
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 375, Number 1, January 2022, Pages 173–244
https://doi.org/10.1090/tran/8467

Article electronically published on November 5, 2021

ON CHOW-WEIGHT HOMOLOGY OF GEOMETRIC MOTIVES

MIKHAIL V. BONDARKO AND VLADIMIR A. SOSNILO

Abstract. We describe new Chow-weight (co)homology theories on the cat-

egory DMeff
gm(k,R) of effective geometric Voevodsky motives (R is the coeffi-

cient ring). These theories are interesting “modifications” of motivic homol-
ogy; Chow-weight homology detects whether a motive M ∈ ObjDMeff

gm(k,R)

is r-effective (i.e., belongs to the rth Tate twist DMeff
gm(k,R)(r) of effective

motives), bounds the weights of M (in the sense of the Chow weight structure

defined by the first author), and detects the effectivity of “the lower weight
pieces” of M . Moreover, we calculate the connectivity of M (in the sense of
Voevodsky’s homotopy t-structure, i.e., we study motivic homology) and prove
that the exponents of the higher motivic homology groups (of an “integral”
motive) are finite whenever these groups are torsion. We apply the latter
statement to the study of higher Chow groups of arbitrary varieties.

These motivic properties of M have plenty of applications. They are closely
related to the (co)homology of M ; in particular, if the Chow groups of a variety
X vanish up to dimension r− 1 then the highest Deligne weight factors of the
(singular or étale) cohomology of X with compact support are r-effective.

Our results yield vast generalizations of the so-called “decomposition of the
diagonal” theorems, and we re-prove and extend some of earlier statements of
this sort.
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174 MIKHAIL V. BONDARKO AND VLADIMIR A. SOSNILO

Introduction

The paper is dedicated to extending the well-known technique of decomposition of
the diagonal (cf. Remark 0.5(1) below) to Voevodsky motives, and the application of
the results to the study of arbitrary varieties and their cohomology. Our main tool
are the completely new Chow-weight homology theories. They are closely related
to motivic homology of Voevodsky motives; yet Chow-weight homology has several
interesting properties that do not hold for motivic homology.

So, we consider Voevodsky’s category DM eff
gm(k,R) of R-linear effective geomet-

ric motives; here we assume the base field k is perfect and its characteristic p is
invertible in the coefficient ring R whenever it is positive (this is equivalent to
1/e ∈ R, where e is the exponential characteristic of k). Recall that DM eff

gm(k,R)

contains the category Choweff(k,R) of R-linear effective Chow motives over k.
Now, the first author defined an exact (and conservative) weight complex func-

tor tR : DM eff
gm(k,R) → Kb(Choweff(k,R)) whose restriction to Choweff(k,R) ⊂

DM eff
gm(k,R) is the obvious embedding Choweff(k,R) → Kb(Choweff(k,R)) (see

Definition 1.4.1 and Remark 1.4.3 below). Then for tR(M) = (Ms) and a per-
fect field extension K/k we define the abelian group CWHi

j(MK , R) as the i-th
homology of the complex h2j,j(M

s
K , R) obtained from tR(M); here h2j,j = CHj is

the extension to Chow motives of the dimension j (R-linear) Chow group functor
(whereas the notation originates from motivic homology), and the lower index K
indicates that we extend the base field to K. Consequently, if M is a Chow motive
then CWHi

j(MK) = {0} for i �= 0 and CWH0
j(MK) = h2j,j(MK); thus one may say

that Chow-weight homology is somewhat easier to compute than the motivic one
(cf. Remark 0.5(2); in Remark 3.1.3 we recall that these restrictions of Chow-weight
homology characterize it completely).

Next we recall that Choweff(k,R) contains the Lefschetz motive L = R〈1〉 =
R(1)[2]; for n ≥ 0 we say that a motive M is n-effective if it belongs to

DM eff
gm(k,R)〈n〉 = DM eff

gm(k,R)⊗ L⊗n = DM eff
gm(k,R)(n).

The first statement that demonstrates the usefulness of Chow-weight homology is
as follows.

Theorem 0.1. Let M be an object of DM eff
gm(k,R), n > 0, and K0 is a universal

domain containing k.1 Denote the set Z× [0, n− 1] ⊂ Z× Z by I.

(1) Then M ∈ DM eff
gm(k,R)〈n〉 if and only if CWHi

j(MK) = {0} whenever
(i, j) ∈ I and K is the perfect closure of a finitely generated extension of k.

(2) If R = Q then M ∈ DM eff
gm(k,R)〈n〉 if and only if CWHi

j(MK0
) = {0} for

all (i, j) ∈ I.
(3) If R ⊂ Q and CWHi

j(MK0
) ⊗ Q = {0} for all (i, j) ∈ I then there exists

an integer E > 0 such that for any perfect field extension k′/k we have
E · CWHi

j(Mk′) = {0} for all these (i, j).

These statements can be vastly generalized; see Theorems 3.2.1, 3.3.3, 3.6.4,
and 5.1.2, and §3.4 below. In particular (instead of effectivity) one can study
weights and connectivity of M (that is, relate M to the filtrations induced by
the Chow weight structure and the homotopy t-structure; see §2.1–2.2 below) and
“measure effectivity” of the higher terms of the complex tR(M). For R = Q one can

1See Definition 2.3.1(2) and Proposition 5.2.3 below.

Licensed to Univ of Winnipeg. Prepared on Tue Mar 15 17:32:17 EDT 2022 for download from IP 142.132.194.59.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON CHOW-WEIGHT HOMOLOGY OF GEOMETRIC MOTIVES 175

also study the case where the corresponding Chow-weight homology vector spaces
are finite dimensional (over Q). Moreover, we apply these results to study the
Deligne weight filtration on singular and étale cohomology. Instead of formulating
all motivic statements of this sort here (yet see the end of this introduction for a
short plan of the paper), we will now describe one of their applications to motives
with compact support of varieties.

Theorem 0.2. Let r>0, X is a k-variety (that is, a reduced separated scheme of
finite type over k), K0 is a universal domain containing k, and CHj(XK0

,Q) = {0}
for 0 ≤ j < r. Then the following statements are valid.

(1) There exists E > 0 such that the Z[1/e]-linear Chow groups CHj(Xk′ ,Z[1/e])
are annihilated by the multiplication by E for all 0 ≤ j < r and all field
extensions k′/k (here e = p if p > 0 and e = 1 if p = 0).

(2) If k is a subfield of C and q > 0 then the (highest) q-th weight factor of
the mixed Hodge structure Hq

c (XC) (the singular cohomology of XC with
compact support) is r-effective (as a pure Hodge structure).

Moreover, the same property of the Deligne weight factors of Hq
c (Xkalg)

is fulfilled for étale cohomology with values in the category of Q�[Gal(k)]-
modules if k is the perfect closure of a finitely generated field.

In particular, these factors are zero if q < 2r.
(3) The motive Mc

Q(X) (see Definition 4.1.1(2)) is an extension of an element

of DM eff
gm(k,Q)wChow≥1 (see §2.2) by an object of Choweff(k,Q)〈r〉.

Remark 0.3.

(1) The vanishing of lower Chow groups is quite “common” for non-proper
varieties. In particular, it suffices to assume that X is an open subvariety
of X ′×Ar for some k-variety X ′; cf. Remark 4.1.7(2) below for more detail.

(2) These statements are completely new; yet they are easily seen to gener-
alize the corresponding (rather well-known) properties of proper smooth
varieties.

Note also that the formulation of Theorem 4.2.3 below is somewhat sim-
ilar to Theorem 0.2; yet it mentions higher motivic homology. Moreover,
in Corollary 5.1.6(2) below parts (2) and (3) of our theorem are general-
ized to the case where the Q-vector spaces CHj(XK0

,Q) = {0} are finite
dimensional if 0 ≤ j < r.

(3) By Proposition 3.5.5 below (see also Remark 4.2.2(2)), the combination
of two of more or less “standard” motivic conjectures yields that the first
implication in Theorem 0.2(2) is actually an equivalence.

Let us now recall some basics on (“classical”) decomposition of the diagonal and
relate it to our results. Decomposition of the diagonal (see Remark 0.5(1) below)
was introduced by Bloch in §1A of [Blo80] (cf. also [BlS83]; a rich collection of recent
results related to this notion can be found in [Voi14]). Let us recall some easily
formulated motivic results obtained via this method (and essentially established
in [Via17]). For simplicity, we will state them for motives and Chow groups with
rational coefficients over a universal domain k; yet they also can be generalized
similarly to Theorem 0.1.
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176 MIKHAIL V. BONDARKO AND VLADIMIR A. SOSNILO

Proposition 0.4.

(i) Let O be an effective Chow motive over k. Then O is r-effective if and only
if CHj(O) = {0} for 0 ≤ j < r (see Remark 3.8 of [Via17]).

(ii) Let h : N → O be a morphism of effective Chow motives. Then CH0(h)
is surjective if and only if h “splits modulo 1-effective motives”, i.e., if it
corresponds to a presentation of O as a retract of N

⊕
(Q〈1〉) for some

effective motive Q (cf. Proposition 3.5 of ibid. and Remark 0.5(1) below).
(iii) For h : N → O as above the homomorphisms CHj(h) are surjective for all

j ≥ 0 if and only if h is split surjective (this is Theorem 3.18 of ibid.).

Remark 0.5.

(1) In statements of this sort one usually takes O to be the motive of a smooth
projective P/k, whereas N is obtained by resolving singularities of a closed
subvariety P ′ of P (cf. Lemma 3 of [GoG13] and Proposition 3.5 of [Via17]).
In this case, if CHj(h) is surjective for all j < c then the diagonal cycle Δ in
P×P is rationally equivalent to the sum of a cycle supported on P ′×P and
one supported on P ×W for some closed W ⊂ P of codimension at least r.
That is why one speaks about decomposing the diagonal; see Proposition
4.3.1 below for more detail.

One can usually reformulate these cycle-theoretic statements using the
following trivial observation: if M is an object of an additive category B,
idM = f1 + f2 (for f1, f2 ∈ B(M,M)), and fi factor through some objects
Mi of B (for i = 1, 2), then M is a retract of M1

⊕
M2. In particular,

if B is idempotent complete (this is the case for all “standard” motivic
categories) then M is a direct summand of M1

⊕
M2.

(2) Proposition 0.4(i) can easily be deduced from Theorem 0.1(2).
Moreover, we obtain that one cannot use motivic homology instead of

the Chow-weight one in the theorem. Indeed, if M = R〈1〉 then

h10(MK0
) = DM eff

gm(K0, R)(R[1], R(1)[2]) ∼= K∗
0 ⊗Z R �= {0}

if R is not a torsion ring (see Definition 2.2.2(5) below for this notation).
Note also that “classical” decomposition of the diagonal methods cannot
yield Theorem 0.2 since one cannot avoid distinguished triangles and long
exact sequences in the proof of this “mixed statement”.

Thus the results of the current paper demonstrate that the language of
Chow weight structures, weight complexes, and Chow-weight homology is
appropriate for extending decomposition of the diagonal results to varieties
that are either singular or non-proper, and to general Voevodsky motives.
The main disadvantage of Chow-weight homology is that its values are often
huge (since ordinary Chow groups are); cf. Remark 2.3.6(2) and Theorem
5.1.2 below.

(3) Proposition 0.4(ii,iii) follows from our general results as well; we demon-
strate this in Corollary 3.3.9 and Remark 3.3.10(2) below.

To prove this corollary we will consider the motive M = Cone(h). Since
the weight complex functor tQ is exact, the Chow group assumptions in

Propositions 0.4(ii,iii) are equivalent to the vanishing of CWH0
0(M) and

of CWH0
j (M) for all j ≥ 0, respectively. Moreover, CWHi

j(M) = {0} for
i �= −1, 0 automatically.
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ON CHOW-WEIGHT HOMOLOGY OF GEOMETRIC MOTIVES 177

For the sake of the readers scared of Voevodsky motives, we also note that our
results can be applied to Kb(Choweff(k,R)) (i.e., to complexes of R-linear Chow
motives) instead of DM eff

gm(k,R); see Remark 3.3.5 below. Yet even these more
elementary versions of our results are “quite triangulated”, and their proofs involve
certain triangulated categories of birational motives.

Now let us describe the contents of the paper; some more information of this
sort can be found at the beginnings of sections.

In §1 we recall some of the theory of weight structures.
In §2 we describe several properties of (various categories of) Chow and Voevod-

sky motives and of Chow weight structures for the latter. The most important
(though somewhat technical) results of this section are Proposition 2.2.6 (3, 6) on
morphisms between Chow motives inside DM eff

gm(k,R). We also prove some aux-
iliary statements on the behaviour of complexes whose terms are certain (higher)
Chow groups under morphisms of base fields; most of these results are more or less
well-known.

In §3 we define Chow-weight homology theories and study the properties of
Chow-weight homology of arbitrary objects of the Voevodsky categoryDM eff

gm(k,R).

In particular we express the weights of a motive M ∈ ObjDM eff
gm(k,R) and its ef-

fectivity (i.e., whether it belongs to ObjDM eff
gm(k,R)〈r〉 for a given r > 0) in

terms of its Chow-weight homology. We also relate the vanishing of the higher
degree Chow-weight homology of M to that of its motivic homology (along with
its motivic connectivity) and to the effectivity of the higher (Deligne) weight fac-
tors of cohomology. Moreover, the combination of two (of more or less “standard”)
motivic conjectures yields that the implications of the latter type are in fact equiva-
lences (see Proposition 3.5.5). Furthermore, we prove that the vanishing of rational
Chow-weight homology of M in a certain range is “almost equivalent” to M being
an extension of a motive satisfying the integral Chow-weight homology vanishing
in the same range by a torsion motive (see Theorem 3.6.4). This implies the follow-
ing: if the higher motivic homology groups of a motive M are torsion, then their
exponents are finite.

In §4 we apply our general results to motives with compact support of arbitrary
k-varieties. We apply them to obtain Theorem 0.2 as well as several results related
to it (see §4.2). Moreover, we re-prove and generalize certain decomposition of the
diagonal results of [Par94] and [Lat96]; in the process we demonstrate the relation
of our methods and results to the “usual” cycle-theoretic formulations of decompo-
sitions of the diagonal statements. We also recall that in the case where k is finite
the effectivity conditions for motives are closely related to the number of rational
points of k-varieties (taken modulo powers of q = #k); see Proposition 4.2.4(2).
Furthermore, we study tensor products of motives and relate them to varieties. In
particular, we prove (roughly) that the aforementioned standard conjectures imply
that the “effectivity and connectivity” of the tensor product of (geometric Q-linear)
motives over a characteristic 0 field cannot exceed the sums of the effectivities and
connectivities of the multipliers, respectively.

In §5 we prove some more statements and discuss further developments of the
theory. We study the finite-dimensionality of Chow-weight homology and of Chow
groups in the case R = Q; this gives a certain generalization of Theorems 3.3.3 and
0.2. We also dualize some of our results; this allows us to calculate the dimensions

Licensed to Univ of Winnipeg. Prepared on Tue Mar 15 17:32:17 EDT 2022 for download from IP 142.132.194.59.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



178 MIKHAIL V. BONDARKO AND VLADIMIR A. SOSNILO

of motives and bound their weights (from above) in terms of their Chow-weight
cohomology.

We also note that an alternative version of this text is available as [BoS14]; note
however that some of the notation and the numeration of the statements in ibid.
differs from the current text, and the exposition is less accurate. Moreover, some
results of our paper are generalized in [BoK20]; see Remark 5.3.1(6) below.

List of main definitions and notation

For the convenience of the readers we list some of the terminology and notation
used in this paper. The reader may certainly ignore this section.

• Karoubian categories, Karoubi envelopes, extension-closed and Karoubi-
closed subcategories, extension-closures, Karoubi-closures, envelopes, X ⊥
Y , D⊥, and ⊥D are defined in §1.1.

• Weight structures (general and bounded ones), their hearts, the classes
Cw≥i, Cw≤i, Cw=i, C [i,j], weight-exact functors, connective subcategories
of triangulated categories, weight truncations w≤mM , w≥mM , and m-
weight decompositions are recalled in §1.2.

• Weight complexes, weight filtrations, and weight spectral sequences are
recalled in §1.4.

• The motivic categories Choweff(k,R) ⊂ DM eff
gm(k,R) ⊂ DM eff

− (k,R) ⊂
DM eff(k,R) and Chow(k,R), the functor MR, (shifted) Tate twists 〈r〉 =
−(r)[2r], the homotopy t-structure tRhom, and varieties (resp. motives) of
the type XK (resp. MK) are introduced in §2.1.

• The Chow weight structures wChow onDM eff
gm(k,R) and on its subcategories

d≤mDM eff
gm(k,R), along with r-effectivity and dimensions for motives and

their motivic homology groups h∗∗(−, R) are introduced in §2.2. We also
define the functor lr : DM eff

gm(k,R) → DMr
gm(k,R), and introduce the

Chow weight structure wr
Chow on DMr

gm(k,R) for any r ≥ 0.
• Essentially finitely generated fields, universal domains, fields of definition
for motives, rational extensions, and function fields are defined in §2.3.

• Chow-weight homology functors CWH∗
∗(−K , R) and CWH∗

∗(−K , ∗, R) are
introduced in §3.1 (whereas the “Poincare dual” Chow-weight cohomology
functors CWC∗,∗(−K , R) and CWC∗,∗(−K , ∗, R) are defined in §5.2).

• Staircase sets I ⊂ Z × [0,+∞) (this includes sets of the type I〈c〉) are
introduced in §3.3; an example is drawn in Corollary 3.4.2(3).

• Étale and singular cohomology functors Het,Q�
and Hsing, and Deligne’s

weights WD∗H
∗ on their values are considered in §3.5.

• Motives with compact support Mc
Q(−) and Mc

R(−) are recalled in §4.1.
We will treat both the characteristic 0 and the positive characteristic case below.

Yet the reader may certainly assume that the characteristic of k is 0 throughout
the paper; clearly, in this case one does not have to think about perfectness and
the assumption 1/e ∈ R, and can use singular cohomology.

1. Some preliminaries on weight structures

This section is dedicated to recalling the theory of weight structures in triangu-
lated categories.
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ON CHOW-WEIGHT HOMOLOGY OF GEOMETRIC MOTIVES 179

In §1.1 we introduce some notation and conventions for (mostly, triangulated)
categories; we also prove two simple lemmas.

In §1.2 we recall the definition and basic properties of weight structures.
In §1.3 we relate weight structures to localizations.
In §1.4 we recall several properties of weight complexes and weight spectral

sequences.

1.1. Some (categorical) notation and lemmas.

• For a ≤ b ∈ Z we will write [a, b] (resp. [a,+∞), resp. [a,+∞]) for the
set {i ∈ Z : a ≤ i ≤ b} (resp. {i ∈ Z : i ≥ a}, resp. [a,+∞) ∪
{+∞} ⊂ Z ∪ {+∞}); we will never consider real line segments in this
paper. Respectively, when we write i ≥ c (for c ∈ Z) we mean that i is an
integer satisfying this inequality.

• Given a category C and X,Y ∈ ObjC we write C(X,Y ) for the set of
morphisms from X to Y in C.

• For categories C ′, C we write C ′ ⊂ C if C ′ is a full subcategory of C.
• Given a category C and X,Y ∈ ObjC, we say that X is a retract of Y if
idX can be factored through Y .

• An additive subcategory H of an additive category C is said to be Karoubi-
closed in C if it contains all retracts of its objects in C. The full subcategory
KarC(H) of additive category C whose objects are all the retracts of objects
of a subcategory H (in C) will be called the Karoubi-closure of H in C.

• The Karoubi envelope Kar(B) (no lower index) of an additive category B
is the category of “formal images” of idempotents in B. Consequently, its
objects are the pairs (A, p) for A ∈ ObjB, p ∈ B(A,A), p2 = p, and the
morphisms are given by the formula

Kar(B)((X, p), (X ′, p′)) = {f ∈ B(X,X ′) : p′ ◦ f = f ◦ p = f}.
The correspondence A �→ (A, idA) (for A ∈ ObjB) fully embeds B into
Kar(B). Moreover, Kar(B) is Karoubian, i.e., any idempotent morphism
yields a direct sum decomposition in Kar(B). Recall also that Kar(B) is
triangulated if B is (see [BaS01]).

• The symbol C below will always denote some triangulated category; usually
it will be endowed with a weight structure w.

• For any A,B,C ∈ ObjC we say that C is an extension of B by A if there
exists a distinguished triangle A → C → B → A[1].

• A class D ⊂ ObjC is said to be extension-closed if it is closed with respect
to extensions and contains 0. We call the smallest extension-closed subclass
of objects of C that contains a given class B ⊂ ObjC the extension-closure
of B.

Moreover, we call the smallest extension-closed Karoubi-closed subclass
of objects of C that contains B the envelope of B.

• Given a class D of objects of C we write 〈D〉 or 〈D〉C for the smallest full
Karoubi-closed triangulated subcategory of C containing D. We call 〈D〉
the triangulated category densely generated by D.

• For X,Y ∈ ObjC we write X ⊥ Y if C(X,Y ) = {0}. For D,E ⊂ ObjC
we write D ⊥ E if X ⊥ Y for all X ∈ D, Y ∈ E. Given D ⊂ ObjC we
will write D⊥ for the class

{Y ∈ ObjC : X ⊥ Y ∀X ∈ D}.
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180 MIKHAIL V. BONDARKO AND VLADIMIR A. SOSNILO

Dually, ⊥D is the class {Y ∈ ObjC : Y ⊥ X ∀X ∈ D}.
• Given f ∈ C(X,Y ), where X,Y ∈ ObjC, we call the third vertex of (any)

distinguished triangle X
f→ Y → Z a cone of f .

• For an additive category B we write K(B) for the homotopy category of
(cohomological) complexes over B. Its full subcategory of bounded com-
plexes will be denoted by Kb(B). We will write M = (M i) if M i are the
terms of the complex M .

1.2. Weight structures: Basics. Let us recall the definition of the notion that
is central for this paper.

Definition 1.2.1.

(I) A couple of subclasses Cw≤0, Cw≥0 ⊂ ObjC will be said to define a weight
structure w on a triangulated category C if they satisfy the following con-
ditions.
(i) Cw≥0 and Cw≤0 are Karoubi-closed in C (i.e., contain all C-retracts

of their objects).
(ii) Semi-invariance with respect to translations.

Cw≤0 ⊂ Cw≤0[1], Cw≥0[1] ⊂ Cw≥0.
(iii) Orthogonality.

Cw≤0 ⊥ Cw≥0[1].
(iv) Weight decompositions.

For any M ∈ ObjC there exists a distinguished triangle

X → M → Y→X[1]

such that X ∈ Cw≤0, Y ∈ Cw≥0[1].

We will also need the following definitions.

Definition 1.2.2. Let i, j ∈ Z; assume that a triangulated category C is endowed
with a weight structure w.

(1) The full subcategory Hw of C whose objects are Cw=0 = Cw≥0 ∩ Cw≤0 is
called the heart of w.

(2) Cw≥i (resp. Cw≤i, resp. Cw=i) will denote Cw≥0[i] (resp. Cw≤0[i], resp.
Cw=0[i]).

(3) C [i,j] denotes Cw≥i ∩ Cw≤j ; hence this class equals {0} if i > j.

Cb ⊂ C will be the category whose object class is ∪i,j∈ZC [i,j].

(4) We say that (C,w) is bounded if Cb = C (i.e., if ∪i∈ZCw≤i = ObjC =
∪i∈ZCw≥i).

(5) Let C ′ be a triangulated category endowed with a weight structure w′; let
F : C → C ′ be an exact functor.

F is said to be weight-exact (with respect to w,w′) if it maps Cw≤0 into

C ′
w′≤0 and sends Cw≥0 into C′

w′≥0.
(6) Let D be a full triangulated subcategory of C.

We say that w restricts toD whenever the couple (Cw≤0∩ObjD, Cw≥0∩
ObjD) is a weight structure on D.

(7) Let H be a full subcategory of a triangulated category C.
We say that H is connective if ObjH ⊥ (∪i>0Obj(H[i])).
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ON CHOW-WEIGHT HOMOLOGY OF GEOMETRIC MOTIVES 181

Remark 1.2.3.

(1) A simple (and yet quite useful) example of a weight structure comes from
the stupid filtration on Kb(B) (or on K(B)) for an arbitrary additive cat-
egory B. In this case Kb(B)w≤0 (resp. Kb(B)w≥0) will be the class of
complexes that are homotopy equivalent to complexes concentrated in de-
grees ≥ 0 (resp. ≤ 0); see [BoS18b, Remark 1.2.3(1)].

The heart of this weight structure is the Karoubi-closure of B in Kb(B)
(or in K(B), respectively).

(2) A weight decomposition (of any M ∈ ObjC) is almost never canonical.
Still for any m ∈ Z the axiom (iv) gives the existence of a distinguished

triangle

(1.1) w≤mM → M → w≥m+1M

with some w≥m+1M ∈ Cw≥m+1 and w≤mM ∈ Cw≤m; we call it an m-
weight decomposition of M .

We will often use this notation below (even though w≥m+1M and w≤mM
are not canonically determined byM); we will call any possible choice either
of w≥m+1M or of w≤mM (for any m ∈ Z) a weight truncation of M . More-
over, when we write arrows of the type w≤mM → M or M → w≥m+1M
we will always assume that they come from some m-weight decomposition
of M .

(3) In the current paper we use the “homological convention” for weight
structures; it was previously used in [Wil09], [Bon18a], [BoI15], [BoS18b],
[BoK18], [Bon18b], [Bon21], and [Bon19], whereas in [Bon10a] and in
[Bon10b] the “cohomological convention” was used. In the latter convention

the roles of Cw≤0 and Cw≥0 are interchanged, i.e., one considers Cw≤0 =

Cw≥0 and Cw≥0 = Cw≤0. Consequently, a complex X ∈ ObjK(B) whose

only non-zero term is the fifth one (i.e., X5 �= 0) has weight −5 in the
homological convention, and has weight 5 in the cohomological convention.
Thus the conventions differ by “signs of weights”; K(B)[i,j] is the class of
retracts of complexes concentrated in degrees [−j,−i].

We also recall that D. Pauksztello has introduced weight structures in-
dependently in [Pau08]; he called them co-t-structures.

(4) The orthogonality axiom (iii) in Definition 1.2.1 immediately yields that
Hw is connective in C. We will formulate a certain converse to this state-
ment below.

Let us recall some basic properties of weight structures. Starting from this mo-
ment we will assume that all the weight structures we consider are bounded (unless
specified otherwise; this is quite sufficient for our purposes everywhere except in
the proof of Lemma 3.1.4(1).

Proposition 1.2.4. Let C be a triangulated category, n ≥ 0; we will assume that
w is a fixed (bounded) weight structure on C everywhere except in assertion (8).

(1) The axiomatics of weight structures is self-dual, i.e., for C ′ = Cop (conse-
quently, ObjC′ = ObjC) there exists the (opposite) weight structure w′ for
which C′

w′≤0 = Cw≥0 and C ′
w′≥0 = Cw≤0.

(2) Cw≤0 is the extension-closure of ∪i≤0Cw=i in C; Cw≥0 is the extension-
closure of ∪i≥0Cw=i in C.
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182 MIKHAIL V. BONDARKO AND VLADIMIR A. SOSNILO

(3) Cw≥0 = (Cw≤−1)
⊥ and Cw≤0 = ⊥Cw≥1.

(4) Let m ≤ l ∈ Z, X,X ′ ∈ ObjC; fix certain weight decompositions of X[−m]
and X ′[−l]. Then any morphism g : X → X ′ can be extended to a com-
mutative diagram of the corresponding distinguished triangles (see Remark
1.2.3(2)):

w≤mX −−−−→ X −−−−→ w≥m+1X⏐⏐�
⏐⏐�g

⏐⏐�
w≤lX

′ −−−−→ X ′ −−−−→ w≥l+1X
′

Moreover, if m < l then this extension is unique (provided that the rows
are fixed).

(5) Assume that w′ is a weight structure for a triangulated category C′. Then
an exact functor F : C → C′ is weight-exact if and only if F (Cw=0) ⊂
C ′

w′=0.
(6) If M belongs to Cw≥−n then w≤0M belongs to C [−n,0].

(7) If m < l ∈ Z and M ∈ ObjC then for any choice of arrows w≤lM → M and
w≤m(w≤lM) → w≤lM that can be completed to an l-weight decomposition
and an m-weight decomposition triangle (see Remark 1.2.3(2)) respectively,
the composition morphism w≤m(w≤lM) → M can be completed to an m-
weight decomposition of M .

(8) Let D ⊂ ObjC be a connective additive subcategory. Then there exists a
unique weight structure wT on T = 〈D〉C such that D ⊂ TwT=0. It is
bounded; its heart equals the Karoubi-closure of D in C. Moreover, T is
Karoubian whenever D is.

