Hindawi

Mathematical Problems in Engineering
Volume 2022, Article ID 8544122, 12 pages
https://doi.org/10.1155/2022/8544122

Research Article

@ Hindawi

Sparse-Coding-Based Autoencoder and Its Application for Cancer

Survivability Prediction

Gang Huang

, Hailun Wang, and Lu Zhang

College of Electrical and Information Engineering, Quzhou University, Quzhou 324000, China

Correspondence should be addressed to Gang Huang; huangg@qzc.edu.cn

Received 16 November 2021; Accepted 27 December 2021; Published 4 February 2022

Academic Editor: Muhammad Faisal Nadeem

Copyright © 2022 Gang Huang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cancer-survivability prediction is one of the popular research topics, that attracted great attention from both the health service
providers and academia. However, one remaining question comes from how to make full use of a large number of available factors
(or features). This paper, accordingly, presents a novel autoencoder algorithm based on the concept of sparse coding to address
this problem. The main contribution is twofold: the utilization of sparsity coding for input feature selection and a subsequent
classification using latent information. Precisely, a typical autoencoder architecture is employed for reconstructing the original
input. Then the sparse coding technique is applied to optimize the network structure, with the aim of selecting optimal features
and enhancing the generalization capability. In addition, the refined latent information is further cast as alternative features for
training a sparse classifier. To evaluate the performance of the proposed autoencoder architecture, we present a comprehensive
analysis using a publicly available data repository (i.e., Surveillance, Epidemiology, and End Results, SEER). Experimental study
shows that the proposed approach has the ability of extracting important features from high-dimensional inputs and achieves

competitive performance than other state-of-the-art classification techniques.

1. Introduction

Cancer is the second major cause of death globally,
according to World Cancer Report (http://publications.
iarc.fr/Non-Series-Publications/World-Cancer-Reports/
World-CancerReport-2014). For example, more than 9.6
million deaths were reported, associated with the cancer
disease in 2018. Due to its huge economical and health
influence, cancer survivability prediction has received a
lot of attention in the last decades. In general, the task of
survivability prediction refers to estimate the life span
and/or duration of patients according to their historical
information. This research question has been of great
interest to either healthcare providers and individual
patient as the prediction results provide an effective
suggestion and/or measurement to evaluate the prognosis
and reduce the significant suffer. Not surprisingly, a great
number of research effort has been dedicated to develop
numerous prediction models. Section 2 provides more
details in this regard.

The majority prediction models follow into the pipeline
of “data pre-processing” and then “classification.” The
former aims to manipulate the original data to form a more
manageable input, by the operation of missing-value im-
putation, important feature extraction/selection, outlier
removal, etc. The latter process refers to specially design
classification algorithms, such as Support Vector Machine
(SVM), Neural Network (NN), and Random Forest (RF), to
establish a suitable mapping relation between input samples
and output labels. Among them, we argue that the most-
desired aspect is “data pre-processing” as noisy inputs can
have significantly negative impact on the subsequent
“classification” process. In this context, the major motiva-
tion of this study is to propose an innovative and practical
method for preprocessing input samples. That is, we aim to
represent original inputs with a cleaner and more suitable
data alternative, which in return could improve the fol-
lowing “classification” performance.

The autoencoder algorithm has received a great deal of
attention over the last decades, as a group member of Deep


mailto:huangg@qzc.edu.cn
http://publications.iarc.fr/Non-Series-Publications/World-Cancer-Reports/World-CancerReport-2014
http://publications.iarc.fr/Non-Series-Publications/World-Cancer-Reports/World-CancerReport-2014
http://publications.iarc.fr/Non-Series-Publications/World-Cancer-Reports/World-CancerReport-2014
https://orcid.org/0000-0003-0079-1327
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8544122

Learning family. Similar to a standard Multiple-Layer
Perceptron (MLP), the architecture of a basic autoencoder is
a three-layer network, including the layer of input, hidden,
and output, respectively. Compared to MLPs, the major
difference is that the output from standard autoencoders is
equivalent to the input. As such, the autoencoder algorithm
is characterized by its learning (representation) capability of
input data, while preserving the most important informa-
tion. Due to this advanced learning capability, relevant
applications of autoencoder have spanned several disci-
plines, such as pattern recognition, decision-making, and
statistical modeling. A brief review of autoencoder tech-
niques will be given in the next section.

In spite of the general research interest in developing
autoencoder-based applications, there are still research
questions remaining to apply autoencoders for estab-
lishing prediction models. Firstly, conventional autoen-
coders are designed for data clustering or reconstruction
purposes, not explicitly for classification. Therefore, we
cannot directly apply autoencoders to build a classifica-
tion model for predicting cancer survivability. Secondly,
in the context of the medical data, there are usually a large
number of available features. One critical problem then is
to determine optimal features, using autoencoders, to
achieve satisfactory classification performance. Finally,
there is not a reliable strategy to determine the autoen-
coder structure; consequently, the cross-validation or
trial-and-error method is usually performed which is very
time-consuming.

