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Abstract: A lot of data is generated on daily basis which may 

potentially be useful. This data is generally unstructured and 

ambiguous to draw a meaning from it. High quality of 

information can be extracted from this potentially useful data 

typically through devising of patterns and trends in it. This is 

done using Text Mining which includes the initial parsing of the 

unstructured data, processing it and then leading to some 

meaningful and fascinating information hidden in it. This paper 

presents the machine learning techniques for text mining that are 

useful for spam detection in emails. 
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I. INTRODUCTION 

Text Mining is the field that seeks to elicit meaningful-

information from natural-language text. It scrutinizes text to 

elicit information that is useful for an eccentric purpose. As 

compared with data type stored in DBs, text is irregular, 

ambiguous, and tough to process [1]. 

Nowadays every other person is involved in some activity 

that may be offline or online due to which some 

corresponding unstructured data may be generated. For 

example, web-based applications feed the web servers for 

the behavior of its users, person involved in some shopping 

might be buying certain specific type of products at a time, 

specific type of articles or news may be read by a certain 

group of people, certain type of emails or texts may be 

classified as spam by its users and so on. Thus, this 

particular behavior of a person may potentially be used for 

devising information from the collection of such data. This 

inference is drawn based on some patterns found in the 

available sample data and which can further be used in 

making predictions or taking decisions in future [2]. This is 

done in Text Mining using the Machine Learning 

Techniques.  

The goal is, indeed to convert unstructured text into 

structured data format for analysis purpose, via the utilizing 

“natural language processing” (NLP). 

Text mining is a flourishing field that elicits meaningful 

information from text of a human like language or natural 

language text. It can be distinguished as the process of 

scrutinizing text to evoke potential information that is 

helpful for an eccentric purpose. 

Machine learning (ML) is the scientific and the statistical 

study in which computers are used to draw inference 

regarding a task without being given the explicit instructions 

by the programmer. This inference is drawn based on some 

patterns found in the available sample data and which can 

further be used in making predictions or taking decisions in 

future [2]. 
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Fig. 1: Text Mining Process [3] 

II. EMAIL SPAM DETECTION 

The motivation of Email was the multiple users from remote 

locations, joining a central system to store and share data 

and documents from distal terminals. The terrific growth of 

email is due to its negligible cost, high efficiency, and 

concordance with many information types. Email is now 

omnipresent communication approach [4].  

Since its commencement, emailing has speeded-up global 

operations to the heights of economic growth. It is so 

omnipresent in our regular lives that global figure, of daily 

sent emails, has reached 205 billion [6]. However, email 

protocols like “SMTP” and “POP” being easy to use and 

handy to everyone, increases their risk of being misused. 

Usually, plenty of mails are irrelevant, of no use, and un-

demanded, which are normally auto-generated daily. 

Five major email mining tasks are as shown in Fig 2. [5] 

   

 

Fig 2: Email Mining [5] 

Such emails are used for publicizing, crypto-worms, stealing 

user credentials, fake purchase bills, increasing web traffic 

to spiteful websites, loading malicious softwares, crimeware 

etc.  
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 Due to this a lot of time is spent wastefully in handling 

these spams which cause 20 million dollars annual loss 

approximately [6].  

 
 

Fig 3: Generalized Flow Chart for Spam Mail Detection 

[7] 

The spam arrival also incurs memory wastage on servers 

that adds up to extra cost to either the user or to the 

company even being of no use completely. This leads to 

purchasing of additional extra storage after a period of time. 

The storage size gets compounded exponentially with same 

email client being used by many users. [6] 

Due to spams, important mails may be overlooked or may 

be deleted accidentally. As an important and common means 

of communication at each level of an enterprise, everyone 

depends upon email and the presence of spam influences an 

organisation on all levels. [6] 

A. Effects of Spam 

Besides being annoying, spam is also risky to its users. 

Spam mail are undesired and not requested by the users. 

These are normally sent to many people with malicious 

intent. Source or the sender can be anonymous or masked by 

some false mailing address. Additionally, no provision is 

available to unsubscribe such fake mails. [8] 

Spam’s negative consequences [7]: 

• Direct Impacts 

Spam is now avenue to trade in cheap goods, to plant 

malwares and viruses, to con people and so on. These 

directly impacts on the victims. The victim’s computer can 

be used for cyber-attacks or other malicious activities. 

Additionally, the victim’s imposition can be used in false or 

criminal activities. 

• Network’s Resource Exhaustion 

Spam leads to email traffic. This traffic exhausts network 

storage and bandwidth. This leads to improper delivery or 

packets loss in transmission.  