Furthermore, if there exists a weight structure w on C such that D ⊂
Hw, then the embedding T → C is strictly weight-exact, i.e., TwT≤0 =
ObjT ∩ Cw≤0 and TwT≥0 = ObjT ∩ Cw≥0.

(9) For any M,N ∈ ObjC and f ∈ C(N,M) if M belongs to Cw≥0, then f
factors through (any possible choice of) w≥0N . Dually, if N belongs to
Cw≤0 then f factors through w≤0M .

(10) Let D be a (full) triangulated subcategory of C such that w restricts to D;
let M ∈ Cw≤0, N ∈ Cw≥−n, and f ∈ C(M,N). Suppose that f factors
through an object P of D, i.e., there exist u1 ∈ C(M,P ) and u2 ∈ C(P,N)
such that f = u2 ◦ u1. Then f factors through an element of D[−n,0].

Proof. Assertions (1)–(4) were proved in [Bon10a] (pay attention to Remark
1.2.3(3)!). Assertion (5) follows immediately from Lemma 2.7.5 of [Bon10b].

Assertion (6) follows immediately from the fact that the classes Cw≥−n and
Cw≤0 are extension-closed (cf. assertion (2)).

(7). The octahedral axiom of triangulated categories implies that the object
C = Cone(w≤m(w≤lM) → M) is an extension of (the corresponding) w≥l+1M by
w≥m+1(w≤lM). Hence C belongs to Cw≥m+1 (cf. assertion (2) once again); thus
w≤m(w≤lM) → M → C is an m-weight decomposition triangle.

Assertion (8) is given by Remark 2.1.2 of [BoS18b].
Assertion (9) is an easy consequence of assertion (4).
(10). Assertion (9) yields that u2 factors through w≥−nP ; thus we can assume

that P belongs to Dw≥−n. Next, the dual to assertion 9 (see assertion (1)) yields
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ON CHOW-WEIGHT HOMOLOGY OF GEOMETRIC MOTIVES 183

that u1 factors through w≤0P . It remains to note that we can choose w≤0P that
belongs to D[−n,0] (see assertion (6)). �
1.3. Weight structures on localizations.

Definition 1.3.1. We call a category A
B the factor of an additive category A by

its full additive subcategory B if Obj
(
A
B

)
= ObjA and

(
A

B
)(X,Y ) = A(X,Y )/(

∑
Z∈ObjB

A(Z, Y ) ◦A(X,Z)).

Proposition 1.3.2. Let D ⊂ C be a triangulated subcategory of C; suppose that w
restricts to a weight structure wD on D (see Definition 1.2.2(6)). Denote by l the
localization functor C → C/D (the latter category is the Verdier quotient of C by
D) .

Then the following statements are valid.

(1) w induces a weight structure on C/D, i.e., the Karoubi-closures of l(Cw≤0)
and l(Cw≥0) in C/D give a weight structure on this category.

(2) Suppose (C,w) is bounded, and for X ∈ ObjC assume l(X) ∈ C/DwC/D≥0.

Then X is an extension of some element of Cw≥0 by an element of
DwD≤−1 (see §1.1).

(3) The obvious functor Hw
HwD

→ C/D is a full embedding, and the heart

HwC/D of the weight structure wC/D given by assertion 1 is the Karoubi-

closure of the image of Hw
HwD

in C/D.

(4) If (C,w) is bounded, then C/D also is.

Proof. Assertions (1), (3), and (4) were proved in §8.1 of [Bon10a]; assertion (2)
is an easy consequence of Theorem 3.3.1 of [BoS18c] (as demonstrated by Remark
3.3.2(1) of ibid.). �
Remark 1.3.3.

(1) Part (2) of our proposition gives the existence of a distinguished triangle
D → X → C → D[1] for some C ∈ Cw≥0 and D ∈ Dw≤−1. Clearly, this
triangle is just a −1-weight decomposition of X. In particular, Proposition
1.2.4(2) (or part 6 of that proposition along with its dual) easily yields the
following: if we also have X ∈ C [r,m] for r ≤ 0 ≤ m then C ∈ C [0,m] and
D ∈ C [r,−1].

(2) If w is bounded then all weight structures compatible with it (for D ⊂ C)
come from additive subcategories of Hw (see Proposition 1.2.4 (8, 5)).
Moreover, in this case the heart HwC/D actually equals the essential image

of Hw
HwD

in C/D (see Proposition 3.3.3(1) of [BoS18c]).

On the other hand, to ensure that there exists a weight structure for
C/D such that the localization functor is weight-exact it actually suffices
to assume that D is densely generated by some set of elements of C [0,1]; see

Theorem 3.2.2 of [BoS19] for a more general statement.

1.4. On weight complexes and weight spectral sequences. We will need
certain weight complexes below. We define weight complexes of objects here only;
however, we will discuss certain extensions of this definition in Remark 1.4.3(3,4)
below.
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184 MIKHAIL V. BONDARKO AND VLADIMIR A. SOSNILO

Definition 1.4.1. For an object M of C (where C is endowed with a weight
structure w) choose some w≤lM (see Remark 1.2.3(2)) for all l ∈ Z; then connect
w≤l−1M with w≤lM using Proposition 1.2.4(4) (i.e., we consider those unique con-
necting morphisms that are compatible with idM ). Next, take the corresponding
triangles

(1.2) w≤l−1M → w≤lM → M−l[l] → (w≤l−1M)[1]

(so, we just introduce the notation for the corresponding cones). All of these
triangles along with the corresponding morphisms w≤lM → M are called a choice of
a weight Postnikov tower for M , whereas the objects M i along with the morphisms
connecting them (obtained by composing the morphismsM−l → (w≤l−1M)[1−l] →
M−l+1 that come from two consecutive triangles of the type (1.2)) will be denoted
by t(M) and said to be a choice of a weight complex for M .

Let us recall some basic properties of weight complexes. Note that the bound-
edness of w is only needed in assertions (5) and (3) below; moreover, a much
weaker restriction on w is sufficient for the latter statement according to Proposi-
tion 3.1.6(2) and Theorem 2.3.4(I.1) of [Bon19].

Proposition 1.4.2. Let M ∈ ObjC, where C is endowed with a weight structure
w.

Then the following statements are valid.

(1) Any choice of t(M) = (M i) is a complex indeed (i.e., the square of the
boundary is zero); all M i belong to Cw=0.

(2) M determines its weight complex t(M) up to a homotopy equivalence. In
particular, if M ∈ Cw≥0 (resp. M ∈ Cw≤0) then any choice of t(M) is
K(Hw)-isomorphic to a complex with non-zero terms in non-positive (resp.
non-negative) degrees only.

(3) If t(M) is homotopy equivalent to 0, then M = 0.

(4) If M0
f→ M1 → M2 is a distinguished triangle in C then for any possible

choice of t(M0) and t(M1) there exists a choice of t(M2) that completes
them to a distinguished triangle.

Moreover, if M0 ∈ Cw≥0 and M1 ∈ Cw≤0 then there exists t(M2) of the

form · · · → M−2
0 → M−1

0 → M0
0

f0→ M0
1 → M1

1 → . . . . That is, one can
take any choice of t(M1) that is concentrated in non-negative degrees and
put it in the same degrees of t(M2), take a “dual choice” of t(M0), shift it
by [1], and put it inside t(M2) also, whereas f0 is the composed morphism

M0
0 → M0

f→ M1 → M0
1 (the unlabeled morphisms in this row are provided

by our construction).
(5) If t(M) is homotopy equivalent to a bounded complex (M ′i) then M belongs

to the extension-closure of the set {M ′−i[i]}.
(6) Let N ∈ Cw=0, M ∈ Cw≥0; assume that a C-morphism f : N → M factors

through some L ∈ ObjC. Then for any possible choice of L0 (i.e., of the
zeroth term of t(L)) f can be factored through L0.

(7) Let H : Hw → A be an additive functor, where A is an abelian category.
Choose a weight complex t(M) = (M j) for each object M of C, and denote

by H̃(M) the zeroth homology of the complex H(M i). Then H̃(−) yields
a homological functor from C to A (that does not depend on the choices of
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ON CHOW-WEIGHT HOMOLOGY OF GEOMETRIC MOTIVES 185

weight complexes for objects); we call a functor of this type a w-pure one
(cf. Remark 3.1.3 below).

(8) Let C′ be a triangulated category endowed with a weight structure w′; let F :
C → C′ be a weight-exact functor. Then for any choice of t(M) the complex
(F (M i)) yields a weight complex of F (M) with respect to w′. Moreover,
this observation is “compatible with the construction of functors” mentioned
in the previous assertion, and is natural with respect to transformations of
(weight-exact) functors.

Proof. Assertions (1)–(4) easily follow from Theorem 3.3.1 of [Bon10a]. Moreover,
Proposition 1.3.4 and Appendices A–B of [Bon21] give some more detail for the
proofs.

Next, assertions (8), (7), and (5) are given by Proposition 1.3.4(12), Theorem
2.1.2(1), and Corollary 3.3.3(2) of ibid., respectively.

Assertion (6) was essentially established in the course of proving Proposition
1.2.4(10). �

Remark 1.4.3.

(1) Moreover, Theorem 3.3.1(VI) of [Bon10a] easily yields that t induces a
bijection between the class of isomorphism classes of elements of C [0,1]

and the corresponding class for K(Hw) (i.e., with the class of homotopy
equivalence classes of complexes that have non-zero terms in degrees −1
and 0 only).

(2) The term “weight complex” originates from [GiS96], where a certain com-
plex of Chow motives W (X) was constructed for a variety X over a char-
acteristic 0 field. The weight complex functor of Gillet and Soulé can
essentially be obtained by composing the “triangulated motivic” weight
complex functor DM eff

gm(k,Z) → Kb(Choweff(k,Z)) (or DMgm(k,Z) →
Kb(Chow(k,Z)); cf. Definition 3.1.1 below) with the functor Mc of motive
with compact support (see Propositions 6.3.1 and 6.6.2 and Remark 6.3.2(2)
of [Bon09]; cf. also Definition 4.1.1(2) and the proof of Proposition 4.1.8(2)
below). Note however that in [GiS96] the so-called contravariant category of
Chow motives is considered, i.e., all arrows point in the opposite direction.

Certainly, our notion of weight complex is much more general.
(3) The basics of our weight complex theory was developed in §3 of [Bon10a];

in §1.3 of [Bon21] the theory was exposed more carefully (via extending
Definition 1.4.1). In ibid. a (canonical) weak weight complex functor
t : Cw → Kw(Hw) was defined; here Cw is a (triangulated) category
canonically equivalent to C, and Kw(Hw) is a certain “weak homotopy”
category of Hw-complexes ( and there exists a natural conservative functor
K(Hw) → Kw(Hw)).

Moreover, throughout this paper one can actually assume that all the
weight complexes we need are given by “compatible” exact strong weight
complex functors whose targets are the corresponding Kb(Hw); see Corol-
lary 3.5 of [Sos19], Remark 1.3.5(3) of [Bon21], and Proposition 1.3.1 of
[Bon20b]. This approach is also applied in (§1.5 of) [BoK20].

(4) All the weight complexes in this paper can be assumed to be bounded, since
for any (w-bounded) object M of C one can take w≤lM = 0 for l small
enough and = M for l large enough. Moreover, we can assume that for any
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object M of C a canonical choice t0(M) of its weight complex is fixed; cf.
part (3) of this remark.

Now, the possible choices of bounded weight complexes for M are pre-
cisely the boundedHw-complexes homotopy equivalent to t0(M); see Corol-
lary 3.3.3(1) of [Bon21].

Let us now recall some of the properties of weight spectral sequences established
in §2 of [Bon10a].

Let A be an abelian category. In §2 of [Bon10a] for H : C → A that is ei-
ther cohomological or homological (i.e., it is either covariant or contravariant, and
converts distinguished triangles into long exact sequences) certain weight filtrations
and weight spectral sequences (corresponding to w) were introduced.

Definition 1.4.4. Let A be a an abelian category, i ∈ Z, and M ∈ ObjC.

(1) If H : C → A is a (covariant) functor then we will write Hi for the functor
H ◦ [−i] : C → A.

(2) If H is a contravariant functor from C into A then we write Hi for the
composed functor Hi = H ◦ [−i].

Moreover, we fix a choice of w≥iM and define the weight filtration on
H(M) as W i(H)(M) = Im(H(w≥iM) → H(M)). Recall that W iH(M) is
functorial in M (in particular, it does not depend on the choice of w≥iM);
see Proposition 2.1.2(2) of ibid. We will use the notation GriWH(M) for
the quotient object W i(H)(M)/W i+1(H)(M).

Proposition 1.4.5.

(1) For a homological functor H : C → A and any M ∈ ObjC there exists a
spectral sequence T = Tw(H,M) with Epq

1 (T ) = H−q(M
p), such that the

objects M i and the boundary morphisms of E1(T ) come from any choice of
t(M). Tw(H,M) is C-functorial in M starting from E2.

It converges to Ep+q
∞ = H−p−q(M) (at least) if M is w-bounded.

(2) Dually, if H is a cohomological functor from C into A then for any M ∈
ObjC there exists a spectral sequence T = Tw(H,M) with Epq

1 = Hq(M−p),
for M i and the boundary morphisms of E1(T ) coming from t(M). Tw(H,M)
converges to Hp+q(M) whenever M is w-bounded; it is C-functorial in M
starting from E2, and also functorial with respect to composition of H with
exact functors between abelian categories.

The step of the filtration given by (El,m−l
∞ : l ≥ n) on Hm(M) (for some

n,m ∈ Z) equals (WnHm)(M).

Proof. These statements are essentially contained in Theorems 2.3.2 and 2.4.2 of
[Bon10a], respectively (yet take into account Remark 1.2.3(3)!). �

Corollary 1.4.6. Let M ∈ Cw≥0, N ∈ Cw=0. Then the following statements are
valid.

(1) Choose some t(M) = (M i). Then C(N,M) is isomorphic to the zeroth
homology of the complex (Hw(N,M i)).

(2) Let D ⊂ C be a triangulated subcategory of C; suppose that w restricts
to a weight structure wD on D (see Definition 1.2.2(6)). Assume that a
morphism f ∈ C(N,M) vanishes in the Verdier quotient C/D. Then f
factors through some object of HwD.
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ON CHOW-WEIGHT HOMOLOGY OF GEOMETRIC MOTIVES 187

Proof.

(1) We may assume that M i = 0 for i > 0 (see Proposition 1.4.2(2); note
that making a choice here does not affect the homology of the complex
(Hw(N,M∗))). Hence we have a weight spectral sequence for the homo-
logical functor C(N,−) : C → Ab that starts from Epq

1 = C(N,Mp[q])
and converges to C(N,M [p + q]). Since N ⊥ M i[−i] for all i < 0 and
N ⊥ M i[−i− 1] whenever i < −1, this spectral sequence gives the result.

(2) The Verdier localization theory yields that f factors through an object of
D. Hence the assertion follows from Proposition 1.4.2(6).

�

2. On motives, their weights, and various (complexes of)

Chow groups

In this section we study several motivic categories, Chow weight structures on
them, and certain (complexes of) Chow groups.

In §2.1 we recall some basics on Voevodsky motives with coefficients in a Z[1/e]-
algebra R and introduce some notation.

In §2.2 we introduce and study in detail Chow weight structures on various
versions of DM eff

gm(k,R).
In §2.3 we associate to extensions of k and complexes of Chow motives the

homology of complexes consisting of their Chow groups (of fixed dimension and
“highness”). We prove several properties of these homology theories (and of motivic
homology); however, most of them appear to be standard.

2.1. Some notation and basics on Voevodsky motives. Below k will denote
a perfect base field of characteristic p. We set e = 1 if p = 0 and e = p otherwise;
that is, e is the exponential characteristic of k.

We will use the term k-variety for reduced separated (possibly, reducible) schemes
of finite type over Spec k; we write Var for the set of all k-varieties. Respectively,
the set of smooth varieties (resp. of smooth projective varieties) over k will be
denoted by SmVar (resp. by SmPrVar), and we do not assume these schemes to be
connected.

Recall that (as was shown in [MVW06] and [BeV08]; cf. also [CiD15] and
[BoK18]) one can do the theory of motives with coefficients in an arbitrary commu-
tative associative ring with a unit R. One obtains a tensor triangulated category
DM eff

gm(k,R) (along with its embeddings into DMgm(k,R) and into DM eff
− (k,R);

see below) that satisfies all the basic properties of the usual Voevodsky’s motives
(i.e., of those with integral coefficients for p = 0). Moreover, we recall that all of
the results that were stated in [Voe00] in this case are currently known for Z[1/e]-
motives (also if) p > 0; see [Kel17], [Deg08], and [Bon11]. Consequently, these
properties are also valid for R-linear motives whenever R is a Z[1/e]-algebra (see
[BeV08] and [BoK18]), and we will apply some statements of this sort below with-
out further mention. We will mostly be interested in the cases R = Z[1/e] and
R = Q.

An important part of the construction of motives is a functor MR (R-motive)
from the category of smooth k-varieties into DM eff

gm(k,R). Actually, MR extends
to the category of all k-varieties (see [Voe00] and [Kel17]); yet we will mention this
extension just a few times.
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We will write pt for the point Spec k (considered as a k-variety); we write just
R for MR(pt).

We write Choweff(k,R) for the Karoubi-closure in DM eff
gm(k,R) of the subcat-

egory whose objects are R-motives of smooth projective varieties; Choweff(k,R)
will be called the category of R-linear effective homological Chow motives (see
Proposition 2.2.6(1) below or Remark 1.3.2(4) of [BoK18] for a justification of this
terminology).

For c ≥ 0 and M ∈ ObjDM eff
gm(k,R) we write M〈c〉 for the tensor product

of M by the cth tensor power of the Lefschetz motive L (recall that the latter is
characterized by the condition MR(P

1) ∼= L
⊕

R). The relation of this notation
to the notation for twists in [Voe00] is as follows: M〈c〉 = M(c)[2c] and M(c) =
M〈c〉[−2c].

Next, recall that the twist functor −〈1〉 is a full embedding of DM eff
gm(k,R) into

itself (this fact is often called the Cancellation theorem) that restricts to an em-

bedding of Choweff(k,R) into itself. −〈1〉 extends to an autoequivalence of the
corresponding category DMgm(k,R) = DM eff

gm(k,R)[〈−1〉] (i.e., we invert the func-
tor −〈1〉 = − ⊗ L); note that this category contains DM eff

gm(k,R) together with

Chow(k,R) = Choweff(k,R)[〈−1〉]. Moreover, DMgm(k,R) is equipped with an

exact Poincaré duality functor −̂ : DMgm(k,R) → DMgm(k,R)op (constructed
in [Voe00] for p = 0; see Theorem 5.3.18 of [Kel17] or [Bon11] for the positive
characteristic case) that sends MR(P ) into MR(P )〈−d〉 if P is smooth projec-
tive everywhere of dimension d. It restricts to the “usual” Poincaré duality for
Chow(k,R).

Both DM eff
gm(k,R) and DMgm(k,R) are Karoubian by definition.

An important property of motives is the Gysin distinguished triangle (see Propo-
sition 4.3 of [Deg08] that establishes its existence in the case of an arbitrary charac-
teristic p). For a closed embedding Z → X of smooth varieties with Z is everywhere
of codimension c in X, it has the following form:

(2.1) MR(X \ Z) → MR(X) → MR(Z)〈c〉 → MR(X \ Z)[1].

Remark 2.1.1. Some of our formulations below will use the homotopy t-structure
for the Voevodsky motivic complexes. We recall that the methods of [Voe00]
yield an embedding DM eff

gm(k,R) into a certain category DM eff
− (k,R), and the

latter can be endowed with the so-called homotopy t-structure tRhom (which gives
a filtration on DM eff

gm(k,R) ⊂ DM eff
− (k,R) that we will sometimes call the mo-

tivic connectivity one). Furthermore, DM eff
− (k,R) is a full subcategory of the tri-

angulated category DM eff(k,R) of unbounded motivic complexes that is closed
with respect to arbitrary coproducts. The t-structure tRhom can be extended to
DM eff(k,R) (see §4 of [BeV08] or Corollary 5.2 of [Deg11]), and the correspond-

ing class DM eff(k,R)t
R
hom≤0 equals DM eff

− (k,R)t
R
hom≤0; it also equals the smallest

extension-closed class of objects of DM eff(k,R) that is closed with respect to co-
products and contains MR(X) for all smooth X/k.

We will often have to mention base fields distinct from k. It will be convenient
for us to use the following notation.
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Definition 2.1.2. Assume that K/k be a field extension, X is a k-variety, and M
an object of DMgm(k,R).

(1) We will write XK for the K-variety X ×Spec k SpecK.
(2) Kperf will denote the perfect closure of K.
(3) We will use the notation MK for the image of M with respect to the ex-

tension of base field functor DMgm(k,R) → DMgm(Kperf , R) (cf. Remark
2.2.3 below); see Appendix A of [BoK20] for some information on functors
of this type.

Let us recall a well-known statement related to this convention. Below we will
only apply it for X that is smooth over K (yet cf. Proposition 4.1.2(2) and Remark
4.1.3 below); in this case it is essentially true by definition.

Lemma 2.1.3. For a variety X over k we have MR(X)K ∼= MR(XKperf ) (in the
category DM eff

gm(Kperf , R)).

Proof. The statement is given by Proposition A.1(1) of [BoK20]. Alternatively, it
easily follows from (8.7.1), Corollary 3.2, and Theorem 3.1 of [CiD15] along with
Proposition 4.3.13 of [CiD19]. �
2.2. Chow weight structures on various motivic categories. Now we note
that the arguments used in the construction of the Chow weight structures in
[Bon10a] and [Bon11] can be easily applied to R-motives (for any Z[1/e]-algebra
R).

Proposition 2.2.1.

(1) There exists a bounded weight structure wChow on DM eff
gm(k,R) (resp. on

DMgm(k,R)) whose heart equals Choweff(k,R) (resp. Chow(k,R); we as-
sume these subcategories of DMgm(k,R) to be strict). These weight struc-
tures on DM eff

gm(k,R) and DMgm(k,R) are compatible (i.e., the embedding

DM eff
gm(k,R) → DMgm(k,R) is weight-exact).

Moreover, DM eff
gm(k,R)wChow≤0 (resp. DMgm(k,R)wChow≤0) is equal to

the extension-closure of the class ∪i≤0 ObjChoweff(k,R)[i] in DM eff
gm(k,R)

(resp. of the class ∪i≤0ObjChow(k,R)[i] in DMgm(k,R)); analogously,
DM eff

gm(k,R)wChow≥0 (resp. DMgm(k,R)wChow≥0) is the extension-closure

of ∪i≥0 ObjChoweff(k,R)[i] in DM eff
gm(k,R) (resp. of ∪i≥0ObjChow(k,R)[i]

in DMgm(k,R)).
(2) If U ∈ SmVar and dimU ≤ m then MR(U) ∈ DM eff

gm(k,R)[−m,0].
(3) If U → V is an open dense embedding of smooth varieties then the motive

Cone(MR(U) → MR(V )) belongs to DM eff
gm(k,R)wChow≤0.

(4) Let k′/k be a field extension. Then the extension of scalars functors −k′ :
DM eff

gm(k,R) → DM eff
gm(k′perf , R) and DMgm(k,R) → DMgm(k′perf , R)

(see Definition 2.1.2) are weight-exact with respect to the corresponding
Chow weight structures.

(5) For any n ∈ Z the functor −〈n〉 is weight-exact on DMgm(k,R); the same
is true for DM eff

gm(k,R) if n ≥ 0.

(6) If M ∈ ObjDM eff
gm(k,R)〈n〉, n ∈ Z, then there exists a choice of its

weight complex t(M) = (M i) (with respect to the Chow weight structure
for DM eff

gm(k,R); see Definition 1.4.1 and Remark 1.4.3(4)) with M i ∈
ObjChoweff(k,R)〈n〉.
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Proof. The first three assertions were stated in Theorem 2.2.1 of [Bon11] in the
case R = Z[1/e]. The proof carries over to the case of a general R without any
difficulty; see Remark 2.1.3(1) of [BoK18] or Proposition 2.3.2 of [BoI15].

The remaining statements are simple as well. Assertions (4) and (5) easily follow
from Proposition 1.2.4(5) along with Lemma 2.1.3, whereas assertion (6) follows
from the previous one by Proposition 1.4.2(8). �

Now we deduce some simple corollaries from this proposition. Their formulation
requires the following definition, that will be important for us below.

Definition 2.2.2.

(1) For M ∈ ObjDM eff
gm(k,R) and a non-negative integer r we say that M is

r-effective if it has the form N〈r〉 for some N ∈ ObjDM eff
gm(k,R).

(2) We say that the dimension of M is not greater than an integer m if M
belongs to 〈MR(P ) : P ∈ SmPrVar, dimP ≤ m〉.

The (full) subcategory of DM eff
gm(k,R) (resp. of Choweff(k,R)) of mo-

tives of dimension at most m is denoted by d≤mDM eff
gm(k,R) (resp., by

d≤m Choweff(k,R); consequently, d≤mDM eff
gm(k,R) = d≤m Choweff(k,R) =

{0} if m < 0).
(3) For r ≥ −1 we define the functor lr : DM eff

gm(k,R) → DMr
gm(k,R) as the

Verdier localization of DM eff
gm(k,R) by DM eff

gm(k,R)〈r + 1〉.
(4) We also use the following extension of this notation: Choweff(k,R)〈+∞〉 =

DM eff
gm(k,R)〈+∞〉 = {0}, l+∞ = l+∞−1 will denote the identity functor

for DM eff
gm(k,R). Respectively, DMgm(k,R)+∞(k,R) = DM eff

gm(k,R), and

any subclass of objects of DM eff
gm(k,R)〈+∞〉 is zero.

(5) If M is an object of Choweff(k,R) or of DM eff
gm(k,R) and j, l ∈ Z then we

define h2j+l,j(M,R) as DMgm(k,R)(R〈j〉[l],M) = DMgm(k,R)(R(j)[2j +
l],M) (cf. Theorem 5.3.14 of [Kel17] or Proposition 4.1.2(3) below where
these groups are related to the corresponding Chow-Bloch groups of vari-
eties).

More generally, for an extension K/k we write h2j+l,j(MK , R) for the
group DMgm(Kperf , R)(R〈j〉[l],MK) (see Definition 2.1.2(1,2)).

The last part of this definition can be naturally extended to DM eff
− (k,R). When

we will use this notation for general (l,M), we will usually take j = 0 in it.

Remark 2.2.3. We will sometimes mention “ordinary” Chow groups of varieties over
fields that are not necessarily perfect. One can define them in the usual way (in
spite of the conventions described in Definition 2.1.2; cf. also Proposition 4.1.2(3)
below) since for any variety X over k and any extension K/k we have the following
isomorphism of Chow groups of cycles of dimension j ≥ 0:

CHj(XK , R) ∼= CHj(XKperf , R).

This fact is probably well-known; it can either be proved similarly to Lemma 1.2
of [Via17] (where the case R = Q is considered; recall that we always assume that
R is a Z[1/e]-algebra) or deduced from Proposition 8.1 of [CiD15].
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ON CHOW-WEIGHT HOMOLOGY OF GEOMETRIC MOTIVES 191

Corollary 2.2.4. Let c ≥ 1, m ≥ 0.

(1) The Chow weight structure restricts to a weight structure wc on the category
DM eff

gm(k,R)〈c〉 (see Definition 1.2.2(6)). Moreover, DM eff
gm(k,R)wc≤0 =

DM eff
gm(k,R)wChow≤0〈c〉 and DM eff

gm(k,R)wc≥0 = DM eff
gm(k,R)wChow≥0〈c〉.

(2) An object M of Choweff(k,R) is c-effective (as an object of DM eff
gm(k,R))

if and only if it can be presented as N〈c〉 for N ∈ DM eff
gm(k,R)wChow=0.

(3) The Chow weight structure also restricts to a weight structure on the cat-
egory d≤mDM eff

gm(k,R) (that will also be denoted by wChow). The heart of

the latter consists of all objects of Choweff(k,R) inside d≤mDM eff
gm(k,R);

these motives are exactly the retracts of MR(P ) for smooth projective P/k
of dimension at most m.

(4) If U → V is an open embedding of smooth varieties such that V \ U is
everywhere of codimension c in V , dimV ≤ m, then Cone(MR(U) →
MR(V )) ∈ (d≤m−cDM eff

gm(k,R))wChow≤0〈c〉.
(5) If V is a smooth k-variety of dimension at most m then MR(V ) is an object

of d≤mDM eff
gm(k,R).

(6) The Karoubi-closures of the classes

lc−1(DM eff
gm(k,R)wChow≤0) and lc−1(DM eff

gm(k,R)wChow≥0)

in DM c−1
gm (k,R) give a bounded weight structure wc−1

Chow on this category.