To solve the aforementioned issues, this paper explores
the applicability of autoencoders to establish a two-stage
prediction model, via data reconstruction and classification
using the latent information, respectively. At the first stage of
data reconstruction, we consider to apply the concept of
sparse coding to extract informative features while opti-
mizing the network structure. The concept of sparse coding
is to represent a target signal using a linear combination of a
few elementary signals. As such, only few nonzero elements
are capable of capturing or reconstructing the target signal.
Sparse coding has therefore become a very active research
area and has found its wide applications in many areas, such
as machine-learning [1-3], and IoT applications [4], etc. At
the second classification stage, we tempt to build a prediction
model using extracted information from the first stage. In
particular, the latent information (i.e., the output from the
hidden layer) is cast as the training input. At last, this two-
stage prediction model is formulated and represented using
one unique objective function. We further employ an it-
erative computational strategy for optimizing this proposed
function.

With this end in view, a novel autoencoder algorithm is
introduced to facilitate the modeling of cancer survivability
prediction. To evaluate its performance, a real-world data
repository is introduced. Specifically, we apply the proposed
algorithm to form a prediction model in the cancer sur-
vivability context. In comparison to other prediction algo-
rithms, experimental results show that the proposed method
achieves better classification results. In summary, this paper
presents the following contributions:
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(i) The sparse coding technique is introduced for
autoencoders, with the aim of performing feature
selection and data reconstruction simultaneously; in
particular, the feature selection is done by deter-
mining features that contribute most to the sub-
sequent classification

(ii) Instead of using the raw inputs, the latent infor-
mation (i.e., the output from the hidden layer of
autoencoders) is manipulated as the training inputs
for classification

(iii) The training process of the proposed autoencoder
algorithm is formulated and represented using one
unique objective function, which is later solved
using an iterative computational strategy

The remainder of this paper is organized as follows.
Firstly, we briefly review some background concepts and
related studies in Section 2. Next, the detail implementation
of the proposed algorithm is discussed and evaluated in
Section 3 and Section 4, respectively. Finally, we provide
some remarks and future works in Section 5.

2. Background Concepts and Related Works

In this section, two main aspects studied in this paper are
discussed, including existing applications for predicting
cancer survivability and the conventional autoencoder
algorithm.

2.1. Existing Prediction Models. Cancer is reported as the
second major cause of human death globally. Apart from its
fatality, this disease also leads to a huge economic impact.
According to Ref. [5], healthcare expenditure is expected to
reach $9.1 trillion by 2023. Due to its large economic and
social impact, healthcare providers and authorities have
been spending a lot of effort on cancer-related research,
including effective treatment, accurate diagnose with early
time and less cost, medical imaging, etc.

Among them, patient survivability prediction has been
of great interest and significance to the medical industry. By
integrating data from the patient’s medical history and
external risk factors, survivability prediction aims to esti-
mate the living-span probability for one particular patient.
Not surprisingly, machine-learning algorithms, such as
Decision Tree (DT), Random Forest (RF), Support Vector
Machine (SVM), and Artificial Neural Network (ANN),
have been employed to address this survivability-prediction
problem.

The DT and RF algorithms are two of the mainstream
methods used in cancer survival-rate prediction field, due to
their high interpretability and accuracy. On the one hand,
DT is the fundamental technique of RF, which identifies and
chooses significant features (using the criteria of information
gain and Entropy) that are helpful in the classification. On
the other hand, RF is a bootstrapping algorithm with the DT
model, in which RF tries to build several different decision
trees by choosing a random subset of training samples and
features. At last, as an ensemble learning strategy, RF
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combines all individual subtree results and makes the final
prediction. The work from Ref. [6] establishes a DT-based
prediction model by separating cancer patients into different
groups based on their age and gender. Additionally, their
results also identify two high-risk groups, that is, the female
group with the age between 42 and 52 and the male group
with their ages less than 42. Those findings can be further
used to assist clinicians with useful guidance to provide
better individual treatment plan. In Ref. [7], four different
DT variants have been employed, including classification
and regression trees (CART), the quick, unbiased, efficient
statistical tree (QUEST), chi-square automatic interaction
detector (CHAID) algorithm, and the C5.0 algorithm. Ex-
periments have been performed using a dataset of 500 pa-
tient records and 13 features, and the results indicate that the
C5.0 algorithm achieves the highest classification accuracy
(86.4%). Additionally, they also conclude that factors of
diagnosis age, histologic grade, axillary lymph node status,
and type of surgery statistically impact on patient surviv-
ability. In the study of Ref. [8], another dataset with 6000
patient records and 23 features is employed. Several algo-
rithms of DT, RF, ANN, and SVM are introduced, while
experimental results show that the RF-based method gen-
erates the best result (approximately 82.7% classification
accuracy). The work further identified several important
features, such as cancer stages, Tumor Size, number of
axillary lymph node, and types of primary treatment.
Similarly, three datasets from UCI ML repositories are
employed in the study of Ref. [9] to investigate the sur-
vivability-prediction problem. Again, their research results
also reveal that RF leads to the best performance with a
classification accuracy of 98%.

SVM is another popular machine-learning algorithm
and has received a great deal of research attention in the
medical domain. By projecting raw input data into a high-
dimension feature space, SVM is able to identify complex
nonlinear relationship to classify training samples. Both of
the work from Refs. [10, 11] explore the SVM-based pre-
diction model. On the one hand, the sequential minimal
optimization technique is applied with SVM in Ref. [11].
Through a sensitivity analysis, they are able to gauge the
prioritized importance of predictive factors in their pre-
diction model. On the other hand, the work from Ref. [10]
compares SVM and other two techniques, that is, logistic
regression and decision tree via modeling a 1340-record
dataset. Their results indicate that the SVM provides the best
outcome for constructing the prediction model.

