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These notes provide an introduction to perturbation theory and coupled-cluster theory for
ground-state electron correlation. For general reference on this subject, see e.g. Refs. [1, 2].

1 Review of the many-body problem

1.1 The Hamiltonian and the many-body wave function

We consider a N -electron system (atom, molecule, solid) in the Born-Oppenheimer and non-
relativistic approximations. The electronic Hamiltonian in the position representation is, in
atomic units,

H(r1, r2, ..., rN ) =
N
∑

i

h(ri) +
1

2

N
∑

i

N
∑

i 6=j

1

|ri − rj |
, (1)

where h(ri) = −(1/2)∇2
ri
+vne(ri) is the one-electron contribution composed of the kinetic-energy

operator and of the nuclei-electron interaction vne(ri) = −∑α Zα/|ri −Rα| (where Rα and Zα

are the positions and charges of the nuclei). The stationary electronic states are determined by
the time-independent Schrödinger equation

H(r1, r2, ..., rN )Ψ(x1,x2, ...,xN ) = EΨ(x1,x2, ...,xN ), (2)

where Ψ(x1,x2, ...,xN ) is a wave function written with space-spin coordinates xi = (ri, σi) (with
ri ∈ R

3 and σi =↑ or ↓) which is antisymmetric with respect to the exchange of two coordinates,
and E is the associated energy. Using Dirac notations, the Schrödinger equation (2) can be
rewritten in a convenient representation-independent formalism nuclei-electron interaction

Ĥ|Ψ〉 = E|Ψ〉. (3)

We are interested in calculating an approximation for the wave function Ψ and the associated
energy E of a specific state, most often the ground-state wave function Ψ0 and the ground-state
energy E0.

1.2 The Hartree-Fock approximation

The Hartree-Fock (HF) method1 consists in approximating the ground-state wave function
as a single Slater determinant, Ψ0 ≈ Φ0,

Φ0(x1,x2, ...,xN ) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

χ1(x1) χ2(x1) · · · χN (x1)
χ1(x2) χ2(x2) · · · χN (x2)

...
...

. . .
...

χ1(xN ) χ2(xN ) · · · χN (xN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (4)

where χi(x) are orthonormal spin orbitals. The HF total electronic energy, EHF = 〈Φ0|Ĥ|Φ0〉,
can be expressed in terms of integrals over these spin orbitals, using Slater’s rules for calculating
expectation values over Slater determinants,

EHF = 〈Φ0|Ĥ|Φ0〉 =
occ
∑

a

haa +
1

2

occ
∑

a,b

〈ab||ab〉, (5)

1We present here the unrestricted Hartree-Fock (UHF) method, in which the spatial part of the ↑- and ↓-spin
orbitals are allowed to be different, which generally leads to the breaking of Ŝ

2 symmetry. By contrast, the
restricted Hartree-Fock (RHF) method imposes Ŝ2 symmetry by constraining the spatial part of the ↑- and ↓-spin
orbitals to be the same.
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where the sums over a and b are over occupied spin orbitals. In this expression, haa are the
one-electron integrals

haa =

∫

dx χ∗
a(x)h(r)χa(x), (6)

and 〈ab||ab〉 = 〈ab|ab〉 − 〈ab|ba〉 are the antisymmetrized two-electron integrals (in physicists’
notation) where

〈ij|kl〉 =
∫∫

dx1dx2

χ∗
i (x1)χ

∗
j (x2)χk(x1)χl(x2)

|r2 − r1|
. (7)

The spin orbitals are determined by minimizing the HF energy subject to the normalization
constraints

min
{χa}

{

EHF[{χa}]−
occ
∑

a

εa〈χa|χa〉
}

, (8)

where εa are the orbital energies playing the role of Lagrange multipliers for the normalization
constraints. This minimization leads to the HF eigenvalue equations

f(x)χi(x) = εiχi(x), (9)

which determine both the occupied and virtual spin orbitals χi(x) and associated orbital energies
εi. In these equations, f(x) is the one-electron HF Hamiltonian (or often called simply Fock
Hamiltonian)

f(x) = h(r) + vHF(x), (10)

where vHF(x) is the one-electron HF potential operator

vHF(x) =
occ
∑

a

Ja(x)−Ka(x), (11)

composed of a Coulomb (or Hartree) operator written as

Ja(x1) =

∫

dx2
χ∗
a(x2)χa(x2)

|r2 − r1|
, (12)

and an exchange (or Fock) operator whose action on a spin orbital χi(x1) is given by

Ka(x1)χi(x1) =

∫

dx2
χ∗
a(x2)χi(x2)

|r2 − r1|
χa(x1). (13)

The HF potential vHF(x) is a one-electron mean-field potential approximating the effect of
the two-electron interaction (1/2)

∑N
i

∑N
i 6=j 1/|ri − rj |. In other words, the HF approximation

only accounts for the electron-electron interaction in an averaged, mean-field way. The effect
of the electron-electron interaction beyond the HF approximation is called electron correlation.
The difference between the exact ground-state total energy E0 and the HF total energy EHF is
called the correlation energy

Ec = E0 − EHF. (14)

Even though Ec is usually a small percentage of the total energy, it very often makes a large and
crucial contribution to energy differences (such as reaction energies, reaction barrier heights, ...)
which are the quantities of chemical interest. It is therefore important to go beyond the HF
approximation and calculate the value of the correlation energy, which is the goal of the post-HF
methods.
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1.3 Straightforward configuration-interaction methods