Proof. (1) Note that DM eff
gm(k,R)〈c〉 is precisely the subcategory of DM eff

gm(k,R)

densely generated by ObjChoweff(k,R)〈c〉. Hence Proposition 1.2.4(8), (2) yields
the result immediately.

(2) This is an immediate consequence of the “moreover” part of the previous
assertion (since − 〈c〉 gives an equivalence of DM eff

gm(k,R) with DM eff
gm(k,R)〈c〉).

(3) The statement immediately follows from Proposition 1.2.4(8) (once again).
(4) There clearly exists a chain of open embeddings U = U0 → U1 → U2 →

· · · → Um = V (for some m ≥ 1) such that Ui \ Ui−1 are smooth for all 1 ≤ i ≤ m.
Hence the distinguished triangles (2.1) along with Corollary 2.2.4(5) imply (by
induction on m) that Cone(MR(U) → MR(V )) ∈ Obj(d≤m−cDM eff

gm(k,R))〈c〉.
Thus it remains to combine the equality

((d≤m−cDM eff
gm(k,R))〈c〉)wc≤0 = ((d≤m−cDM eff

gm(k,R))wChow≤0)〈c〉

(cf. assertion (1) and its proof) with Proposition 2.2.1(3).
(5) The arguments used for the proof of [Bon11, Theorem 2.2.1(1)] give the result

without any difficulty (cf. Corollary 1.2.2 of ibid. and Lemma 4.1.4(4) below).
(6) According to assertion (1), we can apply Proposition 1.3.2(1,4) to obtain the

result in question. �

Remark 2.2.5. Let l ∈ Z and c ≥ 1, and assume that there exists a choice of
wChow≤lM that belongs to ObjDM eff

gm(k,R)〈c〉.
(1) Proposition 1.2.4(7) implies that we can choose wChow≤l−1M that be-

longs to ObjDM eff
gm(k,R)〈c〉. Then the corresponding choice (see (1.2))

of M−l belongs to DM eff
gm(k,R)wChow=0 as well as to ObjDM eff

gm(k,R)〈c〉
(since DM eff

gm(k,R)〈c〉 is a full triangulated subcategory of DM eff
gm(k,R);

see Proposition 1.2.4(2)). Thus M−l ∈ DM eff
gm(k,R)wChow=0〈c〉.
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(2) Now suppose M ∈ DM eff
gm(k,R)wChow≤l. Then M is a retract of wChow≤lM

(since idM factors through wChow≤lM by Proposition 1.2.4(9)). Thus M is
an object of DM eff

gm(k,R)〈c〉 as well.
(3) It is easily seen that the weight structure wr

Chow can be extended to the
category Kar(DMr

gm(k,R)) ⊃ DMr
gm(k,R) (see Theorem 2.2.2(II.2) of

[BoS18b] or Remark 1.2.3(4) and Proposition 1.2.4(8 above). Moreover,
Kar(DM0

gm(k,Z)) is easily seen to be equivalent to the (geometric) bira-
tional motivic category DMo

gm introduced in Definition 4.2.1 of [KaS17].

Let us prove some more lemmas that will be very important for us below.

Proposition 2.2.6. Let m, j ≥ 0, c ≥ 1, U, V ∈ SmVar, Q ∈ SmPrVar, M ∈
ObjChoweff(k,R).

(1) If U is of constant dimension d then DM eff
gm(k,R)(MR(U)〈j〉,MR(Q)) is

naturally isomorphic to the group CHd+j(U × Q,R) of R-linear cycles of
dimension d+ j modulo rational equivalence.

(2) Let u : U → V be an open embedding such that V \ U is everywhere of
codimension at least c in V and dimV ≤ m. Let N ∈ DMgm(k,R)wChow≥0,
and assume that a morphism g ∈ DMgm(k,R)(MR(V )〈j〉, N) vanishes
when composed with MR(u)〈j〉. Then there exists a smooth projective P/k
of dimension at most m− c such that g factors through MR(P )〈j + c〉.

(3) If Q is of dimension at most m then any morphism q : MR(Q) → M〈c〉 can
be factored through MR(P )〈c〉 for some smooth projective P/k of dimension
at most m − c. Moreover, there exists an open embedding w : W → Q
such that Q \ W is (everywhere) of codimension at least c in Q and the
composition q ◦MR(w) vanishes.

(4) Obj d≤mDM eff
gm(k,R)∩ObjDM eff

gm(k,R)〈c〉 = Obj(d≤m−cDM eff
gm(k,R))〈c〉.

In particular, if M〈c〉 is of dimension at most m (in DM eff
gm(k,R)), then

M is of dimension at most m− c (thus it is zero if c > m).
(5) Let g ∈ DM eff

gm(k,R)(MR(V )〈j〉,M). Assume that V is connected and the
obvious image of g in the group h2j,j(Mk(V )) (see Definition 2.1.2(3) and
the proof of this assertion) is zero. Then the morphism g can be factored

through an object of Choweff(k,R)〈j + 1〉.
(6) If Q is connected then DM j

gm(k,R)(MR(Q)〈j〉,M) ∼= h2j,j(Mk(Q), R).
(7) Assume that dim(Q) + j ≤ r and that the dimension of M (see Definition

2.2.2(2)) is not greater than r. Then the group h2j,j(Mk(Q), R) is isomor-
phic to the group of morphisms from MR(Q)〈j〉 into M in the localization
d≤rDM eff

gm(k,R)/((d≤r−j−1DM eff
gm(k,R))〈j + 1〉) (as well).

Proof. (1). This statement was established in [Voe00] in the case p = 0; in the
general case it follows immediately from the formulae (6.4.2) and (6.7.1) of [BeV08];
cf. Corollary 6.7.3 of ibid.

(2). Clearly, g can be factored through Cone(MR(u))〈j〉. Next, Corollary
2.2.4(4) implies that Cone(MR(u))〈j〉 belongs toDM eff

gm(k,R)wChow≤0〈j+c〉. Hence
for Cone(MR(u)) = N ′〈c〉 we can take wChow≥0(Cone(MR(u))〈j〉) to be equal to

(wChow≥0N
′)〈j + c〉 ∈ ObjChoweff(k,R)〈j + c〉 (see Proposition 1.2.4(6)). Hence

applying part (9) of that proposition we conclude the proof.
(3). Let Q = �Qi be the decomposition of Q into connected components, whose

dimensions will be denoted by mi; clearly, mi ≤ m. Assume that M is a retract of
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MR(S) for some smooth projective S/k. By the classical theory of Chow motives
(cf. assertion (1)), the morphism q is supported on subvarieties of dimension mi−c
in Qi × S. Hence there exists an open W ⊂ Q such that Q \ W is everywhere
of codimension at least c in Q and the “restriction” of q to W vanishes. Hence
q ◦MR(w) = 0 according to assertion (1), and assertion (2) implies that q factors
through some MR(P )〈c〉 for a smooth projective P/k of dimension at most m− c.

(4). The first part of the assertion follows immediately from Theorem 2.2 of
[Bon18a] (see also Remark 2.3(2) of ibid.).

To prove the second part it suffices to recall that any motive in the heart of
d≤m−cDM eff

gm(k,R)〈c〉 is a retract of MR(P )〈c〉 for some smooth projective P/k
of dimension at most m− c (see Corollary 2.2.4(1,3)), and apply the Cancellation
theorem.

(5). Clearly, we can assume that M = MR(Q), Q is (smooth projective and
connected) of dimension dQ ≥ 0, and V is of dimension d. Then assertion (1) says

that DM eff
gm(k,R)(MR(V )〈j〉,M) ∼= CHdQ−j(V ×Q,R) (the R-linear Chow group

of codimension dQ − j cycles).
Next, we recall that Chow functors of this type are well-known to be “contin-

uous”; thus we have CHdQ−j(Qk(V ), R) = lim−→W
CHdQ−j(W × Q,R); here W runs

through open subvarieties of V (cf. Lemma 3.4 of [Via17] and its proof). Moreover,

it is easily seen that CHdQ−j(Qk(V ), R) ∼= CHj(Qk(V ), R) ∼= CHj(Qk(V )perf , R);
see Remark 2.2.3. Thus there exists an open embedding w : W → Q such that
g ◦MR(w)〈j〉 = 0; hence we can apply assertion (2).

(6). Denote dimQ by d. Similarly to the proof of the previous assertion, we have
DM eff

gm(k,R)(MR(Q)〈j〉,M) ∼= h2j+2d,j+d(MR(Q)⊗M,R), and there is a natural
surjective homomorphism

DM eff
gm(k,R)(MR(Q)〈j〉,M) ∼= h2j+2d,j+d(MR(Q)⊗M,R) → h2j,j(Mk(Q), R).

By Proposition 1.3.2(3), the natural homomorphism

DM eff
gm(k,R)(MR(Q)〈j〉,M) → DM j

gm(k,R)(MR(Q)〈j〉,M)

is surjective as well. Thus we should compare the kernels.
According to Proposition 1.3.2(3), the second of these kernels consists exactly

of morphisms that can be factored through Choweff(k,R)〈j + 1〉. Hence we should
prove that the first kernel can be described by this criterion as well. Now, (the
rational equivalence class of cycles representing) any morphism that factors through

Choweff(k,R)〈j + 1〉 vanishes in h2j,j(Mk(Q), R) for simple dimension reasons (cf.
Proposition 2.3.3(2) below). Conversely, any morphism that belongs to

Ker(DM eff
gm(k,R)(MR(Q)〈j〉,M) → h2j,j(Mk(Q), R))

can be factored through an object of Choweff(k,R)〈j+1〉 according to the previous
assertion.

(7). The chain or arguments used for the proof of the previous assertion can
easily be adjusted to yield the result. �

Remark 2.2.7.

(1) The proof of (part (5)) of the proposition uses an abstract version of the
well-known decomposition of the diagonal arguments (cf. Proposition 1
of [BlS83]). The “usual” way to construct the factorization in question
(see Proposition 3.5 of [Via17] and Lemma 3 of [GoG13]) is to resolve the
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singularities of V \W . Yet it is somewhat difficult to apply this more explicit
method if p > 0 (at least, for Z[1/e]-coefficients). Moreover, our reasoning
is somewhat shorter than the one of loc. cit. (given the properties of Chow
weight structures that are absolutely necessary for this paper anyway).

(2) In the case R = Q the “in particular” part of Proposition 2.2.6(4) was
established in §3 of [Via17] (see Remark 3.11 of ibid.). The general case of
the assertion is completely new.

(3) The idea of studying DM j
gm(k,R) and the formulation of part (5) of the

proposition was inspired by Theorem 4.2.2(f) of [KaS17] (where our asser-
tion was established in the case j = 0).

2.3. On complexes of Chow groups over various fields. We start with some
simple definitions.

Definition 2.3.1. Let K be a field.

(1) We say that K is essentially finitely generated if it is the perfect closure of
a field that is finitely generated over its prime subfield.

(2) We call K a universal domain if it is algebraically closed and of infinite
transcendence degree over its prime subfield.

(3) We say that a field F0 is a field of definition for an object M of DM eff
gm(k,R)

(resp. of Kb(Chow(k,R))) if it is a part of a quintuple (F0, k0, i, M0, f)
where k0 is a perfect subfield of F0, i is an embedding k0 → k, M0 ∈
ObjDM eff

gm(k0, R) (resp. M0 ∈ ObjKb(Chow(k0, R))), and f is an isomor-
phism Mk → M (cf. Definition 2.1.2).

(4) We call K a rational extension of k if K ∼= k(t1, . . . , tn) for some n ≥ 0.
(5) We say that K is a function field over k if K is finitely generated over k.

Remark 2.3.2.

(1) Fields of definition for M obviously form a category if we define a mor-
phism from (F0, k0, i, M0, f) into (F ′

0, k′0, i′, M ′
0, f ′) to be a couple as

follows: a field embedding F0 → F ′
0 that induces an embedding k0 → k′0

that is compatible with i and i′, and an isomorphism M ′
0
∼= M0,k′

0
that is

compatible with (f, f ′).
Clearly, for any field of definition of M as above any field embedding

F0 → F ′
0 makes F ′

0 a field of definition of M (with k′0 = k0) and also gives a
morphism of these fields of definition. Consequently, it is usually sufficient
to specify F0 only.

(2) Clearly, any function field is a finite extension of a rational extension of k.
Moreover, since k is perfect by our convention, any function field over it is
the function field of some smooth connected variety V/k; recall here that
varieties over perfect fields are generically smooth.

Proposition 2.3.3. Let j, l ∈ Z and r ≥ 0. Then the following statements are
valid.

(1) Let N ∈ ObjChow(k,R). Then

h2j+l,j(NK , R) ∼= DMgm(K,R)(N̂K , R〈j〉[−l])

(see Definition 2.2.2(5)) for any field extension K/k, where N̂ is the Poin-
caré dual of N (in Chow(k,R) ⊂ DMgm(k,R)).
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(2) For any N ∈ ObjChoweff(k,R) and any field extension K/k we have

h2j+l,j(NK〈r〉, R) = {0}
if j − r + l < 0.

(3) An object N of DM eff
gm(k,R) (or DM eff

− (k,R)) belongs to DM eff
− (k,R)t

R
hom≤0

(see Remark 2.1.1) if and only if hl,0(NK , R) = {0} for all l < 0 and all
function fields K/k.

Moreover, these conditions are equivalent to the vanishing of
hl−r,−r(NK , R) for all l < 0, r ≥ 0, and all function fields K/k.

(4) Any object either of DM eff
gm(k,R) or of Kb(Chow(k,R)) possesses an es-

sentially finitely generated field of definition.

Proof. (1) This is an immediate consequence of Poincaré duality for Voevodsky
motives; see Theorem 5.23 of [Deg08].

(2) Obviously, it suffices to establish the statement for N = MR(P ), where
P is as in the previous assertion; consequently, we will now treat this particular
case. Next, recall that motivic cohomology of smooth varieties can be computed as
the (co)homology of certain (Suslin or Bloch) cycle complexes; see Theorem 5.3.14
of [Kel17] (cf. Proposition 4.1.2(3) below). Therefore the group in question is a
subquotient of a certain group of cycles of Kperf -dimension j − r + l. The result
follows immediately.

(3) See the (probably, well-known) Proposition A.1(3) of [BoK20].
(4) This fact appears to be well-known; its proof can easily be obtained using

continuity arguments as in Remark 1.3.3 of [Bon20a] (that relies on §4.3 of [CiD19]).
�

Now let us prove some facts relating (complexes of) higher Chow groups over
various base fields.

Our first statement is rather “classical” (cf. Lemma IA.3 of [Blo80] and §3 of
[Via17]; one can also apply the more advanced formalism of [CiD15] to prove it).

Proposition 2.3.4. Let j, l ∈ Z.
Fix an object (M i) of Kb(Chow(k,R)); for a field of definition F0 of (M i) de-

note by G(F0) the zeroth homology of the complex h2j+l,j(M
i
F0
, R) (clearly, G is

functorial with respect to morphisms of fields of definition for (M i); see Remark
2.3.2(1)).

I. The following statements are valid.
(1) Let F0 ⊂ F ′

0 be fields of definition for M . Then G(F ′
0) is the (filtered)

direct limit of G(K) if we take K running through all finitely generated
extensions of F0 inside F ′

0; here all these extensions as well as F ′
0 are

endowed with the structure of fields of definition for M that “comes
from F0” (see Remark 2.3.2(1) once again).

(2) Let F1/k
1
0 and F2/k

2
0 be fields of definition for M ; let s : F1 → F2 be an

embedding of fields such that (M1
0 F1

)F2
∼= M2

0 F2
(yet we do not require

s to extend to a morphism of fields of definition). Then s induces a
homomorphism G(F1) → G(F2) that is an isomorphism if s(F1) = F2,
and is injective if F1 is algebraically closed.

II. Let R = Q. Then the following conditions are equivalent.
(1) G(K) = {0} for any function field K/k.
(2) G(F0) = {0} for some universal domain of definition for M .
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196 MIKHAIL V. BONDARKO AND VLADIMIR A. SOSNILO

(3) G(F0) = {0} for any algebraically closed field of definition for M .
(4) G(F0) = {0} for any field of definition for M .

III. All the statements above remain valid if we define G(K) as h2j,j(MK , R)
for a fixed M ∈ ObjDMgm(k,R).

Proof. We note (for convenience) that we can pass to the Poincaré duals in all of
these statements (see Proposition 2.3.3(1)). Thus one can express G(K) in terms
of motivic cohomology instead of motivic homology. We obviously do not have to
track the indices involved.

I. Recall that the motivic cohomology of Chow motives over F0 can be (functori-
ally) computed using certain complexes whose components are expressed in terms
of algebraic cycles in fixed F0-varieties. This fact easily yields all our assertions
except the (very) last injectivity one.

In order to verify the remaining statement we note that, for a (Voevodsky) motive
N defined over a perfect field L, the motivic cohomology of NL′ (for a perfect field
extension L′/L) can be (functorially in N) expressed as the filtered direct limit of
the corresponding cohomology of N ⊗MR

L(Va) for certain smooth varieties Va over
L. Next, if L is algebraically closed, then the DMgm(L,R)-morphism R → MR(Va)
possesses a splitting given by any L-point of Va. Hence the homomorphism in
question is injective since it can be presented as the direct limit of a system of
(split) injections.

One may also apply (“explicitly”) the continuity arguments mentioned in the
proof of Proposition 2.3.3(4) in these proofs.

II. The existence of trace maps for higher Chow groups (with respect to finite
extensions of base fields; see Lemma 1.2 of [Via17]) yields the following: if F ′

0/F0

is an algebraic extension and G(F ′
0) = {0}, then G(F0) = {0} as well. Along with

Proposition 2.3.3(4) and assertion I, this observation easily yields our claim.
III. Note that the motivic (co)homology of any Voevodsky motive can be com-

puted using certain complexes of algebraic cycles. The existence of these complexes
is immediate from (the R-module analogue of) Theorem 3.1.1 of [Bon09] (note that
this result is valid for any p; this is a consequence of Proposition 5.3.12(iv) of
[Kel17]). Hence the arguments above carry over to this setting without any diffi-
culty. �

The following statement appears to be new; yet it will be somewhat less impor-
tant for us below.

Proposition 2.3.5. Once again, assume that j, l, r ∈ Z, r > 0, (M i) is an object of
Kb(Chow(k,R)); let F1 and F2 be function fields over k. Suppose that there exists
a geometric k-valuation of rank r for F2 such that the corresponding residue field is
isomorphic to F1. Then there exists a split injection of the complex h2j+l,j(M

i
F1
, R)

into the complex h2j+l−r,j−r(M
∗
F2
, R).

Proof. Clearly it suffices to verify this statement in the case j = 0.
Once again, we apply Proposition 2.3.3(1) and reduce our assertion to the fol-

lowing statement: for a complex (N i), where N i ∈ ObjChow(k,R), there exists a
split injection of the complex

(DMgm(k,R)(N∗
F1

perf , R[−l])) into (DMgm(k,R)(N∗
F2

perf , R〈r〉[−r − l])).
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ON CHOW-WEIGHT HOMOLOGY OF GEOMETRIC MOTIVES 197

Note also that if the schemes SpecFb (for i = 1, 2) are the inverse (filtered) lim-
its of some systems of smooth varieties Xb

n/k (cf. Remark 2.3.2(2)) and O ∈
ObjChow(k,R), then

DMgm(k,R)(OFb
perf , R[s]) ∼= lim−→DMgm(k,R)(MR(X

b
n)⊗O,R[s])

for any s ∈ Z; here we apply the well-known “continuity” of Chow groups similar
to that discussed in the proof of Proposition 2.2.6(5) (cf. also Remark 2.2.3 and
Proposition 8.1 of [CiD15]).

Hence the statement would be proved if we had a motivic category DR ⊃
DMgm(k,R) that contains certain homotopy limits lim←−MR(X

b
n) for b = 1, 2 (that

can be denoted as M(SpecKb)), is equipped with a bi-additive tensor product bi-
functorDMgm(k,R)×DR → DR such that the groupsDR((lim←−MR(X

b
n))⊗O,R[s])

are functorially isomorphic to lim−→(MR(X
b
n) ⊗ O,R[s]), and such that there exists

a split DR-morphism lim←−(MR(X
1
n))〈r〉[−r] → lim←−(MR(X

2
n)).

Luckily, the results of previous papers yield the existence of DR having all these
properties. Indeed, for R = Z a certain category of this sort was constructed
in [Bon10b]. It has suffered from two drawbacks: it only contained DM eff

gm(k,Z)
instead of DMgm(k,Z), and the splitting in question was established (see Corollary
4.2.2(2) of ibid.) only in the case where k is countable. Yet one can easily “correct”
that category so that it would contain DMgm(k,R), and Proposition 5.2.6(8) of
[Bon18b] implies that the desired splitting exists for any perfect k (see Remark
5.2.7(7) of ibid.). �

Remark 2.3.6.

(1) Since a function field can be presented as a finite separable extension of
k(t1, . . . , td) (see Remark 2.3.2(2)), it is also a residue field for a (rank 1)
geometric valuation of k(t1, t2, . . . , td+1). Thus one may say that it suffices
to compute these stalks at rational extensions of k only!

(2) One can also verify that h2j+l−r,j−r(M
∗
K , R) contains (as a retract) the

sum of any finite number of h2j+l,j(M
∗
km

, R), where km are residue fields
for distinct geometric valuations ofK of rank r. Hence the homology groups
of h2j−l−r,j−r(M

∗
K , R) can be quite huge. Consequently, we will not try to

calculate them in general (at least, in the current paper; yet §5.1); we will
rather be interested in their vanishing.

3. On Chow-weight homology of “general” motives

In this section we prove the central motivic results of this paper; their appli-
cations to (motives and cohomology with compact support of) varieties will be
described later. The main results of this section are Theorems 3.2.1, 3.3.3, and
3.6.4, and Corollary 3.4.2, whereas the relation to cohomology is discussed in §3.5.
Most of the results of this section will be illustrated by Theorems 4.2.1 and 4.2.3
below.

In §3.1 we introduce (using the weight complex functor) the main homology
theories of this paper and prove several of their properties.

In §3.2 we relate Chow-weight homology to the c-effectivity of motives and their
weights. A very particular case of these result yields: a cone of a morphism h of
Chow motives is c-effective if and only if h induces isomorphisms on Chow groups
of dimension less than c.
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198 MIKHAIL V. BONDARKO AND VLADIMIR A. SOSNILO

In §3.3 we generalize the aforementioned results to obtain equivalent criteria
for the vanishing of Chow-weight homology in a certain “range” (we introduce
the term “staircase set” for this purpose); we also note that the corresponding
“decompositions” of motives can be assumed not to increase their dimension. We
demonstrate the utility of our Theorem 3.3.3 by applying it to morphisms of Chow
motives.

In §3.4 we prove that the properties of motives studied in the previous subsection
can also be “detected” through higher Chow-weight homology. As a consequence,
we relate the vanishing of Chow-weight homology of a motive M to that for its
higher degree (zero-dimensional) motivic homology.

In §3.5 we relate the vanishing properties of the Chow-weight homology of M
to the weight factors of the cohomology H∗(M) (for various cohomology theories).
The fact that “motivic effectivity” conditions imply the corresponding effectivity of
the factors of the weight filtration on H∗(M) is immediate from the general theory
of weight spectral sequences. We also prove that a pair of (more or less) “stan-
dard” motivic conjectures gives the converse implication for singular cohomology
(of motives with rational coefficients).

In §3.6 we study in detail the question when the higher Q-linear Chow-weight
homology of an “integral” motive M vanishes (using the results of [BoS18c]). In
particular, we prove that if the Chow-weight homology (or motivic homology; see
Corollary 3.6.5(II)) groups of M are torsion in higher degrees then their exponents
are finite.

3.1. Chow-weight homology: Definition and basic properties. Let us define
the main homology theories of this paper; see Definition 2.2.2(5) for the notation
that we use here.

Definition 3.1.1. Let M be an object of DMgm(k,R).

(1) We write tR(M) for a choice of a weight complex for M ; recall that one
can assume tR to be an exact functor DMgm(k,R) → Kb(Chow(k,R)).

In the case M ∈ ObjDM eff
gm(k,R) we will always assume that tR(M) is

an object of Kb(Choweff(k,R)).
(2) Let j, l, i ∈ Z; let K be a field extension of k.

For tR(M) = (Ms) we define the group CWHi
j(MK , R) (resp.

CWHi
j(MK , l, R)) as the 0-th homology of the complex h2j,j(M

s+i
K , R)

(resp. of h2j+l,j(M
s+i
K , R)) obtained from tR(M).2 We will often omit

R in this notation when its choice is clear.

Let us prove some basic properties of these functors.

Proposition 3.1.2. Let l, i, j,K be as above, r ≥ 0.

(1) Then CWHi
j(−K , l, R) yields a homological functor on DM eff

gm(k,R) (that
does not depend on any choices). Moreover, this functor factors through
the base field change functor DM eff

gm(k,R) → DM eff
gm(Kperf , R).

(2) Assume r ≥ j + l. Then CWHi
j(−K , l, R) kills DM eff

gm(k,R)〈r + 1〉; conse-
quently, CWHi

j(−K , l, R) induces a well-defined functor DMr
gm(k,R) → Ab

(see Definition 2.2.2(3)).

2Consequently, CWHi
j(−K , R) = CWH0

j (−K , R) ◦ [i]. Note that we do not follow the conven-

tion introduced in Definition 1.4.4(1) here; yet this should not cause any confusion since we write
i as an upper index.
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ON CHOW-WEIGHT HOMOLOGY OF GEOMETRIC MOTIVES 199

(3) Suppose N ∈ DMr
gm(k,R)wChow≥0. Then for any smooth projective con-

nected variety P/k the group DMr
gm(k,R)(lr(MR(P )〈r〉), N) is isomorphic

to
CWH0

r(Nk(P ), R);

note that the latter group is well-defined according to the previous assertion.
(4) Assume N ∈ DMr

gm(k,R)wr
Chow≥−n (see Corollary 2.2.4(6) for the nota-

tion) for some n ∈ Z. Then CWHi
j(NK , l) = {0} for all i > n, j ≤ r − l.

(5) Assume 0 ≤ m ≤ r; let N be an element of DM eff
gm(k,R)wChow≥−i (resp.

of DMr
gm(k,R)wr

Chow≥−i) and assume CWHi
j(NK) = {0} for all 0 ≤ j ≤

m and all function fields K/k. Then for any fixed choice of a −i-weight

decomposition wChow≤−iN
g→ N → wChow≥1−iN (resp. wr

Chow≤−iN
g→

N → wr
Chow≥1−iN) of N (see Remark 1.2.3(2)) the morphism g[i] can be

factored through an object of Choweff(k,R)〈m+1〉 (resp. through an image
of an object of this sort in DMr

gm(k,R)).

Proof. (1) The first part of the assertion is just a particular case of Proposition
1.4.2(7). The second part follows immediately from the weight-exactness of this
base field change functor (provided by part (4) of that proposition along with
Lemma 2.1.3) along with Proposition 1.4.2(8).

(2) Recall that DM eff
gm(k,R)〈r〉 is densely generated by ObjChoweff(k,R)〈r〉 (as

a triangulated subcategory of DM eff
gm(k,R)). Hence the statement follows immedi-

ately from Proposition 2.3.3(2).
(3) By Proposition 2.2.6(6), CWH0

r(Nk(P )) is isomorphic to the zeroth homol-
ogy of the complex DMr

gm(k,R)(lr(MR(P )〈r〉), N∗) (where N∗ are the terms of a
weight complex for N). Hence it remains to apply Corollary 1.4.6(1).

(4) Clearly, we can assume that the weight complex of N is concentrated in
degrees at most n (see Proposition 1.4.2(2)). Next, recall that any object ofHwr

Chow

is a retract of a one coming from Choweff(k,R)(⊂ DM eff
gm(k,R)); see Proposition

1.3.2(3). Hence the statement follows from Proposition 2.3.3(2).
(5) Obviously, we can assume i = 0.
The motive wChow≤0N belongs to DM eff

gm(k,R)wChow=0 (resp. wr
Chow≤0N ∈

DMr
gm(k,R)wr

Chow=0); consequently, this motive is a retract of MR(P ) (resp. of
lr(MR(P ))) for some P ∈ SmPrVar.

It suffices to check the following for any 0 ≤ j ≤ m and P j ∈ SmPrVar: any mor-
phism gj ∈ DM eff

gm(k,R)(MR(P
j)〈j〉, N) (resp. DMr

gm(k,R)(lr(MR(P
j)〈j〉), N))

can be factored through MR(P
j+1)〈j + 1〉 (resp. through lr(MR(P

j+1)〈j + 1〉))
for some P j+1 ∈ SmPrVar.