Another widely used technique is the ANN, which has a
multilayer structure with many perceptrons. ANNs follow
the principle of supervised learning, that is, the network is
trained to explore the correlation between input and output
variables, and to minimize the error between the actual and
desired output. To achieve a stable prediction accuracy,
Wang et al. apply ANNSs in a cross-validation way by trailing
different sizes of neural networks [12]. More precisely, they
employ a typical three-layer architecture, while the number
of hidden neurons is changed within the range of 5 to 15. The
best outcome is approximately 85% classification accuracy
and 0.79 of Area under Receiver Operating Characteristic

curve (AUC). In addition, the work from Ref. [13] explores
the prognosis of cancer recurrence using the ANN. They
manually select a patient dataset with twenty attributes and
apply the conventional ANN for modeling. The result shows
that the ANN has achieved the best performance, also
provides new insights of prognostic factors which need to be
observed by medical experts.

The aforementioned methods are based on the concept
of supervised learning, under the assumption that the
label information is known. However, in reality, the
number of labeled data can be very limited and labor
expensive to acquire. In this context, some research work
has been performed to investigate the possibility of
dealing with the unlabeled data, also known as the process
of semisupervised learning. The main idea is to exploit the
knowledge from unlabeled data and integrate with
available label information, which has shown some
promising outcomes. For example, the work from Ref.
[14] proposes a prediction model by cotraining with semi-
and supervised methods, including ANN and SVM. Their
result shows that the semisupervised method enhances the
prediction stability via the noise reduction and results in
the best performance of 0.81 AUC. More recently, a low-
rank and sparse representation-based algorithm has been
proposed [3] to address the noisy data. More precisely, the
original input has been manipulated and its low-rank and
sparse representation has been estimated. A sparse clas-
sifier was also considered afterwards which achieves the
promising prediction results.

Despite some accurate prediction models, the raw health
data are usually subject to different types of noise, including
outlier, missing values, etc. Not surprisingly, the corrupted
data render many machine-learning algorithm failing to
estimate the accurate patients’ survivability.

2.2. Basic Autoencoder Method. Deep Learning techniques
have increasingly found their wide applications in many
areas, due to their accurate and robust performance. Rele-
vant work has spanned several disciplines, such as object
detection, statistical modeling, and nature language pro-
cessing. The autoencoder algorithm is a particular case of
Deep Learning techniques, which has a similar network
architecture like the Multiple-Layer Perceptrons (MLPs).
More precisely, a basic autoencoder is a three-layer fully
connected network with one hidden layer, one input layer,
and one output layer. The major difference, compared to
MLP, is that autoencoder aims to reconstruct the raw inputs;
in other words, the output from autoencoders is optimized
in such a way that it should be as close/similar as the original
inputs. As such, the basic autoencoders also become one
popular alternative in unsupervised fashion. The general
architecture of an autoencoder is then illustrated in Figure 1.
As observed, the input and hidden layers play a role of
encoding and representing input data into low-dimensional
representation. As such, the combination of input and
hidden layers is also called as “encoder.” By contrast, the
hidden and output layers are designed to reconstruct the
input data, which play a role of the “decoder.”
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FiGure 1: The network structure of a basic autoencoder.

Assume that the given L training samples are arranged as
a matrix, where the i-th row represents the i-th input, that is,
X = [x;%,;...;%x;], and ; represents the concatenation
operation. In addition, let Z € RPN denote the output
matrix of the hidden layer. Consequently, the calculation of
Z (i.e., output from the hidden layer) is as follows:

Z = f(XW), (1)

where f(-) is the activation function and W is the weight
matrix between the input and hidden layer. Furthermore,
given the activation function g (-) from the output layer, the
final output of this network can be expressed as follows:

X=g(2zv), ()

where V represents the weights between the hidden and
output layer.

Note that the aim of autoencoders is to reconstruct the
input data. As such, its training process is to minimize the
error between the actual output (from the autoencoder) and
the input matrix X, which can simply be expressed as
follows:

L
min Loss (X, X) = Z ||xl - il”j (3)
1

For training purposes, the algorithm of Back Propaga-
tion (BP) can be applied [15], in which the output error is
utilized for updating weights. Let E(f) represent the net-
work, that is, E(¢) = Loss (X, X) at the ¢-th iteration. Then,
the gradient VE (t) with respect to network weights can be
computed as VE,, (¢) = OE(t)/oW (t) (for encoder) and
VE,, (t) = 0E (t)/0V (t) (for decoder), respectively. Accord-
ingly, using the BP training algorithm, weights of the
autoencoder can be simply updated as follows: W (t + 1) =
W (t) —a,VEy, (t) and V (¢t +1) =V (t) — a,VE, (), where
a, and «, is the learning rate.

