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Abstract

This thesis studies the coded aperture camera, a device consisting of a con-

ventional camera with a modified aperture mask, that enables the recovery

of both depth map and all-in-focus image from a single 2D input image.

Key contributions of this work are the modeling of the statistics of natural

images and the design of efficient blur identification methods in a Bayesian

framework. Two cases are distinguished: 1) when the aperture can be de-

composed in a small set of identical holes, and 2) when the aperture has a

more general configuration. In the first case, the formulation of the prob-

lem incorporates priors about the statistical variation of the texture to avoid

ambiguities in the solution. This allows to bypass the recovery of the sharp

image and concentrate only on estimating depth. In the second case, the

depth reconstruction is addressed via convolutions with a bank of linear

filters. Key advantages over competing methods are the higher numerical

stability and the ability to deal with large blur. The all-in-focus image can

then be recovered by using a deconvolution step with the estimated depth

map. Furthermore, for the purpose of depth estimation alone, the pro-

posed algorithm does not require information about the mask in use. The

comparison with existing algorithms in the literature shows that the pro-

posed methods achieve state-of-the-art performance. This solution is also

extended for the first time to images affected by both defocus and motion

blur and, finally, to video sequences with moving and deformable objects.
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Chapter 1

Introduction

The brick walls are not there to keep us out.

The brick walls are there to give us a chance

to show how badly we want something.

Because the brick walls are there to stop

the people who don‘t want it badly enough.

Randy Pausch [1960-2008]

This thesis presents an investigation on 3D scene reconstruction from 2D images

and videos. The ability to reconstruct a 3D scene is important for cultural heritage

preservation, computer games, movies, and city modelling, but it is fundamental for

autonomous navigation. Applications for autonomous navigation and assisted au-

tonomous navigation include investigating highly-unsafe areas (e.g., fires or radioac-

tive areas), checking line integrity of underwater pipelines, and assisting drivers to

avoid collisions.

One of the most crucial tasks in autonomous navigation is to obtain the 3D infor-

mation of the environment to either avoid or engage with 3D objects in front of the

vehicle. There are several approaches to capture 3D information. The most common

techniques make use of two (stereo) or more cameras to capture different viewpoints

of the scene. Other methods consider systems with active sensors, which provide their

1



1.1 Depth from a Single Image

own energy source for illumination. These systems emit radiation toward the target

of interest, and then measure the radiation reflected by the target.

The widespread use of cameras in mobile phones has generated a strong interest

in reducing the overall camera size. However, smaller imaging devices would also

be beneficial to autonomous systems as they would leave more space to batteries and

weigh less. In this context, multiple camera systems are not desirable. Moreover,

multiple cameras also require additional electronics for synchronization. An active

system may solve the problem of size, but in this case the main drawback is its limited

autonomy: The sensors, in fact, require the generation of a fairly large amount of

energy to adequately illuminate targets. Moreover, active systems are more expensive

than passive systems and do not solve the problem entirely: For example, kinect (a

depth camera recently introduced [99]) works very well indoor, but is not reliable

when used outdoor [76].

Therefore there is a strong interest in studying low-cost systems that can be scaled

and that have limited power requirements. In this context, this thesis looks at passive

approaches to extracting 3D information of a scene from a single camera. Furthermore,

particular attention is given to extracting such information based on a single image

since objects in the scene can move independently of each other. However this is an

extremely challenging problem: Images are the result of a projection of the 3D scene

onto two dimensions. Thus, one dimension is somehow lost in the process. Typically,

one associates the lost dimension to depth, i.e., the distance of an object from the

camera. However, depth is not necessarily lost forever in an image. Indeed, the next

section will illustrate that cameras may be capable of encoding depth in an image by

trading off other visual information.

1.1 Depth from a Single Image

When capturing an image, objects at the focal plane appear sharp while objects located

away from the focal plane appear out-of-focus. For example, Figure 1.1(a) shows three

2



1.1 Depth from a Single Image

(a) (b)

Figure 1.1: In-focus and out-of-focus in a picture. (a) Picture of three persons from [50]:
when the woman is brought into focus, the two men behind her appear out-of-focus. (b)
The original images of the faces of the two men, before being blurred by the camera.

individuals and only one of them is in focus. It is quite challenging to recognize the

two persons in the background. To recover their faces when in-focus (as displayed in

Figure 1.1(b)) starting from the blurred image in Figure 1.1(a), one must know how

much blur has been added by the camera when the picture was captured, and then

remove it. The former task is usually termed blur estimation, while the latter is defined

as image deblurring.

Notice that the amount of blur depends on the distance from the focal plane. For

example, in Figure 1.1(a) the third individual is more blurred than the second one.

Thus if we are able to identify the amount of blur of an object in the image, we

have some information about its distance from the camera. For this reason the blur

estimation task is equivalent to a depth estimation task.

However blur estimation is made challenging by the difficulty of distinguishing

different amounts of blur. In the next section these challenges will be discussed and

an approach to address them outlined.
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1.2 Disadvantages of Conventional Cameras

(a) Out-of-focus

BLU
R

(b) Very likely blur ambiguity (c) In-focus

Figure 1.2: Out-of-focus effect in a conventional camera. Ambiguity when trying to
identify the amount of blur: If we extract a patch from the out-of-focus image (a), this can
be considered to be either a blurred version of the right eye (red box) or a sharp patch
containing the left nostril (green box).

1.2 Disadvantages of Conventional Cameras

Looking at a picture taken with a camera, there are textures that are blurred and

texture that are in-focus but "seem" blurred. For example, consider the out-of-focus

picture of the woman displayed in Figure 1.2(a). The blurred patch of her right eye

can be mistaken for the in-focus patch of her left nostril. This ambiguity comes from

the fact that conventional cameras generate out-of-focus images whose patches may be

very similar to other natural textures; this makes blur identification harder to solve. To

reduce the ambiguity one can modify the blur pattern of a conventional camera so that

it generates an out-of-focus image that is as different as possible from a natural. This

new device is called a coded aperture camera. An example of its output is the image

Figure 1.3(a). In this case the blurred patch of the right eye has a unique solution

(see Figure 1.3(b)). In fact, coded aperture cameras create patterns in the out-of-focus

image that are very different from natural texture, and therefore easier to identify.

1.3 From Autostereograms to the Coded Aperture Camera

The image obtained from a coded aperture device is based on the same principle that

an autostereogram uses to encode the depth information. An autostereogram is a man-
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1.3 From Autostereograms to the Coded Aperture Camera

(a) Out-of-focus

BLUR

(b) Unlikely blur ambiguity (c) In-focus

Figure 1.3: Out-of-focus effect in a coded aperture camera. When using a coded aperture
camera (in this case, the aperture mask is composed by two vertically-displaced holes), the
blur ambiguity is reduced. The patch from the out-of-focus image contains a blur pattern
which is easier to distinguish from the natural texture.

made single image designed to create the visual illusion of a 3D scene from a 2D

image in the human brain. The simplest type of autostereogram, like the one shown

in Figure 1.4, consists of horizontally repeating patterns. The distance between one

repetition and the other gives the 3D information.

In an autostereogram the texture is entirely artificial in order to keep as much

depth information as possible in the image. In our case we cannot modify the texture

of the scene, so there is a trade-off between texture resolution and depth information.

A better understanding of how this technique can be implemented and the changes

needed in the camera system is required. For this purpose one can analyze how the

brain perceives distances through our eyes and how this is used to “see” the 3D scene

in an autostereogram.