By Corollary 1.4.6(2) applied to lj (resp. to the functor ljr : DMr
gm(k,R) →

DM j
gm(k,R)), to achieve the goal it suffices to verify that the image of gj in

DM j
gm(k,R) is 0. It remains to note that lj(gi) is an element of

DM j
gm(k,R)(lj(MR(P

j)〈j〉), lj(N))

(resp. DM j
gm(k,R)(lj(MR(P

j)〈j〉), ljr(N))), which is zero according to assertion
(3) along with our assumptions on CWH∗

j (Nk(Pj)). �

Remark 3.1.3. Recall that functors constructed by means of Proposition 1.4.2(7)
are called pure ones. The reason for this is their relation to Deligne’s purity of
singular and étale cohomology; see Remark 2.1.3(3) of [Bon21]. It is easily seen
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(from Proposition 1.4.5(1); see Theorem 2.1.2 of ibid.) that a homological func-
tor on DM eff

gm(k,R) is pure with respect to wChow if and only if it annihilates

Choweff(k,R)[i] for all i �= 0.
Other interesting functors that are pure with respect to Chow weight structures

were considered in [KeS17] and [Bac17]. Note also that the “purification” of the
zeroth homotopy functor on SH with respect to the spherical weight structure on
it (see [Bon21, §4.2]) is isomorphic to the (zeroth) singular homology functor on
this category; see Theorem 4.2.1(2) of loc. cit.

For some of the less important statements below we will also need the following
assertions.

Lemma 3.1.4. Let K be an extension of k, and j, l ≥ 0.

(1) If N ∈ ObjDM eff
gm(k,R) ∩ObjDM eff

− (k,R)t
R
hom≤0 (see Remark 2.1.1) and

i > j + l, then CWHi
j(NK , l) = {0}.

(2) If N ∈ DM eff
gm(k,R)wChow≥0 then CWH0

j(NK , R) ∼= h2j,j(NK , R).

Proof. (1) Clearly, ObjDM eff
gm(k,R) ∩ DM eff

− (k,R)t
R
hom≤0 = ObjDM eff

gm(k,R) ∩
DM eff(k,R)t

R
hom≤0 (see Remark 2.1.1).

Now, in [BoD17] the following statement was proved (see Theorem 2.4.3 and

Example 2.3.5(1) of ibid.): DM eff(k,R)t
R
hom≤0 is the smallest extension-closed sub-

class of ObjDM eff(k,R) that is closed with respect to coproducts and contains

ObjChoweff(k,R)〈a〉[b− a] for all a, b ≥ 0.
Next recall that wChow can be extended (from DM eff

gm(k,R)) to DM eff(k,R) in a
way that “respects coproducts” (weight structures of this type are called smashing;
see Theorem 3.2.3 of [Bon21] or Proposition 1.7(1) of [Bon18a]). Hence Chow-
weight homology (as well as any other wChow-pure homology theory whose target is
an AB4 abelian category) can be extended to a homological functor DM eff(k,R) →
Ab that respects coproducts (see Proposition 2.3.2(6) of [Bon21]).

It suffices to verify the vanishing in question for N from Choweff(k,R)〈a〉[b− a]
(for some a, b ≥ 0). This follows from Proposition 2.3.3(2).

More detail for this argument can be found in the proof of [BoK20, Proposition
2.1.2(6)] (along with the pre-requisites to loc. cit.).

(2) Proposition 2.2.1(4) (combined with Proposition 1.4.2(8)) allows us to assume
that K = k. Thus it remains to apply Corollary 1.4.6(1) (once again). �

3.2. Relating Chow-weight homology to c-effectivity and weights. Now we
start proving the central results of this paper; consult §2.1, Proposition 2.2.1(1),
and Definition 3.1.1 (along with Definition 2.2.2(5)) for the notation.

Theorem 3.2.1. Let M ∈ ObjDM eff
gm(k,R), c > 0, n ∈ Z.

Then the following statements are valid.

(1) M belongs to DM eff
gm(k,R)〈c〉 (i.e., M is c-effective) if and only if

CWHi
j(MK) = {0}

for all i ∈ Z, 0 ≤ j < c, and all function fields K/k.
(2) More generally, CWHi

j(MK) = {0} for all 0 ≤ j < c, n < i, and all
function fields K/k if and only if there exists a choice of wChow≤−n−1M
(see Remark 1.2.3(2)) that belongs to DM eff

gm(k,R)〈c〉.
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ON CHOW-WEIGHT HOMOLOGY OF GEOMETRIC MOTIVES 201

(3) CWHi
j(MK) = {0} for all j ≥ 0, i > n, and all function fields K/k, if and

only if M belongs to DM eff
gm(k,R)wChow≥−n.

Proof. (1) If M is an object of DM eff
gm(k,R)〈c〉 then CWHi

j(MK) = {0} for all j, i,
and K as in the assertion by Proposition 3.1.2(2).

Conversely, assume that M satisfies the corresponding Chow-weight homology
vanishing assumptions. Since the weight structure wc−1

Chow is bounded (see Corol-
lary 2.2.4(6)), it suffices to prove that lc−1(M) belongs to DM c−1

gm (k,R)wc−1
Chow≥r for

any r ∈ Z. Hence this assertion reduces to the next one.
(2) Assume there exists a choice of wChow≤n−1M that belongs toDM eff

gm(k,R)〈c〉.
Then the object lc−1(M) clearly belongs to DM c−1

gm (k,R)wc−1
Chow≥−n. Hence the van-

ishing of Chow-weight homology groups in question is immediate from Proposition
3.1.2(2,4).

Conversely, assume that our Chow-weight homology vanishing assumptions are
fulfilled. Clearly, there exists an integer q such that

lc−1(M) ∈ DM c−1
gm (k,R)wc−1

Chow≥q.

By Proposition 1.3.2(2), it suffices to verify the following: if lc−1(M) belongs to
DM c−1

gm (k,R)wc−1
Chow≥t for some t < −n, then it belongs to DM c−1

gm (k,R)wc−1
Chow≥t+1

as well.
Let us take a t-weight decomposition

wc−1
Chow≤tl

c−1(M)
g→ lc−1(M) → wc−1

Chow≥t+1l
c−1(M)

of lc−1(M). Proposition 3.1.2(5) implies g = 0. Hence lc−1(M) is a retract of an
element of DM c−1

gm (k,R)wc−1
Chow≥t+1; thus it belongs to DM c−1

gm (k,R)wc−1
Chow≥t+1 itself.

(3) If M belongs to DMgm(k,R)wChow≥−n then the previous assertion yields the

vanishing of CWHi
j(MK) = {0} for all j ≥ 0, i > n, and all function fields K/k.

Conversely, it suffices (similarly to the previous argument) to check the following:
if M belongs to DMgm(k,R)wChow≥t for some t < −n then

M ∈ DMgm(k,R)wChow≥t+1.

Again, we can fix a t-weight decomposition wChow≤tM
g→ M → w≥t+1M and check

that g = 0. Assume that wChow≤tM [−t] is (a Chow motive) of dimension at most
s for some s ≥ 0. By Proposition 3.1.2(5), our Chow-weight homology assumptions

yield that g[−t] can be factored through Choweff(k,R)〈s + 1〉. Hence Proposition
2.2.6(3) implies that g = 0. �

Remark 3.2.2. We make some simple remarks.

(1) In the case R = Q Proposition 2.3.4(II) implies that, instead of checking
whether the corresponding CWHi

j(MK) = {0} for all function fields K/k,
it suffices to take K to be a single universal domain containing k; see
Proposition 3.4.1(3) below.

Moreover, in all the statements of this paper where it is said R = Q

(and no realizations of motives are mentioned) it suffices to assume that R
is a Q-algebra. This generalization may be relevant for studying motives
similar to those considered in [Wil09].

(2) As a very particular case of the theorem, we obtain the following fact: for
a morphism h of effective Chow motives the complex Cone(h) is c-effective
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(i.e., it is homotopy equivalent to a cone of a morphism of c-effective Chow
motives) if and only if h induces isomorphisms on the corresponding Chow
groups of dimension less than c; cf. Remark 3.3.5 below. Another equiv-
alent condition is that “h possesses an inverse modulo cycles supported
in codimension c”; see Corollary 3.3.9 and Remark 3.3.10 below for more
detail.

We will prove an extension of this equivalence statement in Corollary
3.3.9 below. Even for R = Q these particular cases of the theorem haven’t
been previously stated in the literature.

(3) The Chow-weight homology groups are rather difficult to calculate (and
they tend to be huge; cf. Remark 2.3.6(2) and §5.1). Still they are some-
what easier to treat than the (ordinary) motivic homology groups. In par-
ticular, CWH∗

∗ can be (more or less) explicitly computed for any motive
that belongs to the subcategory of DM eff

gm(k,R) densely generated by the

class ∪j≥0((d≤1DM eff
gm(k,R))〈j〉), whereas the 0-dimensional motivic ho-

mology is very difficult to compute already for CP2. We will say more on
the comparison of Chow-weight homology with motivic one in §3.4 below.

(4) According to Proposition 1.3.2(2), the (equivalent) conditions of Theorem
3.2.1(2) are fulfilled if and only if M is an extension of an element of
(DM eff

gm(k,R))wChow≥−n by an element of DM eff
gm(k,R)wChow≤−n−1〈c〉; cf.

Theorem 0.2(3).

3.3. A generalization (in terms of staircase sets). To generalize Theorem
3.2.1 we need the following technical definition.

Definition 3.3.1. Let I be a subset of Z× [0,+∞) (see §1.1).
We call it a staircase set if for any (i, j) ∈ I and (i′, j′) ∈ Z× [0,+∞) such that

i′ ≥ i and j′ ≤ j we have (i′, j′) ∈ I.
For i ∈ Z the minimum of j ∈ [0,+∞] such that (i, j) /∈ I will be denoted by

aI,i.

Remark 3.3.2.

(1) Obviously, I ⊂ Z × [0,+∞) is a staircase set if and only if it equals the
union of the strips

⋃
(i0,j0)∈I Ii0,j0 , where I(i0,j0) = [i0,+∞) × [0, j0] (see

§1.1).
(2) Let us give a simple illustration for these sets. If I = I(2,2) then CWHi

j(MK)
= {0} for all (i, j) ∈ I and all function fields K/k if and only if M is
an extension of an element of (DM eff

gm(k,R))wChow≥−1 by an element of

DM eff
gm(k,R)wChow≤−2〈2〉; see Theorem 3.2.1(2).

Similarly, for I = Z × [0, c − 1] the vanishing of the corresponding
Chow-weight homology of a motive M ∈ DM eff

gm(k,R) means that M

is in DM eff
gm(k,R)〈c〉 (see part (1) of the theorem). The vanishing for

I = [n+1,+∞)×[0,+∞) means that M ∈ (DM eff
gm(k,R))wChow≥−n. Other

relevant staircase sets are introduced in Definition 3.3.6 and Corollary 3.4.2
below; the picture in the latter corollary illustrates our term.

Now we prove a generalization of Theorem 3.2.1; consequently, the reader may
consult §2.1, Proposition 2.2.1(1), and Definitions 3.1.1 and 2.2.2(5) for the notation
used in the formulation.
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ON CHOW-WEIGHT HOMOLOGY OF GEOMETRIC MOTIVES 203

Theorem 3.3.3. Let I ⊂ Z× [0,+∞), M ∈ ObjDM eff
gm(k,R). Then the following

statements are valid.

(1) The vanishing of CWHi
j(MK) for all function fields K/k and all (i, j) ∈ I

is equivalent to the same vanishing for all field extensions K/k.
(2) Suppose that I is a staircase set. Then the following conditions are equiv-

alent.
A. CWHi

j(MK) = {0} for all function fields K/k and all (i, j) ∈ I.
B. The object lj(M) (see Definition 2.2.2(3)) belongs to

DM j
gm(k,R)wj

Chow≥−i+1

whenever (i, j) ∈ I.
C. For any i ∈ Z there exists a choice of wChow≤−iM (see (1.1)) that

belongs to DM eff
gm(k,R)〈aI,i〉.

D. M belongs to the extension-closure of

∪i∈Z(ObjChoweff(k,R)[−i]〈aI,i〉).3

E. There exists a choice of a weight complex (see §1.4) for M such that
its i-th term is j + 1-effective whenever (i, j) ∈ I.

(3) For any staircase set I and M ∈ DM eff
gm(k,R)[a,b] (for some a ≤ b ∈ Z) the

(equivalent) conditions of the previous assertion are fulfilled if and only if M

belongs to the extension-closure of ∪−b≤i≤−a(ObjChoweff(k,R)[−i]〈aI,i〉).

Proof. Assertion (1) follows from Proposition 2.3.4 immediately.
(2), (3). We apply Remark 3.3.2(1). According to Theorem 3.2.1(2) (cf. also

its proof), the vanishing of CWHi
j(MK) for all function fields K/k and (i, j) ∈

I(i0,j0) is equivalent to lj0(M) ∈ DM j0
gm(k,R)

w
j0
Chow≥−i0+1

. The combination of

these equivalences for all (i0, j0) ∈ I yields the equivalence of Conditions A and B
in assertion (2).

Next, Condition B implies Condition C for a fixed i ∈ Z if aI,i < +∞ according
to Theorem 3.2.1(2) (since (i, aI,i − 1) ∈ I; cf. also Proposition 4.2.1 of [BoS18c]).
If aI,i = +∞ then one should apply Theorem 3.2.1(3) instead.

Now assume that M satisfies Condition C and belongs to DM eff
gm(k,R)[a,b] for

some a ≤ b ∈ Z. Then M is also an object of DM eff
gm(k,R)〈aI,b〉 (see Remark

2.2.5(2)). Thus we can modify the choices of wChow≤−iM coming from Condition
C (for −i /∈ [a, b−1]) by setting wChow≤−iM = 0 for −i < a and wChow≤−iM = M
for −i ≥ b. Then the corresponding triangles (1.2) yield that (for the motives
M i coming from this choice of a Chow-weight Postnikov tower for M) we have
M i ∈ DM eff

gm(k,R)wChow=0〈aI,i〉 (see Remark 2.2.5(1)), and we obtain Condition
E. Next, Proposition 1.4.2(5) yields that M belongs to the extension-closure of

∪−b≤i≤−aChow
eff(k,R)[−i]〈aI,i〉 (i.e., we have proved the corresponding implica-

tion from assertion (3); we clearly also obtain Condition D.
Finally, assume that tR(M) = (M i) for M i as in Condition E (i.e., M i ∈

ObjChoweff(k,R)〈aI,i〉). Since (for any (i, j)) the group CWHi
j(MK) is a sub-

quotient of h2j,j(M
i
K , R), and the latter group vanishes whenever (i, j) ∈ I (by

Proposition 2.3.3(2)), we obtain Condition A.
This finishes the proof. �

3In this theorem we use the convention of Definition 2.2.2(4) in the case aI,i = +∞.
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204 MIKHAIL V. BONDARKO AND VLADIMIR A. SOSNILO

Let us also verify that one can “bound dimensions” in our theorem.

Proposition 3.3.4. Assume that M is of dimension at most r ≥ 0 (see Definition
2.2.2(2)) and that I is a staircase set. Then the (equivalent) conditions of Theorem
3.3.3(2) are also equivalent to the following modifications of Condition C (resp. D):
there is a choice of wChow≤−iM that belongs to Obj(d≤r−aI,i

DM eff
gm(k,R))〈aI,i〉

(resp. M is in the extension-closure of ∪i∈Z(Obj d≤r−aI,i
Choweff(k,R)[−i]〈aI,i〉)).

Moreover, a similar modification can also be made in Theorem 3.3.3(3).

Proof. According to Proposition 2.2.6(4), it suffices to verify that in the conditions
listed in Theorem 3.3.3(2,3) one may replace the classes ObjDM eff

gm(k,R)〈aI,i〉 and
ObjChoweff(k,R)[−i]〈aI,i〉 by their intersections with Obj d≤rDM eff

gm(k,R).
As can be easily seen from the proof of these two assertions, to establish the

resulting statement it suffices to verify the corresponding versions of Theorem
3.2.1(2,3). The latter can be easily achieved via replacing the usage of Proposi-
tion 2.2.6(4) in their proofs (thus actually the corresponding modification should
be made for Proposition 3.1.2(5)) by the application of Proposition 2.2.6(7). �

Remark 3.3.5. The reader can easily check that everywhere in the proofs of Theo-
rems 3.2.1, 3.3.3, and Proposition 3.3.4 (and in the prerequisites to them) we could

have replaced DM eff
gm(k,R) by Kb(Choweff(k,R)). Certainly, then we would have

to replace DM j
gm(k,R) by the localization

Kb(Choweff(k,R))/(Kb(Choweff(k,R))〈j + 1〉),

whereas the Chow weight structure for Kb(Choweff(k,R)) is just the stupid weight
structure mentioned in Remark 1.2.3(1). The main observation here is that the
heart of the corresponding weight structure on this localization is equivalent to
Hwj

Chow (see Proposition 1.3.2(3) above and Theorem 4.1 of [BoV20]); thus the
corresponding version of Proposition 2.2.6(6) is valid.

The resulting statements may be said to be more general than theirDM eff
gm(k,R)-

versions since there can exist objects of Kb(Choweff(k,R)) that cannot be presented
as weight complexes of motives. Besides, these results are easier to understand for
the readers that are not well-acquainted with Voevodsky motives. Their disadvan-
tage is that they hardly can be used for controlling “substantially mixed” motivic
phenomena; this includes motivic homology (cf. Corollary 3.4.2 below).

We will apply the Kb(Choweff(k,R))-version of Theorem 3.3.3 to complexes
of length 1. Note that we could have considered these complexes as objects of
DM eff

gm(k,R) (see Remark 1.4.3(1)); yet looking atKb(Choweff(k,R)) instead makes
our argument somewhat “more elementary”.

Now we consider two relevant particular cases of our theorem, and deduce a nice
general corollary from it.

We will look at a certain filtration on the class DM eff
gm(k,R)wChow≥0 (each of

whose steps contains DM eff
gm(k,R)wChow≥1).

Definition 3.3.6. For any c ≥ 0 we will use the notation DM eff
gm(k,R)

〈c〉
≥0 for the

DM eff
gm(k,R)-envelope (see §1.1) of the set (∪i>0Chow

eff(k,R)[i])∪Choweff(k,R)〈c〉.
Respectively (cf. Corollary 3.3.7(I)) we write I〈c〉

0 for the staircase set [1,+∞)×
[0,+∞) ∪ {0} × [0, c− 1].
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ON CHOW-WEIGHT HOMOLOGY OF GEOMETRIC MOTIVES 205

Corollary 3.3.7.

I. For M ∈ ObjDM eff
gm(k,R) and c ≥ 0 the following conditions are equiva-

lent.
(1) M belongs to DM eff

gm(k,R)
〈c〉
≥0.

(2) CWHi
j(MK) = {0} for all function fields K/k and (i, j) ∈ I〈c〉

0 .

(3) M is an extension of an element of DM eff
gm(k,R)wChow≥1 by an object

of Choweff(k,R)〈c〉.
(4) M belongs to DM eff

gm(k,R)wChow≥0 and h2j,j(MK) = {0} (see Defini-
tion 2.2.2(5) for this notation) for all function fields K/k and 0 ≤ j <
c.

II. If c1, c2 ≥ 0 then DM eff
gm(k,R)

〈c1〉
≥0 ⊗DM eff

gm(k,R)
〈c2〉
≥0 ⊂ DM eff

gm(k,R)
〈c1+c2〉
≥0 .

III. Assume that Ij are staircase sets for j running through some index set
J . Then for a fixed M the (equivalent) conditions of Theorem 3.3.3(2)
are fulfilled for I = Ij (for all j ∈ J) if and only if they are fulfilled for
I = ∪jIj.

Proof. I. The equivalence of conditions (I1) and (I2) is immediate from Theorem
3.3.3(2) (see conditions (2)(A) and (2)(D) of the theorem). Furthermore, these
conditions are equivalent to the assumption that we can take wChow≤−1M = 0 and
wChow≤0M ∈ ObjDM eff

gm(k,R)〈c〉. Thus M belongs to DM eff
gm(k,R)wChow≥0; hence

Proposition 1.2.4(6) implies that the aforementioned choice of wChow≤0M belongs
to DM eff

gm(k,R)wChow=0∩ObjDM eff
gm(k,R)〈c〉 = DM eff

gm(k,R)wChow=0〈c〉 (see Corol-
lary 2.2.4(1)). Therefore the corresponding choice of weight decomposition of M
gives condition (I3) for M . Next, condition (I3) clearly implies condition (I1).

Now, we have just checked that M belongs to DM eff
gm(k,R)wChow≥0 whenever it

belongs to DM eff
gm(k,R)

〈c〉
≥0. Thus CWH0

j(MK) = h2j,j(MK) for all K/k and j ≥ 0

(see Lemma 3.1.4(2)); hence conditions (I1) and (I2) together imply condition (I4).
Conversely, if condition (I4) is fulfilled then CWHi

j(MK) = {0} for all K/k and all
(i, j) ∈ [1,+∞) × [0,+∞) according to Theorem 3.2.1(3) and it remains to apply
Lemma 3.1.4(2) once again to obtain condition (I4).

II. Obvious from our definitions.
III. Obviously, ∪j∈JIj is a staircase set. Thus it suffices to note that the

equivalence statement in question is obviously fulfilled for condition A in Theo-
rem 3.3.3(2). �

Remark 3.3.8. Part III of our Corollary says that the intersections of subclasses of
ObjDM eff

gm(k,R) corresponding to the staircase sets Ij is “as small as possible”.
This statement appears to be interesting and quite non-trivial if one describes these
subclasses using condition D in Theorem 3.3.3(2). The authors have no idea how
to prove it avoiding our results.

Next we apply Remark 3.3.5 to cones of morphisms of Chow motives.

Corollary 3.3.9. Let h : N → O be a Choweff(k,R)-morphism and 0 ≤ r1 ≤ r2 ∈
Z. Then the following conditions are equivalent.

(1) h2j,j(−K , R)(h) is a bijection for j ∈ [0, r1 − 1] and is a surjection for
j ∈ [r1, r2 − 1] for all function fields K/k.

(2) The complex N → O is homotopy equivalent to a complex N ′〈r1〉 → O′〈r2〉
for some N ′, O′ ∈ ObjChoweff(k,R).
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206 MIKHAIL V. BONDARKO AND VLADIMIR A. SOSNILO

(3) There exists h′ ∈ Choweff(k,R)(O,N) such that the morphism idO −h ◦ h′

factors through Choweff(k,R)〈r2〉, and idN −h′ ◦ h factors through

Choweff(k,R)〈r1〉.
Proof. (1) ⇐⇒ (2). We take M = Coneh ∈ ObjKb(Choweff(k,R)) (or in
DM eff

gm(k,R); we put N in degree −1 and put O in degree 0), and consider the
index set I = [−1,+∞)× [0, r1 − 1] ∪ [0,+∞)× [r1, r2 − 1] (see §1.1).

We immediately obtain the equivalence of our condition (1) to the vanishing
of CWHi

j(MK) for i ∈ I. Combining the equivalence of Conditions A and D in
Theorem 3.3.3(2) (in the version mentioned in Remark 3.3.5) with Remark 1.3.3(1),
we obtain the result.

(2) =⇒ (3). We have lr2−1(M) ∼= lr2−1(N ′〈r1〉[1]). Next, this isomorphism
clearly gives a similar isomorphism in the category Kb(HwChowr2−1). Hence M
(considered as a HwChowr2−1-complex) is homotopy equivalent to N ′〈r1〉[1]; denote
the corresponding morphisms M → N ′〈r1〉[1] → M by f and g, respectively. Since
idM is HwChowr2−1-homotopic to g ◦ f , there exists h′′ ∈ HwChowr2−1(O,N) such
that idN −g ◦ f = h′′ ◦ h and h ◦ h′′ = idO. Lifting h′′ to a morphism h′ ∈
Choweff(k,R)(O,N) (see Proposition 1.3.2(3)), we obtain the desired implication.

(3) =⇒ (1). Arguing as above, we see that in the category Kb(HwChowr2−1)

the morphism idM factors through an object of Choweff(k,R)〈r1〉[1]. The desired
Chow-weight homology vanishing conditions follow immediately (cf. the proof of
Theorem 3.2.1(2)). �
Remark 3.3.10.

(1) If N = MR(Q) and O = MR(P ) for some P,Q ∈ SmPrVar then condition
(3) of the corollary can be easily translated into the following assumption:
the cycle idO −h◦h′ in P×P (here clearly idO is represented by the diagonal)
is rationally equivalent to a cycle supported on P ′ × P , and idN −h′ ◦ h is
rationally equivalent to a cycle supported on Q′ × Q, where P ′ ⊂ P and
Q′ ⊂ Q are some closed subvarieties of codimensions r2 and r1, respectively
(see Proposition 2.2.6(1)–(3) and its proof).

Moreover, if h comes from a morphism Q → P then the cycle class h◦h′

is clearly supported on the product of P by the image of h.
(2) Assume that M belongs to d≤mKb(Choweff(k,R)) (for some m ≥ 0; this

is certainly the case if N and O are of dimension at most m). Then
CWHi

j(MK) = {0} for j greater than m (and all i ∈ Z). Thus if r2 is
greater than m then our result yields that h splits; if r1 > m then h is an
isomorphism. The first of these observations generalizes Theorem 3.18 of
[Via17] (where the case R = Q was considered).

3.4. Higher Chow-weight homology criteria and motivic homology. Now
we invoke Proposition 2.3.5.

Proposition 3.4.1. For a subset I of Z× [0,+∞) consider the following assump-
tions on an object M of DM eff

gm(k,R) .

(1) For a function fM : I → [0,+∞) we have CWHi
j−fM (i,j)(MK , fM (i, j), R)

= {0} for all (i, j) ∈ I and all function fields K/k.

(2) CWHi
j(MK , R) = {0} for all (i, j) ∈ I and all function fields K/k.

(3) For all rational extensions K/k and all (i, j) ∈ I we have CWHi
j−1(MK , 1)

= {0}.
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ON CHOW-WEIGHT HOMOLOGY OF GEOMETRIC MOTIVES 207

(4) CWHi
0(MK , j) = {0} for all (i, j) ∈ I and all function fields K/k.

(5) CWHi
a(MK , j − a) = {0} for all (i, j) ∈ I, a ∈ Z, and all field extensions

K/k.

Then the following statements are valid.

(1) Condition (5) implies conditions (4) and (3), either of the latter two condi-
tions implies condition (2), whereas the first two conditions are equivalent.

(2) Suppose that I is a staircase set (in the sense of Definition 3.3.1). Then
our conditions (1)–(5) are equivalent.

(3) Assume R = Q. Then our conditions are also equivalent to the vanishing

of CWHi
j(MK0

) for a single universal domain K0 containing k and all
(i, j) ∈ I.

Proof. (1) Clearly, condition (5) is the strongest of the five, whereas condition
(1) follows from condition (2) and 4. The remaining implications are given by
Proposition 2.3.5 (see also Remark 2.3.6(1)).

(2) Since the first two conditions are equivalent, it suffices to verify that condition
(2) implies condition (5).

By Theorem 3.3.3(2), M satisfies Condition D of this theorem. Hence Proposi-
tion 3.1.2(4) yields the implication in question (cf. the proof of Theorem 3.3.3(2),
D =⇒ A).

(3) This is an easy combination of assertion (2) with Proposition 2.3.4. �
Now we describe an interesting particular case of the proposition; recall that the

homotopy t-structure tRhom was mentioned in Remark 2.1.1.

Corollary 3.4.2. Let M ∈ ObjDM eff
gm(k,R). Then the following conditions are

equivalent.

(1) M belongs to DM eff
− (k,R)t

R
hom≤0 (= DM eff(k,R)t

R
hom≤0; one may say that

M is motivically connective).
(2) hl,0(MK , R) = {0} for all l < 0 and all function fields K/k.
(3) Conditions (1)–(5) of the previous proposition for I = {(i, j) : i > j ≥ 0}

are fulfilled (note that it suffices to verify only one of these conditions); the
points of I are marked in grey on the following picture:

j

i
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(4) M belongs to the extension-closure E of (∪a>0DM eff
gm(k,R)wChow=−a〈a〉) ∪

DM eff
gm(k,R)wChow≥0 (in ObjDM eff

gm(k,R)).

Proof. The first condition is equivalent to the second one by Proposition 2.3.3(3).
(Each of) these two conditions also imply the third condition (i.e., all of the equiv-
alent conditions from Proposition 3.4.1) by Lemma 3.1.4(1). Next, our condition
(2) is the corresponding case of condition (2) of Proposition 3.4.1. Hence it yields
our condition (4) by Theorem 3.3.3(2) (see Condition D in that theorem; note that
aI,i for i ∈ Z equals max(i, 0) in this case).