Recent years have witnessed the rapid development of
the autoencoder-based methods and their wide applications
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in several domains, including cancer prediction [16],
control engineering [17, 18], fault diagnosis [19], building
energy management [20], and many more. In the work of
Ref. [16], a stacked sparse autoencoder-based (SSAE) al-
gorithm is proposed for cancer prediction. This method
consists of the unsupervised feature extraction and the
supervised classification stage, which is similar to our
proposed method in terms of the overall idea. However, the
main difference is that SSAE applies the sparsity constraint
on each hidden neuron, rather than weights, while this
constraint is further determined by a user-defined sparsity
parameter p. As such, the performance of SSAE is impacted
by p, which could be subjected to biased results. Loy Benitez
et al. propose a memory-gated recurrent neural networks-
based autoencoder (MG-RNN-AE), that is applied for in-
door air quality (IAQ) control [18]. The main contribution
is to replace the dense layers (from the traditional
autoencoder structure) with the recurrent neural network,
which benefits from identifying the correlation between
each feature. The application of MG-RNN-AE is evaluated
using an [AQ data from a D-subway station, showing its
effectiveness of monitoring and controlling. A semi-
supervised autoencoder (termed as discriminant autoen-
coder, DAE) is present in Ref. [19] for fault diagnosis. This
method introduces a modified loss function based on the
theory of mutual information (MI) to find a more appro-
priate representation. More precisely, apart from the data
reconstruction error, two more constraints are employed in
the modified loss function, including the /,-norm regula-
rization on weights and a MI-based distance measurement.
The former is used to avoid over-fitting, while the latter one
aims to increase the interclass separability and retains
discriminant features. Compared to the proposed method,
both the MG-RNN-AE and DAE apply different strategies
to reconstruct the original data, while they still employ the
fully connected manner without optimizing the network
structure. At last, the work from Ref. [20] investigates the
autoencoder method for anomaly detection in building
energy management. An autoencoder-based ensemble
method is proposed, by considering different architectures
and training schemes. By examining the performance of
different types and training methods of autoencoders, a
comprehensive experiment is conducted, to provide in-
sights into the applicability of autoencoders in detecting
anomalies. Results indicate that autoencoder-based method
can greatly alleviate the data preprocessing workload and
maintain the data quality for further analysis. However, this
paper applies the cross-validation and human expertise to
manually determine the network architectures. By contrast,
the proposed method introduces the sparse coding tech-
nique to automatically optimize the architecture, which is
our main contribution.

3. Proposed Autoencoder Algorithm

This section details the proposed algorithm by integrating
the concept of sparse coding with the autoencoder (termed
as SRA), and the main pipeline is also demonstrated in
Figure 2. Formally, the proposed algorithm is designed to (i)
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Data reconstruction

Classification using latent information

FIGURE 2: The overall pipeline of the proposed sparse autoencoder
(SRA) algorithm.

identify the informative features; (ii) optimize the network
structure; and (iii) to train the classifier simultaneously.

3.1. Problem Formulation. Consider a typical architecture
of the autoencoder with a three-layer fully connected
network. Let X be the input data matrix (where the i-th
row is the i-th sample), and Y = [y;,y,,...,y.] be the
desired output matrix of the training samples, and y; is the
corresponding label of x;. To train a classifier that produce
the correct mapping relationship of (X, Y), the proposed
sparse-coding-based algorithm (i.e., SRA) consists of two
stages: data reconstruction and classification using latent
information.

3.1.1. Stage One: Data Reconstruction. Following the basic
concept of autoencoders, the proposed method reconstructs
the input data at its output. Furthermore, SRA utilizes the
sparse coding technique to minimize the number of con-
nections (i.e., internal weights) for both of the encoder and
decoder. As such, SRA not only minimizes the data re-
construction error but also rewards the sparse structure to
identify informative features.

3.1.2. Stage Two: Classification Using Latent Information.
We propose to use the output from the encoder (i.e., latent
information) to establish the classifier. Additionally, the

dictionary-learning method is also leveraged to train and
update this latent information according to the classifi-
cation and reconstruction error.

3.2. Data Reconstruction. In the data reconstruction stage,
the proposed SRA method aims to generate an output as
close as the input (which is similar to the traditional
autoencoders). Furthermore, to identify the informative
features from the original inputs, we propose to minimize
the number of weight connections within the input-hidden
layer (or encoder). That is based on the fact that one single
input neuron (in autoencoders) is associated with one
particular feature.

Recall that each column from the input matrix X is
associated with one feature; accordingly, rows from W are
the relevant feature weights. Identifying an important
feature from X is equivalent to setting all its associated
weights to nonzero values; by contrast, skipping one
feature requires setting all relevant weights to zeros. In
other words, such a process of identifying important
features is equivalent to minimizing the matrix sparsity
for W (with only few important rows with nonzero
values). In general, the sparsity of the matrix can be
expressed using a mix of [, and I, norms. That is, let W,
denote the g-th row of W, then the matrix sparsity can be
defined as [W],, = ZqIIWqIIZ.

Furthermore, without loss of generality, we assume that
f (+) is an one-to-one activation function, which indicates it
is invertible (i.e., f!(-)). Consequently, the feature iden-
tification process within the encoder can be cast as solving
the following optimization problem:

min [|[W],, subject to 1(2) = XW, (4)

For the decoder part, we apply the similar strategy to
reduce the weight connection between the hidden-and-
output layer, as well as minimize the error between the actual
output and the input data. Meanwhile, we also assume that
the active function g(-) is invertible (i.e., g~!(-) exists as
f71(-)). As such, we have

min [V}, subjectto g ' (X) = ZV, (5)

where V is the weight matrix between the hidden-and-
output layer (or the decoder). By combining the loss
function from both the encoder and decoder, we can for-
mulate the following objection function for the proposed
data-reconstruction process:

min [Wll,, +[V1,subjecttol f~* (2) - XW|; +[g~* (X) - ZV]; <e, (6)



where e represents the error boundary. Again, the pro-
posed data-reconstruction process is similar to that of
conventional autoencoder. The major difference, never-
theless, is that we further minimize the number of internal
weights within the encoder and decoder, that is, apply the
sparse coding to the network structure.