1.3.1 3D Perception in the Human Brain

The eye can be compared to a photographic camera. It has an adjustable pupil which

can open (or close) to allow more (or less) light to enter the eye. As with any camera,

the light rays entering through the pupil (aperture in a camera) need to be focused on

a single point on the retina in order to produce a sharp image. The eye achieves this

goal by adjusting a lens behind the cornea to refract light appropriately (Figure 1.5(a)).
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1.3 From Autostereograms to the Coded Aperture Camera

Figure 1.4: Autostereogram. What do you see in the image? To facilitate the 3D percep-
tion, look at the black rectangles. Cross your eyes until you see a third black rectangle
between them and then focus on it. Once you can clearly see the third rectangle, move
your eyes on the image, but make sure you do not change the focus, and observe the
image. Move the head slightly sideways to perceive the depth (the depth map is shown in
Figure 1.7). Image taken from [2].

When a person stares at an object, the two eyeballs rotate sideways to point to

the object of interest, so that it appears at the center of the image formed on each

eye’s retina. When looking at a nearby object, the two eyeballs rotate towards each

other so that their eyesight can converge on the object. This is referred to as cross-eyed

viewing. In contrast, to see a distant object the two eyeballs diverge to become almost

parallel to each other. This is known as wall-eyed viewing (also known informally as

parallel-viewing), where the convergence angle is much smaller than that in a cross-

eyed viewing [93]. Figure 1.5(b) shows how the eye convergence varies depending on

the position of the object of interest. In particular, the convergence angle allows the

brain to calculate distance of objects relative to the point of convergence.
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1.3 From Autostereograms to the Coded Aperture Camera

(a) Focus (b) Convergence

Figure 1.5: Difference between focus and convergence of the eyes. (a) Each eye adjusts
its internal lens to get a clear, focused image; (b) The two eyes converge to point to the
same object. Images taken from [93].

The eyes normally focus and converge at the same distance: When looking at a

distant object, the brain automatically flattens the eye lenses and rotates the two eye-

balls for wall-eyed viewing. It is possible to train the brain to separate the focus point

from the convergence point. This decoupling has no useful purpose in everyday life,

since it prevents the brain from interpreting objects in a coherent manner. However, it

is crucial in order to see an autostereogram, such as the one shown in Figure 1.4. An

observer can construct a 3D interpretation in his or her perception by matching picture

elements along horizontal lines from the image plane. Figure 1.6(a) demonstrates how

this technique works in more detail. By focusing the lenses on a nearby autostere-

ogram where patterns are repeated, and by converging the eyeballs at a distant point

behind the autostereogram image, one can trick the brain into seeing 3D images. If the

patterns received by the two eyes are similar enough, the brain will consider these two

patterns a match and treat them as coming from the same imaginary object located at

the convergence point of the eyes.
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1.3 From Autostereograms to the Coded Aperture Camera

(a) Technique to “see” an autostreogram

camera
lens

camera sensor

focal plane

distance d2

distance d1

(b) Coded aperture camera model

Figure 1.6: From autostereograms to coded aperture camera. (a) Decoupling focus from
convergence tricks the brain into seeing 3D images in a 2D autostereogram. (b) Model of
the simplest coded aperture camera, where the mask is composed by just two holes in the
lens, similar to human eyes.

1.3.2 From Vision to Hardware

This technique can be easily applied to our conventional camera, as shown in Fig-

ure 1.6(b). Instead of using the whole lens when capturing an image, consider only

the light going through two openings, which correspond to the pupils of the human

eyes. The eye lens is represented by the main camera lens, which is now in common

between the two openings.

When reading the autostereograms (Figure 1.6(a)), start from the image and project

the double pattern into the scene to perceive the object at the eye convergence point.

When capturing a picture with our modified camera (Figure 1.6(b)), start from the

point of convergence, which represents the location of the object in the scene, and

record its double image in our camera sensor. The image in the sensor will be the
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1.3 From Autostereograms to the Coded Aperture Camera

(a) Depth map in grayscale (b) Depth map with colors

Figure 1.7: Example of depth map. The depth map of the autostereogram in Figure 1.4
is shown in (a) grayscale and (b) with colors. Depth map is a one-channel image whose
values indicate the distance from the camera.

same (a flipped version, to be precise) of the one that is formed at the focal plane of

the main lens. With this setting all the items placed further than the focal plane will

have a double image, and the distance between the two projections (or repetitions) will

depend on the location of the object in the scene.

Thus, by reporting the values of the distance of the repetitions at each pixel of

the captured image, one can obtain a one-channel image, known as depth map. The

value of a pixel in a depth map represents the relative distance from the focal plane,

where instead the projections coincide. An example of depth map is displayed in

Figure 1.7 in two different formats: grayscale and colored. In Figure 1.7(a) nearer

surfaces are darker, while further surfaces are brighter; In Figure 1.7(b) cold colors

(blue) indicate areas close to the camera, while hot colors (red) indicate distant areas.

This depth map in Figure 1.7 represents the distance of the repetitions of the pattern in

the autostereogram of Figure 1.4, and therefore the 3D scene that the observer’s eyes

should “see”.

We have seen the example with two holes, but this idea can be applied with any

number of openings in the lens: The difference is that there will be several projections
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1.4 Contributions of this Thesis

of the same object in the out-of-focus image, one for each hole that composes the

aperture mask. In general, a mask (a piece of cardboard is sufficient) can be built with

any binary pattern and placed on the main lens of the camera. Essentially, instead of

having the blur created by the whole lens, in a coded aperture camera one can design

a specific pattern for the blur so that it is easier to separate from the natural texture

when there is an out-of-focus image.

1.4 Contributions of this Thesis

This thesis presents an analysis of what aperture masks are optimal for reconstruction

and the corresponding algorithms to obtain it. A key contribution in this approach

is the modelling of the statistics of natural images and the design of efficient blur

identification methods. Two cases are distinguished: When the aperture can be de-

composed in a small set of identical openings (simple patterns), and when it is a more

general configuration (general patterns).

In the first case, the reconstruction of the sharp image is avoided by incorporating

image priors about the local space-varying texture statistics in a Bayesian framework.

Since the problem is formulated as linear in the unknown sharp image, a closed-form

solution can be obtained so that it depends only on the depth map [62].

In the second case, the depth reconstruction is addressed via convolutions with a

bank of linear filters. This approach is in contrast to other competing methods based

on deconvolution. Key advantages are the higher numerical stability and the ability to

deal with large blur. The all-in-focus image can then be recovered by using a decon-

volution step with the estimated depth map. Furthermore, for the purpose of depth

estimation alone, the proposed algorithm does not require calibration as the bank of

filters can be learned directly from blurred images (i.e., one does not need to know the

aperture mask). Results on both synthetic and real data are presented and compared

to existing algorithms in the literature, showing that the proposed methods achieve

state-of-the-art performance, without any user intervention [60]. This approach is also
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1.5 Thesis Structure

2D input 
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Figure 1.8: Depth and image from a single 2D image. The graph represents the steps
which this approach is divided in.

extended for the first time to the other two very challenging situations: 1) an image

affected by both defocus and motion blur [59] and 2) a monocular video sequence,

when moving and deformable objects are present in the scene [61]. For both cases,

successful results are achieved.

Finally, the thesis presents a novel technique to design optical coded apertures,

which is based on a geometrical interpretation of blurred images.

1.5 Thesis Structure

After presenting an overview of the most relevant prior work in Chapter 2, some no-

tions of depth from defocus are recalled in Chapter 3 to describe the image formation

model of a coded aperture camera.