Finally, our assumption (4) implies assumption (1) since for any a ≥ 0 the

classes DM eff
gm(k,R)wChow=−a〈a〉 and DM eff

gm(k,R)wChow=a lie in DM eff
− (k,R)t

R
hom≤0

(cf. the proof of Lemma 3.1.4(1)). �

3.5. Relation of effectivity conditions to cohomology. Now we relate our
effectivity conditions on motives to the properties of Chow-weight filtrations and
spectral sequences TwChow

(H,M).

Proposition 3.5.1. Let H be a cohomological functor from DM eff
gm(k,R) into an

abelian category A, M is an object of DM eff
gm(k,R), and l,m ∈ Z.

(1) Then (Gr−l
WHm−l)(M) (see Definition 1.4.4(2)) is a subquotient of

E−l,m
2 T (M) for T (M) = TwChow

(H,M), and isomorphic to it if T (M) de-
generates at E2.

(2) Assume that M satisfies the equivalent conditions of Theorem 3.3.3(2) (for

some staircase set I; see Definition 3.3.1). Then E−l,m
2 T (M)

and (Gr−l
WHm−l)(M) are subquotients of Hm(MR(P )〈aI,l〉) for some

P ∈ SmPrVar whenever aI,l < +∞; these two objects vanish if aI,l = +∞.
Moreover, if M is of dimension at most r ∈ Z (see Definition 2.2.2(2))

then we can assume here that dimP ≤ r − aI,l.

Proof. (1) Immediate from Proposition 1.4.5(2).
(2) According to Theorem 3.3.3(2), we may assume that the lth term M l of

t(M) belongs to ObjChoweff(k,R)〈aI,l〉 for the first part of the assertion and to

Obj(d≤r−aI,l
Choweff(k,R))〈aI,l〉 for its “moreover” part (recall that this means

M l = 0 if aI,l = +∞). Thus it remains to apply assertion (1). �

Remark 3.5.2.

(1) Clearly, here and in Theorem 3.5.4 and Proposition 3.5.5 below one may
consider homology instead of cohomology; see Proposition 1.4.5(1). We
chose to concentrate on cohomology here due to the occurrence of coho-
mology with compact support in §4.

(2) We obtain that the study of the weight filtration on the (co)homology of M
can yield the non-vanishing of certain Chow-weight and motivic homology
groups (see Corollary 3.4.2 for the latter); cf. Theorem 3.5.4 below. This
is quite remarkable since the corresponding cycle class maps (see Remark
5.1.3 of [BoS14]) are far from being surjective in general.

Let us now discuss concrete (Weil) cohomology theories.
We need some definitions.
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ON CHOW-WEIGHT HOMOLOGY OF GEOMETRIC MOTIVES 209

Definition 3.5.3. Let c ∈ [0,+∞], � be a prime distinct from p, and denote the
absolute Galois group of k by G.

(1) Then we say that a mixed Hodge structure V (we will consider Q-linear
Hodge structures only in this paper; thus one should take R = Q in Def-
inition 3.1 of [PeS08]) is c-effective and write V ∈ ObjMHSc

eff whenever
either c ∈ Z and F cVC = VC or if c = +∞ and V = 0.

(2) Let k be an essentially finitely generated field (see Definition 2.3.1(1)).
Then we will say that a (finite dimensional) mixed Q�-Galois representation
V (certainly, V is a finite dimensional space over Q� endowed with an action
of G) is c-effective whenever either c ∈ Z and any (geometric) Frobenius
eigenvalue coming from a residue field isomorphic to Fq (see Example 6.8
of [Jan90] and §1.2 of [Del80]; cf. the proof of Proposition 4.2.4(1) below)
is divisible by qc/2 as an algebraic integer, or if c = +∞ and V = 0.

(3) For V of any of these two types and m ∈ Z we write WDmV for the mth
step of the (Deligne’s) weight filtration, and GrWD

m V = WDmV/WDm−1V .
(4) For � �= p we write Het,Q�

for the restriction to DM eff
gm(k,Q) of the functor

H0
et(−kalg ,Q�) : DMgm(k,Q)op → Q�[G] − Mod of the zeroth ’etale Q�-

cohomology (of −kalg ). Here we define H0
et(−kalg ,Q�) as the composition of

the exact realization functor RHet(−kalg ,Q�) : DMgm(k,Q) → Db(Q�[G]−
Mod) provided by Theorem 7.2.24 and Proposition 7.2.21 of [CiD16] with
the Poincare duality on DMgm(k,Q) and the zeroth homology functor on
Db(Q�[G]−Mod).

Moreover, if k is a subfield of C then we writeH = Hsing : DM eff
gm(k,Q)op

→ MHSeff for the (zeroth) singular cohomology functor provided by The-
orem 2.3.3 of [Hub00].

Theorem 3.5.4. Assume M ∈ ObjDM eff
gm(k,Q) and l,m ∈ Z.

Moreover, suppose that either k is a subfield of C and H = Hsing or that k is an
essentially finitely generated field, char k �= �, and H = Het,Q�

.
Then the following statements are valid.

(1) The spectral sequence T (M) = TwChow
(H,M) degenerates at E2.

(2) The subobject (W lHm)(M) ⊂ Hm(M) equals WDm−lH
m(M) and

(GrlWHm)(M) = GrWD

m−lH
m(M) ∼= El,m−l

2 T (M).

Here (GrlWHm)(M) = (W lHm)(M)/(W l−1Hm) (note here that Propo-
sition 3.5.1 easily implies that the values of Het,Q�

are mixed Q�-Galois
representations in our case).

(3) Consequently, if M satisfies the equivalent conditions of Theorem 3.3.3(2)

(for some staircase set I) then GrWD

m+lH
m(M) and

Hm(M)/WDm+l−1H
m(M)

are aii,l-effective.

Thus if M belongs to DM eff
gm(k,R)

〈c〉
≥0 (see Definition 3.3.6) then Hm(M)

= WDmHm(M) and Hm(M)/WDm−1H
m(M) is c-effective.

Proof. (1), (2). This is a standard weight argument. Recall that effective Chow
motives are retracts of motives of smooth projective varieties, and that the object
Hq(MR(P )) is (pure) of Deligne weight q for both of these cohomology theories, any
P ∈ SmPrVar, and q ∈ Z (cf. Proposition 4.1.8 below). Hence the object Esq

r T (M)
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210 MIKHAIL V. BONDARKO AND VLADIMIR A. SOSNILO

is of Deligne weight q in both cases, for any r > 0 and s, q ∈ Z. Since there are
no morphisms between objects of distinct weights, we obtain the degeneration at
E2 (compare the weights of the domains and the targets of boundaries). Moreover,
assertion (2) follows the definition of convergence of spectral sequences easily.

(3) Proposition 3.5.1(2) implies that the object GrWD
r Hm(M) is aI,r−m-effective

for any r ∈ Z (note here that the conventions of +∞-effectivity in Definitions
2.2.2(4) and 3.5.3(1, 2) are compatible). Since I is a staircase set, aI,s ≥ aI,l
if s ≥ l. Thus the objects GrWD

r Hm(M) are aI,l-effective if r ≥ m + l. Since
weight filtrations are bounded both on mixed Hodge structures and on mixed Ga-
lois representation, and the aI,l-effective subcategories are extension-closed in the
corresponding “mixed” categories, we obtain the first part of the assertion.

Lastly, it remains to recall that for the set I〈c〉
0 in Definition 3.3.6 we have

aI〈c〉
0 ,l

= +∞ if l > 0 and aI〈c〉
0 ,0

= c. �

Now we will study the question whether the c-effectivity restrictions on H∗(M)
as in Theorem 3.5.4(3) are equivalent to the conditions of Theorem 3.3.3(2).

Proposition 3.5.5. Assume k ⊂ C and that the following conjectures hold.

(A) The Hodge conjecture.
(B) Any morphism of Chow motives (over C) that induces an isomorphism on

their singular cohomology is an isomorphism.
Suppose also that for some staircase set I and an object M of DM eff

gm(k,Q)
one of the following conditions is fulfilled: either for all m, l ∈ Z the Hodge
structures Hm(M)/WDm+l−1H

m(M) is aI,l-effective, or GrWD
m+1H

m(M) is
so (for all m, l ∈ Z). Then the motive M satisfies the (equivalent) condi-
tions of Theorem 3.3.3(2) (cf. Theorem 3.5.4(3)).

Proof. Since I is a staircase set, our two assumptions on M are easily seen to be
equivalent (cf. the proof of Theorem 3.5.4(3)).

By the virtue of Theorem 3.3.3(2), it suffices to verify that M belongs to the

extension-closure of ∪i∈Z(ObjChoweff(k,R)[−i]〈aI,i〉). So we fix certain (i, j) ∈ I
and argue similarly to the proof of [Bon09, Proposition 7.4.2]. We choose the
smallest n ∈ Z such that lj(M) ∈ DM j

gm(k,Q)wj
Chow≥−n. We should check that

n < i.
Assume that the converse holds (i.e. n ≥ i). Applying Proposition 1.3.2(2)

we obtain that M is an extension of an element of DM eff
gm(k,Q)wChow≥−n by that

of DM eff
gm(k,Q)wChow≤−n−1〈j + 1〉. According to Proposition 1.4.2(4), this gives a

choice of a weight complex t(M) = (Ms) of M such that

Ms ∈ ObjChoweff(k,Q)〈j + 1〉

for s > n. Moreover, we can assume that Mn = MQ(P ) for some P ∈ SmPrVar

(since one can add a summand of the form · · · → 0 → N
idN−→ N → 0 → . . . to

t(M), with N placed in degrees n− 1 and n).
Next, recall that for any q ∈ Z we have

E−n,q
2 T (M) ∼= Ker(Hq

sing(d
n−1
M ))/Coker(Hq

sing(d
n
M ));

here d∗M : M∗ → M∗+1 are the boundaries of t(M). Theorem 3.5.4(2) implies

E−n,q
2 T (M) ∼= GrWD

q Hq−n(M), so it is j + 1-effective by our assumptions; recall
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ON CHOW-WEIGHT HOMOLOGY OF GEOMETRIC MOTIVES 211

that j + 1 ≤ aI,l ≤ aI,n. Since the motive Mn+1 is j + 1-effective, we obtain that

the Hodge structure Ker(Hq
sing(d

a−1
M )) is j + 1-effective as well.

Now we need a more or less “standard” Hodge-theoretic argument to obtain a
certain motivic splitting.

Our assumption A implies that the generalized Hodge conjecture (see Conjecture
7.5. of [PeS08]) is fulfilled for P (such that Ma = MQ(P )); see Corollary 7.9 of
[PeS08]. Hence there exists an open subvariety U of P such that the variety Z = P \
U is of codimension more than j in P , and Ker(Hq

sing(M
n) → Hq

sing(M
n−1)) is sup-

ported on Z for all q ≥ 0, that is, Ker(Hq
sing(d

n−1
M )) ⊂ Ker(Hq

sing(P ) → Hq
sing(U)).

Now, the motive C = Cone(MQ(U) → MQ(P )) belongs toDM eff
gm(k,Q)wChow≤0〈j+

1〉 according to Corollary 2.2.4(4). Next, there exists a choice of C ′ = wChow≤0C

that belongs to ObjChoweff(k,Q)〈j + 1〉 (see part (1) of the corollary). Since the
morphism MQ(P ) → C factors through C ′ (see Proposition 1.2.4(9)), we obtain

that Ker(Hq
sing(d

n−1
M ))⊂Im(Hq

sing(h)) for some morphism h∈Choweff(k,Q)(Mn, C ′)
and all q ≥ 0.

Next, recall that the category of polarizable pure Hodge structures is semi-simple
(here one can either consider the direct sum of the corresponding categories for all
weights q ≥ 0 or treat the weights separately). Since the Hodge conjecture im-
plies that any morphism between (the “total”) Hsing-cohomology of Chow motives
lifts to a morphism of these motives, we obtain the existence of a morphism h′ ∈
Choweff(k,Q)(Mn,Mn−1

⊕
C ′) that fulfils the following conditions for all q ≥ 0:

the morphismsHq
sing(h

′) are injective, and they induce injections of Im(Hq
sing(d

n−1
M ))

into Hq
sing(M

n−1) that split the surjections induced by Hq
sing(d

n−1
M ). Moreover,

there also exists h′′ ∈ Choweff(k,Q)(C ′,Ma) such that Hq
sing(d

n−1
M

⊕
h′′) splits

Hq
sing(h

′) for all q ≥ 0. Thus the composition (dn−1
M

⊕
h′′) ◦ h′ is an automorphism

of Ma according to our assumption B. Thus we can calculate a choice of a weight
complex tj of lj(M) as follows (according to Proposition 1.4.2(8)):

tj ∼= · · · → Mn−1
j → Mn

j → 0 → . . . ∼= (Mn−1
⊕

C ′)j
(dn−1

M

⊕
h′′)j−→ Mn

j → 0 → . . . ,

where the lower index j means that we apply the induced functor Choweff(k,R) →
HwChowj (recall that C ′ ∈ DM eff

gm(k,Q)wChow=0〈j + 1〉). Since the morphism

dn−1
M

⊕
h′′ splits, the same is true for its image (dn−1

M

⊕
h′′)j . Applying Propo-

sition 1.4.2(5) we obtain that lj(M) ∈ DM j
gm(k,Q)wj

Chow≥1−n, contrary to our

assumption. �

Remark 3.5.6.

(1) This proposition suggests that one can look for motives with “interesting”
Chow-weight homology using singular and étale (co)homology.

(2) Clearly, our assumption B is a particular case of the well-known conserva-
tivity conjecture (that predicts the following: if H∗(M) = 0 for H = Hsing

or H = Het,Q�
and M ∈ ObjDM eff

gm(k,Q), then M = 0).
Moreover, assumption B is essentially equivalent to Theorem I of [Ayo18]

(and formally a particular case of loc. cit.), whereas the full conservativity
follows from Conjecture II of loc. cit.4

4Currently the proofs of the main results of ibid. contain a gap. Hopefully, it will be closed
eventually.
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212 MIKHAIL V. BONDARKO AND VLADIMIR A. SOSNILO

(3) In this argument one can certainly replace singular cohomology by any
other cohomology theory satisfying similar properties. A natural candi-
date here is the so-called mixed motivic (co)homology corresponding to the
conjectural motivic t-structure on DM eff

gm(k,Q) ⊂ DMgm(k,Q). One can
easily see that the “standard” expectations on this functor (see §5.10A in
[Bei87] and [Bon15, Definition 3.1.1(4) and Proposition 4.1.1]) imply that
the conclusion of our proposition follows from them (over a perfect field k
of arbitrary characteristic).

3.6. Comparing integral and rational coefficients: Bounding torsion of
homology. Let r denote a fixed non-zero integer divisible by e. We deduce some
consequences from our results by comparing Z[1/e]-motives with Q-linear and
Z[1/r]-linear ones.

Definition 3.6.1. We say that an object M of DM eff
gm(k,Z[1/e]) is torsion (resp.

r-torsion) if there exists EM > 0 (resp. d > 0) such that the morphism EM idM is
zero (resp. rd idM = 0).

Theorem 3.2.1 easily yields the following statement.

Proposition 3.6.2. Set R′ = Q (resp. = Z[1/r]). Then the following statements
are valid.

I.(1) DM eff
gm(k,R′) is isomorphic to the Karoubi envelope of the localization of

DM eff
gm(k,Z[1/e]) by its subcategory of torsion (resp., r-torsion) objects. We write

−⊗R′ for the connecting functor DM eff
gm(k,Z[1/e]) → DM eff

gm(k,R′); then for any
X ∈ SmVar we have MZ[1/e](X)⊗R′ = MR′(X).

(2) The functor −⊗R′ is weight-exact with respect to the Chow weight structures
on DM eff

gm(k,Z[1/e]) and DM eff
gm(k,R′), respectively.

II.(1) There exist natural isomorphisms

CWHi
j(−K ⊗R′, R′) ∼= CWHi

j(−K ,Z[1/e])⊗Z[1/e] R
′

(for all field extensions K/k, i ∈ Z and j ≥ 0).
(2) Let M ∈ ObjDM eff

gm(k,Z[1/e]), (n, c) ∈ Z × [0,+∞). Then the groups

CWHi
j(MK) are torsion (resp. r-torsion) for all i ≥ n, 0 ≤ j < c, and all function

fields K/k, if and only if lc−1
R′ (M ⊗R′) ∈ DM c−1

gm (k,R′)wc−1
Chow≥−n+1.

5

Proof. I.(1) This result was proved in [Kel12] (see §A.2 of ibid.; cf. also the proof
of Proposition 5.3.3 of [Kel17] and Proposition 1.3.3 of [BoK18]).

(2) The statement is immediate from the previous assertion by Proposition
1.2.4(5).

II.(1) The statement follows immediately from assertion I.2 (by the definition of
Chow-weight homology).

(2) The statement is immediate from Theorem 3.2.1(2–3) (see also Theorem
3.3.3(2)) applied to M ⊗R′ (using the previous assertion). �

5Recall that lc−1 for c ∈ [0,+∞] denotes the localization functor from DMeff
gm(k,R) to

DMeff
gm(k,R)/DMeff

gm(k,R)〈c〉 for the corresponding R; consequently, it is the identity functor

of DMeff
gm(k,R) if c = +∞.
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ON CHOW-WEIGHT HOMOLOGY OF GEOMETRIC MOTIVES 213

Remark 3.6.3. The weight-exactness of −⊗R′ yields that the Chow weight structure
on DM eff

gm(k,R′) is “determined” by the one on DM eff
gm(k,Z[1/e]). Thus it may be

treated using the localization methods developed in [BoS18a] and [BoS19].

Now we proceed to prove a drastic improvement of Proposition 3.6.2(II.2).
Once again, one may consult §2.1, Proposition 2.2.1(1), and Definition 3.1.1

(along with Definition 2.2.2(5)) for other notation used in the following formulation.

Theorem 3.6.4. Let M ∈ ObjDM eff
gm(k,Z[1/e]), I ⊂ Z× [0,+∞).

I. Then the group CWHi
j(MK) is torsion for any function field K/k and all

(i, j) ∈ I if and only if CWHi
j(MK0

) is torsion for all (i, j) ∈ I, and a
single universal domain K0 containing k.

II. Assume in addition that I is a staircase set (in the sense of Definition
3.3.1) and r is a non-zero integer (that we assume to be divisible by p if
p > 0).

Then the following conditions are equivalent.
A. The groups CWHi

j(MK) are torsion (resp. r-torsion) for all function
fields K/k and all (i, j) ∈ I.

B. EM · CWHi
j(MK) = {0}, where EM is a fixed non-zero integer (resp.

a fixed power of r) for all field extensions K/k and all (i, j) ∈ I.
D. For any integers n, n′ there exists a distinguished triangle T → M →

N → T [1] satisfying the following conditions: T is a torsion motive
(resp. an r-torsion motive), and there exists a triangle Q → N →
N ′ → Q[1] such that

Q ∈ DM eff
gm(k,Z[1/e])wChow≥−n′+1

and such that for some choice of wChow≥−nN
′ (see Remark 1.2.3(2))

we have CWHi
j(wChow≥−nN

′
K) = {0} for all field extensions K/k and

all (i, j) ∈ I.
E. For any integers n, n′ there exists a distinguished triangle T → M →

N → T [1] along with a choice t(N) = (N i) of a weight complex of N
such that N i is (j+1)-effective whenever (i, j) ∈ I∩([n′, n]× [0,+∞))
and T is a torsion motive (resp. an r-torsion motive).

E’. For any integers n, n′ there exists a distinguished triangle T → M →
N → T [1] satisfying the following conditions: T is a torsion motive

(resp. an r-torsion motive) and CWHi
j(NK) = {0} if (i, j) ∈ I ∩

([n′, n]× [0,+∞)).

Proof. I. The statement is immediate from Proposition 2.3.4(II) applied to M ⊗Q.
II. Clearly, Condition B implies Condition A.
Now assume D. We apply Proposition 4.2.1(2) of [BoS18c] for the following data:

C = DM eff
gm(k,Z[1/e]), K is the subcategory of torsion (resp. r-torsion) objects (it

corresponds to J = Z \ {0} or to J = {r} in the notation of loc. cit., respec-
tively), Di = DM eff

gm(k,Z[1/e])〈i〉, and ai = aI,i. Combining this proposition with
Theorem 3.3.3(2) we obtain that for any integers n and n′ there exists a distin-
guished triangle T → M → N → T [1] such that T is a torsion motive (resp. r-
torsion motive) and N is an extension of an object ofDM eff

gm(k,Z[1/e])wChow≥n+1
, an
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214 MIKHAIL V. BONDARKO AND VLADIMIR A. SOSNILO

object of DM eff
gm(k,Z[1/e])wChow≤n′−1

, and an element N ′ such that laI,i−1(N ′) ∈
DM

aI,i−1
gm (k,Z[1/e])

w
aI,i−1

Chow ≥−i+1
.6 By the definition of aI,i, we obtain lj(N ′) ∈

DM j
gm(k,Z[1/e])wj

Chow≥1−i for any (i, j) ∈ I. Clearly, a weight complex of any ele-

ment of DM eff
gm(k,Z[1/e])wChow≥n+1

and DM eff
gm(k,Z[1/e])wChow≤n′−1

can be chosen

so that all of its terms in the range [n, n′] are trivial (see Proposition 1.4.2(2)).
Hence for any choice of a weight complex of N ′ we can choose a weight complex
of N whose terms are the same as those of N ′ in the range [n, n′] (see part (4) of
that proposition). By Theorem 3.3.3(2) there is a choice of a weight complex for
N ′ such that its i-th term is j + 1-effective whenever (i, j) ∈ I. Thus we obtain E.

Proposition 3.1.2(2) easily yields that E implies E’.
Next, if T is a torsion (resp. an r-torsion) motive then there exists a non-zero

integer (resp. a power of r) nT such that nT · idT = 0. Hence all the Chow-weight
homology groups of T are killed by (the multiplication by) nT . Now assume that
M belongs to DM eff

gm(k,Z[1/e])[−n+1,−n′−1] and E’ is fulfilled. Then the long exact

sequences for CWHi
j(−K) coming from the distinguished triangle T → M → N →

T [1] (where CWHi
j(NK) = {0} for all (i, j) ∈ I ∩ [n′, n]× [0,+∞) and T is torsion)

yield that CWHi
j(MK) is killed by the multiplication by nT whenever i ≤ n and

(i, j) ∈ I. Moreover, CWHi
j(MK) = {0} if i ≥ n+ 1; hence it is also killed by the

multiplication by nT . Thus Condition E’ implies B.
It remains to prove that Condition A implies D. Assume Condition A. Ac-

cording to Proposition 3.6.2 (combined with Theorem 3.3.3(2)), for any i ∈ Z

we have l
aI,i−1
R′ (M ⊗ R′) ∈ DM

aI,i−1
gm (k,R′)

w
aI,i−1

Chow ≤−i
(for R′ = Q or R′ =

Z[1/r], respectively). Hence Proposition 4.2.1(2) of [BoS18c] yields that there
exists a distinguished triangle T → M → N → T [1] satisfying the following
conditions: T is a torsion motive (resp. an r-torsion motive), and there exists
a triangle Q → N → N ′ → Q[1] such that Q ∈ DM eff

gm(k,Z[1/e])wChow≥−n′+1

and N ′ is an extension of an element N ′′ ∈ DM eff
gm(k,Z[1/e])wChow≥−n

such that

laI,i−1(N ′′) ∈ DM
aI,i−1
gm (k,Z[1/e])

w
aI,i−1
Chow ≥−i+1

for any (i, j) ∈ I, by an element

of DM eff
gm(k,Z[1/e])wChow≤−n+1

. Since N ′ is an extension of N ′′ by an element

DM eff
gm(k,Z[1/e])wChow≤−n+1

, N ′′ is a choice of wChow≥−nN
′. By Theorem 3.3.3,

CWHj
i,K(wChow≥−nN

′) = CWHj
i,K(N ′′) = {0} for all field extensions K/k and

(i, j) ∈ I. Thus we obtain condition D. �

Now we combine this theorem with the results of §3.4.

Corollary 3.6.5. Let M ∈ ObjDM eff
gm(k,Z[1/e]) and K0 be a universal domain

containing k.

I. Let I be a staircase set. Then the “main” versions of the (equivalent) Con-
ditions A–E’ of Theorem 3.6.4(II) (i.e., we ignore the versions in brackets
that mention r) are also equivalent to each of the following assertions.

6Note that DM−1
gm(k,Z[1/e]) is the zero category. Thus here and below the conditions on the

images of motives with respect to l−1 are assumed to be vacuous; this corresponds to the case
aI,i = 0.
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(1) For all rational extensions k′/k and all (i, j) ∈ I the group

CWHi
j−1(Mk′ , 1,Z[1/e])

is torsion.
(2) The group CWHi

j(MK0
,Z[1/e]) is torsion for all (i, j) ∈ I.

(3) There exists an integer EM >0 such that EM CWHi
j−a(Mk′ , a,Z[1/e])

= {0} for all (i, j) ∈ I, a ∈ Z, and all field extensions k′/k.
II. The following conditions are equivalent.

(1) M ⊗Q ∈ DM eff
− (k,Q)t

Q

hom≤0.
(2) hl,0(MK0

,Q) = {0} for all l < 0.

(3) CWHi
j−a(Mk′ , a,Q) = {0} for all a ∈ Z, i > j, and all field extensions

k′/k.
(4) There exists an integer EM > 0 such that EM CWHi

j−a(Mk′ , a,Z[1/e])
= {0} for all a ∈ Z, i > j, and all field extensions k′/k.

(5) There exists an integer E′
M > 0 such that E′

Mhl,0(Mk′ ,Z[1/e]) = {0}
for all l < 0 and all field extensions k′/k.

III. Assume that M belongs to DM eff
gm(k,Z[1/e])wChow≥0. Then for any c ≥ 0

the following conditions are equivalent.

(1) M ⊗Q ∈ DM eff
gm(k,Q)

〈c〉
≥0 (see Definition 3.3.6).

(2) h2j,j(MK0
,Q) = {0} whenever 0 ≤ j < c.

(3) There exists EM > 0 such that EMh2j,j(Mk′ ,Z[1/e]) = {0} for all
0 ≤ j < c and all field extensions k′/k.

Proof. I. Applying Proposition 3.4.1 to M ⊗Q we obtain that our conditions (I1)–
(I2) are equivalent to Condition A of Theorem 3.6.4(II). It remains to note that
Condition D of the theorem easily yields our condition (I3) (since the proof of the
implication D =⇒ B in the theorem carries over to higher Chow-weight homology
without any difficulty).

II. First we combine assertion I with Corollary 3.4.2 for the case R = Q (and with
M replaced by M ⊗ Q). We obtain that our conditions (II1), (II3), and (II2) are
equivalent. Moreover, the last of these conditions is clearly weaker than condition
(II5).

Next, condition (II3) implies condition (II4) according to our assertion I (we take
I = {(i, j) : i > j} in it). Thus it remains to verify that condition (II4) implies
condition (II5).

Now we take the (Chow-) weight spectral sequence T (M,k′) converging to the
(zero-dimensional) motivic homology of M over k′:

Epq
1 (T (M,k′)) = CH0(M

p
k′ ,−q,Z[1/e]) =⇒ CH0(Mk′ ,−p− q,Z[1/e])

(where tR(M) = (Mp)). Clearly, Epq
2 (T (M,k′)) = CWHp

0(Mk′ ,−q,Z[1/e]). Since
M is wChow-bounded, condition (II4) implies that a high enough power of EM (that
depends on M only) kills hl,0(Mk′ ,Z[1/e]) for all l and k′.

III. Applying Corollary 3.3.7(I) to the motive M⊗Q we obtain the equivalence of
conditions (III2) and (III3). It remains to combine Theorem 3.6.4(II) with Lemma
3.1.4(2) to obtain that these conditions are also equivalent to condition (III3). �
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216 MIKHAIL V. BONDARKO AND VLADIMIR A. SOSNILO

Remark 3.6.6.

(1) It is quite remarkable that certain Chow-weight homology groups have finite
exponents. Note that (in general) Chow-weight homology groups (as well
as motivic homology ones) can certainly have really “weird” torsion.

In particular, our results can be applied to the case M = Cone(h), where

h is a Choweff(k,R)-morphism (cf. Corollary 3.3.9); the resulting statement
appears to be quite non-trivial and absolutely new.

(2) In the case where the set I satisfies some additional assumptions, there
exist nicer re-formulations of the rather clumsy conditions II.D–E’ in The-
orem 3.6.4. They are given by Theorem 3.6.5(III–V) of [BoS14]; see also
Condition II.C in loc. cit. and Condition II.2 in Corollary 3.6.6 of ibid.
These statements follow from the results of [BoS18c, §4.2] easily (as well;
cf. the proof of Theorem 3.6.4(II)).

