
Chapter 1

Radiation Exchange Between Surfaces

1.1 Motivation and Objectives

Thermal radiation, as you know, constitutes one of the three basic modes (or mechanisms) of heat
transfer, i.e., conduction, convection, and radiation. Actually, on a physical basis, there are only
two mechanisms of heat transfer; diffusion (the transfer of heat via molecular interactions) and
radiation (the transfer of heat via photons/electomagnetic waves). Convection, being the bulk
transport of a fluid, is not precisely a heat transfer mechanism.

The physics of radiation transport are distinctly different than diffusion transport. The latter
is a local phenomena, meaning that the rate of diffusion heat transfer, at a point in space, precisely
depends only on the local nature about the point, i.e., the temperature gradient and thermal
conductivity at the point. Of course, the temperature field will depend on the boundary and initial
conditions imposed on the system. However, the diffusion heat flux at, say, one point in the system
does not directly effect the diffusion flux at some distant point. Radiation, on the other hand, is
not local; the flux of radiation at a point will, in general, be directly and instantaneously dependent
on the radiation flux at all points in a system. Unlike diffusion, radiation can act over a distance.
Accordingly, the mathematical description of radiation transport will employ an integral equation
for the radiation field, as opposed to the differential equation for heat diffusion.

Our objectives in studying radiation in the short amount of time left in the course will be to

1. Develop a basic physical understanding of electromagnetic radiation, with emphasis on the
properties of radiation that are relevant to heat transfer.

2. Describe radiation exchange among surfaces, in which the surfaces can be perfect absorbers
of radiation (black) or diffusely absorbing (gray).

3. Introduce the topic of radiation transfer in a participating medium that absorbs, emits, and
scatters radiation, and describe the formulation and application of the radiative transport
equation.
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1.2 Basic Radiation Properties

For our purposes, it is useful to view radiation as the transport of energy in electromagnetic
waves. Radiation can also be viewed as the transport of energy by discrete photons, and the basic
relationship between the energy of a photon, ǫ, and the frequency ν or wavelength λ = c/ν of the
wave is given by Planck’s relation;

ǫ = h ν =
hc

λ
(1.1)

where h is Planck’s constant and c is the speed of light in a vacuum.
Equation (1.1) indicates that the energy of the radiation is inversely proportional to the radiation

wavelength. Thermal radiation refers to the spectrum of radiation in the visible (λ = 0.4−0.7 µm)
to infrared (IR, λ = 0.7 ∼ 10 − 100 µm) wavelengths. Radiation at these wavelengths can excite
the rotational and vibrational energy levels of molecules and thus transfer energy to molecules in
the form of heat. That is, the absorption of thermal radiation by molecules will act to raise the
temperature of the system. Radiation having shorter wavelengths (UV, x–rays, γ–rays) can excite
the electronic energy levels of molecules and atoms and/or ionize or break molecular bonds. This
spectra of radiation is often referred to as ionizing radiation. On the other hand, longer wavelengths
(microwaves, radio waves) will not, in general, couple with the energy storage levels in molecules;
although an obvious exception are the microwave wavelengths used in the common microwave oven.

In practically all engineering–relevant applications, the source of thermal radiation is thermal

emission. All bodies at any finite temperature will emit radiation. It was theoretically established
by Boltzmann, and experimentally confirmed by Stephan, in the 19th century that the maximum
possible emission rate from a surface is given by

eb = σT 4 (1.2)

where σ = 5.67× 108 W/m2 K4. The above formula is known as the Stephan–Boltzmann law, and
eb, having units of W/m2, is the blackbody emissive power, which depends solely on the absolute
temperature T of the surface. All real surfaces will emit radiation at a rate smaller than eb; an
‘ideal’ surface which attained an emission of eb would be referred to as a blackbody.

It is possible to construct devices which come very close to meeting the ideal emission of a
blackbody. Typically, these devices are formed from an isothermal cavity (i.e., a hollow sphere),
with a small opening from which the radiation escapes. The radiation emitted by a blackbody at
a specified T will be distributed over wavelength λ, the spectrum of which will also depend solely
on T . Although the nature of the blackbody spectrum was experimentally known in the late 19th
century, theoretical prediction of the spectrum defied the ‘classical’ physical understanding of the
day. Planck, at the beginning of the 20th century, used the concept of discrete wavelength energy
levels to develop a theoretical prediction of the blackbody spectrum which was consistent with
experiments. His formula for the spectral blackbody emissive power is

ebλ =
C1

λ5 (exp[C2/(λT )] − 1)
(1.3)
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Figure 1.1: Blackbody spectral power distribution

in which C1 = 2πhc2 = 3.7413 × 108 W (µm)4/m2 and C2 = hc/kB = 14, 388 µm K. The quantity
ebλdλ denotes the energy emitted from the black surface, per unit area, within a wavelength interval
dλ about wavelength λ. The energy over all wavelengths is obtained from

eb =

∫

∞

0
ebλ dλ = σ T 4 (1.4)

i.e., the total emissive power is given by the Stephan–Boltzmann law, as it must.
A plot of ebλ vs. wavelength λ is given in Fig. 1.1. As T increases two things happen: 1) the

spectral emissive power at all wavelengths increase, and 2) the wavelength corresponding to the
maximum power shifts towards the shorter wavelengths. The value of the wavelength at which the
maximum occurs is predicted by the Wien displacement law,

λmax =
2898 µm K

T
(1.5)

Equation (1.4) can be rearranged to identify a fractional distirbution function. Assume that T
is constant, then we can write

1

σT 5

∫

∞

0
ebλ d(λ T ) = 1 (1.6)

Now combine with Eq. (1.3), and observe that λT becomes the sole variable of the distribution.
We can therefore define

f ′(λT ) =
C1/σ

(λT )5 (exp[C2/(λT )] − 1)
(1.7)
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Figure 1.2: Intensity definition

so that

f(λT ) =

∫ λT

0
f ′(x) dx (1.8)

represents the fraction of emitted energy between 0 and λT , relative to the total emitted energy.