3.3. Classification Using Latent Information. During the
previous stage, the proposed algorithm generates an output
similar to the input as well as optimizing the network
structure by minimizing the number of weights. At this
stage, the latent information (i.e., the output matrix Z from
the encoder) is regarded as the training data for the clas-
sification purposes. We argue that the original data consider
noise or outlines, which might not be suitable for training.
After the process of data reconstruction, the encoder is
trained to capture the characteristic of the original input.
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Consequently, we can utilize this latent information for
training a classifier. Towards this end, assume that the de-
sired output is Y, we consider a sparse linear classifier as
follows:

min [|H|,,subject toY = ZH, (7)

where H is the weight matrix. The reason of applying the
sparse coding for H, again, is to enhance the generalization
capability of the classifier, which has demonstrated the
promising performance in many applications.

3.4. Optimization Process. Overall, by combining the stage of
data reconstruction (from equation (6)) and classification
(from equation (7)), the final loss function for the proposed
SRA algorithm is formulated as follows:

Z = min [Wlly, +IVIl,, +IHl,, subject o] 1 (2) - XW|[; +]g~" (X) = 2V |, +IIY - ZH]? <e. (8)

As such, the training process of the proposed SRA al-
gorithm is formulated and represented using one unique
objective function as eq%lation (8). Among them, the first
term of || /=1 (Z) — XW]||; is used to identify the informative
features, and the second term (i.e., [|g~! (X) — ZVII;) is for
minimizing the data reconstruction error for autoencoders.
The last term is to establish the classification process by the
minimization of |Y - ZH ||§.

Note that there are in total four free variable matrices in
the proposed objective function, including Z (the output for
the encoder), W (the weight matrix within encoder), V' (the
weight matrix for the decoder), and H (the weight matrix for
training the sparse classifier). However, the problem from

equation (8) is nonconvex with respect to all variable ma-
trices, which means we cannot solve them at the same time.
A typical strategy is to adopt the iterative computation to
address (or update) only one variable (i.e., matrix) at one
time, via fixing some others. As such, the optimization
process of equation (8) is split into the following compu-
tational steps.

3.4.1. Update V and H with Fixed Z and W. By fixing Z and
W, the proposed objective function can be expressed as
follows:

~ o~ . _ 2
V,H = argmin(||V,, +|Hl|,, ) + AVH(H Hly|lg™" () - zv]; +Y - ZH||§), (9)

where Ay is the penalty term for balancing the solution
sparsity (i.e., |V, +IH|,;) and the training error. Al-
ternatively, if we introduce two auxiliary matrices, that is,

-1
R= (g Y(X) ) and A = (I\-/I)’ then equation (9) can be

rewritten as follows:
A = argmin||All,; + Ay lIR - ZA. (10)

The optimization problem from equation (10) then can
be solved using the linearized alternating-direction method
(LADM) [21] as follows:

1
Ap = argmjn E“dk - A”i +adyyllAlly, (11)

where o/, = Ay — aZ" (ZA, - R) and the parameter « sat-
isfies « € (0, (1/]|Z |I§)) for convergence. In addition, we also
introduce the soft-thresholding-based (STB) operator STB,.
That is, for a given matrix X, we have
STB, (X@D) = Xx@/|x@ I, max(IIX(q)II2 —1,0), where Tis a
given constant, and X @ represents the g-th row of the
matrix X. Accordingly, the estimation for A;,; (at the
(k + 1)-th iteration) is given by the following:

(q) (@)
AL = STB () ("), Ve, (12)
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where, again, « and Ay is the controlling and penalty
parameter and &/ kq) represents the g-th row from .

3.4.2. Update Z with Fixed V and H. The original objective
function is converted in the following:

7= argmin"g_1 (X) - ZV”; +]|Y - ZH||§. (13)

Similarly, we can reuse equation (10) by introducing (or
substituting) R and A. Now, with fixed A, the problem
becomes to solve Z under the sparsity constraint of A (i.e.,
[[All,,;). This can be cast as a typical dictionary-learning
process in sparse representation. A great number of research
work have been done on this dictionary-learning topic,
which aims to update the dictionary (Z in our context) via
maintaining the sparsity constraint. In particular, the Online
Dictionary-Learning (ODL) method [22] is adopted in our
study. ODL considers an [,-norm constraint for all columns
from the dictionary, that is, z]TZqE 1, where z; is the j-th
column of Z.

3.4.3. Update W with Fixed V, H, and Z. At last, the
proposed objective function is expressed as follows when V/,
H, and Z are fixed:

min W/, subject to ||f7 Y(2) - XW”z <e. (14)

The aforementioned function has a similar format of
equation (10). As such, we apply the same STB operator to
solve W. More precisely, at the (k+ 1)-th iteration, the
estimation of Wy, is given by the following:

(9) (q)
Wil = STB(T:/MW)(qu ) Vg, (15)

where f§ satisfies 5 € (0, 1/||X||§), Ay is a user-defined penalty
parameter, and 7%, represents the g-th row of the matrix
/% which can be calculated by
Wy =W, —aXT (XW, - f1(2)).