4. Applications to motives and cohomology with compact support

In §4.1 we recall the theory of motives with compact support (of arbitrary vari-
eties); in particular, their motivic homology gives Chow groups of varieties.

In §4.2 we use these results to obtain the main applications of our results to (mo-
tives and cohomology with compact support of) varieties. We relate the vanishing
of lower (rational) Chow groups of varieties to the effectivity of the higher weight
factors of their cohomology with compact support (see Theorems 4.2.1 and 4.2.3).
We also obtain that the exponents of certain Chow groups (as well as of cokernels
of certain homomorphisms between them) if these groups are torsion (cf. Theorem
3.6.4). Furthermore, in the case where k is finite we relate the effectivity conditions
for motives (that can be checked using Chow-weight homology) to the number of
points of varieties over k (modulo powers of q = #k).

In §4.3 we study conditions ensuring that lower Chow groups of a smooth proper
k-variety X are supported on its subvarieties of “small” dimension. In contrast to
the case of a general X that was considered in §4.2, we are able to express these
conditions in terms of certain decompositions of the diagonal of X×X (considered
as an algebraic cycle). Consequently, we re-prove and extend the corresponding
results of [Par94] and [Lat96]; this section also demonstrates the relation of our
methods to earlier (and “more cycle-theoretic”) ones.

In §4.4 we consider tensor products of motives. Combining the properties of
motives with compact support with Corollary 3.3.7(II) we easily obtain that the
vanishing ranges of lower Chow groups add when varieties multiply. Moreover, the
conjectures mentioned in Proposition 3.5.5 imply several funny results essentially in
the converse direction over characteristic 0 fields (both for varieties and motives).
In particular, one may say that the “effectivity and connectivity” of the tensor
product of (rational geometric) motives over a characteristic 0 field cannot exceed
the sums of the effectivities and connectivities of the multipliers, respectively.

4.1. On motives with compact support and their relation to Chow groups.
Corollary 3.3.9 (along with Remark 3.3.10) can certainly be applied to morphisms
of Chow motives that come from (closed) embeddings of smooth projective vari-
eties. This gives conditions equivalent to the assumption that all algebraic cycles
of dimension less than r1 on a smooth projective variety X are “supported” on a
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ON CHOW-WEIGHT HOMOLOGY OF GEOMETRIC MOTIVES 217

smooth closed subvariety Z of X. However, we would like to demonstrate that our
results can also be applied in the case where X or Z is singular.

For this purpose we need some basics on motives with compact support. We will
start with the following definitions.

Definition 4.1.1.

(1) We will write SchPr for the wide subcategory of the category of k-varieties
whose morphisms are the proper ones.

(2) If R is a unital Z[1/e]-algebra then we will use the notation Mc
R (mo-

tive with compact support) for the composition of the functor Mc
Z[1/e] :

SchPr → DM eff
− (k,Z[1/e]) provided by Definition 5.3.1 of [Kel17] (cf. also

§4.1 of [Voe00]) with the natural connecting functor−⊗R : DM eff(k,Z[1/e])
→ DM eff(k,R) (see Proposition 1.3.3 of [BoK18]).7

Proposition 4.1.2. Assume that k′ is a perfect field extension of k. Then the
functor Mc

R (motive with compact support) satisfies the following properties.

(1) Mc
R(P ) = MR(P ) whenever P ∈ SmPrVar. Moreover, Mc

R(X) is an
object of DM eff

gm(k,R) for any X ∈ Var.
(2) The k′-motive Mc

R(X)k′ is isomorphic to Mc
R(Xk′).

(3) For any j ≥ 0, X ∈ Var, and any smooth quasi-projective k-variety U we
have MR(U)〈j〉 ⊥ Mc

R(X)[i] for any i > 0.
Moreover, if i ∈ Z and U is of (constant) dimension d then the group

DM eff
gm(k′, R)(MR(Uk′)〈j〉,Mc

R(X)[i]k′) is isomorphic to the higher Chow
group CHj+d(U×Xk′ ,−i, R) (cf. Theorem 5.3.14 of [Kel17] for the Z[1/e]-
version of this notation); in particular, if i = 0 then this group is isomorphic
to the Chow group CHj+d(U×Xk′ , R) of R-linear cycles of dimension j+d
on U ×Xk′ (cf. Remark 2.2.3).

(4) If i : Z → X is a closed embedding of k-varieties and U = X \Z then there
exists a distinguished triangle

(4.1) Mc
R(Z)

Mc
R(i)−→ Mc

R(X) → Mc
R(U) → Mc

R(Z)[1].

(5) If X,Y ∈ Var then Mc
R(X × Y ) ∼= Mc

R(X)⊗Mc
R(Y ).

(6) If Y is an affine bundle of dimension r ≥ 0 over X then Mc
R(Y ) ∼=

Mc
R(X)〈r〉.

Proof. In Definition 5.3.1, Lemma 5.3.6, Proposition 5.3.5, and Proposition 5.3.8 of
[Kel17], respectively, the obvious Z[1/e]-linear analogues of assertions (1), (4), and
(5) were justified. Then the R-linear results in question follow immediately since
the functor − ⊗ R : DM eff(k,Z[1/e]) → DM eff(k,R) in Definition 4.1.1(2) is an
exact tensor functor that sends MZ[1/e](Z) into MR(Z) for any X ∈ SmVar; see
Proposition 1.3.3 of [BoK18].

Similarly, it suffices to prove the Z[1/e]-linear version of assertion (6). In the case
where Y = Ar×X it is given by Corollary 5.3.9 of [Kel17]. To prove it in general we
note that there exists a stratification of X = ∪Xl such that for the preimages Yl of
Xl in Y we have Yl

∼= Ar×Xl. Hence one can apply the aforementioned Proposition
5.3.5 of ibid. (cf. (4.1)) along with the canonical comparison morphisms provided

7Below we will usually take R that is a localization of Z[1/e]. In this case Proposition 3.6.2(I)
is sufficient for our purposes; see Proposition 4.1.2(1).
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218 MIKHAIL V. BONDARKO AND VLADIMIR A. SOSNILO

by Proposition 5.3.12(ii) of ibid. to prove the statement by induction on the number
of strata.8

Next, assertion (2) easily follows from description of motives with compact sup-
port provided by Proposition 8.10 of [CiD15]; see Proposition A.1(2) of [BoK20].

Lastly, combining Proposition 5.3.12(i) with Theorems 5.2.20, 5.2.21, and 5.3.14
of [Kel17] one easily obtains assertion (3) in the case k′ = k. It remains to invoke
assertion (2) to obtain the general case of the assertion. �
Remark 4.1.3. Actually, MR(X) = Mc

R(X) whenever X is proper.

Now we relate motives with compact support to the weight structure wChow.

Lemma 4.1.4. Let X ∈ Var.

(1) Then Mc
R(X) ∈ DM eff

gm(k,R)wChow≥0. Moreover, if X is smooth and proper

then Mc
R(X) = MR(X) ∈ DM eff

gm(k,R)wChow=0.

(2) For any j ≥ 0 and any field extension k′/k the group CWH0
j (Mc

R(X)k′) is
naturally isomorphic to CHj(Xk′ , R).

(3) If X is of dimension at most r (for some r ≥ 0) then Mc
R(X) is an object

of d≤rDM eff
gm(k,R).

(4) For any Z ∈ Var there exists a smooth projective k-variety Y along with a
morphism h : MR(Y ) = Mc

R(Y ) → Mc
R(Z) such that dimY = dimZ and

h can be completed to a weight decomposition triangle for Mc
R(Z).

(5) Let M ∈ DM eff
gm(k,R)wChow=0 and N ∈ DM eff

gm(k,R)wChow≥0. Then a mor-
phism h : M → N gives a weight decomposition triangle for N if and
only if the homomorphisms h2j,j(hK , R) are surjective for all j ≥ 0 and all
function fields K/k.

Proof. (1). The first part of the assertion is immediate from Proposition 4.1.2(3)
(see Proposition 1.2.4(3), 2).

To get the “moreover” part it remains to recall Proposition 4.1.2(1) and Propo-
sition 2.2.1(2).

(2). The statement is immediate from the previous assertion combined with
Lemma 3.1.4(2); cf. Remark 2.2.3.

(3). Proposition 4.1.2(4) implies that it suffices to prove the statement under
the assumption that X is smooth. Moreover, obvious induction allows us to assume
that Mc

R(U) ∈ d≤r−1DM eff
gm(k,R) whenever U is of dimension at most r−1. Hence

Mc
R(X

′) ∈ d≤rDM eff
gm(k,R) whenever X ′ is a smooth variety of dimension r that

either possesses a smooth compactification (see Proposition 4.1.2(1)) or contains
an open dense subvariety U ′ such that Mc

R(U
′) ∈ Obj d≤rDM eff

gm(k,R).
Now, assume that R = Z(�), where � is an arbitrary prime distinct from p.

Then Corollary 1.2.2(1) of [Bon11] implies that (for any smooth X of dimension
r) there exists an open dense U ⊂ X such that MR(U) is a retract of MR(U

′),
where dimU ′ = r and U ′ possesses a smooth compactification. Next, the duality
provided by Theorem 5.3.18 of [Kel17] immediately implies that Mc

R(U) is a retract
of Mc

R(U
′) under these assumptions.

Thus we obtain our assertion in the case R = Z(�). Applying this statement for
all � ∈ P \ {p} along with Corollary 0.2 of [BoS15] and Proposition 3.6.2(I.1) (cf.
also Appendix A.2 of [Kel12]) we obtain the result in question for R = Z[1/e] as
well. Applying Proposition 1.3.3 of [BoK18] once again we conclude the proof.

8Note also that this assertion is mentioned in §5 of [Tot16].
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(4). Immediate from assertions (1) and (3).
(5). Clearly, h yields a weight decomposition of N if and only if for C = Cone(h)

we have C ∈ DM eff
gm(k,R)wChow≥1. Next, Theorem 3.2.1(3) says that the latter

assumption is fulfilled if and only if CWHi
j(CK) = {0} for all i, j ≥ 0 and all

function fields K/k. Moreover, we have CWHi
j(MK) = CWHi

j(NK) = {0} if j ≥ 0

and i ≥ 1, and CWHi
j(MK) = {0} also if i < 0 (and j ≥ 0). Thus the long exact

sequences relating Chow-weight homology of M , N , and C yields that h satisfies the
condition in question if and only if the homomorphisms CWH0

j(hK) are surjective
for all j ≥ 0. Hence it remains to apply Lemma 4.1.4(2). �

Let us now concentrate on the case R = Q (yet cf. Remark 3.2.2(1)).

Lemma 4.1.5. Let K0 be a universal domain containing k, X,Y, Z ∈ Var.

(1) Let M ∈ DM eff
gm(k,Q)wChow=0 and N ∈ DM eff

gm(k,Q)wChow≥0. Then a mor-
phism h : M → N yields a weight decomposition of N if and only if the
homomorphisms h2j,j(hK0

,Q) are surjective for all j ≥ 0.
(2) If g : Y → Z is a proper surjective morphism and h = Mc

Q(g) then the

homomorphisms CHj(gK0
,Q) and CWH0

j (hK0
,Q) are surjective.

Moreover, if Y is smooth and proper then h gives a weight decomposition
of Mc

Q(Z).
(3) Assume that X is proper. Then for any g as above, any closed embedding i

of Z into X, and U = X \Z there exists a choice of t(Mc
Q(U)) of the form

. . .MQ(Y )
MQ(i◦g)−→ MQ(X) → 0 → . . . (where MQ(X) is in degree 0).

Proof. (1). This is an easy combination of Lemma 4.1.4(5) with Proposition 2.3.4(II);
cf. Remark 3.2.2(1).

(2). According to Lemma 4.1.4(2), the surjectivity of CWH0
j(hK0

,Q) is equiva-
lent to that of CHj(gK0

,Q). The latter surjectivity is rather obvious, since for any
Zariski point z of ZK0

one can choose a point y of YK0
that is of finite degree over

z.
To obtain the “moreover” part of the assertions it remains to invoke assertion

(1).
(3). Applying Proposition 4.1.2 (1, 3) along with Proposition 1.4.2(4) we obtain

that it suffices to find a choice of wChow≤0Mc
Q(Z) and calculate the composed

morphism wChow≤0Mc
Q(Z) → Mc

Q(Z)
Mc

Q(i)−→ Mc
Q(X). Hence it suffices to apply

the functoriality of Mc
Q along with assertion (2). �

Now we combine our lemmata with Corollary 3.3.7.

Proposition 4.1.6. Assume that r ∈ [0,+∞], K0 is a universal domain containing
k, g : Y → X is a proper morphism of k-varieties, Z = Im g, U = X \ Z.

Denote Mc
Q(g) by h, M = Cone(h), and C = Mc

Q(U).
Then the following conditions are equivalent.

(1) M belongs to DM eff
gm(k,Q)

〈r〉
≥0 (the notation comes from Definition 3.3.6;

here we set DM eff
gm(k,Q)

〈+∞〉
≥0 = DM eff

gm(k,Q)wChow≥1).

(2) The homomorphisms CHj(gK0
,Q) are surjective for 0 ≤ j < r.

(3) CHj(UK0
,Q) = {0} for 0 ≤ j < r.

(4) C ∈ DM eff
gm(k,Q)

〈r〉
≥0.
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Proof. Let j ≥ 0. Lemma 4.1.4(1), 2 implies that the motives Mc
Q(Y ), Mc

Q(Z),

Mc
Q(X), M , and C belong to DM eff

gm(k,Q)wChow≥0. Moreover, CWH0
j(JK0

,Q) ∼=
h2j,j(JK0

,Q) if J equals either Mc
Q(Y ), Mc

Q(Z), or Mc
Q(X), and CWHi

j(JK0
,Q) =

{0} for all these motives and i > 0. Thus CWHi
j(M) = CWHi

j(C) = {0} for all
i > 0 and there is a long exact sequence

(4.2)
· · · → CWH−1

j (Mc
Q(X)) → CWH−1

j (MK0
,Q) → CHj(YK0

,Q)

CHj(gK0
,Q)

−→ CHj(XK0
,Q) → CWH0

j (MK0
,Q) → {0}.

We combine it with Corollary 3.3.7(I) if r < +∞, and with Theorem 3.2.1(3) if
r = +∞ (see also Remark 3.2.2)1)); this immediately gives the equivalence of
our conditions (1) and (2). Similarly, these statements imply the equivalence of
conditions (3) and (4).

Next, Proposition 4.1.2(4) implies that for the corresponding embedding i : Z →
X we have Cone(Mc

Q(i))
∼= C. Thus we obtain a long exact sequence

· · · → CHj(ZK0
,Q) → CHj(XK0

,Q) → CWH0
j(CK0

) → {0},
and arguing as above we obtain that our condition (4) is equivalent to the surjec-
tivity of the homomorphism CHj(i,Q). Lastly, Lemma 4.1.5(2) implies that for the
corresponding g′ : Y → Z the homomorphism CHj(g

′,Q) is surjective. Hence the
surjectivity of CHj(i,Q) is equivalent to condition (2). �

Remark 4.1.7.

(1) Note that the empty scheme is a variety by our convention. Its Chow
groups are zero; thus if Y = ∅ in Proposition 4.1.6 then U = X and we

obtain that the motive Mc
Q(U) belongs to DM eff

gm(k,Q)
〈r〉
≥0 if and only if

hj(UK0
,Q) = {0} for 0 ≤ j < r. We will often mention this case of the

proposition below.
More generally, it is easily seen that for any coefficient ring R the motive

Mc
R(U) belongs to DM eff

gm(k,R)
〈r〉
≥0 if and only if hj(UK , R) = {0} for 0 ≤

j < r and all function fields K/k.
(2) One can easily construct rich families of examples for part (1) of this remark.

This clearly gives examples for Proposition 4.1.6 as well, and one can take
Y and Z to be non-empty in them.

Let T ∈ Var, r > 0, and U is an affine bundle of dimension r over T
(say, U = T × Ar). Then combining Proposition 4.1.2 (6, 4) with Lemma
4.1.4(1) and Corollary 2.2.4(1) we obtainMc

R(U) ∈ DM eff
gm(k,R)wChow≥0〈r〉

⊂ DM eff
gm(k,R)

〈r〉
≥0 for any R. Moreover, the aforementioned statements eas-

ily imply that for any open dense embedding U ′ → U the motive Mc
R(U

′)

belongs to DM eff
gm(k,R)

〈r〉
≥0 whenever Mc

R(U) does.

Moreover, Remark 4.1.5(3) of [BoS14] describes certain X ∈ Var such
that for M = Mc

R(X) we have CWHi
j(MK , R) = {0} for all function fields

K/k and all (i, j) that belong to a given staircase set I.9
(3) In the case Y = Z = ∅ (see part (1) of this remark) the equivalent condi-

tions of Proposition 4.1.6 can also be re-formulated as follows: there exists
a smooth projective k-variety P of constant dimension s ≥ 0 and a Q-linear

9Actually, in loc. cit. the case R = Q is considered; yet this assumption is not necessary.
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algebraic cycle η of dimension s+ r in P ×X that (if considered as a corre-
spondence via Proposition 4.1.2(3)) induces a surjection CHj−r(PK0

,Q) →
CHj(XK0

,Q) for all j ≥ 0; here we set CHj−r(PK0
,Q) = {0} if j < r.

Indeed, the “if” implication is obvious (see condition (3) of Proposition
4.1.6) and it suffices to combine Corollary 3.3.7(I) (see condition (I3) in it)
with the obvious “correspondence version” of Lemma 4.1.5(1) to obtain the
converse implication.

We will give a “decomposition of the diagonal” re-formulation of this
condition in the case where X is smooth (and possesses a smooth compact-
ification) in §4.3 below.

(4) It is easily seen not to be sufficient to assume that g : Y → Z is (proper
and) surjective to claim that h = Mc

R(g) gives a weight decomposition
of Mc

R(Z) (see Lemmata 4.1.4(4) and 4.1.5(2)) in the case of a general
coefficient ring R.

Hence one needs some more restrictive assumptions on the morphism
g to ensure that all the R-linear versions of the conditions in Proposition
4.1.6 are equivalent (i.e., to ensure that condition (3) implies condition (2)).

We need some more preparation for the next subsection. To relate our results
to “the usual” cohomology with compact support we need the following statement.

Proposition 4.1.8.

(1) For the cohomological functor H = Het,Q�
mentioned in Definition 3.5.3(4),

any X ∈ Var, i ∈ Z, and M = Mc
Q(X) (see Definition 4.1.1(2)) the

Q�[G]-module Hi(M) = H(M [−i]) is canonically isomorphic to the mod-
ule Hi

c,et(Xkalg) of i-th étale cohomology of Xkalg with compact support.
Moreover, these isomorphisms are SchPr-natural.

(2) Assume that k is a subfield of C. Then for any X ∈ Var the factors of the
Deligne weight filtration on the MHS-valued singular cohomology of XC

with compact support are SchPr-naturally isomorphic to the weight factors
of H∗

sing(Mc
Q(X)) (see Definition 3.5.3(3)).

Proof. (1) Recall that Het,Q�
is the restriction to DM eff

gm(k,Q) of the cohomological

functor H0
et(−kalg ,Q�) from DMgm(k,Q) into Q�[G] − Mod coming from Propo-

sition 7.2.21 and Theorem 7.2.24 of [CiD16]. Now, Het(−kalg ,Q�) possesses the
corresponding “compact support” property by loc. cit.; see here Proposition 8.10
of [CiD15] for the “six functor” description of motives with compact support.

(2) Theorem 3 of [GiS96] says that the quotients of the weight filtration on
Hi

c,sing(XC) are functorially isomorphic (as pure Hodge structures) to the corre-
sponding E2-terms of the weight spectral sequences (similarly to Theorem 3.5.4(2)).
Now, these E2-terms in loc. cit. are expressed (cf. Proposition 1.4.5(2)) in terms
of their weight complex W (X) of X as provided by Theorem 2 of ibid. (cf. Remark
1.4.3(2)). Thus it remains to apply Theorem 3.1 of [KeS17] (or recall that the
composition t ◦Mc

Q is essentially isomorphic to the weight complex functor of ibid.
according to Proposition 6.6.2 of [Bon09]; cf. Remark 1.4.3(2)). �

Remark 4.1.9. The authors do not know whether the known properties of singu-
lar cohomology of motives are sufficient to verify that the singular cohomology of
Mc

Q(X) is isomorphic to the corresponding cohomology of X with compact support
as mixed Hodge structures. Yet this statement is most probably true.
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4.2. On cohomology with compact support and the number of points
of varieties. Let us apply results of previous sections to motives with compact
support of varieties.

Theorem 4.2.1. Let U ∈ Var, r ≥ 0, K0 is a universal domain containing k, and
assume that CHj(UK0

,Q) = {0} for 0 ≤ j < r.

(1) Then there exists E > 0 such that E CHj(Uk′ ,Z[1/e]) = {0} for all 0 ≤ j <
r and all field extensions k′/k.

(2) If k is a subfield of C then the q-th (Deligne) weight factor of Hq
c (UC) of

the (Q-linear) singular cohomology of U with compact support is r-effective
as a pure Hodge structure (see Definition 3.5.3(1)).

Moreover, the same property of Deligne weight factors of Q�-étale coho-
mology Hq

c (Ukalg) is fulfilled (in the sense of Definition 3.5.3(2)) if k is an
essentially finitely generated field (see Definition 2.3.1(1)) and � �= p.

In particular, these factors are zero if q < 2r.
(3) Assume that U = X \ Z, where Z is the image of a proper morphism

g : Y → X of k-varieties. Then there exists E > 0 such that the cokernel of
the homomorphism CHj(gk′ ,Z[1/e]) is annihilated by E whenever 0 ≤ j < r
and k′/k is a field extension. Moreover, if k and H are as in assertion (2)
then the object Ker(WDqH

q
c (X) → WDqH

q
c (Y )) is r-effective (in the sense

of Definition 3.5.3).
(4) The motive Mc

Q(U) (see Definition 4.1.1(2)) is an extension of an el-

ement of DM eff
gm(k,Q)wChow≥1 (see Proposition 2.2.1(1)) by an object of

Choweff(k,Q)〈r〉 (see §2.1).

Proof. All of these statements are rather easy implications of earlier results.
We takeM = Mc

Z[1/e](U) (this corresponds to R = Z[1/e] in Definition 4.1.1(2)).

Then M ∈ DM eff
gm(k,Z[1/e])wChow≥0 by Lemma 4.1.4(1). Moreover, Mc

Z[1/e](T )

belongs to DM eff
gm(k,Z[1/e])wChow≥0 whenever T is equal either to X, Y , or Z

in assertion (3). Furthermore, Proposition 4.1.6 implies that M ⊗ Q = Mc
Q(U) ∈

DM eff
gm(k,Q)

〈r〉
≥0. Hence assertion (1) follows from Corollary 3.6.5(III) (see condition

III3 in it); see also Proposition 4.1.2(3) and Remark 2.2.3.
Given assertion (1), assertion (2) easily follows from Theorem 3.5.4(3) combined

with (the corresponding parts of) Proposition 4.1.8; note also that r-effective pure
Hodge structures and Galois representations are of weight at least 2r.

Next, assertion (4) follows from Corollary 3.3.7(I).
To prove assertion (3) we argue similarly to the proof of Proposition 4.1.6. Firstly

we complete the morphism Mc
Z[1/e](Y ) → Mc

Z[1/e](Z) to a distinguished triangle

(4.3) Mc
Z[1/e](Y ) → Mc

Z[1/e](Z) → J → Mc
Z[1/e](Y )[1].

Then for any j ≥ 0 and k′/k we have a long exact sequence

· · · → CHj(Yk′ ,Z[1/e]) → CHj(Zk′ ,Z[1/e]) → h2j,j(Jk′ ,Z[1/e]) → {0}.

Next, J ⊗ Q ∈ DM eff
gm(k,Q)wChow≥1 according to Lemma 4.1.5(2) (combined with

Proposition 4.1.6; one should take r = +∞ in it). Applying Theorem 3.6.4(II) we
obtain that the groups

h2j,j(Jk′ ,Z[1/e]) ∼= Coker(CHj(Yk′ ,Z[1/e]) → CHj(Zk′ ,Z[1/e]))
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ON CHOW-WEIGHT HOMOLOGY OF GEOMETRIC MOTIVES 223

are annihilated by some constant E′ > 0 (and E′ does not depend on j and k′).
Similarly, the functorM �→ GrWD

q Hq(M) is cohomological (forH that equals either
Hsing or Het,Q�

and q ≥ 0); since WDqH
q(Mc

Q(Y )[1]) = 0 (apply Theorem 3.5.4(3)
once again), we obtain that WDqH

q(Mc
Q(Y )) surjects onto WDqH

q(Mc
Q(Z)).

Thus it suffices to verify that the cokernels of homomorphisms CHj(Zk′ ,Z[1/e]) →
CHj(Xk′ ,Z[1/e]) are annihilated by some constant E′′ (for all field extensions k′/k),
and that the object Ker(WDqH

q
c (X) → WDqH

q
c (Z)) is r-effective for H that is ei-

ther étale or singular cohomology (here we invoke Proposition 4.1.6 once again).
Hence considering the long exact sequences

· · · → CHj(Zk′ ,Z[1/e]) → CHj(Xk′ ,Z[1/e]) → CHj(Uk′ ,Z[1/e]) → {0}
and

0 → WDqH
q
c (U) → WDqH

q
c (X) → WDqH

q
c (Z) → . . .

we reduce assertion (3) to assertion (2). �

Remark 4.2.2.

(1) We did not formulate all possible statements of this sort above. In particu-
lar, we could have considered Chow-weight homology for various staircase
sets I; cf. Theorems 3.3.3 and 4.2.3.

Moreover, in §5.1 below we study the (more general) case where certain
Q-linear Chow and Chow-weight homology groups are finite dimensional.
In particular, Corollary 5.1.6(2) below generalizes parts (2) and (4) of our
theorem.

(2) Recall also that the assumption of the r-effectivity of the q-th (Deligne)
weight factor of Hq

c (UC) of the singular cohomology of U with compact
support is conjecturally equivalent to the vanishing of CHj(U,Q) for 0 ≤
j < r; one should just combine our theorem with Proposition 3.5.5.

(3) Recall that a large family of examples to our theorem can be constructed
by means of Remark 4.1.7(2); however, these examples may also be treated
“directly”.

So it may be more interesting to apply our theorem to the case where
g is (proper and) surjective (and for any r > 0; see Lemma 4.1.5(2)); the
resulting statement appear to be new.

Applying part II of Corollary 3.6.5 instead of its part III (that was used in the
proof of Theorem 4.2.1) we easily obtain the following statement (in which the
vanishing of lower Chow groups condition is replaced by the vanishing of higher
Chow groups of 0-cycles).

Theorem 4.2.3. Let U, r,K0 be as in Theorem 4.2.1, and assume CH0(UK0
, j,Q) =

{0} (cf. Theorem 5.3.14 of [Kel17]) for 0 ≤ j < r.

(1) Then there exists E > 0 such that E CH0(Uk′ , j,Z[1/e]) = {0} for all 0 ≤
j < r and all field extensions k′/k.

(2) If k is a subfield of C then for any q, s ≥ 0 the q − s-th (Deligne) weight
factor of Hq

c (U) of the singular cohomology of U with compact support and
is r-effective as a pure Hodge structure. Furthermore, the same property of
Deligne weight factors of Hq

c (U) is fulfilled for the Q�-étale cohomology of
Ukalg with compact support if k is an essentially finitely generated field (see
Definition 2.3.1(1)) and � �= p.
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224 MIKHAIL V. BONDARKO AND VLADIMIR A. SOSNILO

Proof. The proof is quite similar to that of Theorem 4.2.1(1)–(2); one should only
recall that CH0(Uk′ , j,Q) ∼= hj,0(Mc

Z[1/e](U)k′ ,Z[1/e]) = {0} if j < 0, and apply

Corollary 3.6.5(II) to the motive Mc
Z[1/e](U)[−r]. �

Now we discuss the relation of our results to the number of points of varieties over
finite fields. Proposition 4.2.4 is essentially a combination of Theorem 3.2.1 with
the consequences of the Grothendieck-Lefschetz trace formula that are probably
well-known to experts in the field.

Proposition 4.2.4.

(1) Assume that k is a subfield of the finite field Fq. Then there exists a function
Cardq from ObjDM eff

gm(k,Q) into the ring A of integral algebraic num-
bers such that for any distinguished triangle M → N → O → M [1] in
DM eff

gm(k,Q) we have

(4.4) Cardq(N) = Cardq(M) + Cardq(O)

and for any X ∈ Var and M = Mc
Q(X) we have Cardq(M) = #X(Fq) (the

number of Fq-points of X).
Moreover, for any M in DM eff

gm(k,Q)〈1〉 the number Cardq(M) is divis-
ible by q in A.