The most straightforward post-HF method is the configuration-interaction (CI) method. In
this method, the wave function is expanded in the basis of the HF determinant Φ0, the single-
excited determinants Φr

a, the double-excited determinants Φrs
ab, and so on

|ΨCI〉 = c0|Φ0〉+
occ
∑

a

vir
∑

r

cra|Φr
a〉+

occ
∑

a<b

vir
∑

r<s

crsab|Φrs
ab〉+ · · · . (15)

The coefficients c = (c0, c
r
a, c

rs
ab, ...) corresponding to the ground-state wave function are found

by minimizing the total CI energy 〈ΨCI|Ĥ|ΨCI〉 with the constraint of the normalization of the
wave function

min
c

{

〈ΨCI|Ĥ|ΨCI〉 − E〈ΨCI|ΨCI〉
}

, (16)

leading to the following eigenvalue equation











〈Φ0|Ĥ|Φ0〉 〈Φ0|Ĥ|Φr
a〉 〈Φ0|Ĥ|Φrs

ab〉 · · ·
〈Φr′

a′ |Ĥ|Φ0〉 〈Φr′

a′ |Ĥ|Φr
a〉 〈Φr′

a′ |Ĥ|Φrs
ab〉 · · ·

〈Φr′s′

a′b′ |Ĥ|Φ0〉 〈Φr′s′

a′b′ |Ĥ|Φr
a〉 〈Φr′s′

a′b′ |Ĥ|Φrs
ab〉 · · ·

...
...

...
. . .





















c0
cra
crsab
...











= E











c0
cra
crsab
...











. (17)

The eigenvector associated to the lowest eigenvalue corresponds to the ground state, whereas
the other eigenvectors correspond to excited states. If all levels of excitations are included (i.e.,
up to N -fold excitations for a N -electron system), then exact wave functions are obtained within
the underlying one-electron basis set used for expanding the orbitals. This is referred to as the
full configuration-interaction (FCI) method. In practice, FCI can only be performed for very
small systems with small basis sets. For most systems, one has to truncate the CI expansion
in Eq. (15) at a given level of excitations for manageable calculations. This is referred to as
truncated CI. Often, only the single and double excitations are included in the expansion, leading
to the configuration-interaction singles doubles (CISD) method.

The truncated CI method has a serious shortcoming. Consider the size consistency property
that the total energy of a system composed of two non-interacting fragments A and B must be
the sum of the total energies of the separate fragments

E(A · · · B) = E(A) + E(B). (18)

This property is particularly important in chemistry since it is often concerned with systems
composed of fragments (atoms, molecules). It is of course satisfied for the exact total energy,
but not necessarily with approximate methods. A method which gives total energies satisfying
this property is said to be size-consistent. For example, the unrestricted HF method is size-
consistent but the restricted HF method is generally not. The FCI method is size-consistent,
but the truncated CI method has the important drawback of being generally not size-consistent.

We will now see two other post-HF approaches which have the advantage of being size-
consistent: perturbation theory and coupled-cluster theory.

4



2 Perturbation theory

This section provides a basic introduction to Møller-Plesset perturbation theory. For a
historical perspective and recent research developments, see e.g. Ref. [3].

2.1 General Rayleigh–Schrödinger perturbation theory

We start by reviewing the general expressions of Rayleigh–Schrödinger perturbation theory.
Consider a Hamiltonian Ĥλ depending on a coupling constant λ

Ĥλ = Ĥ(0) + λV̂ , (19)

where Ĥ(0) is a zeroth-order Hamiltonian operators and V̂ is a perturbation operator. These
two operators are chosen so that the “physical” Hamiltonian of interest corresponds to λ = 1,
i.e. Ĥ = Ĥλ=1 = Ĥ(0) + V̂ . By varying λ from 0 to 1, we can thus go from the zeroth-order
Hamiltonian, Ĥλ=0 = Ĥ(0), to the physical Hamiltonian Ĥλ=1 = Ĥ. We will be ultimately
interested in the value λ = 1.

The zeroth-order Hamiltonian Ĥ(0) is chosen such that its eigenstates Φn and associated

eigenvalues E
(0)
n are known. They of course satisfy the eigenvalue equation

Ĥ(0)|Φn〉 = E(0)
n |Φn〉, (20)

and the eigenstates are chosen to be orthonormal, i.e. 〈Φn|Φm〉 = δn,m. We would like to
determine the eigenstates Ψλ

n and associated eigenvalues Eλ
n of the Hamiltonian Ĥλ

Ĥλ|Ψλ
n〉 = Eλ

n |Ψλ
n〉. (21)

In the following, we will only consider the specific case of the determination of the ground
state Ψλ

0 and its energy Eλ
0 . We assume that the energy can be expanded in powers of λ

Eλ
0 = E

(0)
0 + λE

(1)
0 + λ2E

(2)
0 + · · · , (22)

and, similarly, for the wave function Ψλ
0

|Ψλ
0〉 = |Ψ(0)

0 〉+ λ|Ψ(1)
0 〉+ λ2|Ψ(2)

0 〉+ · · · . (23)

Note that the zeroth-order wave function is just Ψ
(0)
0 = Φ0. We are free to choose the normal-

ization of Ψλ
0 . A convenient choice is the so-called intermediate normalization, i.e. 〈Φ0|Ψλ

0〉 = 1
for all λ. Since the zeroth-order wave function is normalized as 〈Φ0|Φ0〉 = 1, it implies that

〈Φ0|Ψ(i)
0 〉 = 0 for all i ≥ 1, i.e. the wave-function correction at each order is orthogonal to the

zeroth-order wave function.