Notably, the above optimization method follows a
typical alternating-direction strategy, from which its con-
vergence analysis can be guaranteed and found in Ref. [23].
That is, the convergence of the proposed algorithm can be
stated as follows.

Theorem 1. Assume at the (k — 1)-th iteration, V_,, H,_,,
and W._, are the indeterminate solution. Using the proposed
algorithm, we have the loss value & (V, H, W) from equation
(8) which decreases and a local minimal can be obtained.

3.5. Summary. From the aforementioned process, a novel
sparse-coding-based autoencoder (termed as SRA) is pro-
posed. This main contribution of our work can be sum-
marized as follows:

(i) We introduce the sparse coding technique to op-
timize the encoder and decoder structure, with the
aim of improving the generalization capability and
identifying informative features.

(ii) The latent information is extracted and cast as an
alternative of the original input, which is further
leveraged for the subsequent classification.

(iii) The proposed algorithm is capable of reconstructing
input data, selecting important features, and
training the classifier simultaneously.

Finally, the proposed algorithm is summarized in
Algorithm 1.

To halt the proposed algorithm, the termination crite-
rion is set either the maximal iteration (K) is reached or the
value of | £}, — L1, ||§/||Zk ||§ is less than a threshold € (from
equation (8)), where € is a user-defined value. As such, the
proposed algorithm iteratively updates W, V, H, and D until
the convergence condition is met.

4. Experimental Results

In this section, we present experimental results following the
application of the proposed autoencoder algorithm for
cancer patients’ survivability prediction. As part of this
process, we first discuss hyper-parameter sensitivity (such as
the scale of latent information) and its impact on the per-
formance of the proposed algorithm. Additionally, identified
key features from the proposed autoencoder are also pre-
sented and investigated. We also compare the proposed
algorithm with other existing methods.

4.1. Experimental Setup. To investigate the problem of
survivability prediction, we employed an open-sourced
public dataset from Surveillance, Epidemiology, and End
Results (i.e., SEER) website (https://seer.cancer.gov/). This
initiative is to ensure high-quality medical data and com-
prehensive information display on cancer, in order to fa-
cilitate various institutions and laboratories to perform their
own research. The cancer-related data have been accumu-
lated since 1973. On the one hand, there are more than 6
types of cancer, including breast and lung, etc. On the other
hand, this dataset covers a wide range of patient profile, such
as demographics, primary tumor site, tumor morphology,
stage at diagnosis, and first course of treatment, to name a
few. Given different versions of SEER (due to the data
updating), in our study, we employ the 2017 version to
consider the relevant data collected between 1973 and 2015.
We further select the breast cancer as our main focus, which
is with 828,457 records and 147 variables.

A sophisticate preprocess is firstly applied to the raw
data, with the aim of removing unnecessary data. For in-
stance, to ensure the reliability of the outcome, the following
exclusion criteria are applied: (i) records with the unknown
year of birth, (ii) records with death due to other than
cancer, and (iii) records with missing survival time. We
turther remove meaningless features, such as patient ID and
features with only one value. For the corrupted SEER data
(with missing values), we then apply the most-frequent
values for the imputation. At last, we select 130 features for
analytical purposes; among them, the feature of “srv_ti-
me_mon” is taken as the output label, which indicates the
survivable time span for a patient. More precisely, we
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categorize the problem of survivability prediction as a binary
classification. That is, the cutting-off value for “srv_time_-
mon” is set as 60. As such, patients survived less than 60
months after diagnosis will be assigned into one class and
with another class for more than 60 months. After the
aforementioned data preprocessing, there are in total
540,138 records remained in our study (i.e., 318,710 records
with “srv_time_mon” > 60 and 221,428 records with < 60).

To evaluate the performance, we firstly introduce four
classification measurements: TP (true positive), TN (true
negative), FP (false positive), and FN (false negative). Table 1
turther explains their detailed calculation. Based on this
confusion matrix, we eventually form sensitivity, precision,
accuracy, and F1 scores to measure the performance of our
proposed model, as follows:

itivit TP
sensitivity = ———,
Y= TP EN)
o TP
recision = ————,
P (TP + FP)
(16)
(TP + TN)
accuracy = >
Y= (TP + FN + TN + FP)
Fl<2x (precision x sensitivity)

(Precision + Sensitivity)’

At last, the entire dataset is randomly partitioned into
two independent sets: a training and testing set. The size of
the training and testing set is set as 80%, and 20%, re-
spectively. Other training parameters are shown in Table 2.

4.2. Performance Validation. In this section, we analyze the
robustness of the proposed algorithm in terms of the scale of
latent information. Again, the raw input data are recon-
structed by the encoder and the latent information is extract
for the final classification. The latent information is repre-
sented by the output from the encoder (or the hidden layer
in the autoencoder), or Z € R¥N, where Q is the input
dimension and N is the number of hidden nodes. As the key
parameter, a bigger value of N might lead to an intensive
computation, while smaller N might be insufficient to
capture enough information for the subsequent training.
Towards this end, we conduct experiments in this section to
evaluate the impact of the scale of latent information (i.e., N)
on the proposed SRA algorithm. In particular, we consider
the value of N based on the proportion of input dimension
(Q), in which the range setting of N is set as
N € [20%,40%, 60%, 80%] (against of Q). On the other
hand, for the subsequent classifier, we implement one
hidden layer with the same number of hidden neurons as N.
The experiments are repeated 30 times, and the comparison
result is shown in Table 3.