Intensity

The previous section identified the blackbody emissive power from a surface, which is a quantity
that has units of W/m2, that is, the same units of a heat flux. The emissive power, however, is
not a heat flux – the latter is precisely a vector quantity which can be resolved into directional
components. The emissive power, on the other hand, describes the energy leaving a surface per
unit area of the surface; it does not describe the directional characteristics of the radiation as it
leaves the surface.

To describe the directional properties of radiation as it propagates through space, we need to
introduce a quantity referred to as the radiation intensity. The intensity, denoted I, is defined by
use of Fig. 1.2. Radiation is emitted from a small surface element ∆A and travels in all directions.
A portion of the radiation lands on the small area element on a hemisphere enclosing ∆A, denoted
as dA. With regard to geometrical considerations, it should be easy to see that the net amount of
energy falling on dA, which is denoted as dP , will be proportional to

1. the projected area of the emitting surface, which would be ∆A cos θ,

2. the area of the ‘target’, dA, and
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3. the inverse square of the distance between the source and the target, 1/R2.

The last proportionality comes from the fact that the area of the hemisphere scales as R2, and the
total power falling on the hemisphere – which would equal the total power emitted by the source
– would be constant in the absence of a participating medium. So the power per unit area on the
hemisphere would go as 1/R2.

The target area dA can be related to the distance R by the polar coordinates;

dA = R2 sin θ dθ dφ (1.9)

Note that
∫

dA = R2

∫ π/2

0
sin θ dθ

∫ 2π

0
dφ = 2πR2 (1.10)

as expected. Now dP is proportional to dA/R2, and

dA

R2
= sin θ dθ dφ ≡ dΩ (1.11)

defines a differential solid angle dΩ. The units of solid angle are the steradian (abbreviated str),
and 4π steradians encompass all directions about the origin of a spherical coordinate system.

With our solid angle definition, we now see that the power falling on the target will be pro-
portional to the projected area of the source and the solid angle subtended by the target with
respect to the source. The power will also be proportional to the magnitude and directionality of
the radiation leaving the source and propagating through space. Since dP will be in watts, and dP
will be proportional to ∆A cos θ dΩ, it follows that radiation propagating through space must have
units of W/m2 str. This quantity is referred to as the intensity, and is defined by

I =
dP

∆A cos θ dΩ
(1.12)

taken in the limit of ∆A−→0 and dΩ−→0.

The intensity is a difficult quantity to grasp. Although it represents the directional distribution
of propagating radiation, the intensity is not a vector in the sense that it cannot be resolved into
vector components. Rather, the intensity is a scalar that is dependent on the directional coordinates
θ and φ as well as the usual spacial coordinates and time. In a sense, I is a scalar which is relevant
to the 5–D ‘space’ defined by x, y, z and θ, φ.

It was implicitly assumed that the intensity, defined in the Eq. (1.12), represents a wavelength–
integrated (or total) quantity. The spectral intensity Iλ is defined by a relation similar to Eq. (1.12),
except now on a per–unit–wavelength basis;

Iλ =
dPλ

∆A cos θ dΩ dλ
(1.13)
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where the limit is again taken, and dPλ is the power, in W, falling on the surface dA within the
wavelength interval dλ about λ. It follows that

I =

∫

∞

0
Iλ dλ (1.14)

Blackbody Intensity

If the surface ∆A is a black surface – meaning that it emits as a perfect blackbody – the intensity
distribution leaving the surface will be independent of direction, i.e., the blackbody intensity Ib

landing on the hemisphere in Fig. 1.2 would not be a function of θ. It is important to note that
the power per unit area landing on the hemisphere, dP/dA, would be a function of θ; this quantity
would be proportional to the projected area of the source, ∆A cos θ. The intensity, however,
represents the power per unit projected area, and so this quantity would remain constant.

The total power leaving the black source would be P = eb ∆A, and in the absence of an
intervening medium the total power leaving the source would be the total power landing on the
hemisphere. If we use Eq. (1.12), and note that the intensity I = Ib is constant, then

P = eb ∆A

=

∫

dP = Ib ∆A

∫

Ω=4π
cos θ dΩ

= Ib ∆A

∫ 2π

0
dφ

∫ π/2

0
cos θ sin θ dθ

= π Ib ∆A (1.15)

or
Ib =

eb

π
(1.16)

Radiative Heat Flux

As mentioned previously, the intensity, which is a scalar, describes the directional distribution of
radiation energy transfer. The radiative heat flux, qR, is a vector which describes the net direction
and magnitude of radiant energy transfer in space.