Inserting Eqs. (22) and (23) into Eq. (21) gives

(

Ĥ(0) + λV̂
)(

|Φ0〉+ λ|Ψ(1)
0 〉+ λ2|Ψ(2)

0 〉+ · · ·
)

=
(

E
(0)
0 + λE

(1)
0 + λ2E

(2)
0 + · · ·

)(

|Φ0〉+ λ|Ψ(1)
0 〉+ λ2|Ψ(2)

0 〉+ · · ·
)

. (24)

Looking at this equation order by order in λ, we obtain at zeroth order

Ĥ(0)|Φ0〉 = E
(0)
0 |Φ0〉, (25)

which is just Eq. (20) for the ground state.
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At first order, we obtain

Ĥ(0)|Ψ(1)
0 〉+ V̂ |Φ0〉 = E

(0)
0 |Ψ(1)

0 〉+ E
(1)
0 |Φ0〉. (26)

Projecting this equation on the bra state 〈Φ0|, and using 〈Φ0|Ĥ(0) = E
(0)
0 〈Φ0| and 〈Φ0|Ψ(1)

0 〉 = 0,
gives the first-order energy correction

E
(1)
0 = 〈Φ0|V̂ |Φ0〉. (27)

Projecting now Eq. (26) on the bra states 〈Φn| for n 6= 0, and using 〈Φn|Ĥ(0) = E
(0)
n 〈Φn| and

〈Φn|Φ0〉 = 0, gives

E(0)
n 〈Φn|Ψ(1)

0 〉+ 〈Φn|V̂ |Φ0〉 = E
(0)
0 〈Φn|Ψ(1)

0 〉, (28)

leading to the projection coefficients of the Ψ
(1)
0 in the basis of Φn

〈Φn|Ψ(1)
0 〉 = − 〈Φn|V̂ |Φ0〉

E
(0)
n − E

(0)
0

, (29)

and, since 〈Φ0|Ψ(1)
0 〉 = 0, it leads to the first-order wave-function correction

|Ψ(1)
0 〉 = −

∑

n 6=0

〈Φn|V̂ |Φ0〉
E

(0)
n − E

(0)
0

|Φn〉. (30)

Similarly, at second order, we obtain

Ĥ(0)|Ψ(2)
0 〉+ V̂ |Ψ(1)

0 〉 = E
(0)
0 |Ψ(2)

0 〉+ E
(1)
0 |Ψ(1)

0 〉+ E
(2)
0 |Φ0〉. (31)

Projecting this equation on the bra state 〈Φ0|, and using 〈Φ0|Ĥ(0) = E
(0)
0 〈Φ0| and 〈Φ0|Ψ(1)

0 〉 =
〈Φ0|Ψ(2)

0 〉 = 0, gives the second-order energy correction

E
(2)
0 = 〈Φ0|V̂ |Ψ(1)

0 〉, (32)

or, after using Eq. (30),

E
(2)
0 = −

∑

n 6=0

|〈Φ0|V̂ |Φn〉|2

E
(0)
n − E

(0)
0

. (33)

Note that E
(2)
0 diverges if there is a state Φn (with n 6= 0) of energy E

(0)
n equals to E

(0)
0 , i.e. if

the zeroth-order Hamiltonian Ĥ(0) has a degenerate ground state. In this case, the expansions
in Eqs. (22) and (23) are not valid, and one must instead diagonalize the Hamiltonian in the
degenerate space before applying perturbation theory, which is known as degenerate perturbation
theory.

Exercise 1 : Prove that the third-order energy correction has the following expression

E
(3)
0 = 〈Φ0|V̂ |Ψ(2)

0 〉

=
∑

n,m 6=0

〈Φ0|V̂ |Φn〉〈Φn|V̂ |Φm〉〈Φm|V̂ |Φ0〉
(E

(0)
n − E

(0)
0 )(E

(0)
m − E

(0)
0 )

− E
(1)
0

∑

n 6=0

|〈Φ0|V̂ |Φn〉|2

(E
(0)
n − E

(0)
0 )2

. (34)
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2.2 Møller-Plesset perturbation theory

2.2.1 General spin-unrestricted theory in terms of spin orbitals

Møller-Plesset (MP) perturbation theory is a particular case of Rayleigh–Schrödinger per-
turbation theory for which the zeroth-order Hamiltonian is chosen to be the (many-electron)
Hartree-Fock (sometimes also simply called Fock) Hamiltonian

Ĥ(0) = F̂ , (35)

where the expression of F̂ in the position representation is

F (x1,x2, ...,xN ) =
N
∑

i

f(xi). (36)

The corresponding perturbation operator V̂ is thus the difference between the electron-electron
Coulomb interaction and the HF potential

V (x1,x2, ...,xN ) =
1

2

N
∑

i

N
∑

i 6=j

1

|ri − rj |
−

N
∑

i

vHF(xi). (37)

Zeroth order

The zeroth-order ground-state wave function is the HF single determinant Φ0, and the zeroth-
order excited-state wave functions are the single, double, ... excited determinants Φn = Φr

a,Φ
rs
ab, ....