Chapter 4 analyzes the problem of reconstructing both depth and all-in-focus im-

age from a single coded image, and discusses some previous solutions and their lim-

itations. The approach presented in this thesis can be decomposed in different steps,

which are illustrated in Figure 1.8 for the benefit of the reader. The most important

steps of this problem are the depth (or blur) estimation and the image deblurring.

The former step produces a depth map, also referred to as blur scale map since it

is based on a blur scale identification. The values of the map can be easily turned

into real depth values by using the calibration procedure described in the last part of

Chapter 3. Two novel approaches are proposed to solve the depth estimation step, de-
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1.5 Thesis Structure

(a) Input - 2D single coded image (b) Output - 3D image

Figure 1.9: Example of input and output of the proposed technique. (a) a single 2D
image of the scene is captured with the coded aperture camera; (b) the proposed approach
estimates depth and all-in-focus image, which can be combined together in a 3D image
(to be watched with red-cyan glasses).

pending on the pattern of the mask in use: Chapter 5 describes an efficient method for

patterns that can be decomposed in a small set of identical opening; Chapter 6 presents

a method based on a study of subspaces that can deal with any type of pattern in the

aperture mask.

When the depth map has been estimated, the image estimation step can be per-

formed on the coded image, as described in the second part of Chapter 6. Finally,

the information from the depth map and the all-in-focus image can be combined to-

gether in a 3D image (Figure 1.9), which simulates a stereoscopic effect if watched

with red-cyan glasses.

Once successful results are obtained from a single image, the problem is extended

to a more generic scenario where objects can move independently. Chapter 7 considers

the case when both defocus and motion blur affect a single shot, while Chapter 8

investigates how to adapt the proposed approach to a video sequence, and make use

of the information from different frames to improve the quality of the depth maps.

To conclude, a geometric interpretation of blurred images is presented in Chap-

ter 9. Such interpretation enables the design of a coded aperture selection criterion,

which is applied to all the patterns previously used in literature.
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Chapter 2

Literature Overview

Experience is what you get when you didn‘t get what you wanted.

And experience is often the most valuable thing you have to offer.

Randy Pausch [1960-2008]

This chapter provides an overview of the most important related work that has

been carried out in the past, highlighting advantages and limitations of previous ap-

proaches. A large amount of work has been undertaken to solve the problem of esti-

mating both depth and all-in-focus image from multiple defocused images, but there

is a very limited contribution regarding the case when the input is restricted to a single

defocus image.

The chapter is divided in two parts: Section 2.1 contains prior work that has been

carried out with a conventional camera, while Section 2.2 analyzes work where the

aperture of the camera lens has been modified with additional optical elements (Sec-

tion 2.2.1) or with binary aperture masks (Section 2.2.2).

2.1 Depth from Defocus

The previous chapter has introduced the relationship between defocus blur and dis-

tance from the camera. Depth from defocus (DFD) is a technique in which the blur at a

pixel in an image is used to estimate the distance from the lens to the corresponding
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2.1 Depth from Defocus

point on an object. The method requires a set of differently focused images acquired

from a single view point using a single camera.

The most direct approach to DFD is to formulate an image deblurring problem:

This consists on seeking the in-focus image of the scene and the defocus parame-

ters that best reproduce two or more input images acquired at different lens settings.

Since this formulation is based on deconvolution (a well-known ill-posed problem [5]),

and the input data may contain noise, additional smoothness terms are required to

regularize the optimization [28, 79]. Considering the image deblurring as a global

optimization may results on a very intractable problem. Normally deblurring meth-

ods make use of some iterative refinement techniques, such as gradient descent flow

[43], EM-like alternating minimization [26, 38], or simulated annealing [7, 79]. These

methods have the disadvantages of being sensitive to the initial estimate, and may

potentially become trapped in local extrema.

Alternatively, one can factor out the texture of the underlying scene, by estimating

the relative defocus between the input images instead. Finally, if the prior knowledge

of the scene is strong enough, different defocus hypotheses can be directly evaluated

using just a single image.

These methods are divided depending on the number of input images being used:

approaches that require multiple images are described in Section 2.1.1, while those

using only a single image are reviewed in Section 2.1.2.

2.1.1 Using Multiple Images

MRF-Based Models One simplifying approach to image restoration is to discretize

the scene into additive fronto-parallel depth layers. If the layers are modelled as

opaque, then every pixel is assigned to a single depth layer, casting depth recovery

as a combinatorial assignment problem [38, 79]. This problem can be addressed using

a Markov Random Field (MRF) framework [10], based on formulating costs for as-

signing a depth layer (which corresponds to a discrete defocus label) to each pixel, as

well as smoothness costs favouring adjacent pixels with similar depth (or defocus) val-
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2.1 Depth from Defocus

ues. In [79] the authors formulate a spatially-variant model of defocus (Section 3.2.3)

in terms of an MRF, and suggest to optimize the MRF using a simulated annealing

procedure, initialized with a classic window-based DFD method.

Differential Defocus Farid realizes an interesting version of differential DFD [24], by

using specially designed pairs of optical filters that directly measure derivatives with

respect to the aperture size or viewpoint. By comparing the image produced with one

filter, and the spatial derivative of the image generated with another filter, the authors

obtain a scale factor for every point; this can then be related to depth. This method

relies on defocus, otherwise the scale factor will be undefined.

Rational Filters Watanabe and Nayar [100] propose the use of rational filters for

passive DFD. They consider the amplitude ratio between the difference (M) of the

defocused images to their sum (P), and develop a set of broadband filters that model

the M/P ratio as a function of depth. They consider a relatively small 7× 7 kernel.

Although filters are designed in the frequency domain, the depth estimation algorithm

is implemented in the spatial domain, resulting in efficient 2D convolutions. However,

the main drawback of this technique is the filters design procedure. The authors

propose a complicated iterative minimization technique to model the rational filters

for any given defocus condition and any texture frequency.

Very recently, the filter design has been simplified by Raj and Staunton [77]. They

present a novel procedure that avoids the iterative minimization, and results in filters

that are largely insensitive to object texture and model the blur more precisely than

[100].

Orthogonal Filters In [27], Favaro and Soatto show how the problem of estimating

both depth and all-in-focus image from blurred images, can be performed in two

separate steps, without loss of solutions: 1) depth reconstruction first, and then 2)

image deblurring, using the estimated depth. In the first part blur kernel can be

recovered by using a set of orthogonal filters, which characterize the relative defocus
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2.1 Depth from Defocus

at particular calibrated depths. The approach is based on a learning procedure where a

large number of defocused images are combined to recover an operator that describes

a linear subspace (related to a defocus level) and provides invariance to the scene

radiance.

2.1.2 Using a Single Image

Recently, an increasing amount of algorithms have proposed to estimate depth and

deblurred image from just a single defocused image, captured by an uncalibrated

conventional camera: Namboodiri and Chaudhuri [67] estimate defocus blur at edge

locations, by modelling the defocus blur as a heat diffusion process. In contrast, Zhuo

and Sim [109] model the defocus blur as a 2D Gaussian blur. The input image is re-

blurred using a known Gaussian blur kernel and the gradient ratio between input and

re-blurred images is calculated: This ratio gives the blur amount at edge locations;

full depth map is then recovered using the matting interpolation. Good results are

shown on different scenarios, although a user intervention is often adopted to solve

ambiguities in depth estimation. Moreover, the authors do not consider to use depth

maps to deblur the input image.