Say we take a small surface element in space, dA, oriented so that its normal points in the
positive z direction. Radiation, arriving from all directions with an intensity distribution I(θ, φ),
passes through the element. The net rate at which energy is transported across the surface, denoted
as dP , will be

dP = dA

∫ 2π

φ=0

∫ π

θ=0
I(θ, φ) cos θ sin θ dθ dφ

Note that the cos θ term appears because dA cos θ is the projected area of the element with respect
to the θ direction. The quantity dP will be either positive, negative, or zero; if it is positive, it
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means that the net transfer of energy across dA is in the positive z direction, negative means the net
energy transfer is in the negative z direction, and zero means that there is no net transfer. The last
condition does not necessarily imply that I = 0; rather, it implies that the positive and negative
contributions cancel out. Such would be the case if the intensity distribution were isotropic, i.e.,
independent of direction.

The radiative heat flux, in the z direction, would be dP/dA. The three components of radiative
flux with respect to a cartesian coordinate system are given by

qR,x =

∫ 2π

φ=0

∫ π

θ=0
I(θ, φ) sin2 θ cos φdθ dφ (1.17)

qR,y =

∫ 2π

φ=0

∫ π

θ=0
I(θ, φ) sin2 θ sinφdθ dφ (1.18)

qR,z =

∫ 2π

φ=0

∫ π

θ=0
I(θ, φ) cos θ sin θ dθ dφ (1.19)

1.2.1 Surface Properties

Surfaces can emit, absorb, and reflect radiation. You are certainly familiar with the basic concepts
of surface absorptivity and reflectivity, i.e., the absorptivity α represents the fraction of incident
radiation on a surface that is absorbed by the surface. We will need to develop more precise
definitions than this to account for the directional and spectral dependencies of the radiation
falling on or emitted by a surface.

Emissivity

As mentioned in the previous section, the intensity emitted by a blackbody is independent of
direction and given by Ib = eb/π. Likewise, the spectral (or wavelength–dependent) blackbody
intensity is independent of direction and given by Ibλ = ebλ/π. The emitted spectral intensity
from a real surface, into some direction θ, φ and within a small wavelength interval about λ, will
always be less than the spectral blackbody intensity for a surface at the same temperature. We
can therefore define the spectral directional emissivity ǫ′λ as

ǫ′λ =
Ie,λ(θ, φ)

Ibλ
(1.20)

in which Ie,λ is the emitted intensity from the surface; it does not include components due to
other sources such as reflected intensity. The spectral directional emissivity represents the most
fundamental, or irreducible, information on the emission properties of a surface. In general, it would
be a function of direction, wavelength, temperature, and the physical and chemical properties of
the surface.
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We can obtain averaged emissivity properties by integration of ǫ′λ. The spectral hemispherical

emissivity represents the directional average of ǫ′λ, and is defined by

ǫλ =

∫ 2π

φ=0

∫ π/2

θ=0
Ie,λ(θ, φ) cos θ sin θ dθ dφ

∫ 2π

φ=0

∫ π/2

θ=0
Ib,λ cos θ sin θ dθ dφ

=

∫ 2π

φ=0

∫ π/2

θ=0
ǫ′λ(θ, φ) cos θ sin θ dθ dφ

π

=
eλ

eb,λ
(1.21)

That is, ǫλ is the ratio of the emitted spectral power from the surface, eλ to the blackbody power
eb,λ.

Likewise, the total directional emissivity ǫ′ is obtained from an appropriate wavelength average
of ǫ′λ;

ǫ′ =

∫

∞

0
Ie,λ dλ

∫

∞

0
Ibλ dλ

=

∫

∞

0
ǫ′λ Ib,λ dλ

Ib
(1.22)

Finally, the total hemispherical emissivity ǫ is obtained from either a directional average of ǫ′

or a wavelength average of ǫλ; either would yield the same result, which is

ǫ =

∫

∞

λ=0

∫ 2π

φ=0

∫ π/2

θ=0
Ie,λ(θ, φ) cos θ sin θ dθ dφ dλ

∫

∞

λ=0

∫ 2π

φ=0

∫ π/2

θ=0
Ibλ cos θ sin θ dθ dφ dλ

=

∫ 2π

φ=0

∫ π/2

θ=0
ǫ′(θ, φ) cos θ sin θ dθ dφ

π

=

∫

∞

λ=0
ǫλ Ibλ dλ

Ibλ

=
e

eb
(1.23)
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Absorptivity

Consider now a surface that is exposed to an incident source of spectral intensity, denoted as
I−λ (θ, φ). The – superscript indicates that the radiation is moving downwards onto the surface.
When the radiation strikes the surface a fraction of it will be absorbed by the surface, the remainder
will be reflected1. Denote the absorbed intensity as Ia,λ. The spectral directional absorptivity α′

λ is
defined by

α′

λ =
Ia,λ

I−λ
(1.24)

That is, it is the fraction of incident spectral intensity that was absorbed by the surface.

Similar to the spectral directional emissivity ǫ′λ, the spectral directional absorptivity describes
the fundamental absorption properties of the surface. And as was done with the emissivity, we can
define averages, with respect to direction, wavelength, or both, by appropriate integrations.

The spectral hemispherical absorptivity αλ is

αλ =

∫ 2π

φ=0

∫ π/2

θ=0
Ia,λ(θ, φ) cos θ sin θ dθ dφ

∫ 2π

φ=0

∫ π/2

θ=0
I−λ (θ, φ) cos θ sin θ dθ dφ

=

∫ 2π

φ=0

∫ π/2

θ=0
α′

λ(θ, φ) I−λ (θ, φ) cos θ sin θ dθ dφ

q−λ

=
qa,λ

q−λ
(1.25)

where q−λ and qa,λ are the downward spectral flux on the surface and the spectral absorbed flux.