According to Eq. (9), the zeroth-order ground-state energy E
(0)
0 is given by the sum of occupied

orbital energies

E
(0)
0 =

occ
∑

a

εa. (38)

First order

The first-order energy correction is the expectation value of the HF determinant over the per-
turbation operator, which is calculated according to Slater’s rules,

E
(1)
0 = 〈Φ0|V̂ |Φ0〉

=
1

2

occ
∑

a,b

〈ab||ab〉 −
occ
∑

a

〈a|v̂HF|a〉

= −1

2

occ
∑

a,b

〈ab||ab〉, (39)

where, according to the definition of the HF potential in Eq. (11), we have used the fact that
∑occ

a 〈a|v̂HF|a〉 =
∑occ

a,b 〈ab||ab〉. Therefore, the sum of the zeroth-order energy and first-order
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energy correction just gives back the HF energy

E
(0)
0 + E

(1)
0 =

occ
∑

a

εa −
1

2

occ
∑

a,b

〈ab||ab〉,

=

occ
∑

a

(

haa +

occ
∑

b

〈ab||ab〉
)

− 1

2

occ
∑

a,b

〈ab||ab〉

=
occ
∑

a

haa +
1

2

occ
∑

a,b

〈ab||ab〉

= EHF, (40)

where we have used the fact that εa = haa +
∑occ

b 〈ab||ab〉.

Second order

The second-order energy correction, which is called in this context the second-order Møller-
Plesset (MP2) correlation energy, is

E
(2)
0 = EMP2

c = −
∑

n 6=0

|〈Φ0|V̂ |Φn〉|2

E
(0)
n − E

(0)
0

, (41)

where Φn can be a priori single, double, triple, ... excited determinants. In fact, since V̂ is a
two-body operator, according to Slater’s rules, triple and higher excitations with respect to Φ0

give vanishing matrix elements 〈Φ0|V̂ |Φn〉. In addition, it turns out that single excitations only
give a vanishing contribution

〈Φ0|V̂ |Φr
a〉 =

occ
∑

b

〈ab||rb〉 − 〈a|v̂HF|r〉

=
occ
∑

b

〈ab||rb〉 −
occ
∑

b

〈ab||rb〉

= 0. (42)

It thus remains only the double excitations, Φn = Φrs
ab. Only the two-body part of the pertur-

bation operator gives a non-zero matrix element,

〈Φ0|V̂ |Φrs
ab〉 = 〈ab||rs〉. (43)

Besides, the zeroth-order energy corresponding to the doubly-excited determinants Φrs
ab is

E(0)
n = E

rs,(0)
ab = E

(0)
0 + εr + εs − εa − εb. (44)

Using Eqs. (43) and (44) in Eq. (41), we arrive at the following expression for the MP2 correlation
energy

EMP2
c = −

occ
∑

a<b

vir
∑

r<s

|〈ab||rs〉|2
εr + εs − εa − εb

. (45)

Using the antisymmetry property of the integrals, i.e. 〈ab||rs〉 = −〈ab||sr〉 = −〈ba||rs〉, and the
fact that 〈ab||rs〉 = 0 if a = b or r = s, the MP2 correlation energy can also be written without
constraints in the sums

EMP2
c = −1

4

occ
∑

a,b

vir
∑

r,s

|〈ab||rs〉|2
εr + εs − εa − εb

. (46)
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Note the MP2 correlation energy is always negative. It diverges to −∞ if one energy denominator
εr + εs − εa − εb is zero. This happens for systems with zero HF HOMO-LUMO gap, in which
case MP perturbation theory cannot be applied.

The MP2 total energy is simply defined as EMP2 = EHF+EMP2
c . Since it is not a variational

theory, the MP2 total energy is not necessarily above the exact ground-state total energy. The
MP2 method can be considered as the computationally cheapest post-HF method, and is thus
widely used.

Third order

Similarly, starting from Eq. (34), it can be shown, after much work, that the third-order Møller-
Plesset (MP3) energy correction has the following expression

E
(3)
0 =

1

8

occ
∑

a,b,c,d

vir
∑

r,s

〈ab||rs〉〈rs||cd〉〈cd||ab〉
(εr + εs − εa − εb)(εr + εs − εc − εd)

+
1

8

occ
∑

a,b

vir
∑

r,s,t,u

〈ab||rs〉〈rs||tu〉〈tu||ab〉
(εr + εs − εa − εb)(εt + εu − εa − εb)

+
occ
∑

a,b,c

vir
∑

r,s,t

〈ab||rs〉〈cs||tb〉〈rt||ac〉
(εr + εs − εa − εb)(εr + εt − εa − εc)

. (47)

The calculation of the third- or higher-order terms is often considered as not worthwhile in
comparison with coupled-cluster methods for example.

When starting from an unrestricted HF calculation, MP perturbation theory is correctly size
consistent at each order. This is a consequence of the fact that the energy correction at each
order cannot be factorized in uncoupled sums. This coupling between all the orbital indices is
an expression of the linked-cluster theorem.

2.2.2 Spin-restricted theory in terms of spatial orbitals for closed-shell systems

For closed-shell systems, with spin-singlet symmetry, the MP2 correlation energy expression
can be simplified by summing over the spin coordinates. One can first rewrite Eq. (46) as

EMP2
c = −1

4

occ
∑

a,b

vir
∑

r,s

|〈ab|rs〉 − 〈ab|sr〉|2
εr + εs − εa − εb

= −1

4

occ
∑

a,b

vir
∑

r,s

(〈ab|rs〉 − 〈ab|sr〉) (〈rs|ab〉 − 〈sr|ab〉)
εr + εs − εa − εb

= −1

2

occ
∑

a,b

vir
∑

r,s

〈ab|rs〉〈rs|ab〉 − 〈ab|rs〉〈rs|ba〉
εr + εs − εa − εb

, (48)

where the last line has been obtained by expanding, using the permutation symmetry property
of the integrals such as 〈sr|ab〉 = 〈rs|ba〉, and exchanging the dummy indices such as r and s in
the summation. We can now perform the summations over the spin coordinates. After paying
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attention to whether the spin integration in the two-electron integrals gives 0 or 1, we arrive at