A re-synthesis application for defocused images is to synthetically increase the

level of defocus, to reproduce the shallow depth of field found in large-aperture SLR

photos. As Bae and Durand show, for the purpose of this simple application, defocus

can be estimated sufficiently well just from cues in a single image [4].

Structured Light. Ma and Staunton describe in [58] a neural-network based ap-

proach to depth reconstruction, when a structured light is projected into the scene.

The proposed solution uses two defocused image and is composed by two-stages:

firstly objects are detected in 2D, and then 3D depth is estimated. The object detection

is performed by a multi-resolution image segmentation to effectively isolate mean-

ingful object regions from the background. Afterwards, a lower resolution image is

fed into a three-layer artificial neural network as feature vectors and then processed to

17



2.1 Depth from Defocus

give a depth estimate. Although the approach requires active illumination, the authors

simulate it by gluing printed texture to the objects.

Another depth estimation method based on projecting structured light pattern into

the scene is analyzed by Crofts in [18]. Edges profiles of the projected pattern are

evaluated in order to obtain high-density depth maps. In the same work, the author

proposes the concept of taking a succession of images whilst moving the light pattern,

in order to increase the spatial resolution of depth estimates.

Active Illumination. Since DFD cannot estimate depth for textureless scene regions,

some methods [32, 68, 66] use active illumination to project a texture onto the scene.

In particular [32, 66] project a pattern on the scene, and its defocus is used to estimate

the depth of the scene from a single image, albeit with blurred boundaries. The main

goal of Girod and Adelson [32] is to determine whether the computed depth lies in

front of, or behind, the focal plane (in other word, deciding the sign of eq.(3.7)). This

is achieved by projecting a pattern consisting of asymmetric shapes. Then, to remove

the pattern from the captured image, the authors suggest using low-pass filtering.

However, such an approach will not work for textured scenes as it will significantly

degrade the quality of the image. In contrast, [66] show that by projecting a grid

of dots on the scene and using ratios of the acquired image with a set of calibration

images, the dots can be removed even for textured scenes, without any noticeable loss

of image quality.

The main limitation of techniques that use active illumination is that they can rarely

be applied to outdoor scenarios.

A different approach to single image depth estimation is proposed by Saxena et

al.[83, 84]. They present a probabilistic model to capture monocular cues and relation

between different parts of the image. Besides defocus, monocular cues include texture

variations (the texture of many objects look different at different distances), direction

of edges (parallel lines appear to be tilted lines in an image) , light and shading.
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2.2 Coded Aperture Systems

2.2 Coded Aperture Systems

The concept of using a coded aperture was first introduced by Dicke [19] and Ables [1].

In the original formulation the single opening of a simple pinhole camera is replaced

by many pinholes (called collectively the aperture) arranged randomly. The original

motivation was to obtain an imaging system able to maintain the high angular reso-

lution of a small single pinhole and, at the same time, to produce images that have

a signal-to-noise ratio (SNR) commensurate with the total open area of the lens aper-

ture. In the past, this technique has been employed notably in astronomy and medical

imaging, especially for x-rays or gamma-rays, because traditional lenses could not be

used at these wavelenghts [29]. Pinhole cameras, in fact, have a couple of advantages

over lenses: they have infinite depth of field and they do not suffer from chromatic

aberration. The biggest problem with pinhole cameras is that they let very little light

through to the film or other detector. This problem can be overcome by making the

holes larger, which unfortunately leads to a bigger blur and hence a decrease in res-

olution. The idea to solve this problem is to find a way to combine the rays entering

the camera in a coded fashion that can be then separated by later decoding. This has

been done with both optical mask and binary mask.

2.2.1 Optical Aperture Mask

Plenoptic cameras instantaneously capture the full light field entering the optical sys-

tem: multiple view-points can so be collected in a single image and the user can adjust

focus and aperture setting after the picture has been taken. The design implemented

first by Ng [69], and successively in [31, 53, 8], trades spatial resolution to capture

directional information about rays entering the optical system. This can also be seen

as splitting the main lens aperture into a number of rectangular area and form a sepa-

rate image from each of these sub-apertures. A typical drawback of this approach is a

severely reduced spatial resolution, where the grid subdivision of the aperture results

in a reduction that is quadratic in the number of samples along one axis. Also, the
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2.2 Coded Aperture Systems

system requires a more costly optical design (e.g., a calibrated microlens array). An

advantage of this approach is that the final image can be a simple linear combination

of recorded data.

Another interesting way of splitting the light entering an optical system is to use

beam splitters to replicate the optical path. Prisms and half-silvered mirrors are typical

elements used to perform this task. In particular, McGuire et al. [63] use different

aperture and focus settings to perform matting. There are two strongest limitations of

these designs: 1) they usually require multiple sensors and 2) they lose light since they

need to rely on occlusion by a mask to select a sub-region of the aperture. Another

quite complex aperture decomposition by using optical elements is presented by Green

et al.[35]: the aperture a split into a central disc and a set of concentric rings. The main

problem for this optical system is that the results strongly depend on the accuracy of

the calibration procedure.

An alternative and very common approach is called wavefront coding: The key idea

is to use aspheric lenses to render the lens point spread function (PSF) depth-invariant.

Then, shift-invariant deblurring with a fixed known blur kernel can be applied to

sharpen the image [21, 44]. However, while the results are quite promising, the PSF is

not fully depth-invariant and artifacts are still present in the reconstructed image.

2.2.2 Binary Aperture Mask

One of the first work using a binary mask is [39], where Hiura and Matsuyama pro-

pose two types of coded apertures and corresponding analysis algorithms: 1D Fourier

analysis to acquire a depth map and a blur-free image from three defocused images

taken with a two-hole aperture mask, and 2D convolution based model matching for

the fast and precise depth measurement using a coded aperture with four holes. Ex-

perimental results show that the coded apertures improve the DFD range estimation

capability for real world scenarios.

More recently, one of the most important contribution in this field comes from

Levin et al.[50], who propose an algorithm to recover both depth and texture from a
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2.3 Summary

single coded image. This is done in two steps: First, a deconvolution algorithm is

applied to hypothesis planes and then, at each pixel, the plane that yields the smallest

image reconstruction error is chosen. An important part of the work is that texture

priors are explicitly formalized in a Bayesian framework and embedded in the de-

convolution procedure. The estimated depth maps (sometimes corrected by the user)

can be used for refocusing the input images, but their range and resolution is fairly

limited. Another important work belongs to Veeraraghavan et al.[98], who designed a

mask to be broadband in the Fourier domain, in order to improve out-of-focus deblur-

ring. All these methods can handle a small amount of blur, but they fail when dealing

with large scale of blur.

Examples of coded aperture systems include also the off-axis camera and the pro-

grammable aperture camera. Dou and Favaro [20] describes the former device as com-

posed by a conventional camera where the aperture can be moved away from the

centre of the lens. The latter camera, presented by Liang et al.[54] allows one to cap-

ture multiple images changing the shape of the lens aperture at each image. Both

devices have been designed and used for reconstructing depth and texture of a static

scene from multiple images, captured from the same view-point.

2.3 Summary

This chapter presents an overview of the most relevant methods that have been de-

veloped in the past to solve the problem of depth and all-in focus image estimation.

This problem can be solved by using a conventional camera or a coded aperture de-

vice. However, coded aperture cameras have received much more attention in the last

years, and recently it has been shown that their use improves performance of both

depth estimation and image deblurring if compared with results from a circular aper-

ture camera, when considering either a pair of images [107] or just a single image [106]

as input.
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Chapter 3

Image Formation Model
of a Coded Aperture Camera

Design is not just what it looks like and

feels like. Design is how it works.

