee, Lawrence Livermore National Laboratory

- **P. Audebert,** Laboratoire pour l'Utilisation des Lasers Intenses, École Polytechnique Palaiseau, France
- **R.C. Cauble**, *Lawrence Livermore National Laboratory*
- J.-C. Gauthier, Laboratoire pour l'Utilisation des Lasers Intenses,

École Polytechnique Palaiseau, France

O.L. Landen, Lawrence Livermore National Laboratory

C. Lewis, School of Mathematics and Physics, Queen's University, Belfast, Northern Ireland

A. Ng, Department of Physics and Astronomy, University of British Columbia, Canada

D. Riley, School of Mathematics and Physics, Queen's University, Belfast, Northern Ireland

S.J. Rose, Central Laser Facility, Rutherford Laboratory, Chilton, Oxfordshire, UK

J.S. Wark, Department of Physics, Clarendon Laboratory, Oxford University, Oxford, UK

- Hot Dense Matter (HDM) occurs in:
 - Supernova, stellar interiors, accretion disks
 - Plasma devices: laser produced plasmas, Z-pinches
 - Directly driven inertial fusion plasma
- Warm Dense Matter (WDM) occurs in:
 - Cores of large planets
 - Systems that start solid and end as a plasma
 - X-ray driven inertial fusion implosion

Highlight of Three Experimental Areas in the High-Density Finite-temperature Regime

Creating WDM

- Generate 10 eV solid density matter
- Measure the fundamental nature of the matter via equation of state

- Probing resonances in HDM
 - Measure kinetics process, redistribution rates, kinetic models
 LCLS tuned to a resonance

- Probing dense matter
 - Perform, e.g., scattering from solid density matter
 - Measure n_e, T_e, <Z>, f(v), and damping rates

- To create WDM requires rapid uniform bulk heating
 - High photon numbers, high photon energy, and short pulse length => high peak brightness
- To pump/probe HDM requires an impulsive source of high energy photons
 - Pump rate must be larger than competing rates
 - No laser source has flux (laboratory x-ray lasers or otherwise)
- To measure plasma-like properties requires short pulses with signal > plasma emission
 - No existing source can probe HDM or create WDM to probe
 - 10¹⁰ increase in peak brightness allows access to novel regimes

Theoretically the Difficulty with WDM is There are No Small Parameters

- WDM is the regime where neither condensed matter (T = 0) methods nor plasma theoretical methods are valid
- The equation of state (EOS) of Cu indicates the problems

- Thermodynamically consistent EOS based on numerous schemes has proved impossible (attempted from 70's)
- A single incomplete description is now employed (from 1988)

In the WDM Regime Information Leads to New Results – LCLS Will Be Unique Source of Data

- Experimental data on D₂ along the Hugoniot shows theories were and are deficient
- LCLS can heat matter rapidly and uniformly to generate isochores

Experiment 1: Using the LCLS to Create WDM

For a 10x10x100 µm sample of Al

- Ensure the sample uniformly heated use 33% of beam energy
- Equating absorbed energy to total kinetic and ionization energy

 $\frac{E}{V} = \frac{3}{2}n_e T_e + \sum_i n_i I_p^i \text{ where } I_p^i = \text{ ionization potential of stage } i - 1$

- Generate a 10 eV solid density with $n_e = 2 \times 10^{22}$ cm⁻³ and <Z> ~0.3
- State of material on release can be measured with a short pulse laser
 - Estimated to be $C_s \sim 1.6 \times 10^6$ cm/s with pressure 4 Mb
 - For 500 fs get surface movement by 80 Å
- Material rapidly and uniformly heated releases isentropically

LCLS

- For HDM the plasma collision rates and spontaneous decay rates are large
- To effectively move population, pump rate, R, must be > decay rate, A => R ≥ A
- For I = 10¹⁴ W/cm² R/A ~ 10⁻⁴g_U /g_L λ^4
 - For LCLS

 $\lambda \sim 10 \text{ Å} \implies \text{R/A} \sim 1$

• For laboratory x-ray lasers $\lambda > 100 \text{ Å} \implies R/A << 1$

LCLS Will Create Excitation Levels That Are Observable in Emission

LCLS

• t = 0 laser irradiates Al dot

Simulations

Experiment 3: LCLS Will Measure Properties of Solid Density Finite Temperature Matter

- Scattering from free electrons provides a measure of the T_e, n_e, f(v), and plasma damping
 - structure alone not sufficient for plasma-like matter
- Due to absorption, refraction and reflection visible lasers can not probe high density
 - no high density data
- LCLS scattering signals will be well above noise for both WDM and HDM

- Weakly-bound and tightly-bound electrons depend on their binding energy relative to the Compton energy shift
 - Those with binding energies less than the Compton shift are categorized weakly bound.

 For a 25 eV, 4x10²³ cm⁻³ plasma the LCLS produces10⁴ photons from the free electron scattering

 EOS measurements illuminate the microscopic understanding of matter

- The state of ionization is extremely complex when the plasma is correlated with the ionic structure
- Other properties of the system depend on the same theoretical formulations
 - For example, conductivity and opacity

- Since the advent of HDM laboratory plasma quantitative data has been scarce
 - The rapid evolution of high T_e and n_e matter requires a short duration, high intensity, and high energy probe => LCLS
- The LCLS will permit measurements of:
 - Kinetics behavior rates, model construction
 - Plasma coupling direct measurement of S(k, 1)
 - Line transition formation line shapes, shifts, ionization depression
 - HED plasma formation measure matter in the densest regions