The total directional absorptivity α′ is

α′ =

∫

∞

0
Ia,λ dλ

∫

∞

0
I−λ dλ

=

∫

∞

0
α′

λ I−λ dλ

I−
(1.26)

1Some of the radiation might also be transmitted through the surface, but at this point we will not make this

distinction; if the radiation is not reflected, then it went into the surface material and was absorbed by it
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and the total hemispherical absorptivity α is

α =

∫

∞

λ=0

∫ 2π

φ=0

∫ π/2

θ=0
Ia,λ(θ, φ) cos θ sin θ dθ dφ dλ

∫

∞

λ=0

∫ 2π

φ=0

∫ π/2

θ=0
I−λ cos θ sin θ dθ dφ dλ

=

∫ 2π

φ=0

∫ π/2

θ=0
α′(θ, φ)I− cos θ sin θ dθ dφ

q−

=

∫

∞

λ=0
αλ q−λ dλ

q−

=
qa

q−
(1.27)

All these definitions look analogous to those for the emissivity. An important distinction,
though, is in regard to the ‘weighting function’ used to obtain the averages. The blackbody inten-
sity Ib is not a function of direction, so it could be removed from the integrals over direction in
Eq. (1.21) and (1.23) for the hemispherical emissivities. On the other hand, the incident intensity
I− (either spectral or total) is, in general, a function of direction, and it cannot be removed from
the corresponding formulas for hemispherical absorptivity in Eqs. (1.25) and (1.27). This points
out an important fact: the hemispherical absorptivity will be a function of the directional intensity
distribution falling on a surface. For example, a surface illuminated by the sun from the normal
direction would, in general, have a different hemispherical absorptivity than the same surface il-
luminated by the sun at an oblique angle, or by the sun on a cloudy day (diffuse illumination).
Likewise, the total absorptivity (either directional or spectral) will be a function of the spectral
distribution of the incident radiation. A surface illuminated by visible light would likely have a
different total absorptivity than the same surface illuminated by IR radiation.

Reflectivity

Reflectivity is one step more complicated than absorptivity. On the most basic level, the reflectivity
will depend on the angle of the incident radiation as well as the angle of the reflected radiation. As
before, denote as I−λ (θ, phi) the incident intensity, and let I+

λ (θ′, φ′) denote the reflected intensity
from the surface in the direction θ′, φ′. The spectral bidirectional reflectivity ρ′′λ is defined by

ρ′′λ(Ω, Ω′) =
I+
λ (Ω′)

πI−λ (Ω)
(1.28)
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The reason for the π in the denominator will become obvious shortly. The spectral directional–

hemispherical reflectivity ρ′λ is obtained by integration of the reflected intensity over the hemisphere;

ρ′λ =

∫ 2π

φ′=0

∫ π/2

θ′=0
I+
λ (θ′, φ′) cos θ′ sin θ′ dθ′ dφ′

πI−λ (θ, φ)

=
1

π

∫ 2π

φ′=0

∫ π/2

θ′=0
ρ′′λ(θ, φ, θ′, φ′) cos θ′ sin θ′ dθ′ dφ′ (1.29)

All of the radiation incident on the surface is either absorbed by the surface (again we assume
transmission through the material counts as absorption) or reflected. Consequently,

α′

λ + ρ′λ = 1 (1.30)

Formulas for the hemispherical–hemispherical reflectance are analogous to used for the hemispher-
ical absorptivity.

Kirchoff’s Law

Only when one goes to the spectral directional level does the absorptivity become independent of
the properties (spectral, directional) of the intensity falling on the surface. For a given surface, α′

λ,
at a particular direction and wavelength, would not depend upon whether the incident intensity at
this direction and wavelength was produced from, say, a laser or an incandescent source.

The spectral directional absorptivity α′

λ is therefore a function solely of the surface material
properties – as is the case with ǫ′λ. Indeed, it can be shown from thermodynamic principles that
the emissivity and absorptivity are equal on the spectral directional level,

α′

λ = ǫ′λ (1.31)

This equality is commonly referred to as Kirchoff’s law.

It is easy to show, using Kirchoff’s law and Eqs. (1.25–1.27), that if the incident intensity
arriving at a surface originates from a blackbody that a) completely surrounds the surface, so that
the incident intensity is independent of direction, and b) is at the same temperature of the surface,
so that the incoming intensity has the same spectra as a blackbody emission from the surface, then
emissivity and absorptivity will be equal on the hemispherical and total levels. This condition, i.e.,
equal temperatures of source and target, would correspond to thermal equilibrium for which there
could be no net heat transfer between the source and target. In most engineering applications of
relevance, the incident intensity on a surface will be directionally depend, and will originate from
a source that is not at the surface temperature. And for such cases Kirchoff’s law, in general, will
not hold at either the directional or the hemispherical levels.
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We can, however, apply approximations to extend the application of Kirchoff’s law. Firstly, a
surface with emission and absorption properties that are independent of wavelength will have equal
emissivity and absorptivity on the total level. From Eqs. (1.22) and (1.26), it can be seen that if
ǫ′λ = ǫ′ 6= func(λ), then ǫ′ = α′. Surfaces with wavelength–independent properties are referred to
as gray surfaces.

Likewise, if the spectral directional emissivity is constant for all directions, i.e., ǫ′λ = ǫλ 6=
func(theta, φ), then ǫλ = αλ. Surfaces with directionally–independent properties are referred to as
diffuse.