(2) Assume that X is a proper k-variety; take the morphism h : M = MQ(X) =
Mc

Q(X) → Q = Mc
Q(pt) corresponding to the projection X → Spec k (see

Definition 4.1.1(2)) and set M̃ = Cone(h). Then Cardq(X) ≡ 1 mod q
whenever either of the following equivalent conditions is fulfilled:
(i) M̃ ∈ ObjDM eff

gm(k,Q)〈1〉;
(ii) CWHi

0(M̃K0
,Q) = {0} (see Definition 3.1.1) for all i ∈ Z and a uni-

versal domain K0 containing k;
(iii) CWH0

0(MK0
,Q) = Q and CWHi

0(MK0
,Q) = {0} for all i �= 0.

Proof. (1) We use the étale cohomology functor Het,Q�
= Het,Q�

(−F) mentioned
in Definition 3.5.3(4), where F is the algebraic closure of Fq. Let us recall that
for any X ∈ Var and i ∈ Z the Q�-vector spaces Hi

et,Q�
(XF) are well-known to

be finite-dimensional and almost all of them (when i varies) are zero; hence the
same is true for the corresponding cohomology of Chow motives. Since the subcat-
egory Choweff(k,Q) densely generates DM eff

gm(k,Q), we obtain that these finiteness

properties extend to {Hi
et,Q�

(MF), i ∈ Z} for any M ∈ ObjDM eff
gm(k,Q) as well.

We will write Frobq : x �→ xq for the (arithmetic) Frobenius automorphism of F.
Our candidate for Cardq(M) will be the trace of the action of the geometric Frobe-
nius automorphism g = Frob−1

q ∈ G on the (finite dimensional Q�-vector space)⊕
i∈Z H

i
et,Q�

(MF); a priori we have Cardq(M) ∈ Q�. Since H is a cohomological
functor, it converts distinguished triangles into long exact sequences; this obviously
implies the property (4.4).

Now we study the values of Cardq. Theorem 5.2.2 of [DeK73] says that the
eigenvalues of the action of g on Hi

c,et(XF) are integral algebraic numbers (i.e.,
belong to A) for any X ∈ Var and i ∈ Z. Hence these properties are also fulfilled

for Hi
et(MF) for any M ∈ ObjChoweff(k,Q); thus they are valid for any M ∈

ObjDM eff
gm(k,Q) as well. To conclude the proof it obviously suffices to note that

for any object M of DM eff
gm(k,Q) we have Cardq(M〈1〉) = qCardq(M) (once again,

it suffices to verify this equality for M ∈ ObjChoweff(k,Q) only).
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ON CHOW-WEIGHT HOMOLOGY OF GEOMETRIC MOTIVES 225

(2) The previous assertion implies that 1 − #X(Fq) = Cardq(M̃). Moreover,
if condition (i) is fulfilled then this (integral!) number is divisible by q. Next,
conditions (ii) and (iii) are obviously equivalent. It remains to note that condition
(i) is equivalent to condition (ii) according to Theorem 3.2.1(1). �

Remark 4.2.5.

(1) Recall that in (Theorem 1.1 of) [Esn03] essentially a particular case of
Proposition 4.2.4(2) was established (actually, K0 equal to the algebraic
closure of k(X) instead of being a universal domain was considered; yet
one can easily look at our proofs and note that this is a minor distinction
that does not affect any applications; cf. Proposition 5.2.3(1)). X was as-
sumed to be smooth projective; hence CWHi

j(MK0
,Q) = {0} for i �= 0 and

CWH0
0(MK0

,Q) ∼= h0,0(MK0
,Q) ∼= CH0(XK0

,Q). Next, the corresponding
statement was applied to smooth rationally chain connected varieties, that
is, one assumes that (for K0 as above) any two closed points of XK0

can
be linked by a connected chain of rational projective curves (cf. Definition
IV.3.2.1, Exercise IV.3.2.5, Corollary IV.3.5.1, and Proposition IV.3.6.2 of
[Kol96]); recall that this condition is fulfilled for Fano varieties.

Certainly, our proposition (and actually the whole paper) says nothing
new on this number on points matter when restricted to the case where X
is (proper and) smooth.

However (as demonstrated by J. Kollár’s example in [BlE08, §3.3]) the
situation becomes more complicated if X is allowed to be singular. Conse-
quently, we suggest to look at the negative degree Chow-weight homology of
M (or M̃) in the case where X is a non-smooth rationally chain connected
variety.

(2) More generally, if k is an extension of Fq and g : X → Y is a proper

morphism then for M̃ ′ = Cone(Mc
Q(g)) we clearly have the following: if

M̃ ′ ∈ ObjDM eff
gm(k,R)〈r〉 for some r > 0 then #X(Fq) ≡ #Y (Fq) mod qr.

Thus it does make sense to consider (also, higher-dimensional) Chow-weight

homology of motives M̃ ′ of this sort.
Recall also that in the case where g is a dominant morphism of smooth

proper varieties (consequently, Chow-weight homology of Mc
Q(X) and

Mc
Q(Y ) vanishes in non-zero degrees once again) and r = 1 this statement

essentially coincides with Corollary 1.3 of [FaR05]. However, one can clearly
“multiply” any example of this sort by an arbitrary k-variety V . Then
clearly M̃ ′×Mc

Q(V ) ∈ ObjDM eff
gm(k,R)〈1〉 and #X×V (Fq) ≡ #Y ×V (Fq)

mod q; yet one cannot deduce these facts from the properties of Chow
groups of X × V and Y × V directly (unless V is smooth and proper).

(3) We could have based our proof on Theorem 8.1 of [Kah09] (cf. also Theorem
9.1 of ibid.); then we would obtain that all the values of our function Cardq
are actually integral.

4.3. On the support of Chow groups of proper smooth varieties. Now we
study in detail the case where X is proper and smooth in the setting of Proposition
4.1.6. The point is that in this case the endomorphisms of Mc

R(X) can be expressed
in terms of algebraic cycles on X ×X; consequently, we are able to prove certain
(partially new) statements that are formulated in this language.
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226 MIKHAIL V. BONDARKO AND VLADIMIR A. SOSNILO

Proposition 4.3.1. Let r > 0; assume that K0 is a universal domain containing
k.

Let g : Y → X be a morphism of smooth proper k-varieties, Z = Im g, U = X \Z
(cf. Proposition 4.1.6), and denote Mc

Q(g) by h.
Then the following conditions are equivalent.

(1) CHj(UK0
,Q) = {0} for 0 ≤ j < r.

(2) The equivalent conditions of Corollary 3.3.9 are fulfilled for the morphism

MQ(Y )
h→ MQ(X) of Chow motives, c1 = 0, and c2 = r.

(3) The diagonal of X×X (considered as a cycle on it) is rationally equivalent
to the sum of a cycle supported on Z×X and a cycle supported on X×X ′,
where X ′ ⊂ X is a closed subvariety of codimension r.

Proof. According to Proposition 4.1.6, condition (1) is equivalent to the surjectivity
of the homomorphisms CHj(gK0

,Q) for 0 ≤ j < r, i.e., to condition (1) of Corollary
3.3.9; thus conditions (1) and (2) are equivalent.

Next, the easy arguments described in Remark 3.3.10(1) immediately yield that
condition (2) is equivalent to (3). �

Remark 4.3.2.

(1) Recall that for any closed subvariety Z of X there exists some proper g :
Y → X such that Y is smooth and Im g = Z according to the seminal
result of de Jong (cf. the stronger Gabber’s Corollary 2.1.15 of [Kel17]).
Note also that here we can choose Y whose dimension equals that of Z.

(2) Now we demonstrate that our proposition implies Proposition 6.1 of [Par94].
So, for a smooth projective k-variety X, closed subvarieties Vj of X for

0 ≤ j < r, and K0 as above we assume that CHj((X \ Vj)K0
,Q) = {0} for

0 ≤ j < r. Then we can take Z = ∪0≤j<rVj and apply Proposition 4.3.1;
hence condition (3) says that the diagonal in X×X is rationally equivalent
to the sum of a cycle supported on Z×X and a cycle supported on X×X ′,
where X ′ is of codimension r in X. Decomposing the first of these cycles
into the sum of cycles supported on Vj ×X (for 0 ≤ j < r) we obtain loc.
cit.

(3) Certainly, the authors would like to suggest the readers to study the neg-
ative degree Chow-weight homology of C = Mc

Q(U) as well (note that
computations of this sort are closely related to cohomology; cf. Theorem
3.5.4 and Proposition 3.5.5 and Theorem 4.2.1). Obviously, one can ar-
gue similarly to Corollary 3.3.9 and Remark 3.3.10(1) to obtain certain
equivalent conditions in terms of algebraic cycles provided that the weight
complex t = t(C) or (equivalently) t′ = t(Mc

Q(Z)) is known.

Thus it makes sense to recall that t can be expressed in the (more or less) obvious
way in terms of an arbitrary smooth proper hypercover of Z (here one can apply the
h-topological Q-linear version of [Kel17, Theorem 4.0.7] noting that the arguments
in the proof of loc. cit. give this modification without any difficulty); cf. also
Remark 1.4.3(2).

In particular, if {Zi} are irreducible components of Z and (all Zi and) the in-
tersections of all subsets of {Zi} are smooth then one can take the −n-th term of
t to be equal to

⊕
J⊂I, #J=n MQ(∩i∈JZi) and the boundary morphisms to be the

obvious ones; cf. Proposition 6.5.1 of [Bon09].
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ON CHOW-WEIGHT HOMOLOGY OF GEOMETRIC MOTIVES 227

Recall also that any smooth U can be presented in this form (i.e., as X ′ \ (∪Z ′
i)

for some smooth proper X ′ and a normal crossing divisor ∪Z ′
i) if p = 0.

One can also say something about tR(C) in the case R �= Q (even if p < 0); see
Remark 4.3.2(4) of [BoS14].

Now we want to discuss certain conditions that are equivalent to (combinations
of) collections of support assumptions (motivated by Theorem 1.7 of [Lat96]). Our
methods allow us to study the case of a general R here (in contrast to ibid.);
however, in this case we need the following substitute of Proposition 4.3.1.

Lemma 4.3.3. Assume that X is smooth and proper, and for a closed subvariety
Z of X and U = X \ Z the groups CHj(UK , R) vanish for 0 ≤ j < r (for some
r > 0) and all function fields K/k.

Then MR(X) is a retract of MR(Y )
⊕

MR(Q)〈r〉 for some Y,Q ∈ SmPrVar
with dimY = dimZ.

Proof. According to Lemma 4.1.4(4), there exists a smooth projective k-variety Y
with dimY = dimZ along with a morphism h : Mc

R(Y ) → Mc
R(Z) such that

dimY = dimZ and h gives a weight decomposition of Mc
R(Z); hence the ho-

momorphisms CHj(hK) are surjective for all function fields K/k and j ≥ 0 (see
Lemma 4.1.4(5)). Next, the long exact sequence (4.1) yields that CHj(ZK) surjects
onto CHj(XK) for all function fields K/k and 0 ≤ j < r. Thus the composed
morphism h′ : Mc

R(Y ) → Mc
R(X) gives a surjection of the corresponding Chow

groups as well. Applying Corollary 3.3.9 for c1 = 0 and c2 = r we conclude that
the morphism idh factors through MR(Y )

⊕
MR(Q)〈r〉 for some Q ∈ SmPrVar

(cf. Remark 0.5). �
Proposition 4.3.4. Let X be a smooth proper variety, r ≥ 0, and c > 0.

Then the following conditions are equivalent.

(1) The motive M = MR(X) is a retract of a Chow motive of the form⊕
0≤j≤cMR(Pj)〈j〉, where Pj ∈ SmPrVar for all j and dimPj ≤ r for

j < c.
(2) There exist closed subvarieties Vj ⊂ X for 0 ≤ j < c such that for all

j we have dimVj ≤ j + r and CHj((X \ Vj)K , R) = {0} (i.e., the group
CHj(XK , R) is “supported on” Vj,K) for all field extensions K/k.

(3) The diagonal Δ of X ×X (considered as an algebraic cycle on it) is ratio-
nally equivalent to the sum

∑c
j=0 Δj, where the cycle Δj is supported on

Wj × Vj for j < c and on Wc × X for j = c and Vj (for 0 ≤ j < c) are
closed subvarieties of X of dimension at most j+ r and Wj (for 0 ≤ j ≤ c)
are closed subvarieties of X of codimension at least j.

Moreover, if R = Q then one can take a single universal domain K0 containing
k for K in condition (2).

Proof. Once again, Proposition 2.3.4(II) implies that in the case R = Q condition
(2) is equivalent to its K0-version.

Thus it suffices to prove the main part of the statement. We fix some X, r,
and c as above, and recall that M = MR(X) is a Chow motive itself according to
Lemma 4.1.4(1).

First we prove that condition (1) implies (2). Assume that condition (1) is
fulfilled; we will check the support condition for certain j = j0, 0 ≤ j0 < c. Denote
by p the corresponding split surjective morphism p :

⊕
0≤j≤cMR(Pj)〈j〉 → M ; pK
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clearly gives a surjection of the h2j0,j0 -groups. Moreover, h2j0,j0(MR(PjK)〈j〉,Q) =
{0} whenever j > j0; hence for Nj0 =

⊕
0≤j≤j0

MR(Pj)〈j〉 the corresponding

retract pj0 of p is converted by the functor h2j0,j0(−K , R) into a surjection as well.
Now we choose a presentation of pj0 as an algebraic cycle on Qj0 = (�0≤j≤j0Pj)×

X; this cycle is supported on a subvariety Rj0 of Qj0 of dimension at most r +
j0. Then the definition of the action of correspondences on cycles implies that
CHj0(XK) is supported on the image of Rj0,K in XK (with respect to the projection
Qj0,K → XK). Since the latter has dimension not greater than that of Rj0 (and
comes by base change from the corresponding k-variety), we obtain the implication
in question.

Next we prove that condition (3) implies condition (2) by an argument rather
similar to the one that we have just used. We fix j0, 0 ≤ j0 < c, and find a
support k-variety for CHj0(XK) (for all K). Arguing similarly to the proof of
Proposition 2.2.6(3) we easily obtain that for any j > j0 the endomorphism hj of

M corresponding to the cycle Δj factors through Choweff(k,R)〈j〉; hence its action
on the group CHj0(XK) is zero. Therefore it suffices to note that for 0 ≤ j ≤ j0
the elements of hj∗(CHj0(XK)) are supported on Vj,K (by the classical theory of
correspondences), and the dimensions of these Vj are at most j0 + r.

Now we prove that condition (2) implies condition (1). Assume that condition
(2) is fulfilled (for our X, r, and c). Then Lemma 4.3.3 implies that for each
j, 0 ≤ j < c, the morphism idM may be factored throughMR(Yj)

⊕
MR(Qj)〈j+1〉

for some Yj , Qj ∈ SmPrVar such that dimYj ≤ j + r (for all j). We “compose
these factorizations” starting from the last one, i.e., we factor idM through the
chain of objects M → MR(Yc−1)

⊕
MR(Qc−1)〈c〉 → MR(Yc−2)

⊕
MR(Qc−2)〈c−

1〉 → . . .MR(Y0)
⊕

MR(Q0)〈1〉 → M . This gives a decomposition of idM into
2c summands el such that each of these endomorphisms factors either through
MR(Yc−i)

⊕
MR(Qc−i)〈c− i+ 1〉 at the “ith step”. It obviously suffices to verify

that each of el factors through certain MR(P )〈j〉 such that P ∈ SmPrVar and
either j = c or 0 ≤ j < c and dimPj ≤ r. Now we choose one of these el and
consider the smallest i such that el factors through MR(Qc−i)〈c− i+ 1〉. If there
is no such i then el factors through MR(Y0); thus we can take j = 0 and P = Y0.
If this minimal i equals 1 then we can take j = c and P = Qc. In other cases the
morphism el factors firstly through MR(Yc−i+1) and through MR(Qc−i)〈c− i+1〉
after that; thus Proposition 2.2.6(3) implies that el factors throughMR(P )〈c−i+1〉
for some P of dimension at most dimYc−i+1 − (c− i+ 1) ≤ r.

Lastly we prove that condition (1) implies condition (3). It clearly suffices to
verify for 0 ≤ j ≤ c that an endomorphism hj ofM that factors throughMR(Pj)〈j〉,
where Pj ∈ SmPrVar and dimPj ≤ r if j < c, can be presented by a cycle Δj that
satisfies the support assumptions of condition (3). Consequently, we present hj as a

composition M
a→ MR(Pj)〈j〉

b→ M . Now, Proposition 2.2.6(3) gives the existence
of an open embedding w : W ′ → P such that Wj = P \W ′ is of codimension j in
P and a ◦ MR(w) = 0. Hence we can choose a presentation of a as an algebraic
cycle supported on Wj . Next (similarly to the proof (1) =⇒ (2)), we consider the
support variety Rj for some cycle in Pj × P that represents b, and take Vj to be
the image of Rj in P . Obviously, Vj is of dimension at most j + r if j < c. It
remains to note that the composition b ◦ a = hj is clearly supported on Wj × Vj as
an algebraic cycle. �
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Remark 4.3.5.

(1) In the case K = K0 and R = Q our conditions (3) and (2) are precisely
conditions (i) and (ii) of [Lat96, Theorem 1.7].

(2) Now let us discuss possible variations of the argument that we used to
deduce condition (1) from condition (2).

One can certainly re-formulate it inductively to obtain the following:
condition (1) is fulfilled if and only if M is a retract both of a motive of the
form

⊕
0≤j≤c−1 MR(P

′
j)〈j〉, where P ′

j ∈ SmPrVar for all j and dimP ′
j ≤ r

for j < c−1, and also of MR(Yc−1)
⊕

MR(Qc−1)〈c〉 for some Yc−1, Qc−1 ∈
SmPrVar such that dimYc−1 ≤ c+ r − 1 (see Lemma 4.3.3).

Now we pass to a “triangulated” version of the equivalence of these
conditions. The proof of this result is also somewhat similar to the afore-
mentioned part of the proof of Proposition 4.3.4.

Proposition 4.3.6. Let M ∈ ObjDM eff
gm(k,R), r ≥ 0, and c > 0.

Then the following conditions are equivalent.

(1) M is an object of the subcategory Dr,c of DM eff
gm(k,R) densely generated by

ObjChoweff(k,R)〈c〉 ∪ (∪0≤j<cObj(d≤r Chow
eff(k,R))〈j〉).

(2) M is an object both of Dr,c−1 and of the category

Er,c = 〈ObjChoweff(k,R)〈c〉 ∪Obj(d≤r+c−1Chow
eff(k,R))〉.

(3) M is an object of Er,j for all 0 < j ≤ c.

Proof. Obviously, condition (1) implies condition (2), and the latter implies condi-
tion (3). Moreover, obvious induction (cf. Remark 4.3.5(2)) implies that it suffices
to verify that condition (2) implies condition (1) for all c > 0 (whereas we can
assume r to be fixed).

So we assume that condition (2) is fulfilled. Similarly to Corollary 2.2.4(1,3),
Proposition 1.2.4(8) implies that the Chow weight structure on DM eff

gm(k,R) re-
stricts to Dr,j and Er,j for any j ≥ 0, and the corresponding hearts HDr,j and

HEr,j are the Karoubi-closures in Choweff(k,R) of the sets

ObjChoweff(k,R)〈j〉
⊕

(
⊕

0≤l<j

Obj(d≤r Chow
eff(k,R))〈l〉)

and of ObjChoweff(k,R)〈j〉
⊕

Obj(d≤r+j−1Chow
eff(k,R)), respectively.

Now, Proposition 2.2.6(3) easily implies that any morphism from HEr,c into
HDr,c−1 factors through HDr,c (cf. the proof that condition (2) implies (1) in
Proposition 4.3.4). Thus applying Proposition 1.9 of [Bon18a] (cf. also Remark
2.3(2) of ibid.) we obtain the result in question. �

Remark 4.3.7.

(1) The authors do not know of any “nice” if and only if criteria for M ∈
ObjDM eff

gm(k,R) to be an object of the subcategory Er,j ⊂ DM eff
gm(k,R)

(see the previous proposition). However, M is clearly an object of Er,j

whenever it is an extension of an object of M1 of d≤r+j−1DM eff
gm(k,R) by

an object M2 of DM eff
gm(k,R)〈j〉. Moreover, we can check whether M2 is

an object of DM eff
gm(k,R)〈j〉 by looking at its Chow-weight homology; see

Theorem 3.2.1(1).
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230 MIKHAIL V. BONDARKO AND VLADIMIR A. SOSNILO

(2) Furthermore, Proposition 4.1.2(4) says that the motive M = Mc
R(X) for

X ∈ Var is an extension of M2 = Mc
R(X \Z) by M1 = Mc

R(Z) whenever Z
is a closed subvariety of X. Now, M1 is an object of d≤r+j−1DM eff

gm(k,R)
if Z is of dimension at most r+j−1 by Lemma 4.1.4(3); thus to prove that
M is an object of the subcategory Er,j it suffices to suppose in addition

that CWHi
r(M2,K) = {0} for all i ∈ Z, 0 ≤ r < j, and all function fields

K/k.
Note also that one can check if a motive M1 belongs to

d≤r+j−1DM eff
gm(k,R)

by looking at its Chow-weight cohomology; see Proposition 5.2.1 below.
(3) Clearly, all the “motivic” conditions of this subsection (see condition (2)

in Proposition 4.3.1, condition (1) in Proposition 4.3.4, and Proposition
4.3.6(1)) easily imply certain properties for (co)homology of M ; cf. Propo-
sition 3.5.1 and Theorem 3.5.4.

4.4. On (tensor) products. First we deduce a simple corollary from Corollary
3.3.7(II).

Corollary 4.4.1. Assume that U = U1 × U2, where U1, U2 ∈ Var, and for some
r1, r2 ≥ 0 and a universal domain K0 ⊃ k we have hj(UiK0

,Q) = {0} for 0 ≤ j < ri
and i = 1, 2.

Then hj(UK0
,Q) = {0} for 0 ≤ j < r1 + r2.

Proof. According to Proposition 4.1.6 (see Remark 4.1.7(1)), our vanishing as-

sumptions imply that Mc
Q(Ui) ∈ DM eff

gm(k,Q)
〈ri〉
≥0 for i = 1, 2. Hence Corol-

lary 3.3.7(II) along with Proposition 4.1.2(5) imply that Mc
Q(U1 × U2) belongs

to DM eff
gm(k,Q)

〈r1+r2〉
≥0 . It remains to apply the converse implication in Remark

4.1.7(1). �

Remark 4.4.2.

(1) Corollaries 4.4.1 and 4.4.5 are quite non-trivial since there certainly can-
not exist any Künneth-type formulae for Chow groups (or Chow-weight
homology) of general varieties and motives.

(2) One can easily prove the following R-linear version of Corollary 4.4.1 (for
any Z[1/e]-algebra R): if hj(UiK , R) = {0} for all 0 ≤ j < ri, all function
fields K/k, and i = 1, 2, then hj(UK , R) = {0} for 0 ≤ j < r1 + r2
and all K of this sort. These vanishing assumptions are equivalent to

Mc
R(Ui) ∈ DM eff

gm(k,R)
〈ri〉
≥0 ; see Remark 4.1.7(4).

Now we will try to deduce some curious statements on motives and varieties from
simple properties of Hodge structures. Unfortunately, this requires assumptions A
and B of Proposition 3.5.5 (and confines us to Q-linear motives).

Proposition 4.4.3. Assume that p = 0, assumptions A and B of Proposition
3.5.5 are fulfilled, M1,M2 ∈ ObjDM eff

gm(k,Q), and r1, r2 > 0. Then the following
statements are fulfilled.

(1) If M1 /∈ ObjDM eff
gm(k,Q)〈r1〉 and M2 /∈ ObjDM eff

gm(k,Q)〈r2〉 then M1 ⊗
M2 /∈ ObjDM eff

gm(k,Q)〈r1 + r2 − 1〉.
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ON CHOW-WEIGHT HOMOLOGY OF GEOMETRIC MOTIVES 231

(2) If M1 /∈ ObjDM eff
gm(k,Q)t

Q

hom≤r1 and M2 /∈ ObjDM eff
gm(k,Q)t

Q

hom≤r2 then

M1 ⊗M2 /∈ DM eff
gm(k,Q)t

Q

hom≤r1+r2+1.

(3) If M1 belongs to DM eff
gm(k,Q)wChow≥0 \ DM eff

gm(k,Q)
〈r1〉
≥0 and M2 ∈

DM eff
gm(k,Q)wChow≥0\DM eff

gm(k,Q)
〈r2〉
≥0 then M1⊗M2 /∈DM eff

gm(k,Q)
〈r1+r2−1〉
≥0 .

Proof. Firstly we note that both M1 and M2 are defined over some countable
subfield k′ of k (see Proposition 5.2.3(1)). Next, all the conditions on motives in
this proposition can be “detected” by (the vanishing of the corresponding) Chow-
weight homology of CK0

, where C either M1, M2, or M1⊗M2, and K0 is a universal
domain that contains k; see Corollaries 3.3.7(I) and 3.4.2 along with Proposition
3.4.1(3). Thus we can assume k = k′; hence there exists an embedding of k into C.

Recall now that the “total Hodge” version of singular cohomology as provided
by Theorem 2.3.3 of [Hub00] is a tensor exact functor. Consequently, for any
m ∈ Z we have a (Künneth) filtration on Hm

sing(M1 ⊗ M2) whose factors are

H l
sing(M1)⊗Hm−l

sing (M2) for l running through integers, where Hsing is the “mixed

Hodge” version of singular cohomology (see Definition 3.5.3(4)). Next, if F c1V 1
C �=

V 1
C and F c2V 2

C �= V 2
C for (effective) mixed Hodge structures V 1 and V 2 and c1, c2 > 0

then F c1+c2−1(V 1 ⊗ V 2)C �= (V 1 ⊗ V 2)C; see Examples 3.2(2) of [PeS08].
Now we apply Proposition 3.5.5. The assumptions of assertion (1) imply (see

Theorem 3.2.1(1)) that there exist q1, q2 ∈ Z such that F r1Hq1
sing(M1) �= Hq1

sing(M1)

and F r2Hq2
sing(M2) �= Hq1

sing(M2). Hence F r1+r2−1Hq1+q2
sing (M1⊗M2) �= Hq1+q2

sing (M1⊗
M2). Thus M1 ⊗M2 /∈ ObjDM eff

gm(k,Q)〈r1 + r2 − 1〉 indeed by Theorem 3.5.4(3);
this gives assertion (1).

The proofs of assertions (2) and (3) are similar.

Recall that for any r ∈ Z if N ∈ ObjDM eff
gm(k,Q)t

Q

hom≤r then N fulfils all
the conditions of Theorem 3.3.3(2) for I being the staircase set I[−r] = {(i, j) :
i− r > j ≥ 0}; see Corollary 3.4.2. Thus Proposition 3.5.5 implies that there exist
q1, q2, w1, w2 > 0 such that

Fwi(Hqi−ri
sing (Mi)/WDqi+wi−1H

qi−ri
sing (Mi)) �= Hqi−ri

sing (Mi)/WDqi+wi−1H
qi−ri
sing (Mi)

for i = 1, 2. Hence the mixed Hodge structure V = (Hq1−r1
sing /WDq1+w1−1)(M1) ⊗

(Hq2−r2
sing /WDq2+w2−2)(M1) is not w1 + w2 − 1-effective. Now, the definition of the

tensor product of mixed Hodge structures (see loc. cit.) easily implies that V is

a quotient of V ′ = Hq1−r1
sing (M1) ⊗ Hq2−r2

sing (M2)/WDq1+w1+q2+w2−1(H
q1−r1
sing (M1) ⊗

Hq2−r2
sing (M2)) . Looking at the Künneth filtration of Hq1−r1+q2−r2

sing (M1 ⊗M2) and

applying Theorem 3.5.4(3) once again we conclude the proof of assertion (2).
Lastly, the assumptions of assertion (3) imply (cf. Theorem 3.5.4(3)) that there

exist q1, q2 ∈ Z such that both Hqi(Mi)/WDqi−1H
m(Mi) are not ri-effective. It

follows that Hq1+q2(M1⊗M2)/WDq1+q2−1H
m(M1⊗M2) is not r1+r2−1-effective.

Thus M1 ⊗M2 /∈ DM eff
gm(k,Q)

〈r1+r2−1〉
≥0 according to Theorem 3.5.4(3). �

Remark 4.4.4.

(1) Clearly, no analogue of this proposition holds for motives with integral
coefficients, since Z/lZ⊗Z/mZ = 0 in DM eff

gm(k,Z) for any mutually prime
integers m and l.