• Human Resource Exhaustion 

Along with network bandwidth exhaustion, spams require a 

lot of human efforts in context of time wastage that happens 

due to the time spent in distinguishing normal mails from 

spams. The effects are increased even more when ham mails 

look like spam. 

B. Machine Learning Classifiers 

Spam mails are extensively spreading out daily and these 

cause a exigent loss. To prevent these spams many ways are 

present including ML [8].  

 

Following are a few ML classifiers: “[5] 

 Support Vector Machine” 

These are binary classifiers which in emails context 

segregates emails into two classes (“spam” and “non spam”) 

using hyperplane. That hyperplane is aimed for which can 

enlarge the gap between the two classes. [9] 

 Naïve Bayes 

These classifiers are omni present in spam detection area. 

These presume that the features values to be statistically 

independent. Email terms are extracted as features and the 

precision can be improved by attaching more features, like 

considering mail attachments and sender’s domain in 

address. [10] 

 Decision Tree 

It is a “divide-and-conquer” approach, which creates a 

learning problem from a given self-reliant instances set. 

Here, the tree’s root node depicts a condition or problem 

statement which has one or more solutions. Each solution 

further rises a problem set that resolves to the final. [11] 

 Linear Regression 

In it, some continuous quantity or variable is predicted. This 

is usually done by visualizing the relation between the 

dependent and independent variables. For eg. Predicted 

price vs Actual Price of some product over a period of time. 

In this we have to predict the dependent variable (Y) value 

on the basis of the dependent variable (X). It is generally 

used while predicting a continuous quantity. This dependent 

variable is always continuous in Regression Model. [12] The 

independent variable can be discrete or continuous. It can be 

represented by: 

                

 

Fig. 4: Linear Regression [13] 

 Association Rule-based 

It is based on of “IF-THEN” rules instead of feature vectors. 

[14] For example: 

IF “word FREE appears in subject” OR “word !!!! appears 

in subject”  
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THEN “the email is spam”. 

Here we define two terms: 

o                  
                    

           
 

o           
                        

               
 

III. LITERATURE SURVEY 

Using the machine learning algorithms under a supervised 

environment will train the system to classify emails as spam 

or ham. Also, as the training data is provided by the user, so 

the system is customized according to the user requirements 

for the classification of emails. This increases the security 

and productivity of the user. 

These are some scholarly works related to this domain: 

Aakash Atul Alurkar et al. (2017) proposes the emails 

classification using a ML approach which automatically 

recognizes the necessary features using various parameters 

more accurately. Its aim is to group main emails plus it 

blocks the spams. [6] 

N Shajideen and Bindu V (2018) in [15] have presented 

ML classifiers SVM (Support Vector Machine), NB (Naïve 

Bayes) and J48 and also evaluated various parameters. This 

found SVM’s False Positive Rate and accuracy are best. 

Linda Huang, Julia Jia et al. (2018) enhanced Naive 

Bayes Spam Filter’s accuracy and also implemented spam 

encryptions. They also analyzed challenges for individuals 

and companies by spam mails. [16] 

S. Bhalero and M. Dalal (2017) have redesigned the SOAP 

[10] (Social network Aided Personalized and effective spam 

filter) method based on RBF (Radial Basis Function) neural 

classifier to represent the better spam filtering technique 

ISOAP (Improved SOAP) which out performs SOAP. [17] 

Wanqing You et.al (2015) presented content based anti-

spam filter using Enron Spam Dataset and “Naïve Thomas 

Bayes” technique. [18] 

N Shajideen and Bindu V (2018) discussed a new 

ontology-based spam filtering method which prioritize 

personal interests and spam emails are classified on the basis 

of user profile preferences. Unlike conventional techniques, 

where the users don’t have mail access control. [19] 

In [20], G. Caruana and M. Li (2012) presented various 

computing application like “peer-to-peer computing”, “grid 

computing”, “semantic web” and “social networking” for 

spam filtering.  

In [21], R. Shams et al. (2013) utilizes text features by its 

frequency and HTML tags for spam detection. They 

introduced “language centric features” such as grammar and 

errors in spelling, noticing alpha-numerics and verbs and 

“inverse sentence frequency”. They used – “Random Forest, 

BAGGING, ADABOOSTM1, Support Vector Machine and 

Naive Bayes”.  

In [22], N. O. F. Elssied et al. (2014) considered “one-way 

ANOVA”, “F-test” as a feature selection and “SVM based 

on poly kernel” as spam classifier. 