Only for surfaces that are both gray and diffuse can Kirchoff’s law be applied at the total
hemispherical level, i.e.,

ǫ = α, gray, diffuse surfaces (1.32)

The diffuse approximation is relatively accurate for surfaces that have a roughness on the
scale of the radiation wavelength or greater, such as oxidized metals, wood, paper etc. Diffuse
absorbers/emitters will also be diffuse reflectors, meaning that the reflection of intensity from a
surface is isotropic (independent of direction), regardless of incident direction of the intensity.

The gray approximation is more of a stretch of reality. It is fairly accurate when the source
of incident radiation is a blackbody at a temperature close to the temperature of the surface onto
which it is falling; for such cases the spectra of the incident and emitted intensities will be about
equal.

The gray assumption can fail miserably, however, when the incident radiation has a significantly
different spectra than the emitted radiation. A common example is sunlight falling on a solar
collector. The radiation spectrum of sunlight is similar to that of a blackbody at Ts ≈ 5800 K,
and is concentrated mainly in the visible wavelengths. Solar collectors, on the other hand, will
typically operate at a temperature of around Tc ≈ 350 K, and emission at this temperature will
be concentrated in the mid IR wavelengths. For such conditions, a collector with a high spectral
emissivity in the visible yet a small spectral emissivity in the IR (which is a desirable quality for
collectors) would have α ≫ ǫ.

1.3 Radiosity and irradiance

The basic idea of this section is as follows: given N surfaces, which can exchange radiation heat
transfer among each other, calculate the net rate of heat transfer to each surface.

We will assume that the surface exchanging radiation have diffuse surface properties, in that
emissivity and absorptivity are not a function of direction. However, the properties are initially
taken to be wavelength–dependent, which implies that, in general, α 6= ǫ. Once the formulations
are complete, we will examine the simplified situation of gray surface properties.

We begin by defining some basic quantities for use in radiation exchange. Consider a surface,
denoted ‘surface 1’ and having area A1. The properties of the surface, including the temperature
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T1, total (hemispherical) emissivity ǫ1 and absorptivity α1, are assumed to be uniformly constant
over the surface.

The irradiance, H, is the flux of radiant energy falling on a surface, averaged out over the
surface area of the surface. That is, the total radiant energy falling on the surface is

H1A1 =

∫

A1

∫T I−1 cos θ1 dΩ dA1 (1.33)

in which I−1 denotes the intensity falling on the surface, which is (implicitly) a function of incident
direction θ, φ. Brewster uses the symbol q− for the irradiance. The radiosity, J , is the flux of
radiant energy leaving the surface, averaged over the surface area. The total rate of radiant energy
leaving the surface is

J1A1 =

∫

A1

∫T I+ cos θ1 dΩ dA1 (1.34)

The radiosity can be related to the irradiance by

J1 = ǫ1eb1 + (1 − α1)H1 (1.35)

i.e., radiosity will consist of emission from the surface (in which eb1 = σT 4
1 ) plus the reflected part

of the irradiance (with ρ1 = 1 − α1). On the other hand, irradiance H1 will depend explicitly on
the incoming radiation field at the surface, which, in turn, will depend on the outgoing radiation
fields from all the other surface which can ‘view’ surface 1. We’ll encounter the explicit formulas
shortly.

The net average radiative flux from the surface, denoted q, will simply be the difference between
the flux leaving the surface and the flux arriving at the surface, i.e.,

q1 = J1 − H1 (1.36)

Note that this formula is not, explicitly, a function of the surface properties ǫ or α. However, an
alternative formula for q can be stated, in which q is the difference between the emissive flux from
the surface and the absorbed incident flux,

q1 = ǫ1eb,1 − α1H1 (1.37)

If the surfaces are in steady state (which we assume to be the case), then the net radiative heat
transfer rate from the surface, q1A1, will equal the net rate of heat transfer to the surface by
other means such as conduction or convection. That is, q1A1 is the rate of ‘external’ heat transfer
required to keep the surface at a constant temperature. If the surface is adiabatic, then q1A1 = 0.

By eliminating H1 among the previous two equation, we get

q1 =
1

1 − α1
(ǫ1eb1 − α1J1) (1.38)

This equation is not too useful for a black surface (i.e., α = ǫ = 1). For this special case Eq. (1.35)
shows that J = eb, but we will need to use either Eqs. (1.36) or (1.37) to get the heat transfer q1.
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1.4 The Configuration Factor

Say our ‘system’ contains N surfaces, on each of which the temperature Ti is specified. We want to
calculate the net heat transfer rate to each surface per Eq. (1.38). To do so, we need to determine
the radiosity Ji at each surface (assume, for the moment, that the surface are not black). To get
the radiosity, however, we’ll need to know the irradiance at the surface, per Eq. (1.35). And to
get the irradiance, we need to know how radiation is exchange among the various surfaces. The
relevant formula to evaluate is Eq. (1.33), repeated here as

H1A1 =

∫

A1

∫T I−1 cos θ1 dΩ dA1 (1.39)