EMP2
c = −

spt occ
∑

a,b

spt vir
∑

r,s

2〈ab|rs〉〈rs|ab〉 − 〈ab|rs〉〈rs|ba〉
εr + εs − εa − εb

,

= −
spt occ
∑

a,b

spt vir
∑

r,s

〈ab|rs〉 [2〈rs|ab〉 − 〈rs|ba〉]
εr + εs − εa − εb

, (49)

where a, b and r, s refer now to spatial occupied and virtual orbitals, respectively. This last
expression is also frequently given using chemists’ notation for the two-electron integrals (ij|kl) =
〈ik|jl〉

EMP2
c = −

spt occ
∑

a,b

spt vir
∑

r,s

(ar|bs) [2(ra|sb)− (rb|sa)]
εr + εs − εa − εb

. (50)

Exercise 2 : Write down the MP2 correlation energy expression for the case of the H2

molecule in a minimal basis (orbitals: 1 = σg, 2 = σu). What happens in the dissociation
limit?

2.2.3 Diagrammatic representation of perturbation theory

The various terms appearing in perturbation theory can be conveniently represented by Feyn-
man diagrams, used in many areas of many-body theory. In quantum chemistry, the particular
kind of diagrams most often used are called Goldstone diagrams.

For example, the spin-orbital expression of the MP2 correlation energy written in Eq. (48)
as the sum of a direct and exchange term

EMP2
c = −1

2

occ
∑

a,b

vir
∑

r,s

〈ab|rs〉〈rs|ab〉
εr + εs − εa − εb

+
1

2

occ
∑

a,b

vir
∑

r,s

〈ab|rs〉〈rs|ba〉
εr + εs − εa − εb

, (51)

is represented by the corresponding two diagrams:

EMP2
c = a r s b + a s r

b

Each diagram is made of only three types of lines:

• a full line with a downward arrow representing a occupied spin orbital (a, b, ...), and is
called a hole line;

• a full line with a upward arrow representing a virtual spin orbital (r, s, ...), and is called
a particle line;

• a horizontal dash line representing the Coulomb interaction between four spin orbitals,
and is called an interaction line.
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Each interaction line has two extremities called interaction vertices. Each such interaction
vertex is connected with one full line coming in and one full line coming out of the vertex.

The mathematical expression corresponding to each diagram is obtained by applying the
following rules:

1. each interaction line contributes a two-electron integral factor with spin-orbital indices as
〈orb-left-in, orb-right-in | orb-left-out, orb-right-out〉;

2. each pair of adjacent interaction lines contributes a factor −1/(
∑

εparticle−
∑

εhole) where
the sums are over indices of all particle and hole lines crossing an imaginary line separating
the two adjacent interaction lines;

3. sum over all particle and hole indices;

4. if the diagram is left/right symmetric, there is an overall factor of 1/2;

5. the overall sign is given by (−1)h+l where h and l are the number of hole lines and closed
full-line loops, respectively.

The diagrams do not only provide a visually appealing representation of the perturbation
expansion that one can draw after having derived the mathematical expressions of the pertur-
bation terms. They can also be used to avoid the mathematical derivations. Indeed, one can
first draw all possible diagrams at a given perturbation order, and then translate them into
mathematical expressions.

In the context of diagrammatic perturbation theory, the linked-cluster theorem can be easily
formulated: each diagram contributing to the perturbative expansion of the energy is made
of a single connected piece. Unconnected diagrams do not contribute. This ensures the size
consistency of the perturbative expansion at each order.
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3 Coupled-cluster theory

This section provides a basic introduction to coupled-cluster theory. For more details, its
extension for excited-state calculations, and recent developments, see e.g. Ref. [4].

3.1 The exponential ansatz

In coupled-cluster (CC) theory, one starts by an exponential ansatz for the CC wave function

|ΨCC〉 = eT̂ |Φ0〉, (52)

where |Φ0〉 is the HF wave function, and T̂ is the cluster operator which is the sum of cluster
operators of different excitation levels

T̂ = T̂1 + T̂2 + · · ·+ T̂N . (53)

In this expression, T̂1 is the cluster operator for the single excitations, which can be written in
a second-quantization formalism as

T̂1 =

occ
∑

a

vir
∑

r

tra â†râa, (54)

where tra are the single-excitation cluster amplitudes to be determined, and âa and â†r are an-
nihilation and creation operators for the spin-orbitals a and r, respectively. When the oper-
ator â†râa acts on the HF single determinant |Φ0〉, it generates the single-excited determinant

|Φr
a〉 = â†râa|Φ0〉. Similarly, T̂2 is the cluster operator for the double excitations, which is written

as

T̂2 =
occ
∑

a<b

vir
∑

r<s

trsab â
†
râ

†
sâbâa =

1

4

occ
∑

a,b

vir
∑

r,s

trsab â
†
râ

†
sâbâa, (55)

where trsab are the double-excitation cluster amplitudes to be determined. When the operator

â†râ
†
sâbâa acts on the HF single determinant |Φ0〉, it generates the double-excited determinant

|Φrs
ab〉 = â†râ

†
sâbâa|Φ0〉. The second equality in Eq. (55) comes from imposing to the amplitudes

trsab to be antisymmetric with respect to the exchange of two indices, i.e. trsab = −trsba = −tsrab = tsrba,
and from the anticommutation property of two annihilation operators, i.e. âbâa = −âaâb, or
two creation operators, i.e. â†râ

†
s = −â†sâ

†
r. And so on up to the T̂N cluster operator for N -fold

excitations.