From the average results, we notice that with a higher
dimension (larger N), a better training performance is ex-
pected. The reason could be a smaller number of hidden
nodes (i.e., N) results in the information loss, thereby
making it difficult for the classifier. By contrast, the accuracy
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on the testing sets seems to remain relatively stable re-
gardless of the change of N. However, more computational
time is required with the increase of N, due to the larger size
of the autoencoder. As such, in the following experiments,
we adopt N = 40% due to its accurate performance on the
testing set and affordable computational time.

4.3. Feature Justification. In the following section, identified
features from SRA are taken into account by comparing with
manually selected ones. Again, the proposed SRA method
applies the sparse coding technique to optimize the network
structure (assigning the zero value to some weights). By
doing so, features (with nonzero weights) are considered as
most-informative ones and selected. Therefore, we will
analyze those selected features from SRA and compare with
existing work. To make a fair comparison, we take the
number of selected features as 15 in our study.

Firstly, we manually identify 15 common features used
in existing studies for breast cancer survival prediction and
show them in Table 4. Then, we employed a standard
Multiple-Layer Perceptron (MLP) to train on those features,
for which we label as the baseline method. Secondly, we also
run SRA to automatically select the Top-15 features. More
precisely, we select features associated with largest magni-
tudes from W and compare their classification performance
with the baseline method.

Table 5 shows the feature list identified by the proposed
SRA method. Compared with those manually selected fea-
tures in Table 4, there are six common features that have
been identified by both of them, namely, Registry ID, Age at
Diagnosis, Primary site, Tumor Size, Surgery Type, and
Histology. Among them, the Registry ID represents the
geography information for one particular patient. While
patients’ geography detail could carry significant informa-
tion, such as external environment and individual back-
ground, this risk factor contributes to the breast cancer
survival rate. As a result, both methods indicate that the
feature of Registry ID plays a key role in predicting the
survival rate, which is consistent with many existing research
that shows a strong correlation between the disease and
patients’ profile. Similarly, other features, such as Age at
Diagnosis, Primary site, and Histology, also indicate the
identification capability of the proposed SRA method to
select informative features. Nevertheless, our method also
explore more disease-related features, including SITER-
WHO, ICDOTO9V, and CSSCHEMA, etc., which provide
more details about the development of the cancer. For in-
stance, the AYASITERWHO feature is used to record the
Primary site and Histology on adolescent. Therefore,
compared to existing research, the proposed algorithm is
able to identify more disease-related features, instead of
selecting general ones. To verify those features, we further
compare the baseline and our proposed method by evalu-
ating their classification performance.

Figure 3 presents the average test accuracy from these
two methods. Compared to the baseline method, the pro-
posed algorithm achieves a significant improvement in
terms of the higher classification accuracy. For instance, the
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parameters of (A, Ay );
Initialization:
randomly assign values to W, V and H;
calculate the output from the encoder Z = f (XW), where f (-) is the activate function;
for k=1 to K do
(1) Estimate V; and H; with fixed Z,_, and W_, (using equation (12));
(2) Estimate Z; with fixed V; and H; using the ODL method;
(3) Estimate W, with fixed V;, H;, and Z, (using equation (15));
if the predefined termination condition (the threshold €) then

Input: raw training examples X and Y, the number of maximal iterations K, the stopping threshold ¢, and regularization

Stop training;
end
end
Output: Return the optimal solution Wy, V, Hy, and D,.

ALGORITHM 1: Proposed sparse representation-based Autoencoder algorithm.

TaBLE 1: Employed confusion matrix in our study.

. . Actual
Confusion matrix
True False
.. True TP FP
Prediction False FN TN

TaBLE 2: Parameters for the proposed SRA algorithm.

(i) Activation function is Relu;

(ii) Maximum number of training iterations is 200;
(iii) Stopping threshold e is 0.001;

(iv) Regularization parameters A, and Ay, are 0.3.

TABLE 3: Average F1 scores as a function of the changing number of hidden nodes (i.e., N).

N 20% 40% 60% 80%

Train 78.1% 81.2% 82.5% 83.1%
Test 75.8% 80.0% 79.9% 79.7%
Time (seconds) 85.3 89.2 93.5 100.1

TaBLE 4: Manually identified features from existing research.

Feature list [13] (8] [7] [6] [14] [12]
Age at diagnosis N v N N v/
Race i v N

Marital status N N N N
Histology v v v N
Primary site v v v
Laterality v v v

Surgery type v v N v

Lymph node N N N Y N
Tumor size v N v N v v
Grade N N N N
Radiation v v v/ N
Registry ID v/ v

proposed method achieves 80% F1 score, compared to 72.3%
from the baseline approach. The experimental results clearly
show that the proposed method has identified more in-
formative features, than those of manually selected ones.

Again, from the feature list in Table 5, our method seems to
be able to pick up disease-related features, instead of
selecting general ones, thereby resulting in an improvement.

4.4. Comparison with State-of-the-Art Methods. In this
section, the performance of the proposed algorithm is
compared with other state-of-art methods. Four autoen-
coder-based algorithms are introduced here, including
standard autoencoder (SAE) [20], SSAE [16], MG-RNN-AE
[18], and DAE [19], respectively (we have introduced them
in Section 2.2). Additionally, we also employ other ap-
proaches, such as Random Forest (RF [8]), Support Vector
Machine (SVM [11]), and Artificial Neural Network (ANN
(13]).