To simplify the evaluation of this (without a tremendous loss in generality), take the system
to consist of a pair of surfaces, 1 and 2. The ‘background’ (i.e., what surrounds 1 and 2) is taken
to be black at zero K, so that no radiation originates from the background. In this case all of the
radiation arriving at 1 originates (either through emission or reflection) at 2, and the integral over
solid angle in Eq. (1.39) will include only those directions which point towards surface 2. Say a
point on 2 is located a distance R from a point on 1. The differential solid angle dΩ in Eq. (1.39)
will be, by definition,

dΩ =
cos θ2 dA2

R2
(1.40)

in which θ2 is the angle between the normal on 2 and the direction vector from 1 to 2. Alternatively,
cos θ2 dA2 is the projected area of dA2 as seen from the point on 1. The medium between 1 and
2 is non–participating; it does not absorb or emit radiation along the path. Consequently, for a
specified path between 1 and 2, I−1 = I+

2 . That is, the intensity arriving at 1 along the path is
the same as the intensity leaving 2 along the same path. Finally, the surfaces are assumed to be
diffuse, so

I+
2 =

J2

π
(1.41)

Now replace the two previous equations into Eq. (1.39). The radiosity J2 is not a function of
position on surface 2 (recall that it is averaged over the surface area), so it can be taken out of the
integrals. We get

H1A1 = J2

∫

A1

∫

A2

cos θ1 cos θ2

πR2
dA2 dA1 (1.42)

The cluster of integrals depends only on the geometrical configuration of surfaces 1 and 2, and
defines a configuration factor F2−1

F2−1A2 ≡

∫

A1

∫

A2

cos θ1 cos θ2

πR2
dA2 dA1 (1.43)

so that
H1A1 = J2F2−1A2 (1.44)
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for our 2–surface system.

The configuration factor Fi−j represents the fraction of radiant energy leaving i that arrives at
j Basic properties of the configuration factor are reciprocity,

Fi−jAi = Fj−iAj (1.45)

which follows directly from Eq. (1.43) by exchanging the subscripts 1 and 2, and summation,

N
∑

j=1

Fij = 1 (1.46)

in which N is the total number of surface that can view surface i. This latter property simply
states that all the radiation leaving i must end up somewhere. Note also that j = i must also be
included in the summation, as Fi−i is not necessarily zero.

1.5 Exchange equations

Equation (1.44) can be generalized to an N–surface system,

HiAi =
N
∑

j=1

JjFj−iAj (1.47)

We can now use reciprocity, i.e., Fj−iAj = Fi−jAi, in the above and cancel out the area Ai;

Hi =
N
∑

j=1

JjFi−j (1.48)

Replacing this into Eq. (1.35) gives a system of equations for the radiosities,

Ji = ǫiebi + (1 − αi)
N
∑

j=1

JjFi−j (1.49)

with i = 1, 2, . . . N . If we know the temperature of each surface (from which ebi = σT 4
i ) and we

also know the configuration factors, then the system of equations can be solved for the radiosity at
each surface. And once we know the radiosity, we can get the heat transfer per Eqs. (1.36–1.38).

Frequently, the heat transfer to a surface is known, and the temperature of the surface becomes
an unknown. A typical example is the insulated surface, for which qi = 0. For such cases Eq. (1.49)
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will not be useful, since ebi will be unknown. To remedy the problem we use Eq. (1.36) to formula
the radiosity equations, to get

qi = Ji +
N
∑

j=1

JjFi−j (1.50)

Once we solve for the radiosities, the temperature of the surface can be obtained from Eq. (1.37).

This equation has a network interpretation: if we multiply the Ji term by
∑

j

Fi−j = 1 (recall the

summation property), then

qiAi =
N
∑

j=1

(Ji − Jj)Fi−jAi (1.51)

The heat transfer from i can therefor be interpreted as a sum of currents flowing from i to all
other surfaces, with Ji − Jj being the potential (or voltage) difference and 1/Fi−jAi the resistance
between i and j.

The general procedure is as follows: say our system has M < N surfaces on which the tem-
perature is prescribed, and N − M surfaces on which q is prescribed. We apply Eq. (1.49) to the
M surfaces with specified temperature, and Eq. (1.50) to the N − M surfaces with specified q.
Altogether we obtain N linear equations for the radiosities J1, J2, . . . JN . And once we have solved
for these quantities, we can calculate either the heat flux or the temperature of the surface.

1.5.1 Spectral considerations

The previous formulas can be applied on a spectral level by simply appending the λ subscript to
all relevant quantities. In doing so, however, the spectral heat flux qλ,i to surface i can no longer
be viewed as the heat transfer rate to the surface by external means. Rather, the total flux, i.e.,

qλ,i =

∫

∞

0
qλ,i dλ (1.52)

is the heat transfer by external means. This means that, in general, it is difficult to explicitly
state specified heat flux boundary conditions in the spectral exchange equations, because we don’t
(beforehand) know the heat flux on a spectral level. In particular, an adiabatic surface has a total
heat transfer rate of zero, yet the spectral flux to the surface could be positive or negative at various
wavelengths in such a way that the total, when integrated out per the previous formula, is zero.

It is also difficult to accurately apply the exchange equations on a total (wavelength integrated)
basis to surfaces that strong wavelength variations in emissivity/absorptivity (i.e., non–gray sur-
faces), especially in conditions in which significant temperature differences exist among the surfaces.
The problem here is obtaining an estimate of the total absorptivity on each surface prior to solv-
ing the equations. The total absorptivity of a surface depends on the spectrum of the incident
radiation, yet the incident radiation (the irradiance) will depend on the emission and reflection of
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radiation throughout the entire system. Indeed, the exchange formulation presented above, with
the corresponding configuration factors, does not offer a clean way of predicting the radiation spec-
trum that falls on a given surface. To see this, note that the absorbed flux (on a total basis) at
surface i will be

qabs,i = αiHi =
N
∑

j=1

JjFi−j =
N
∑

j=1

(ǫjeb,j + (1 − αj)Hj)Fi−j

Now αi depends on the spectrum of Hi, yet Hi is seen to depend on emission and reflection from
all other surfaces. We can predict the emission spectrum, but we cannot predict the reflection
spectrum without considering the incident radiation on surface j. And so on....