(2) Surprisingly, it appears that Proposition 4.4.3 does not extend to the case

p > 0. Indeed, to demonstrate this it suffices to find objects of Choweff(k,Q)
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that are not 1-effective whereas their product is. Now, R. van Dobben de
Bruyn’s answer [RvD20] hints that tensor powers of (retracts of) motives
of abelian varieties over finite fields can give an example of this sort.

(3) One can easily prove some more statements similar to the parts of our
proposition. In particular, one can prove the following strengthening of

Proposition 4.4.3(3): if Mi /∈ DM eff
gm(k,Q)

〈ri〉
≥0 for i = 1, 2 then M1 ⊗M2 /∈

DM eff
gm(k,Q)

〈r1+r2−1〉
≥0 . We leave this claim as an exercise to the reader since

we will not apply it below.

Now we can establish a certain “converse” to Corollary 4.4.1.

Corollary 4.4.5. Assume that U = U1×U2, where U1, U2 ∈ Var, r1, r2 ≥ 0, K0 ⊃
k is a universal domain, and assumptions A and B of Proposition 3.5.5 are fulfilled.
Suppose hj(UiK0

,Q) = {0} for 0 ≤ j < ri and i = 1, 2, and hri(UiK0
,Q) �= {0}.

Then hr1+r2(UK0
,Q) �= {0} as well.

Proof. By Corollary 4.4.1, hi(UK0
,Q) = {0} for i < r1 + r2.

Next take Mi = Mc
Q(Ui) for i = 1, 2. Then we have:

Mi ∈ DM eff
gm(k,Q)

〈ri〉
≥0 \DM eff

gm(k,Q)
〈ri+1〉
≥0

by Proposition 4.1.6. Thus M1 ⊗M2 /∈ DM eff
gm(k,Q)

〈r1+r2+1〉
≥0 according to Propo-

sition 4.4.3(3). Lastly, applying Proposition 4.1.6 once again (see also Remark
4.1.7(1)) we conclude that hr1+r2(UK0

,Q) �= {0} indeed. �

5. Supplements: small Chow-weight homology, Chow-weight

cohomology, and remarks

In this section we deduce some more implications from the previous results.
In §5.1 we consider motives inDM eff

gm(k,Q) whose Chow-weight homology groups
in a “staircase range” I are finite dimensional (over Q); thus we extend Theorems
3.3.3(2) in the case R = Q. We also prove a motivic criterion for the lower Q-linear
Chow groups of a variety X (over a universal domain) to be finite dimensional; it
follows that the corresponding weight factors of the singular or étale cohomology
of X with compact support are Artin-Tate ones (cf. Theorem 4.2.1).

In §5.2 we dualize Theorem 3.2.1; this allows to bound the dimensions of motives
and also their weights (from above) via calculating their Chow-weight cohomology.
We also note that to verify the vanishing of Chow-weight homology of M (in higher
degrees) over arbitrary extensions of k it suffices to compute these groups over
(rational) extensions of k of bounded transcendence degrees.

In §5.3 we make some more remarks on our main results. In particular, we pro-
pose (briefly) a “sheaf-theoretic” approach to our results, and discuss their possible
extensions to motives over a base.

5.1. On motives with “small” Chow-weight homology.

Definition 5.1.1. We write either AT eff or AT eff
k for the class {MQ(k

′)〈j〉}, where
j ≥ 0 and k′ runs through finite extensions of k, and EAT eff = ∪i∈ZAT eff [i].

Theorem 5.1.2. Assume that K0 is a universal domain containing k, I is a stair-
case set (see Definition 3.3.1), and M ∈ DM eff

gm(k,Q)wChow≥i0 for some i0 ∈ Z.
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ON CHOW-WEIGHT HOMOLOGY OF GEOMETRIC MOTIVES 233

Then the groups CWHi
j(MK0

,Q) are finite-dimensional Q-vector spaces for all
(i, j) ∈ I if and only if M belongs to the envelope (see §1.1) of the set

∪i≤−i0(ObjChoweff(k,Q)〈aI,i〉 ∪ AT eff)[−i].

Proof. Clearly, for any object N of ObjChoweff(k,Q)[−i]〈aI,i〉 we have:

CWHi′

j′(NK0
,Q) = {0} for all (i′, j′) ∈ I.

Moreover, the only non-zero Chow-weight homology group of the motive T =
MQ(Spec k

′)〈j〉[−i] (over K0; here k
′ is a finite extension of k) is CWHi

j(TK0
,Q) =

Q[k′:k]. Since Chow-weight homology functors are homological, we obtain that any
element of the envelope in question does have finite-dimensional CWHi

j-homology
over K0 for (i, j) ∈ I.

Now we verify the converse implication. Clearly, the number of non-zero Chow-
weight homology groups of M is finite.

Assume that k = K0; then any element of CWHi
j(MK0

) gives a morphism

Q〈j〉[−i] → t(M). Thus in this case there exists a Kb(Choweff(k,Q))-morphism⊕
l>0 Q〈jl〉[−il] → t(M) for some il ≤ −i0 and jl ≥ 0, such that for its cone C

we have CWHi
j(C) = {0} for all (i, j) ∈ I ∪ [1− i0,+∞)× [0,+∞). Applying the

Kb(Choweff(k,Q))-version of Theorem 3.3.3(2) (see Remark 3.3.5) we obtain that

C belongs to the Kb(Choweff(k,Q))-extension-closure of

∪i≤−i0(ObjChoweff(k,Q)[−i]〈aI,i〉).
Hence there exists a choice of t(M) = (Ms) such that Ms = 0 if s > i0 and Ms =
Es〈aI,−s〉

⊕
(
⊕

l Q〈jsl 〉) for some Chow motives Es and jsl ≥ 0; see Proposition
1.4.2(4). It remains to apply Proposition 1.4.2(5) to conclude the proof in this
case.

Now we prove our assertion in the general case step-by-step. Firstly, the “if”
implication that we have just proved implies that it suffices to verify the “only if”
implication in the case where K0 is of infinite transcendence degree over k. Hence
Lemma 5.1.3 below (this is a rather easy Suslin rigidity-type statement) implies that
the aforementioned morphism

⊕
l>0 Q〈jl〉[−il] → t(M) is defined over the algebraic

closure of k. Arguing as above we obtain that Mkalg belongs to the envelope (and

actually, also the extension-closure) of the set ∪i≤−i0(ObjChoweff(kalg,Q)〈aI,i〉 ∪
AT eff

kalg)[−i].
Next, the “continuity” of motivic categories discussed in Remark 1.3.3(4) of

[Bon20a] easily yields the existence of a finite extension K/k such that MK belongs

to the envelope of ∪i≤−i0(ObjChoweff(K,Q)〈aI,i〉∪AT eff
K )[−i] (actually, Artin-Tate

motives can be replaced by Tate motives here).
It remains to apply a rather standard descent argument. Denote the correspond-

ing morphism SpecK → Spec k by f . Then Remark 1.2 and Corollary 3.2(2) of
[CiD15] (cf. also Appendix A of [BoK20] or sections A.5 and C in the introduc-
tion to [CiD19]) give the existence of (the “effective geometric” version of) the
functor f∗ that is right adjoint to the functor −K in Definition 2.1.2(3). More-
over, the composition f∗ ◦ −K is isomorphic to the functor MQ(SpecK) ⊗ −,
and for a variety X over K we have f∗MQK(X) ∼= MQ(X) (we consider X
as a Spec k-scheme in the right hand side). Thus applying the functor f∗ to

the fact that MK belongs to the envelope of ∪i≤−i0(ObjChoweff(K,Q)〈aI,i〉 ∪
AT eff

K )[−i] we obtain that f∗(MK) ∼= M ⊗ MQ(SpecK) belongs to the envelope
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234 MIKHAIL V. BONDARKO AND VLADIMIR A. SOSNILO

of ∪i≤−i0(ObjChoweff(k,Q)〈aI,i〉 ∪ AT eff)[−i]. It remains to note that Q is a re-
tract of MQ(SpecK) (this is an easy property of Artin motives); hence M is a
retract of M ⊗MQ(SpecK) and we obtain the result. �

To conclude the proof we need the following statement.

Lemma 5.1.3. Let k be an algebraically closed field.

(1) Denote the category of smooth connected affine schemes by SmAffVar, and
suppose that F is a functor SmAffVar op → Q−Mod that satisfies the follow-
ing condition (*): F (f) is injective whenever f is an SmAffVar-morphism
that is either an open embedding or finite and flat.

Assume in addition that there exists an algebraically closed field exten-
sion K0/k of infinite transcendence degree over k such that F̃ (SpecK0) is

finite dimensional over Q; here F̃ is the natural extension of F to pro-
smooth affine connected k-schemes (that is, we set F̃ (lim←−Xi) = lim−→F (Xi),
where Xi is any projective system of smooth connected affine varieties; cf.
§1.4 of [Deg11]).

Then F is a constant functor; thus for the morphism p0 : SpecK0 → pt
the homomorphism F̃ (p0) is bijective.

(2) Condition (*) of assertion (1) is fulfilled whenever F equals the Nisnevich
sheafification of the presheaf G : X �→ H0((h2j+l,j(M

i ⊗ MQ(X),Q)))
(the zeroth homology of this complex) for any fixed j, l ∈ Z and any com-

plex M i as in Proposition 2.3.4. Moreover, F̃ (SpecK) is isomorphic to
H0((h2j+l,j(M

i
K ,Q))) whenever K is an extension of k.

Proof. (1) Assume that F̃ (SpecK0) ∼= Qd (for some d ≥ 0). Arguing as in the

proof of Proposition 2.3.4(I) we easily obtain that F̃ (Spec(i)) is injective whenever
i is a k-linear embedding of algebraically closed extensions of k, and there exists
an (algebraically closed ) extension K1/k of finite transcendence degree such that

F̃ (SpecK1) ∼= Qd. Moreover, applying (*) we obtain that Q-dimension of F̃ (Y )
is at most d if Y is either a smooth affine variety or (the spectrum) of its generic
point; moreover, there exists Y0 ∈ SmAffVar such that F (Y0) ∼= Qd. Being more
precise, the homomorphisms F (Y ) → F (Spec k(Y )) → F (SpecK0) are injective for
any Y ∈ SmAffVar and any k-linear field embedding k(Y ) → K0.

Since any C ∈ SmAffVar has a k-rational point, the homomorphism F (c× idY0
)

is bijective for the structure morphism c of any C ∈ SmAffVar. It obviously follows
that for any two SmAffVar-morphisms f1, f2 : C1 → C2 we have F (f1 × idY0

) =
F (f2 × idY0

). Since Y0 has a k-point, it follows that F (f1) = F (f2). In particular,
for (C, c) as above and a morphism i : Spec k → C (coming from any point of C)
both F (i ◦ c) and F (c ◦ i) are identical.

Therefore F is constant indeed. It obviously follows that F̃ (p0) is bijective.
(2) This is a rather simple motivic exercise. Let us consider the functors F and

G, as well as the functors Gi below, as presheaves on the Nisnevich site SmVarNis

of all smooth k-varieties; note that this extension of the domain is compatible with
the Nisnevich sheafification.

Since for any i ∈ Z the functor Gi : X �→ h2j+l,j(M
i ⊗MQ(X),Q) is additive

and factors through MQ, it yields a homotopy invariant presheaf with transfers; see
Definitions 2.4 and 2.15, and Theorem 14.11 of [MVW06]. Since the category of
homotopy invariant presheaves with transfers is abelian, and the forgetful functor
from it into presheaves on SmVarNis is well-known to be exact, G yields a homotopy
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ON CHOW-WEIGHT HOMOLOGY OF GEOMETRIC MOTIVES 235

invariant presheaf with transfers as well. By Theorems 13.1 and 13.8 of ibid., it
follows that F comes from a homotopy invariant (Nisnevich) sheaf with transfers.

Now let us recall that any homotopy invariant sheaf H with transfers satisfies
condition (*). Firstly, if f is flat then Lemma 2.3.5 of [SuV00] immediately implies
that H(f) is injective.10 Moreover, Lemma 22.8 of [MVW06] implies that F (f) is
injective whenever f is a (dense) open embedding of smooth k-varieties.

Lastly, the zeroth homology of the complex (h2j+l,j(M
i
K ,Q)) is clearly isomor-

phic to G̃(SpecK). It remains to recall that spectra of fields give points in the

Nisnevich topology; thus G̃(SpecK) ∼= F̃ (SpecK). �

Remark 5.1.4.

(1) Our arguments in the proof of Theorem 5.1.2 also yield that a motive
M ∈ DM eff

gm(k,Q)wChow≥i0 satisfies its assumptions if and only if M
is a retract of M ′ that belongs to the extension-closure of the set
∪i≤−i0(ObjChoweff(k,Q)〈aI,i〉 ∪ AT eff)[−i].

(2) Since geometric motives are wChow-bounded below, we obtain that for any
object M of DM eff

gm(k,Q) the groups CWHi
j(MK0

,Q) are finite-dimensional
Q-vector spaces for all (i, j) ∈ I if and only if M belongs to the envelope

of the set (∪i∈Z(ObjChoweff(k,Q)〈aI,i〉)[−i]) ∪ EAT eff .
On the other hand, one can easily generalize our theorem and establish

for any staircase sets I and I ′ a similar envelope criterion for the groups
CWHi

j(MK0
,Q) to vanish if (i, j) ∈ I ′ and to be Q-finite dimensional if

(i, j) ∈ I. The formulation of Theorem 5.1.2 corresponds to the case I ′ =
[1− i0,+∞)× [0,+∞).

(3) One can define another notion of “smallness” of Chow-weight homology
using certain “Chow-weight” cycle classes into singular and étale homol-
ogy (and asking whether they are injective); this matter is discussed in
Remark 5.1.3 and Proposition 5.1.4 of [BoS14]. Loc. cit. gives a certain
generalization of [Voi14, Theorem 3.18].

(4) The proof of Lemma 5.1.3(1) was inspired by [Sus83]; this is a certain
“rigidity” statement.

Let us now relate Theorem 5.1.2 to étale and singular cohomology; cf. Theorem
3.5.4.

Definition 5.1.5.

(1) We say that a (pure) object of weight m of the category MHSeff is an
Artin-Tate one if it is a direct sum of copies of the pure Hodge structures
Q((−m)/2).11

(2) Let k be an essentially finitely generated field; G is the absolute Galois
group of k. Then we will say that a pure object V of weight m (see Defi-
nition 3.5.3(2)) in the category Q�[G] −Mod is an Artin-Tate one if there
exists a finite extension K/k such that V becomes a direct sum of copies
of the representation Ql((−m)/2) as a Q�[Gal(K)]-module.

10Actually, this statement holds for any presheaf with transfers. The authors are deeply
grateful to Prof. D.-Ch. Cisinski for this argument.

11It would be certainly more natural to call these Hodge structures Tate ones. Our reason to
call them Artin-Tate ones is just to make the formulation of Corollary 5.1.6 shorter.
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236 MIKHAIL V. BONDARKO AND VLADIMIR A. SOSNILO

Corollary 5.1.6. Assume that either k is a subfield of C and H = Hsing or that k
is an essentially finitely generated field and H = Het,Q�

(for � �= p; see Definition
3.5.3(4)).

(1) Suppose that I is a staircase set and an object M of DM eff
gm(k,Q) satisfies

the equivalent conditions of Theorem 5.1.2.
Then for all m, l ∈ Z the object GrWD

m+lH
m(M) vanishes (resp. an Artin-

Tate one, see Definition 5.1.5) if m+ l is less than 2aii,l and is odd (resp.
even), and it is aii,l-effective if m+ l ≥ 2aii,l.

(2) Assume that X ∈ Var, K0 is a universal domain containing k, and r > 0.
Then the vector spaces CHj(XK0

,Q) are finite dimensional if j < r if
and only if the motive Mc

Q(X) belongs to the envelope of

(∪i>0 ObjChoweff(k,Q)[i]) ∪ObjChoweff(k,Q)〈r〉 ∪AT eff

(see Definition 5.1.1).
Furthermore, if these conditions hold then for any 0 ≤ m ≤ r the object

GrWD

m+lH
2m−1
c (X) vanishes and GrWD

2m H2m
c (X) (this is the corresponding

Deligne weight factor of the cohomology of X with compact support; see
Definition 3.5.3(3) and Theorem 4.2.1(2)) is an Artin-Tate one.

Proof. (1) This is an easy combination of Proposition 3.5.1(1) with Theorem 3.5.4(2)
(that relates Deligne’s weight filtration to the Chow-weight one); one should only
note that (m+ l)/2-effective (pure) Hodge structures and pure representations of
weight q are zero if q < m+ l (cf. Theorem 4.2.1(2)).

(2) Recall that the motive M = Mc
Q(X) belongs to DM eff

gm(k,Q)wChow≥0 and

CHj(XK0
,Q) ∼= CWH0

j (MK0
,Q) for all j ≥ 0; see Lemma 4.1.4 (1, 2). Thus our

finite dimensionality assumption is fulfilled if and only if CWHi
j(MK0

,Q) is finite

dimensional over Q for (i, j) ∈ I〈r〉
0 (see Definition 3.3.6). Applying Theorem 5.1.2

in the case i0 = 0 we obtain the equivalence part of this assertion.
Combining it with assertion (1) of this proposition we obtain the cohomological

part of the assertion as well. �

5.2. Chow-weight cohomology and the dimension of motives. Now we du-
alize (parts (1) and (3) of) Theorem 3.2.1 along with some other properties of
Chow-weight homology.

To this end we note that Proposition 2.2.1(1) yields the following: the Poincaré
duality for DMgm(k,R) “respects” wChow, i.e., the image under the duality functor
of DMgm(k,R)wChow≤0 is DMgm(k,R)wChow≥0 (and also vice versa). Moreover, the
categorical duality (cf. Proposition 1.2.4) essentially respects weight complexes (at
least, for motives; see Remark 1.5.9(1) of [Bon10a] and Corollary 3.5 of [Sos19]
along with its proof which is essentially self-dual). Thus one easily obtains the
following results.

Proposition 5.2.1. For an object M of DMgm(k,R), j, l, i ∈ Z, (M∗) that is
a choice of a weight complex for M , and a field extension K/k let us define
CWCj,i(MK , R) as the ith homology of the complex DMgm(Kperf , R)(M−∗, R〈j〉).

I. The following properties of these cohomology theories are valid.
(1) CWCj,i(−K , R) yields a cohomological functor on DMgm(k,R).

(2) CWCj,i(−K) vanishes on d≤nDM eff
gm(k,R) ⊂ DMgm(k,R) if j−i > n.
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ON CHOW-WEIGHT HOMOLOGY OF GEOMETRIC MOTIVES 237

II. Assume that M is an object of d≤nDM eff
gm(k,R) for some n ≥ 0.

Then M belongs to d≤n−sDM eff
gm(k,R) (for some s ∈ [1, n]) if and only

if CWCj,i(MK , R) = {0} for all i ∈ Z, j ∈ [n − s + 1, n], and all function
fields K/k.

III. For M as above and q ∈ Z M belongs to DM eff
gm(k,R)wChow≤q if and only

if CWCj,i(MK) = {0} for all i > q, j ∈ [1, n], and all function fields K/k.
IV. Now let R = Q. Then it suffices to verify any of the assertions in parts II

and III of the proposition for a single universal domain K containing k.

Proof. Recall that the Poincaré dual of d≤nDM eff
gm(k,R) is d≤nDM eff

gm(k,R)〈−n〉,
and that the dual to Obj d≤n−sDM eff

gm(k,R) can (also) be described as

Obj d≤nDM eff
gm(k,R)〈s− n〉 ∩Obj d≤nDM eff

gm(k,R)〈−n〉
(see Proposition 2.2.6(4)). Along with the observations made prior to this propo-
sition, this easily reduces our assertions I–III to their duals given by Proposition
3.1.2(1,2) and Theorem 3.2.1(1,3), respectively.

Lastly, assertion IV easily follows from Proposition 2.3.4(II); cf. Proposition
3.4.1(3). �
Remark 5.2.2.

(1) Certainly, one can dualize Theorems 3.3.3 and 3.5.4, Propositions 3.5.1 and
3.5.5, and the results of §3.4 in a similar way as well.

Moreover, one may consider higher Chow-weight cohomology groups of
motives; see Proposition 5.2.1 of [BoS14] (and Proposition 3.4.1).

(2) Since Chow-weight cohomology yields a mighty tool for computing the di-
mension of an (effective) motive, it makes all the more sense to make the
main “arithmetical” observation of this subsection (that appears to be more
interesting either if R �= Q or if we study motives over essentially finitely
generated fields).

(3) One can define dimensions of not necessarily effective motives as follows:
for m ∈ Z and M ∈ ObjDMgm(k,R) we say that M is of dimension at
most m if M belongs to 〈MR(P )〈c〉, P ∈ SmPrVar, c ∈ Z, dimP ≤ m−c〉.
This definition is easily seen to be coherent with the formulations of this
section.

Now let M be an object of d≤nDM eff
gm(k,R) (for some n ≥ 0). We recall

that in the proof of Theorem 3.2.1(2) we have studied the question whether g :
wc−1

Chow≤tl
c−1(M)→lc−1(M) is zero. By our assumption on M , we can choose

wc−1
Chow≤tl

c−1(M) to be of dimension at most d (in DM c−1
gm (k,R)). Hence the cor-

responding application of Proposition 3.1.2(5) reduces the verification of g = 0 to
the vanishing of the corresponding CWHi

j(Mk(P )), whereas the dimension of Pj not
greater than n− j.

Thus we obtain the following statement; we will call the transcendence degrees
of function fields over k their dimensions in it.

Proposition 5.2.3. Let M be an object of d≤nDM eff
gm(k,R) (for some n ∈ Z).

Then the following statements are valid.

(1) To verify any of the conditions in Theorem 3.2.1 (resp. condition (4) in
the setting of Proposition 3.4.1(2), resp. condition (2) of Corollary 3.4.2) it
suffices to compute the corresponding CWHi

j(MK) (resp. motivic homology
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238 MIKHAIL V. BONDARKO AND VLADIMIR A. SOSNILO

groups over Kperf) for K running through function fields of dimension at
most d− j (resp. for K/k of dimension at most d) only.

(2) In Proposition 3.4.1(2) it suffices to verify condition (3) for rational exten-
sions K/k of transcendence degree at most d− j + 1.

(3) For R = Q, in the assertions mentioned in part (1) of this proposition it
suffices to take K to be the algebraic closure of k(t1, . . . , td−j) (resp. of
k(t1, . . . , td)) instead.

Remark 5.2.4.

(1) Thus, if M does not satisfy the (motivic) equivalence conditions of the
statements mentioned in the previous proposition, there necessarily exists
a function field K/k of “small dimension” such that (at least) one of the
corresponding Chow-weight homology (resp. motivic homology) groups
does not vanish over K.

Note also that it is actually suffices to consider dimensions of fields over
a field of definition for M (that certainly may be smaller than k).

(2) The question whether these dimension restrictions are the best possible ones
seems to be quite difficult in general (especially if we consider geometric
motives only). Note however that in the case d = 1, R = Q, and a finite k
it is clearly not sufficient to compute Chow-weight homology over algebraic
extensions of k only.

5.3. Some more remarks; possible development. We make some more re-
marks on our main results; some of them concern torsion phenomena. Possibly the
matters mentioned below will be studied in consequent papers.

Remark 5.3.1.

(1) It would certainly be interesting to relate the results of this paper to earlier
statements on effectivity of cohomology (of singular varieties); cf. Theorem
1.2 of [BEL05].

(2) The results of the current paper can be easily combined with the main
statements in [Bac18] and [Bon20a] to obtain certain Chow-weight homol-
ogy criteria for the effectivity and connectivity of motivic spectra (that is,
objects of the R-linear version SHR(k) of the stable homotopy category
SH(k), where R is a localization of Z[1/e]); see §5.3 of [BoS14].

(3) The main formulations of this paper are easier to apply when R = Q (or
R is a Q-algebra). Now we describe some ideas related to motives and
homology with integral and torsion coefficients.

Firstly we note that a bound on the dimension of a motive clearly yields
some information on its (co)homology. In particular, the Z�-étale homology

H of an objectM of Choweff(k,R) of dimension at most d is concentrated in
degrees [−2d, 0] (here we take a prime � �= p, a coefficient ring not containing
1/�, and consider the étale homology over an algebraically closed field of
definition; we apply our convention for enumerating homology). Moreover,
considering the relation between Z�-homology and Z/�Z-one one obtains
that H−2d(M) is torsion-free.

One can use these simple remarks for studying the E2-terms of Chow-
weight spectral sequences for H; cf. Theorem 3.5.4. In particular, the latter
of them can be applied for “comparing M with M⊗Q”; cf. [Voi14, Remark
3.11]. Note however that the groups E∗∗

2 T (H,M) cannot be recovered from
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ON CHOW-WEIGHT HOMOLOGY OF GEOMETRIC MOTIVES 239

the weight filtration on H∗(M) in general; see [GiS96, §3.1.3] (cf. the proof
of Proposition 4.1.8(2)).

(4) In the current paper we treat Chow-weight homology (of a fixed object M
of DM eff

gm(k,R)) as functors that associate to field extensions of k certain
R-modules. Yet one can apply a “more structured” approach instead; it
seems to be especially actual for R �= Q.

For any U ∈ SmVar and tR(M) = (M∗), j, l ∈ Z, one can consider
the homology of the complex DMgm(k,R)(MR(U)〈j〉[l],M∗). Next the
functors obtained can be sheafified with respect to U ; this yields a collection
of certain Chow-weight homology sheaves (for any (j, l)). Moreover, if j ≥ 0
then the sheafifications of U �→ DMgm(k,R)(MR(U)〈j〉[l],M i) (that were
called the Chow sheaves of M i in [KaL10]) are birational (in U , i.e., they
convert open dense embeddings of smooth varieties into isomorphisms; see
Remark 2.3 of [HuK06]). Hence the corresponding Chow-weight homology
sheaves are birational as well.

Moreover, these observations can probably be extended to the setting
of motives (with rational coefficients) over any “reasonable” base scheme
S; one should study the corresponding dimensional homotopy invariant
Chow sheaves for S-motives (recall that those are conjecturally Rost’s cycle
modules over S) and apply the results of [BoD17].

(5) Choweff(k,R)-complexes of length 1 yield a simple counterexample to the
natural analogue of Theorem 3.2.1(3) for motives whose Chow-weight ho-
mology vanishes in degrees less than n (along with the corresponding
analogues of Theorem 3.2.1(2) and Theorem 3.3.3(2)). Assume R = Q,
k ⊂ K = C (actually, any K that is not an algebraic extension of a fi-
nite field is fine for our purposes); take a smooth projective P/k (say, an
elliptic curve) that possesses a 0-cycle c0 of degree 0 that is rationally
non-torsion. We also use the notation c0 for the corresponding morphism
Q = MQ

gm(pt) → MQ
gm(P ); let M be the cone of c0 (i.e., M = . . . 0 →

Q
c0−→ MQ(P ) → 0 → . . . ; MQ(P ) is in degree 0).
Since c0 is rationally non-trivial (as a cycle with Q-coefficients), the map

h00(c0,Q) is an injection (and h2j,j(c0,K ,Q) is injective for any j ≥ 0 and

K/k as well). Hence CWHi
j(MK ,Q) = {0} whenever i �= 0 (and any field

extension K/k). On the other hand, c0 does not split since it is numerically

trivial as a cycle. Thus M does not belong to Kb(Choweff(k,Q))wChow≤0

(or to DM eff
gm(k,Q)wChow≤0 if we “put it into” DM eff

gm(k,Q)). Hence the
vanishing of the Chow-weight homology in negative degrees does not imply
that the weights of a motive M are non-negative.

Moreover, tensor products of examples of this type behave “even worth”
from this point of view; see Remark 5.4.1(6) of [BoS14] for more detail.
Thus Chow-weight homology cannot be used for bounding weights from
above. On the other hand, the argument used in the proof of Proposition
3.5.5 can easily be modified to prove that the weight filtration on singular
homology does yield bounds of this sort (if one assumes conjectures A and
B in the proposition); the corresponding version of Theorem 3.5.4 is valid
as well.
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(6) In the current paper we mostly study geometric Voevodsky motives; these
are certainly the most important ones. Yet in [BoK20] some of our main re-
sults are extended to wChow-bounded below objects of DM eff

− (k,R). These
generalizations allow treating slices of motives (in §2.3 of ibid.); note that
slices of geometric motives do not have to be geometric. As an application, a
generalization of Corollary 3.4.2 (that is new for geometric motives as well)
was obtained. Possibly, some more properties of slices can be obtained us-
ing our methods. The authors are deeply grateful to Prof. M. Levine for
the suggestion to study this problem (and for mentioning Theorem 7.4.2 of
[KaL10] as an interesting example of the calculation of slices).
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