To understand the action of the operator eT̂ on the HF wave function |Φ0〉, one can expand
the exponential and rearrange the operators in terms of excitation levels

eT̂ = 1̂ + T̂ +
T̂ 2

2!
+

T̂ 3

3!
+ · · ·

= 1̂ + Ĉ1 + Ĉ2 + · · ·+ ĈN , (56)

where the operator Ĉ1 generates single excitations, Ĉ2 generates double excitations, etc. Noting
that the cluster operators T̂1, T̂2, ..., T̂N commute with each other, we find for example for the
first four excitation operators

Ĉ1 = T̂1, (57)

Ĉ2 = T̂2 +
1

2
T̂ 2
1 , (58)

12



Ĉ3 = T̂3 + T̂1T̂2 +
1

6
T̂ 3
1 , (59)

Ĉ4 = T̂4 + T̂1T̂3 +
1

2
T̂ 2
2 +

1

2
T̂ 2
1 T̂2 +

1

24
T̂ 4
1 , (60)

and so on. The single excitations are generated only by T̂1. The double excitations can be
generated in two ways: by T̂2 describing a “simultaneous” excitations of two electrons, or by
T̂ 2
1 describing two independent single excitations. The triple excitations can be generated in

three ways: by T̂3 describing a simultaneous excitations of three electrons, by T̂1T̂2 describing
independent single and double excitation, or by T̂ 3

1 three independent single excitations. And
so on. The CC wave function can thus be written as

|ΨCC〉 = |Φ0〉+
occ
∑

a

vir
∑

r

cra|Φr
a〉+

occ
∑

a<b

vir
∑

r<s

crsab|Φrs
ab〉

+
occ
∑

a<b<c

vir
∑

r<s<t

crstabc|Φrst
abc〉+

occ
∑

a<b<c<d

vir
∑

r<s<t<u

crstuabcd|Φrstu
abcd〉+ · · · , (61)

with coefficients related to the cluster amplitudes by

cra = tra, (62)

crsab = trsab + tra ∗ tsb, (63)

crstabc = trstabc + tra ∗ tstbc + tra ∗ tsb ∗ ttc, (64)

crstuabcd = trstuabcd + tra ∗ tstubcd + trsab ∗ ttucd + tra ∗ tsb ∗ ttucd + tra ∗ tsb ∗ ttc ∗ tud , (65)

and so on. In these expressions, ∗ means an antisymmetric product making the resulting coeffi-
cients properly antisymmetric with respect to any exchange of two occupied spin orbitals or two
virtual spin orbitals. For example, we have

tra ∗ tsb = trat
s
b − trbt

s
a, (66)

tra ∗ tstbc = trat
st
bc − trbt

st
ac + trct

st
ab − tsat

rt
bc + tsbt

rt
ac − tsct

rt
ab + ttat

rs
bc − ttbt

rs
ac + ttct

rs
ab, (67)

tra ∗ tsb ∗ ttc = trat
s
bt

t
c − trat

s
ct

t
b − trbt

s
at

t
c − trct

s
bt

t
a + trct

s
at

t
b + trbt

s
ct

t
a, (68)

etc. These expressions can be obtained by starting from Eqs. (57)-(60), introducing the defini-
tions of the cluster operators T̂1, T̂2, ..., and imposing all the constraints of the type a < b < c < d
or r < s < t < u in the sums by using the anticommutation property of the annihilation and
creation operators.

Exercise 3 : Check Eqs. (62)-(68), and find the expressions of tra ∗ tstubcd, t
rs
ab ∗ ttucd, tra ∗ tsb ∗ ttucd,

and tra ∗ tsb ∗ ttc ∗ tud . Warning: the time required to do this exercise is inversely proportional
to your ease with combinatorics.

Thus, the CC wave function contains all excited determinants, just as the FCI wave function.
If the cluster operator T̂ is not truncated, the CC wave function is just a nonlinear reparametriza-
tion of the FCI wave function: optimizing the cluster amplitudes t = (tra, t

rs
ab, t

rst
abc, ...) so as to

minimize the total energy would lead to the FCI wave function. The interest of the CC approach
only appears when the cluster operator is truncated.
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3.2 Truncation of the cluster operator

Let us now consider the truncation of the cluster operator at a given excitation level. For
example, it is frequent to keep only T̂1 and T̂2

T̂ = T̂1 + T̂2, (69)

which is known as coupled-cluster singles doubles (CCSD). The expansion of eT̂ gives

eT̂ = 1̂ + T̂1 +

(

T̂2 +
1

2
T̂ 2
1

)

+

(

T̂1T̂2 +
1

6
T̂ 3
1

)

+

(

1

2
T̂ 2
2 +

1

2
T̂ 2
1 T̂2 +

1

24
T̂ 4
1

)

+ · · · . (70)

Applying this expansion to the HF wave function |Φ0〉, we see that the CCSD wave function
has the same form as in Eq. (61), i.e. it contains all excited determinants with coefficients now
given by

cra = tra, (71)

crsab = trsab + tra ∗ tsb, (72)

crstabc = tra ∗ tstbc + tra ∗ tsb ∗ ttc, (73)

crstuabcd = trsab ∗ ttucd + tra ∗ tsb ∗ ttucd + tra ∗ tsb ∗ ttc ∗ tud , (74)

and so on. In comparison to the untruncated CC case, the coefficients of triple excitations crstabc

are fully determined by only products of single- and double-excitation amplitudes tra and tstbc,
and similarly for the coefficients of quadruple excitations crstuabcd, and all higher-level excitations.
Presumably, the triple-excitation amplitudes trstabc, quadruple-excitation amplitudes trstuabcd, and
higher-level-excitation amplitudes are smaller than the double-excitation amplitude trsab, and
this is thus a reasonable approximation. The CCSD wave function contains much more excited
determinants than the CISD wave function, while keeping the same number of free parameters
t = (tra, t

rs
ab) to optimize.