In view of these problems, the common practice is to either apply exchange equations on a
gray basis (α = ǫ), or to use a spectral formulation and solve on a wavelength–by–wavelength
basis. Alternatively, the Monte Carlo procedure (to be discussed in the near future) offers a way
of modeling a non–gray yet wavelength–averaged system.

1.6 Gray Approximation

1.6.1 Two surface systems

Often we deal with simple problems in which radiation is exchanged between a pair of surface, such
as two parallel plates or a pair of coaxial cylinders. In this case the exchange equations reduce to
a pair of equations for J1 and J2. Because the overall system is in steady state, the heat transfer
rates must be balanced by

q1A1 + q2A2 = 0

It is easy enough to solve two linear equations for two unknowns, yet for the general non–gray case
(α 6= ǫ) the resulting equation for the heat transfer rate q1A1 is algebraically complex and need not
be presented here.

A considerable simplification will occur if we examine the gray simplification, for which αi = ǫi.
For this case, the heat flux, from Eq. (1.38), becomes

q1A1 =
ǫ1A1

1 − ǫ1
(eb1 − J1) , gray approx. (1.53)

which has the same network form (current=voltage drop/resistance) as Eq. (1.51). The resistance
in the above, i.e., (1 − ǫ)/ǫA, can be viewed as a surface resistance, whereas the resistance in
Eq. (1.51), 1/F1−2A1, is a geometrical (or space) resistance. In the two–surface problem the
network is equivalent to a series circuit with three resistances; two surface resistances and a single
space resistance. And by adding up the resistances, we get

q1A1 =
eb1 − eb2

1 − ǫ1
ǫ1A1

+
1

F1−2A1
+

1 − ǫ2
ǫ2A2

(1.54)
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The multiple reflection model

An alternative way of modelling radiation exchange in a simple, two–surface system is to view the
exchange process as a series of reflections. For simplicity, consider a system of parallel flat plates,
for which F1−2 = F2−1 = 1. Assume also that surface 1 is at a finite temperature yet 2 is at zero
K, so that emission occurs only from surface 1 This does not limit the generality of the approach,
for we can model heat transfer between two surfaces at finite temperature as a superposition of two
heat transfers, with each of the two heat transfers corresponding to one surface at zero K and the
other at the finite temperature.

Surface 1 emits heat at a rate ǫ1eb1. This emission travels to surface two, and a fraction ρ2 is
reflected. The reflected fraction travels back down to 1, and a fraction ρ1 of this is reflected back
towards 2. And so on. With this picture, the net rate at which radiation leaves 1, i.e., the radiosity
at 1, is

J1 = ǫ1eb1

(

1 + ρ2ρ1 + (ρ2ρ1)
2 + . . .

)

= ǫ1eb1
1

1 − ρ1ρ2

The second line comes from the power series expansion of 1/(1 − x) for x < 1. Likewise, the
irradiance on surface 1 will consist of the first reflection of the emission, ρ2ǫ1eb1, plus all multiple
reflections,

H1 = ρ2ǫ1eb1

(

1 + ρ2ρ1 + (ρ2ρ1)
2 + . . .

)

= ρ2ǫ1eb1
1

1 − ρ1ρ2

The heat transfer is q1 = J1 − H1, and using ρ = 1 − α we get

q1 = ǫ1eb1
1 − ρ2

1 − ρ1ρ2
= eb1

ǫ1α2

α1 + α2 − α1α2

If you now set α = ǫ (the gray approximation) and perform a little extra algebra, the above result
will be equivalent to Eq. (1.54) with eb2 = 0.

1.6.2 More than two surfaces

For gray, nonblack surfaces the exchange equations become

ǫiebi = Ji − (1 − ǫi)
N
∑

j=1

JjFi−j , specified Ti (1.55)

qi = Ji +
N
∑

j=1

JjFi−j , specified qi (1.56)

These can be solved for Ji, i = 1, 2, . . . N by standard methods for linear equations (matrix inver-
sion, iteration). Once the radiosities are obtained, the heat transfer fluxes at surfaces with specified
temperature are obtained from

qi =
ǫi

1 − ǫi
(ebi − Ji) (1.57)
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and on surfaces with specified qi, the emissive power (and, from which, the temperature) would be
obtained from

ebi =
1 − ǫi

ǫi
qi + Ji (1.58)

1.6.3 Gray/diffuse exchange example

Consider the system illustrated below. The system consists of a cylindrical cavity, of outer radius
R = 3 m and height L = 6 m. A circular surface on the lower end (surface 1) has a radius of R1 = 1
m and properties of ǫ1 = 0.8, T1 = 1000 K. Surfaces 2 and 3 are adiabatic and L3 = L4 = 3 m.
Surfaces 4 and 5 are at 400 K and have ǫ = 0.2.

12

3

4

5

We want to compute the net heat transfer rates from surfaces 1,4, and 5 and the temperatures
of surfaces 2 and 3.