Steve Jobs [1955-2011]

A coded aperture camera is a conventional camera with a mask on the lens. There-

fore, we first need to understand how an image is formed in a conventional camera,

before moving to study the coded aperture device.

The first part of this chapter analyzes the image formation model of a conventional

camera. Every point of an object emits light rays, which travel through the camera

lens to be finally projected into the pixels of the camera sensor (Section 3.1). On the

sensor, the rays might be concentrated all in one pixel (the object is in-focus) or spread

over several pixels (the object is out-of-focus): This effect is called defocus and it can be

modelled in different ways, as described in Section 3.2.

The second part of the chapter examines what changes when a mask is placed on

the main camera lens (Section 3.3). The study of the coded aperture model starts by

considering a mask composed by a single off-axis hole, whose size has to be suffi-

ciently large so that diffraction effect can be ignored (Section 3.3.1). The study pro-
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3.1 Basic Analytic Models

Figure 3.1: Pinhole camera model. Light rays from an object pass through a small hole to
form an inverted (upside-down) image.

ceeds by adding in the model the contribution of several openings that compose the

mask (Section 3.3.2).

Finally, the image formation model is used in Section 3.4 to develop a calibration

toolbox that allows the user to find the optimal camera setting for a given scenario.

The accuracy of the calibration procedure, and therefore of the derived model, is suc-

cessfully tested on real data in Section 3.4.3.

3.1 Basic Analytic Models

3.1.1 Pinhole Camera

The simplest camera model available is the pinhole model, representing an ideal per-

spective camera where everything is in-focus. The pinhole model is specified by its

centre of projection, which is coincident with the infinitesimal pinhole aperture (Fig-

ure 3.1). Every pixel on the view plane corresponds to a single ray from the scene:

The entire captured image is therefore in-focus. Note that the pinhole does not redi-

rect light from the scene, but simply restricts which rays reach the sensor. The most

important setting for a pinhole camera is the distance from the pinhole to the sensor

plane, which can be interpreted as a degenerate form of focus setting: For any pos-

sible distance, the pinhole camera will still generate an image perfectly in-focus, and

moving the sensor plane has the side-effect of magnifying the image [37].

In practice, the pinhole model can be approximated by very small apertures (such

24
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Figure 3.2: Pinhole camera images. Comparison between an image captured with a small
pinhole (left) and an image captured with a large pinhole (right).

as f/22). However, diffraction limits the sharpness that can be achieved with small

apertures (as it will be analysed in Section 3.3.1). Another limitation of small apertures

is that they gather less light, meaning that they require long exposure times or strong

external lighting. We can increase the amount of incoming light by using a larger

pinhole, but the sharpness of the image will be reduced, as shown in Figure 3.2.

Therefore, we need to introduce a lens in the model in order to refocus the image.

3.1.2 Thin Lens Model

Most modern cameras use a lens to focus light onto the view plane (i.e., the camera

sensor). The use of lenses allows one to capture enough light in a period of time that

is sufficiently short so that 1) the objects in the scene do not move and 2) the image is

bright enough to show significant detail over a wide range of intensities and contrasts.

Lens models can be quite complex, especially for compound lens which are present

in most cameras. In this section we consider the simplest case, widely known as the

thin lens model [9, 97]. In the thin lens model, rays of light emitted from a point

P = [x1, y1, z1] in the scene, not too far from the optical axis1, travel along paths

through the lens, converging at a point p = [x0, y0, z0] behind the lens. The key

1Specifically, the thin lens model requires that x1
z1

and y1
z1

are sufficiently small. Wide angle lenses
cause problems for the model, but typical lenses used in digital cameras and considered in this thesis are
fine, e.g., 50 mm or more.
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Figure 3.3: Thin lens model. Imaging of an object by the thin lens model.

parameter controlling this behaviour is called the focal length of the lens. The focal

length F can be defined as the distance behind the lens to which light rays parallel

to the optical axis, i.e.emitted from an infinitely distant source, will converge. More

generally, if z1 is the distance from the centre of the lens to a surface point P on an

object, then, for a focal length F, the rays from P will be in focus at a distance z0 behind

the lens centre, where z1 and z0 satisfy the thin lens equation:

1
F

=
1
z1

+
1
z0

. (3.1)

Note that the rays going through the centre of the lens, also known as principal

rays, are not deflected.

3.1.3 Relationship between Depth and Defocus

If the rays incident on the lens from a given 3D scene point do not converge to a

unique point on the sensor plane, the scene point is considered to be defocused, and the

extent of its defocus can be measured according to the footprint of these rays on the

sensor plane. Conversely, a point on the sensor plane is defocused if not all rays that

converge to that point originate from a single 3D point lying on the scene surface.

As initially defined in [22, 23, 72], the extent of an object’s defocus can be related to

26



3.1 Basic Analytic Models
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Figure 3.4: Depth/defocus relationship. The same object point, placed at different dis-
tances, will be recorded in the image sensor with different sizes of blur, depending on its
distance from the focal plane.

its depth in an imaging system. Figure 3.4 illustrates the geometry of this relationship.

The light rays from an object point P1, placed at a distance u, pass through a spherical

thin lens of radius ra . As the rays from this point converge exactly on the pixel p of

the image plane at distance v from the lens, then we say that the object point P1 is in

focus [18]. If we move the object point from P1 to P2, where the distance from the lens

is u0 > u, the rays converge at a point that is at distance v0 < v from the lens on the

image side: Therefore, when the light rays from object point P2 intercept the image

plane (placed at distance v), the light energy is dispersed to form a defocused blur1 of

radius rb.

A similar situation happens when the object point P2 is moved to a distance u0 < u:

In this case the light rays converge at a distance v0 > v, but they still generate a circular

blur on the image sensor, representing the defocused image of the point P2.

Given the focal length F of the lens, the parameters relative to the object point P2

1The defocus blur will be fully described in Section3.2

27



3.1 Basic Analytic Models

(in Figure 3.4) can be used in the thin lens law, equation (3.1):

1
F

=
1
u0

+
1
v0

. (3.2)

This can be rearranged in an expression that provides the desired object distance u:

u0 =
Fv0

v0 − F
. (3.3)

For an object point where u0 > u (e.g., point P2 in Figure 3.4) and a blur circle is

formed on the image plane, it can be stated that

tan θ =
ra

v0
=

rb
v− v0

. (3.4)

Renaming u0 as depth d [18], and combining equation (3.4) and equation (3.3), we

obtain

d =
Frav

rav− F(ra + rb)
. (3.5)

Therefore, as described in equation (3.5), if we know the camera parameters, we can

estimate the depth by measuring the size of the blur rb.

In the same way, we can rewrite equation (3.5) in order to obtain the blur size of

an object from its distance from the camera d:

rb = ra

�
vd− Fv− Fd

Fd
− 1

�
. (3.6)

For an object point placed at distance u0 < u, we have v0 > v, which introduces a

sign “–" in the right term of equation (3.4). Hence, we can rewrite equation (3.6) in a

more general form as

rb = ± ra

�
vd− Fv− Fd

Fd
− 1

�
, (3.7)

where the “+" sign holds for object placed further than the focal plane u, while the

sign “–" holds for objects placed closer to the lens (u0 < u) [28].
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3.2 Defocus Models

3.2 Defocus Models

In the previous section we have studied how an object point is projected into the image

sensor of the camera. There are two important cases: 1) if the object is placed at the

focal plane, it is represented as a single point in the sensor (in-focus); 2) if the object is

away from the focal plane, we have a defocused representation of it (out-of-focus).