One big advantage of truncated CC over truncated CI is that truncated CC is size-consistent.
This directly stems from the exponential form of the wave function. Consider a system composed
of two infinitely separated (and thus non-interacting) fragments A and B. Because the orbitals
of each fragments do not overlap, the cluster operator of the system is additively separable,
i.e. T̂A···B = T̂A + T̂B, where T̂A and T̂B are the clusters operators of fragments A and B,
respectively. Moreover, in the case where the HF calculation is size-consistent, the starting HF
wave function is multiplicatively separable |ΦA···B

0 〉 = |ΦA
0 〉⊗|ΦB

0 〉 (where ⊗ is the antisymmetric
tensor product). We can then write

|ΨA···B
CC 〉 = eT̂

A···B |ΦA···B
0 〉

= eT̂
A+T̂B |ΦA

0 〉 ⊗ |ΦB
0 〉

= eT̂
A |ΦA

0 〉 ⊗ eT̂
B |ΦB

0 〉
= |ΨA

CC〉 ⊗ |ΨB
CC〉, (75)

i.e. the CC wave function is multiplicatively separable. This implies in turn that the CC total
energy is additively separable, i.e. the method is size-consistent.
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3.3 The coupled-cluster energy and the coupled-cluster equations

Let us consider an arbitrary truncation level of the cluster operator. The most natural way
to calculate the cluster amplitude t would seem to be by using the variational method, i.e.
minimizing the CC total energy with the normalization constraint, just like in CI,

min
t

{

〈ΨCC|Ĥ|ΨCC〉 − E〈ΨCC|ΨCC〉
}

. (76)

However, the CC wave function includes all excited determinants up to N -fold excitations which
contribute to these expectation values, giving too complex equations to be efficiently solved.

A more convenient approach for obtaining the CC energy and amplitudes is the projection
method. In this method, we require that the CC wave function satisfies the Schrödinger equation

(Ĥ − E)|ΨCC〉 = 0, (77)

projected onto the space spanned by the HF determinant 〈Φ0|, and the excited determinants
〈Φr

a|, 〈Φrs
ab|, 〈Φrst

abc|,...
〈Φ0|(Ĥ − E)|ΨCC〉 = 0, (78)

〈Φr
a|(Ĥ − E)|ΨCC〉 = 0, (79)

〈Φrs
ab|(Ĥ − E)|ΨCC〉 = 0, (80)

〈Φrst
abc|(Ĥ − E)|ΨCC〉 = 0, (81)

and so on. Using the expansion of |ΨCC〉 in terms of determinants giving in Eq. (61), we see
that 〈Φ0|ΨCC〉 = 1 due to the orthonormality of the determinants, and thus Eq. (78) directly
gives the CC total energy

E = 〈Φ0|Ĥ|ΨCC〉

= 〈Φ0|Ĥ|Φ0〉+
occ
∑

a

vir
∑

r

cra〈Φ0|Ĥ|Φr
a〉+

occ
∑

a<b

vir
∑

r<s

crsab〈Φ0|Ĥ|Φrs
ab〉, (82)

in which according to Slater’s rules triple and higher excited determinants do not contribute.
Since the first term in Eq. (82) is just the HF total energy EHF = 〈Φ0|Ĥ|Φ0〉, and since the second
term vanishes by virtue of Brillouin’s theorem 〈Φ0|Ĥ|Φr

a〉 = 0, we obtain the CC correlation
energy Ec = E − EHF

Ec =
occ
∑

a<b

vir
∑

r<s

crsab〈Φ0|Ĥ|Φrs
ab〉

=
occ
∑

a<b

vir
∑

r<s

(trsab + tra ∗ tsb)〈ab||rs〉

=
1

4

occ
∑

a,b

vir
∑

r,s

(trsab + 2 trat
s
b)〈ab||rs〉, (83)

where the antisymmetry property of the amplitudes and of the integrals has been used. Thus, at
any truncation level, the expression of the CC correlation energy obtained with the projection
method is quite simple. It only involves matrix elements over double-excited determinants and
only single- and double-excitation amplitudes tra and trsab enter the expression. Except in the

uninteresting case where the cluster operator T̂ is not truncated, the total CC energy obtained
with the projection method is not identical to the one that would have been obtained with the
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variation method of Eq. (76). Consequently, the total CC energy is not necessarily above the
exact ground-state total energy, just as in perturbation theory.

The other equations (79), (80), (81), ... determine the CC amplitudes. They are often more
explicitly written as

〈Φr
a|(Ĥ − E)eT̂ |Φ0〉 = 0, (84)

〈Φrs
ab|(Ĥ − E)eT̂ |Φ0〉 = 0, (85)

〈Φrst
abc|(Ĥ − E)eT̂ |Φ0〉 = 0, (86)

and so on, which are known as the unlinked CC amplitude equations. They represent a system
of coupled nonlinear equations for the amplitudes tra, t

rs
ab, t

rst
abc, etc. To have the same number of

equations as the number of unknown amplitudes, the projection space must correspond to the
truncation level of the cluster operator. For example, for determining the CCSD amplitudes,
one needs to consider projection on to single and double-excited determinants only. In practice,
it is often more convenient to write the CC amplitude equations is a different way, by first

multiplying from the left by the operator e−T̂ in the Schrödinger equation (77) before projecting
on the excited determinants