Configuration factor calculation

The formula for parallel concentric circles on P. 500 of the text can be used to obtain all of the
needed configuration factors. For a pair of circles (1 and 2, say) separated by a distance L, the
formula is

X =
R1

L
, Y =

R2

L
, Z = 1 +

1 + Y 2

X2

F1−2 =
1

2



Z −

(

Z2 − 4

(

Y

X

)2
)1/2





Applying this formula gives

F1−5 = 0.1965, F(1+2)−5 = 0.1716

F5−1 =
R2

1

R2
F1−5 = 0.0218, F5−(1+2) = F(1+2)−5 = 0.1716
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F5−2 = F5−(1+2) − F5−1 = 0.1497, F2−5 =
R2

R2 − R2
1

F5−2 = 0.1685

Let surface 6 be the imaginary circular surface formed by the dotted line.

F5−6 = 0.3820, F1−6 = 0.4861

Then
F5−4 = 1 − F5−6 = 0.6180, F1−3 = 1 − F1−6 = 0.5139

F4−5 =
R2

2RL4
= 0.3090, F3−1 =

R2
1

2RL3
F1−3 = 0.2855

By symmetry and summation,

F3−(1+2) = F4−5 = F3−1 + F3−2 : F3−2 = F4−5 − F3−1 = 0.2805

F2−3 =
2RL3

R2 − R2
1

= 0.6311

Now use summation:

F1−4 = 1 − F1−5 − F1−3 = 0.2896, F5−3 = 1 − F5−4 − F5−2 − F5−1 = 0.2104

F2−4 = 1 − F2−5 − F2−3 = 0.2005

F4−1 =
R2

1

2RL4
F1−4 = 0.0161, F3−5 =

R2

2RL3
F5−3 = 0.1052

F4−2 =
R2 − R2

1

2RL4
F2−4 = 0.0891

By the symmetry of the problem and summation,

F3−(1+2) = F4−5 = F3−1 + F3−2 : F3−2 = 0.2805

F2−3 =
A3

A2
F3−2 = 0.6311

What leaves 3 and lands on 6 (the imaginary surface) must land on either 4 or 5, so

F3−6 = F3−4 + F3−5

But F3−6 = F4−5 by symmetry, so

F3−4 = F4−5 − F3−5 = 0.2038 = F4−3

Only surfaces 3 and 4 can see themselves. Use summation:

F3−3 = F4−4 = 1 − F3−1 − F3−2 − F3−4 − F3−5 = 0.3820
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Exchange equations

For surfaces 1, 4, and 5, upon which the temperature is specified, the exchange equations are

Ji − (1 − ǫi)
N
∑

j=1

JjFi−j = ǫiebi, i = 1, 4, 5 (1.59)

and on the adiabatic surfaces, 2 and 3, the exchange equations are

Ji −

N
∑

j=1

JjFi−j = 0, i = 2, 3 (1.60)

The following is a listing of the Mathematica code used to solve the equations. I had previously
calculated the configuration factors and stored them in the arrays f[i,j]. I use the symbol jf[i]
for Ji in the code.

In[29]:=sigma=5.67*^-8;eps[1]=0.8;eps[4]=0.2;eps[5]=0.2;

t[1]=1000;t[4]=400;t[5]=400;

eb[1]=sigma t[1]^4;eb[4]=sigma t[4]^4;eb[5]=sigma t[5]^4;

In[37]:=vars=Table[jf[i],{i,1,5}]

Out[37]={jf[1],jf[2],jf[3],jf[4],jf[5]}

In[40]:=eqns=Table[

If[i>1&&i<4,

jf[i]-Sum[jf[j] f[i,j],{j,1,5}]==0,

jf[i]-(1-eps[i])Sum[jf[j] f[i,j],{j,1,5}]==eps[i] eb[i]

]

,{i,1,5}]

Out[40]=

{jf[1]-0.2 (0.513878 jf[3]+0.28963 jf[4]+0.196491 jf[5])==45360.,

jf[2]-0.631053 jf[3]-0.200488 jf[4]-0.168458 jf[5]==0,

-0.0285488 jf[1]-0.280468 jf[2]+0.618034 jf[3]-0.20382 jf[4]

-0.105197 jf[5]==0,

jf[4]-0.8 (0.0160906 jf[1]+0.089106 jf[2]+0.20382 jf[3]

+0.381966 jf[4]+0.309017 jf[5])==290.304,

-0.8 (0.0218324 jf[1]+0.14974 jf[2]+0.210393 jf[3]

+0.618034 jf[4])+jf[5]==290.304}
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In[42]:=soln=Solve[eqns,vars][[1]]

Out[42]={jf[1]->47060.5,jf[2]->8808.58,jf[3]->9753.96,

jf[4]->7088.69,jf[5]->7314.03}

In[44]:=t[2]=(jf[2]/sigma)^(1/4)/.soln

t[3]=(jf[3]/sigma)^(1/4)/.soln

Out[44]=627.814

Out[45]=644.02

In[48]:=

q[1]=eps[1]a[1]/(1-eps[1])(eb[1]-jf[1])/.soln

q[4]=eps[4]a[4]/(1-eps[4])(eb[4]-jf[4])/.soln

q[5]=eps[5]a[5]/(1-eps[5])(eb[5]-jf[5])/.soln

Out[48]=121133.

Out[49]=-79693.6

Out[50]=-41439.7

In[51]:=q[4]+q[5]

Out[51]=-121133.
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