The following sections recall the most common models used for representing the

defocus blur. It starts with the blur from a single point, to then combine together the

contribution from all points of the scene, obtaining the entire image that is formed in

a conventional camera.

3.2.1 Analytic Models of the Blur Kernel

The blur kernel, or point spread function (PSF), describes how the light rays from an

object point are dispersed once they reach the camera sensor; it can be seen also as

the image brightness distribution produced by a point light source, placed at given

distance d from the camera. Since the blur size changes with the location of the object

point (as seen in Section 3.1.3), the PSF is denoted with the symbol hd, to show this

dependency. It is of common use to assume that the blur kernel hd is normalized,

� �
hd(x, y)dxdy = 1, (3.8)

i.e., all the light rays emitted from a given object point are contained in hd.

On the assumption that a typical camera system has a circular aperture, the blurred

image of the point light source is circular in shape. The two most commonly used

analytic models for this type of blur are the pillbox function and the Gaussian function,

which are illustrated in Figure 3.5 [17, 28].

Pillbox defocus model. Based solely on geometric optics, light intensity distribution

within the blur circle is approximately constant. This model is generally known as the

pillbox function. Under the idealization that the aperture is circular, the footprint of
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Figure 3.5: Structure of the Point Spread Function. Pillbox (left) and Gaussian (right)
model used to represent the blur kernel.

a point on the image sensor will be also circular, leading to a cylindrical, or pillbox,

model of defocus [85, 100]:

hd(x, y) =






1
πr2

b
if x2 + y2 ≤ r2

b

0 otherwise
(3.9)

where rb is the radius of the blur circle (see Figure 3.4).

Gaussian defocus model. Although first-order geometric optics predict that defo-

cus within the blur circle should be constant, as in the pillbox function, the combined

effects of such phenomena as diffraction, lens imperfections, and aberrations mean

that a 2D circular Gaussian may be a more accurate model for defocus in practice

[72, 27]:

hd(x, y) =
1

2πσ2 e−
x2+y2

2σ2 (3.10)

where σ is the standard deviation of the Gaussian.

3.2.2 Defocus as Linear Filtering

In computer vision, the dominant approach to defocus is to model it as a form of linear

filtering acting on an ideal in-focus version of the image [37]. The advantage of using

this model is the possibility of describing an observed defocused image, g, as a simple

convolution,

g = hd ∗ f , (3.11)
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where hd is the 2D blur kernel, and f is the ideal pinhole image of the scene. In these

terms, the assumption in equation (3.8) indicate that the intensity of each pixel in f is

still all present in the blurred image g. The model of defocus as linear filtering follows

from Fourier analysis applied to a fronto-parallel scene [88]. The blur kernel acts as a

low-pass filter, so that as the image is defocused, contrast is lost and high frequencies

are rapidly attenuated.

3.2.3 Spatially Variant Filtering

To relax the assumption that the scene consists of a fronto-parallel plane, we can model

the blur kernel as spatially varying, i.e., hd(x,y), corresponding to a scene that is only

locally fronto-parallel [6, 78, 79, 17, 28]. This results in a more general linear filtering,

g(x, y) =
� �

s,t
hd(s,t)(x− s, y− t) f (s, t) ds dt , (3.12)

where (s, t) is the 2D location of a pixel on the in-focus image f , while (x, y) represents

a pixel of the burred image g. Equation (3.12) can be thought of as independently

defocusing every pixel in the sharp image, f , according to varying levels of blur (and

therefore varying levels of depth), and then integrating the results. Note that although

this defocusing model is no longer a simple convolution, it is still linear, since every

pixel g(x, y) is a linear function of f [37].

In practice, smoothness priors are often introduced on the spatially variant blur

d(x, y), corresponding to smoothness priors on the scene geometry [78, 79]. These

priors help to regularize the recovery of f (x, y) from the image formation model of

equation (3.12), and balance reconstruction fidelity against discontinuities in depth.

3.3 Coded Aperture Model

After having studied how an image is formed in the conventional camera, we now

examine the variations on the image formation model when a mask is placed on the

camera lens. Suppose the mask is composed by a single off-axis opening. In this
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Figure 3.6: Geometry of coded aperture camera and example of mask. The model
sketched in (a) is a 2D section of the camera; the red thick line represents the mask.
An example of such a mask is shown in (b).

case, the analysis is similar to the off-axis camera model, introduced in [20]. Fig-

ure 3.6(a) sketches the coded aperture camera as a device composed of: 1) an im-

age plane (camera sensor), 2) a thin lens of focal length F (camera lens), and 3) a

mask formed by N apertures, where each aperture has diameter A and is centred in

C i = [Ci
x Ci

y Ci
z]T ∈ R3, i = 1 . . . N. The distance image plane to lens is denoted by v.

Let P = [Px Py d]T ∈ R3 be a point in space lying on the object of interest; then

the projection of P in the image plane through the aperture i is defined by the pixel

pi = [pi
x pi

y]T as



 pi
x

pi
y



 = −v
d



 Px

Py



 +
�

1− v
v0

� 





 Ci
x

Ci
y



 d− Ci
z



 Px

Py







 1
d− Ci

z
, (3.13)

where

v0 =
Fd

d− F
(3.14)

indicates the distance between the camera lens and the plane where the object P is in

focus (see also the defocus model in Figure 3.4).

Notice that when the image is brought into focus, i.e., when the image plane is at a

distance v = v0, the projection pi coincides exactly with the prospective projection of
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P in a pinhole camera (Section 3.1.1):



 pi
x

pi
y



 = −v
d



 Px

Py



 . (3.15)

Instead, when the image is out-of-focus, i.e.v �= v0, the point P generates a blur disc of

diameter B, that can be computed as the distance of the projection of P through two

opposite points on the aperture edge:

B = A
����1−

v
v0

����
d

d− Ci
z
, (3.16)

which is identical to the well-known formula used in shape from defocus when Cz = 0

(see equation (3.7)), i.e., when the aperture lies on the lens [17, 28].

3.3.1 Diffraction Effects

This analysis considers masks with openings sufficiently large so that diffraction can

be ignored. Indeed, a plane wave of unit intensity and wavelength λ traveling through

a circular aperture of radius ra generates in the far field a Fraunhofer diffraction pat-

tern, also called Airy disk [9], which can be written in terms of the ratio κ = ra/λ and

the Bessel function J1 of the first kind and of the first order, as

I(θ) =
�

2J1(2πκ sin(θ))
2πκ sin(θ)

�2
(3.17)

where θ is the angle between the optical axis passing through the center of the circular

aperture and the line between the center of the circular aperture and the observation

point. Hence, in the coded aperture camera (which is diffraction-limited) one can

consider the first zero of the Airy disk to define the radius of the diffracted beam rβ.

This yields

rβ = 1.22λF#, (3.18)
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where

F# = F/(2ra) (3.19)

is the F-number of the camera, and F is the focal length of the main lens. By using the

Rayleigh criterion, two point sources are considered distinct if they are separated by

at least the radius of the Airy disk rβ. The size of a pixel on the sensor is denoted by

γ. Then, for diffraction to be negligible, one needs

rβ ≤ γ . (3.20)

By rearranging the terms on both sides of the inequality (3.20), and substituting equa-

tion (3.18), the radius of the smallest opening in the mask is given by the following

lower bound

ra ≥ 1.22
Fλ

2γ
≈ 2.79mm , (3.21)

where it is considered F = 50mm, λ = 750nm (red visible light) and γ = 8.2µm. In

other words, at any opening in the mask there must be a disk of radius 2.79mm or

larger in order to avoid diffraction effects. Figure 3.7(a) displays a resolution chart

captured with a conventional camera. A portion of the image is magnified at the right.

