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Abstract

In 1937 Lothar Collatz stated a conjecture and of 2018, the problem is
still open. Je�rey C. Lagarias published two detailed bibliographies [1, 2]
on the 3x+1 problem, that are periodically annotated. In this paper, we
de�ne the intrinsic algorithm derivated from the original one, and build by
induction the tree which allows to go up in trajectories of naturals by this
algorithm. We de�ne the two-dimensional map M, use it to compute the
�rst iterations of the intrinsic algorithm starting from any odd natural,
and prove the existency of nodes between trajectories.
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1 Intrinsic algorithm of the 3x+ 1 problem

In this section we recall the de�nitions of the Collatz and the reduced Collatz
functions, then we de�ne the step by step algorithm and �nally the intrinsic
algorithm. We use the notations: N∗ = N \ {0} for the set of nonzero naturals,
and O = {2k + 1 | k ∈ N} for the set of odd naturals.

1.1 Recall: Collatz algorithm

The Collatz function is the map fc : N∗ −→ N∗ such that:

∀x ∈ N∗
{
x ≡ 0 (mod 2) =⇒ fc(x) = x/2

x ≡ 1 (mod 2) =⇒ fc(x) = 3x+ 1

The Collatz conjecture states: ∀x ∈ N∗ ∃n ∈ N fnc (x) = 1

We observe the trajectories end in the cycle 4 7→ 2 7→ 1 7→ 4
The Collatz tree looks irregular.
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1.2 Recall: Reduced Collatz algorithm

Let the function ρ : N∗ −→ O such that:
∀(n, k) ∈ N2 ρ (2n (2k + 1)) = 2k + 1

The reduced Collatz function is the map fcr : O −→ O such that:
∀x ∈ O fcr(x) = ρ(3x+ 1)

The Collatz conjecture is equivalent to: ∀x ∈ O ∃n ∈ N fncr(x) = 1

1.3 De�nition: Step by step algorithm

The map fcr de�ned in 1.2 veri�es the properties:

∀k ∈ N


fcr(3 + 4k) = 5 + 6k

fcr(1 + 8k) = 1 + 6k

fcr(5 + 8k) = fcr(1 + 2k)

The classes {3 + 4k | k ∈ N} , {1 + 8k | k ∈ N} , {5 + 8k | k ∈ N} achieving
a partition of odd naturals, these properties are su�cient to de�ne fcr

Let the map fs : O −→ O such that:

∀k ∈ N


fs(3 + 4k) = 5 + 6k

fs(1 + 8k) = 1 + 6k

fs(5 + 8k) = 1 + 2k

The behavior of the algorithm obtained by iteration of fs is same as the one
obtained by iteration of fcr , the only di�erence is that fs inserts steps:

5 + 8k
fcr−−→ fcr(1 + 2k)

5 + 8k
fs−→ 1 + 2k

fs−→ fs(1 + 2k)

The Collatz conjecture is equivalent to: ∀x ∈ O ∃n ∈ N fns (x) = 1

1.4 De�nition: Intrinsic algorithm

Let fs the map de�ned in 1.3

Let ϕ the bijection N −→ O x 7−→ ϕ(x) = 2x+ 1

Let the map f : N −→ N de�ned by: f = ϕ−1◦ fs ◦ϕ

∀k ∈ N


f(1 + 2k) = 2 + 3k

f(4k) = 3k

f(2 + 4k) = k

∀x ∈ N


x ≡ 1 (mod 2) =⇒ f(x) = f1(x) = (3x+ 1)/2

x ≡ 0 (mod 4) =⇒ f(x) = f2(x) = 3x/4

x ≡ 2 (mod 4) =⇒ f(x) = f3(x) = (x− 2)/4

The Collatz conjecture is equivalent to: ∀x ∈ N ∃n ∈ N fn(x) = 0
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Figure 1: Tree of the step by step algorithm fs
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Figure 2: Tree E of the intrinsic algorithm f
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2 Tree of antecedents for the intrinsic algorithm

In this section we construct by induction the tree of antecedents for the intrinsic
algorithm, starting from zero. Any natural x gets the antecedent f−13 (x) = 4x+2
a natural x ≡ 2 (mod 3) gets the second antecedent f−11 (x) = (2x− 1) /3, and
a natural x ≡ 0 (mod 3) gets the second antecedent f−12 (x) = 4x/3. We also
de�ne the binary relation � which express the existency of a common node
between two trajectories by the intrinsic algorithm.

2.1 De�nition: Set E
Let f the map de�ned in 1.4

Let


A0 = {0}
A1 = {2}
∀n ∈ N∗ An+1 = {x ∈ N | f(x) ∈ An}

Let ∀n ∈ N En = A0

⋃
. . .
⋃
An

Let E = Lim n→∞ En

The following statements hold:

∀n ∈ N∗ An = {x ∈ N | (fn(x) = 0) and (∀p ∈ N (p < n) =⇒ (fp(x) 6= 0))}
∀(p, q) ∈ N2 (p 6= q) =⇒ (Ap ∩ Aq = ∅)

The Collatz conjecture is equivalent to: E = N

2.2 De�nition: Binary relation �

Let f the map de�ned in 1.4. We de�ne the binary relation � as follow:

∀(x, y) ∈ N2 : (x� y)⇐⇒
(
∃(p, q) ∈ N2 fp(x) = fq(y)

)
� is re�exive, symmetrical and transitive.
The following fundamental statement holds:

∀ (x, y) ∈ N× E : (x� y) =⇒ (x ∈ E)

where E is the set de�ned in 2.1

3 The two-dimensional map M

In this section we de�ne the bijective two-dimensional map M which is totally
suitable to the 3x+1 problem, and much more natural than the Cantor's bijec-
tion proving N2 equipotent to N. It uses same induction than the Mersenne's
numbers, that is why it is called like that. As usual for the binomial coe�cients
Cpn we note Mk

n = M(n, k) where k is not an exposant.
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3.1 De�nition of the M map

Let the map M : N2−→ N (n, k) 7−→ Mk
n = M(n, k) such that:

∀(n, k) ∈ N2

{
Mk

0 = 2k

Mk
n+1 = 1 + 2×Mk

n

From the theory of arithmetico-geometrical progressions we get immediately:

∀(n, k) ∈ N2 Mk
n = 2n(2k + 1)− 1

The numbers n and k are respectively called class and rank of the natural Mk
n

If the rank k is null we get:

∀n ∈ N M0
n = 2n − 1 = Mn

3.2 The map M is bijective

Proof: Let x ∈ N and y = x + 1 ∈ N∗ According to the fundamental theorem
of arithmetics, the nonzero natural y can be unique way written under the form
y = 2n(2k + 1) with (n, k) ∈ N2, where 2k + 1 is the product of all odd factors.
Therefore x = y−1 can be unique way written under the form x = 2n(2k+1)−1
and �nally ∀x ∈ N ∃! (n, k) ∈ N2 x = Mk

n �

3.3 Property 3.3

From de�nition 3.1 we get:

∀(n, k) ∈ N2 1 + 3×Mk
n+1 = 2×M3k+1

n

4 Intrinsic algorithm for odd numbers

In this section we compute iterations of the intrinsic algorithm starting from
any odd natural, and prove the existency of nodes between trajectories.

4.1 Lemma 4.1:

Let the function f1 : O −→ N x 7→ 3x+1
2 as de�ned in 1.4

The following statement holds:

∀ (n, k) ∈ N2 fn1
(
Mk
n

)
= 3n (2k + 1)− 1

Proof: Let (n, k) ∈ N2 such that Mk
n is an odd number.

By de�nition 3.1 we have: Mk
n ≡ 1 (mod 2)⇐⇒ n 6= 0

By property 3.3 we get: (3×Mk
n + 1)/2 = M3k+1

n−1

Let σ : N→ N i 7−→ σ(i) = 3i+ 1 Then: f1
(
Mk
n

)
= M

σ(k)
n−1

After n iterations: f n1
(
Mk
n

)
= M

σn(k)
0 = 2× σn(k) = 3n(2k + 1)− 1

and this result holds also for n = 0 �

6



4.2 Theorem 4.2:

∀(n, k) ∈ N2


M2k

2n �M2k
2n+1

M2k+1
2n+1 �M2k+1

2n+2

Proof: The lemma 4.1 computed the �rst n iterations of intrinsic algorithm.
We compute now the next iteration, according to de�nition 1.4
There are four cases, following the parity of rank and class.
Let (n, k) ∈ N2

• Case : rank even, class even:

f 2n
(
M2k

2n

)
= 32n(4k + 1)− 1 ≡ 0 (mod 4) =⇒ following step is f2

f 2n+1
(
M2k

2n

)
=
(
32n+1(4k + 1)− 3

)
/4

• Case : rank even, class odd:

f 2n+1
(
M2k

2n+1

)
= 32n+1(4k + 1)− 1 ≡ 2 (mod 4) =⇒ following step is f3

f 2n+2
(
M2k

2n+1

)
=
(
32n+1(4k + 1)− 3

)
/4

• Case : rank odd, class odd:

f 2n+1
(
M2k+1

2n+1

)
= 32n+1(4k + 3)− 1 ≡ 0 (mod 4) =⇒ following step is f2

f 2n+2
(
M2k+1

2n+1

)
=
(
32n+2(4k + 3)− 3

)
/4

• Case : rank odd, class even:

f 2n+2
(
M2k+1

2n+2

)
= 32n+2(4k + 3)− 1 ≡ 2 (mod 4) =⇒ following step is f3

f 2n+3
(
M2k+1

2n+2

)
=
(
32n+2(4k + 3)− 3

)
/4

Therefore we get:


f 2n+1

(
M2k

2n

)
= f 2n+2

(
M2k

2n+1

)
f 2n+2

(
M2k+1

2n+1

)
= f 2n+3(M2k+1

2n+2)

and the de�nition 2.2 achieves the result. �

4.3 Interpretation of theorem 4.2

Let (n, k) ∈ N2 The naturals x = M2k
2n and y = 1+2x = M2k

2n+1 have a common

node in their trajectories by the intrinsic algorithm. Because of the existency

of this node, to prove y ∈ E we do not have to �nd a number i of iterations

such that f i (y) < y. The value of the node can be bigger than the considered

number y, this number is nevertheless connected to the smaller number x. Same

�nding for the numbers M2k+1
2n+1 and M2k+1

2n+2 .
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Figure 3: Illustration of Theorem 4.2
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5 Conclusions

The intrinsic algorithm allows to build by induction the tree E which is
much more regular than the Collatz tree. If we prove E = N then the Collatz
conjecture will be proved. Theorem 4.2 makes us believe in a proof by induction,
where the base (∀x ≤ 2n0 x ∈ E) can be proved with the help of computer, the
number n0 ∈ N being a constant such that we can prove the induction:

∀n ≥ n0 (∀x ≤ 2n x ∈ E) =⇒
(
∀x ≤ 2n+1 x ∈ E

)
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