Note that except SSAE, algorithms of SAE, MG-RNN-
AE, and DAE are designed for data reconstruction, not for
the classification purpose. As such, to make a fair com-
parison with the proposed algorithm, we further manipulate
them as the input for training another ANN. For all
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TaBLE 5: Feature list identified by the proposed SRA method.

Feature list Manual Feature list Manual Feature list Manual
Registry ID v/ Age at diagnosis v/ YR_BRTH
Primary site v/ Histologic type Tumor size v
Site-specific for tumor Surgery type v Histology v
SITERWHO ICDOTOYV ICDOT10V
AYASITERWHO LYMSUBRWHO CSSCHEMA
90.0
85.0
80.0
75.0
(%) 70.0
65.0
60.0
55.0
50.0
Sensitivity Precision Accuracy F1
M Baseline
@ SRA

Ficure 3: Comparison of classification performance (on the testing set) based on selected and SRA-identified features.

TABLE 6: Parameters for various training algorithms.

Algorithms Training parameters

SAE (i) A fully connected three-layer structure with 64 hidden neurons
(i) A fully connected three-layer structure with 300 hidden neurons

SSAE . .
(ii) Aparsity parameter: 0.001

MG-RNN-AE (1) A fully- .cor{nected three-layer structure with 10 hidden neurons
(ii) Regularization parameters: 0.9 and 0.1

DAE (i) A fully connected three-layer structure with 300 hidden neurons

(ii) Regularization parameters: 0.6

(i) The maximum depth per tree: 5
RF (ii) The number of trees: 7
(iii) The percentage of features used per tree: 15%

(i) Regularization parameter: 1
(ii) Kernel function: Radial Basis Function (RBF)

SVM (iii) Kernel coeflicient: 0.01
(iv) Tolerance for stopping criterion: le—3
(v) Maximum number of iterations: 500
(i) A fully connected three-layer structure with 64 hidden neurons
ANN (ii) The RPROP training algorithm with the maximum number of iterations 500

(iii) The activation function is Sigmoid

autoencoder-based methods, we set the training optimizer as
Adam, learning rate as 0.001, and maximum number of
iterations as 200. Other training parameters used are given
accordingly in Table 6.

Figure 4 presents the average training and test accuracy
obtained from different methods, respectively, while the
accuracy standard deviation is also provided. As observed,
the proposed SRA algorithm achieves a significant better
result in terms of classification accuracy, in comparison to
conventional training algorithms. For instance, for those
autoencoder-based methods, on average, they achieve the

result of 72.1% and 68.0% on the training and test sets,
respectively, which is worse than that of classification ac-
curacy from SRA (81.2% and 80.0% on training and testing).
Although the MG-RNN-AE method has performed similar
training results like ours, again the proposed algorithm is
superior than that of MG-RNN-AE on the testing set. The
similar observation is made from the nonautoencoder-based
methods too. More precisely, our proposed method scores
the best training and generalization outcome for prediction,
compared to RF, SVM, and ANN. In addition, we also notice
that the RF method has a notable variance in the testing set,
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FIGURE 4: Average training and test accuracy obtained from different algorithms for the classification tasks.

which might be caused by the way of combining individual
trees to form the final outcome. By contrast, the proposed
method has a relatively stable performance from either the
training and testing sets. Overall, it is empirically confirmed
that the proposed SRA method leads to a significant im-
provement in comparison to other existing methods, in
terms of the prediction accuracy.

In conclusion, it can be empirically confirmed that the
proposed algorithm outperforms existing state-of-the-art
approaches. The main reason is twofold: (i) SRA introduces
the sparse coding technique to optimize the network
structure. By contrast, other autoencoders (such as SAE,
MG-RNN-AE, and DAE) rely on the cross-validation or
trail-and-error to decide their structure, which results in a
poor performance; (ii) SRA utilizes the latent information to
train the final classifier, while traditional methods (including
RF, SVM, and ANN) are directly employed to classify on the
raw inputs. However, we argue that the original data may
consist of noise and outliers that have a negative impact on
training the classifier. As a result, the proposed SRA algo-
rithm achieves an satisfactory classification accuracy, by
integrating the sparse coding for the structure optimization
and training the classifier using the latent information
simultaneously.

5. Conclusion

In this study, we have proposed a novel sparse-coding based
autoencoder (termed as SRA) algorithm for addressing the
problem of cancer survivability prediction. In the real-world

applications, the medical data are subject to some noise
(such as missing values and outliers). As such, traditional
methods find it difficult to predict the survivability span. By
contrast, the proposed SRA method has contributed to the
following improvement:

(i) To apply the sparse coding technique to optimize
the network structure and more importantly, in-
formative features are identified accordingly by
minimizing the number of network weights

(ii) To employ the latent information (i.e., the output
from the encoder) is manipulated as the training
inputs, rather than the original data

(iii) To formulate the training process using one unique
objective function, which is further solved by an
iterative computational strategy

Experiments are conducted and the performance is
evaluated using one of the popular health datasets from
Surveillance, Epidemiology, and End Results (i.e., SEER).
The prediction results clearly indicate a more accurate
outcome from the proposed method, compared to
existing methods. In the future, we plan to apply the
proposed method on other datasets from different do-
mains. We also consider to improve the proposed method
using other optimization methods or data-driven network
structures.
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Data are available from https://seer.cancer.gov/.
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