K. Kowsari, D. E. Brown, et al. (2017) [23] did the 

hierarchical classification using “Hierarchical Deep 

Learning for Text classification” (HDLTex) which uses 

deep learning architectures and thus specialized 

understanding is provided at each document hierarchy level. 

S. Saha et al. (2019) classified using spam mail using: 

“Naïve Bayes, SMO, J48, and random forest” in the 4601 

instances data set. Classifiers are analysed and compared 

depending on their performance leading to “random forest 

technique” with max-accuracy, max-weighted precision, 

max-weighted recall, and max-weighted F-measure of 

95.50. On the basis of execution time metrics Naive Bayes 

performs best. [24] 

A. Barushka and Petr Hajek (2019) used “word 

embedding methods” to achieve better results in “review-

spam detection”. As per results the proposed “DNN and 

content-based approach” has best accuracy. [25] 

A. Barushka and Petr Hajek (2018) in [26], proposed a 

spam filter that outperformed various approaches including 

“Minimum description length”, “Factorial design analysis 

using SVM and NB”, “Incremental learning with C4.5 

decision tree”, “Voting”, “Random Forest” and 

“Convolutional neural network”. This out performance was 

observed on all under-observation-datasets. This leads us to 

the fact that deep NNs is a promising spam filter technique. 

The results additionally proposed that increasing so many 

units and hidden layers would introduce training data noise 

and finally causing poor generalization in performance. 

A. Barushka and Petr Hajek (2018) in [27] depicted 

“ensemble learning algorithms with DNN” as the base 

learner is more accurate than “state-of-the-art spam filtering 

methods”. From results we know that “bagging algorithm 

trained with DNNs” achieved high accuracy and best results 

on both classes. This is attributed to the “bagging” capacity 

in reducing the over-fitting risk. 

Maryam Shuaib et al. (2019) in [28] proposed the use of a 

“meta-heuristic optimization algorithm”, the “whale 

optimization algorithm” (WOA), for the features selection in 

the email corpus and “rotation forest algorithm” for 

classifying email spams. Complete datasets were used, and 

the “rotation forest algorithm” evaluation was done afore 

and after feature selection.  

Nida Mirza et al. (2017) tried to find “data mining 

techniques” based best spam-classifier. Bayesian Naïve 

Classifier is used and word extraction is done using the 

word count algorithm. According to results, “Naïve 

Bayesian Classifier” produces a better solution than 

“Support Vector Machine” [29]. 

Maria Habib et al. (2018) proposed spam detection based 

on “Genetic Programming” (GP) combined with “Synthetic 

Minority Over-sampling Technique” (SMOTE). It is applied 

and hence tested on two benchmark email corpora. Then it is 

tested on four classifiers using four measures: “accuracy, 

recall, precision and G-mean”. As per the results “GP 

combined with SMOTE” can effectively do spam 

classification outperforming common classification 

methods. [30] 

Sunday Olusanya Olatunji (2017) in [31] proposed email 

spam detector based on “SVM classifier”. It is trained and 

then tested employing popular and standard database. This 

spam detector comes up with 3.11% improvement over the 

“negative selection algorithm” (NSA) with “particle swarm 

optimization” (PSO) i.e. NSA–PSO hybrid scheme. 

V. Gupta et al. (2018) introduced ensemble learning 

technique in [32] to detect textual-spam. In this method, 

“voting classifier” is used and comparison with different 

“supervised and unsupervised classifier” is done. Final 

result shows that the max-accuracy is acquired when 

“decision tree, Gaussian Naive Bayes classifier,  
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and Bernoulli Naive Bayes classifier” are used in “voting 

classifier”. 

IV. CONCLUSION 

Email has become indispensable in our lives. Spam filtering 

is email prioritization kind that concentrates on classifying 

emails as spam and ham. This is important at both 

organizational level and individual level. For the 

organization it reduces burden on the server and increases 

the trustworthiness for the organization among its users. For 

an individual a secure email client is always desirable that 

ensures greater security. This paper presents several 

techniques that may be used for spam classification as well 

as provide the related work of various contemporary 

scholars on the spam classification. 

V. RESULT 

This paper presents various contemporary work in “spam 

filtering in emails” along with the prevalent “ML 

techniques”. Email is now omnipresent communication 

approach which connects distal terminals to allow them 

sharing document and other data. But its protocols being 

easy and handy makes it prone to be misused. Also, the total 

email data is generated in a huge quantity on daily basis. 

Further there is the need to convert unstructured text into 

structured data format for analysis purpose. Afterwards, 

spam filtering is used for email prioritization to classify 

emails using “ML techniques” in order to save resources and 

to avoid time wastage.  
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