The selected region contains a chirp signal that has low frequencies at the top and high

frequencies at the bottom. Figure 3.7(b) shows the chirp signal captured with three

different F# as a 1D plot where the frequency increases going from the left to the right.

The plot shows clearly that when the aperture becomes too small, the captured image

tapers more and more high frequencies due to diffraction effects. The same effect can

be observed for the opposite change in the aperture: As one can see in Figure 3.7(c), as

the aperture becomes too large, the captured image begins to taper high frequencies

again. The optimal value for the F# predicted by Rayleigh criterion is shown with a

black dashed vertical line, while the value found experimentally is shown as a red

dashed vertical line.
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Figure 3.7: Diffraction effects due to pupil intensity transmission changes. (a) Resolu-
tion chart (left) and magnification of the chirp signal (right) used to display the diffraction
effect. (b) Chirp signal displayed as a 1D plot when frequencies increase going from left
to right. The chirp signal is captured with three different F# so that one can appreciate the
tapering effect at high frequencies due to a reduction of the aperture size. (c) The average
amplitude magnification of the chirp signal in images captured with different aperture
sizes (recall equation (3.19)). Notice the tapering effect when the aperture is either too big
or too small. The black and the red dashed vertical lines in (c) indicate the values found
theoretically (by using equation (3.21)) and experimentally respectively.

3.3.2 Superposition in Coded-Aperture Imaging

Under the assumption that the aperture mask is designed to make diffraction effects

negligible, as described in the previous section, the model can now be extended to

approximate an image generated when using with a generic mask.

Assuming that the scene is composed by locally fronto-parallel planes, as seen in

Section 3.2.3, the image g, generated by a single-hole aperture mask can be written as

g(p) =
�

hd(p, q) f (q)dq , ∀p ∈ Ω ⊂ Z2 (3.22)

which is the vectorized form of equation (3.12), where p = [x y]T is the pixel of the

coded image g and q = [s t]T is the pixel of the sharp scene f , placed at a distance d

from the camera. The pictures in Figure 3.8(a) and Figure 3.8(b) are two examples of

images g obtained with such small apertures.

Suppose now that the aperture mask is composed of N identical openings. Because

of the additive properties of light, the observed image can be written as the following
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Figure 3.8: Superposition in coded-aperture imaging (linearity). Left: Images captured
with an aperture mask composed by two horizontal holes: (a) image Ia obtained by keep-
ing only the right hole open, (b) image Ib obtained with only the left hole open, (c) image
Ic captured with both openings. Right: The ratio between the sum Ia + Ib and the image
Ic is shown in both graphs (d) and (e): in (d) the image has been reshaped as a row vector,
while in (e) the pixel-wise ratio is shown as an image in pseudo-color. As one can see, the
image obtained in (c) is very well approximated by the synthetic sum Ia + Ib. The main
discrepancy between these images is due to noise, which is higher in dark regions.

linear combination [55]:

g(p) =
� N

∑
n=1

hd(p + d(q)∆n, q) f (q)dq , ∀p ∈ Ω (3.23)

where {∆n}n=1,...,N denote the 2D centers of the N holes composing the mask. More

in general, the model can be written in a more compact and realistic way as

g(p) =
�

hd(p, q) f (q)dq + w(p), ∀p ∈ Ω (3.24)

by collecting all the effects of the mask in a single PSF, hd(p, q), and by introducing

zero-mean uncorrelated additive Gaussian noise w(y) ∼ N (0, σ2).

The discrete form of equation (3.24) is

g(p) = ∑
q

[hd(p, q) f (q)] + w(p) , (3.25)
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which can be rewritten also with the matrix-vector notation

g =
�
h1 h2 . . . hM

�

� �� �
Hd

·





f1

f2
...

fM










f + w , (3.26)

where M is the total number of pixels in the image and hi is the PSF (ordered as a

column vector) of the i-th pixel of the sharp image f . The matrix Hd is sparse and has

a block-Toeplitz structure [7]. Notice that, by ordering the images g and f as column

vectors, the model can be expressed as a product of matrices, which is very fast to

compute:

g = Hdf + w. (3.27)

Figure 3.8 shows that experimentally the above model is a reasonable approxi-

mation of the image formation process. Examples of PSFs that are typically used to

approximate the image of a circular aperture are the Pillbox function and the Gaus-

sian function, as seen in Section 3.2.1. The algorithms proposed in this thesis are not

restricted to any such function.

3.4 Calibration of the Camera Parameters

The calibration procedure uses the coded camera model, introduced in Section 3.3, to

find the camera setting that yields the best performance in both depth estimation and

image deblurring. In Section 3.4.1 the camera parameters are introduced and linked to

the image formation model, while Section 3.4.2 presents the Matlab-based calibration

toolbox that has been developed. Finally, in Section 3.4.3 some experiments are carried

out to show the accuracy of the calibration, and therefore of the coded aperture model

described in this chapter.
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3.4.1 Camera Parameters

Let P be a generic object point of the scene. Its projection through one of the N

openings of the aperture mask generates a blur disc B. Such blur can be computed by

using equation (3.16). Consider now the projections through all the N openings of the

mask: The image generated by P is a combination of blurred discs that resemble the

shape of the mask. This image corresponds to the PSF, as seen in Section 3.3.

Similarly to the blur size, the size of the PSF, which is denoted as SPSF, can be

defined (in pixel unit) by calculating the distance of the projections of P through the

two furthest apertures in the mask, placed at a distance M (see Figure 3.6(b)):

SPSF =
1
γ

M
����1−

v
v0

����
d

d− Ci
z
, (3.28)

where γ is the physical size of a pixel in the camera sensor. Notice that the size SPSF

changes with d, as anticipated in Section 3.1.3. To determine if an object point P1 is

closer or further that another object point P2 in the scene, it is enough to compare

the size of their respective PSFs. Hence, the accuracy of a depth estimation method

depends on the ability to discriminate PSFs. The purpose of the calibration procedure

is to find the camera setting that maximises the PSF difference for a given scenario.

For the benefit of the reader, in the following there is a list of the parameters

used in the calibration method, and their link with the coded camera model (see also

Figure 3.6):

• Depth range [min-max] - d: minimum and maximum distance of the objects of

interest from the camera lens.

• Focal length - F: focal length of the main lens;

• Mask size - M: measurement between the centres of the two furthest apertures

in the mask.

• Aperture size - A : dimension of each hole that composes the aperture mask;
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• Pixel size - γ: physical dimension of each pixel in the image sensor;

• Distance lens-mask - Cz: distance between the lens and where the mask is placed

(the distance is negative if the mask is placed between the lens and the camera

sensor).