〈Φr
a|e−T̂ ĤeT̂ |Φ0〉 = 0, (87)

〈Φrs
ab|e−T̂ ĤeT̂ |Φ0〉 = 0, (88)

〈Φrst
abc|e−T̂ ĤeT̂ |Φ0〉 = 0, (89)

and so on, which are known as the linked CC amplitude equations. Although equivalent to
the unlinked equations, the linked equations have the advantage of leading to more compact
expressions which are manifestly size-consistent and at most quartic in the amplitudes (at any
truncation level). This last feature comes from the fact that the Baker-Campbell-Hausdorff

(BCH) expansion of e−T̂ ĤeT̂ exactly terminates at fourth order because Ĥ contains at most a
two-electron operator

e−T̂ ĤeT̂ = Ĥ + [Ĥ, T̂ ] +
1

2!
[[Ĥ, T̂ ], T̂ ] +

1

3!
[[[Ĥ, T̂ ], T̂ ], T̂ ] +

1

4!
[[[[Ĥ, T̂ ], T̂ ], T̂ ], T̂ ]. (90)

3.4 Example: coupled-cluster doubles

As an example, we now write down the complete equations in the simple case of coupled-
cluster doubles (CCD). In this case, the cluster operator only contains double excitations

T̂ = T̂2, (91)

and the CCD wave function thus contains double-excited determinants, quadruple-excited de-
terminants, ...

|ΨCCD〉 = |Φ0〉+
occ
∑

a<b

vir
∑

r<s

trsab|Φrs
ab〉+

occ
∑

a<b<c<d

vir
∑

r<s<t<u

(trsab ∗ ttucd)|Φrstu
abcd〉+ · · · , (92)

where the coefficients of the quadruple excitations are given by the antisymmetrized product of
the coefficients of the double excitations, and so on. The CCD correlation energy is given by

ECCD
c =

occ
∑

a<b

vir
∑

r<s

trsab〈ab||rs〉. (93)
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The double-excitation amplitudes trsab can be determined from the unlinked CC amplitude
equations

〈Φrs
ab|(Ĥ − E)|ΨCCD〉 = 0, (94)

leading to

〈Φrs
ab|Ĥ|Φ0〉+

occ
∑

c<d

vir
∑

t<u

〈Φrs
ab|Ĥ − E|Φtu

cd〉ttucd +
occ
∑

c<d

vir
∑

t<u

〈Φrs
ab|Ĥ|Φrstu

abcd〉(trsab ∗ ttucd) = 0, (95)

where the quadruple-excitation term has been simplified by taking into account that matrix
elements of Ĥ over Slater determinants differing by more than 2 spin orbitals are zero. Using
now 〈Φrs

ab|Ĥ|Φ0〉 = 〈rs||ab〉 and 〈Φrs
ab|Ĥ|Φrstu

abcd〉 = 〈cd||tu〉, and inserting E = EHF + ECCD
c and

replacing ECCD
c by its expression in Eq. (93) gives

〈rs||ab〉+
occ
∑

c<d

vir
∑

t<u

〈Φrs
ab|Ĥ − EHF|Φtu

cd〉ttucd +
occ
∑

c<d

vir
∑

t<u

〈cd||tu〉(trsab ∗ ttucd − trsabt
tu
cd) = 0. (96)

The remaining matrix element is more complicated to calculate. After considering the different
possibilities of equality between the indices a, b and c, d, and between r, s and t, u, it can be
found

〈Φrs
ab|Ĥ − EHF|Φtu

cd〉 = (εr + εs − εa − εb)δab,cdδrs,tu

+〈rs||tu〉δab,cd + 〈cd||ab〉δrs,tu
+〈ds||ub〉δa,cδr,t − 〈cs||ub〉δa,dδr,t
−〈ds||tb〉δa,cδr,u + 〈cs||tb〉δa,dδr,u. (97)

The final CCD amplitude equations are

〈rs||ab〉+ (εr + εs − εa − εb)t
rs
ab +

vir
∑

t<u

〈rs||tu〉ttuab +
occ
∑

c<d

〈cd||ab〉trscd

+

occ
∑

d

vir
∑

u

〈ds||ub〉truad −
occ
∑

c

vir
∑

u

〈cs||ub〉truca −
occ
∑

d

vir
∑

t

〈ds||tb〉ttrad +
occ
∑

c

vir
∑

t

〈cs||tb〉ttrca

+
occ
∑

c<d

vir
∑

t<u

〈cd||tu〉(trsab ∗ ttucd − trsabt
tu
cd) = 0, (98)

which are quadratic equations to be solved iteratively.

It is interesting to consider the expansion of the amplitudes in powers of the electron-electron

interaction: trsab = t
rs,(1)
ab + t

rs,(2)
ab + · · · . The first-order amplitudes are given by

〈rs||ab〉+ (εr + εs − εa − εb)t
rs,(1)
ab = 0, (99)

that is

t
rs,(1)
ab = − 〈rs||ab〉

εr + εs − εa − εb
. (100)

By inserting this expression of t
rs,(1)
ab in the expression of the correlation energy in Eq. (93), we

then recover the MP2 correlation energy

EMP2
c =

occ
∑

a<b

vir
∑

r<s

t
rs,(1)
ab 〈ab||rs〉 = −

occ
∑

a<b

vir
∑

r<s

|〈ab||rs〉|2
εr + εs − εa − εb

. (101)

Thus, CCD correctly reduces to MP2 at second order in the electron-electron interaction.
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