• Downsampled image - λ: ratio between the dimension of the original image and

the input image;

• Subpixel - α: minimum PSF scale difference (in pixels) that can be distinguished

by the depth estimation algorithm (default is 1 pixel);

• Number of depth levels: number of depth levels in the captured scene that can

be distinguished by the proposed algorithm in the ideal case. This amount is

obtained by computing the difference between the biggest and the smallest PSF

sizes generated by object points in the scene:

# levels =
Smax

PSF − Smin
PSF

αλ
+ 1. (3.29)

3.4.2 Matlab Calibration Toolbox

A Matlab-based calibration toolbox has been developed to obtain the best camera

setting for a given scenario and the ideal depth resolution for such setting. The inputs

of the procedure are the system parameters and the depth range, i.e., where the objects

of interests are. In Figure 3.9 a screen shot of the calibration toolbox is shown. The user

inserts the system parameters in the top part of the window, while the bottom part

contains the output graphs. These graphs show how accuracy of the 3D estimation

and the quality of the deblurring are affected by the camera setting.

The first graph at the left uses equation (3.29) to shows the number of depth levels

that are possible to distinguish, depending on the position of the focal plane (the

distance is measured starting from the camera lens). The graph at the centre is based

on equation (3.16) and illustrates how the size of the blur of each hole in the mask
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Figure 3.9: Screen-shot of the calibration toolbox.

changes with the focal plane position: The red line has been calculated by averaging

the blur sizes generated by objects uniformly distributed along the z-axis. The blue

line, instead, considers objects are at the furthest possible location from the camera.

The dashed black line indicates when the blur size corresponds to 1 pixel. The quality

of the image is preserved more when the blur of each single hole stays close to the

dashed black line. In both graphs, the dashed lines indicate the interval where objects

of interest are. Notice that placing the focal plane within this range would result in

ambiguous 3D reconstructions, as outputted in equation (3.7). Hence, the focal plane

will be set before or after the range of interest when capturing the datasets used in

this thesis.

The bottom-right part of the window illustrates the depth resolution: For each depth

d̃ the graph plots (in metres) the next depth increment that results in a detectable

change of PSF size1. In formulas, the resolution of a depth d̃ ∈ [Dmin, Dmax] is given

1A change in PSF size is detectable if it is greater then αλ pixels.
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by:

R(d̃) =
���
�

d | d ≥ d̃,
���Sd

PSF − Sd̃
PSF

��� < αλ
���� . (3.30)

The same measurement is shown in a different format at the far right, where the

vertical colored stripe simulates the depth range (the minimum distance from the

camera is placed at the bottom): Objects placed within the same color band are not

distinguishable by the depth estimation algorithm.

3.4.3 Experimental Validation

To show the accuracy of the coded aperture model previously described, the mea-

surements obtained from the calibration toolbox have to be compared with real data.

For a robust evaluation, the system is tested on different types of scenario, i.e., dif-

ferent depth ranges and camera settings. All the images are captured in a controlled

environment, where the distance from the camera to each object in the scene is known.

The coded aperture system used in this experiments is composed by a Canon EOS-

5D Mark II camera body, a Canon 50mm f/1.4 lens, and the mask shown in Fig-

ure 3.6(b), which is placed on the main lens of the camera. In this case, the choice of

the aperture mask is due to the fact that its shape makes the measurement of the PSF

in the image easier. The size of the mask (M in the coded aperture model) is 11mm and

is composed by square apertures each of 3mm diameter. The camera has a 36× 24 mm

CMOS sensor and, for this experiments, the images are captured with a resolution of

1920× 1080 pixels, which makes the size of each pixel 18.72 µm. In these experiments

the images are used at their original resolution (α = 1) and sub-pixel accuracy is not

considered (λ = 1).

Corridor Dataset [6m - 28m]

The first scene is a corridor and the depth range goes from 6m to 28m. Figure 3.10

reports the three graphs given by the calibration toolbox as output to the parameters of

the system previously described. As already described in details in section 3.4.2, in the

first graphs (Figure 3.10(a)) the number of levels is computed by using equation (3.29).
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Figure 3.10: Corridor dataset - graphs. (a) Number of possible depth levels (or difference
in PSF size) depending on the position of the focal plane; (b) Blur size of each aperture in
the mask; (c) Depth resolution when the focal plane is set at 3m from the camera (there is
almost no difference when we set the focal plane to be further than 30m.

Corridor (a) Corridor (b) Reindeer
meas. comp. meas. comp. meas. comp.

# levels 5.5 4.9 5.0 4.8 15.0 14.7

Table 3.1: Comparison between measured (meas.) and computed (comp.) number of
depth levels for different datasets.

The number of possible depth levels corresponds to the difference, in pixels, between

the PSF size at the closest object to the camera and the PSF size at the furthest point in

the scene:

# levels = Smax
PSF − Smin

PSF + 1. (3.31)

In Figure 3.11 we show the difference on changing the position of the focal plane in

the same scenario. In Figure 3.11(a) the focal plane is placed at 3m from the camera

while in Figure 3.11(b) it is set to be after the scene (35m about). The first case falls just

at the left of the dashed lines in the graphs (a) and (b) of Figure 3.10, while the latter

case corresponds to a point at the right-hand side of them.

The sizes of the PSF (Smax
PSF and Smin

PSF) have been manually measured at the closest

and at the furthest object; then equation (3.31) is computed and the output is compared

with the values given by the toolbox and reported in the graphs. This comparison is

reported for different datasets in Table 3.1.
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3.4 Calibration of the Camera Parameters

(a) (b)

Figure 3.11: Corridor dataset - real images. (a) Focal plane is set to be at 3m from the
camera; (b) Focal plane is placed after the scene of interest. Top row: coded images of
the scene; Bottom row: PSF from the furthest (red box) and from the closest (green box)
object of interest in the scene.

Reindeer Dataset [0.83m - 1.33m]

The second dataset is placed closer to the camera and the depths vary from 0.83m

to 1.33m. The output graphs are shown in Figure 3.12. For this scenario only an image

is taken (see Figure 3.13(a)), by placing the focal plane at a distance of 1.60m. The

sizes of the PSF have been manually measured in order to compare the number of

possible levels with the output of the toolbox (see Table 3.1). Figure 3.13(b) reports, at

the top, three PSFs extracted from the captured image (the green and the red regions

are respectively the closest and the furthest points of interest) and, at the bottom,

the depth resolution chart. The blue-framed PSF is extracted from the arm of the

teddybear, which is placed at 0.93m from the camera; the size of the PSF is 14 pixel,

which is 4 pixels smaller than the first PSF (green box), placed at a depth of 0.83m.

These measurements correspond exactly to the output of the depth resolution chart:

an object at 0.93m differs of 4 levels from an object placed at 0.83m from the camera.
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Figure 3.12: Reindeer dataset - graphs. (a) Number of possible depth levels (or difference
in PSF size) depending on the position of the focal plane; (b) Blur size of each aperture in
the mask; (c) Depth resolution when the focal plane is set at 1.60m from the camera.

(a)
Distance from the camera [m]
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(b)

Figure 3.13: Reindeer dataset - images. (a) captured coded image with focal plane at
1.60m. (b) Top row: images of the PSF at three different depths (green-0.83m, blue-0.93m,
red-1.33m); Bottom row: depth resolution chart (depths belonging to the same color band
cannot be distinguish).

The same can be shown with the furthest PSF (red box), whose size is about 4 pixels.

3.5 Summary

In this chapter the image formation model of a coded aperture camera has been de-

rived, starting from the model of a conventional camera. When a binary mask is placed

on the lens, the shape of the blur generated by the camera represents the pattern of
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the aperture mask at different scale, depending on the distance from the focal plane.

One of the most important parameters is the size of each opening, which cannot be

too small, otherwise diffraction would make the blur more difficult to identify.

The model has been implemented in a calibration toolbox, that allows one to sim-

ulate the number of depth levels that can be distinguished in a given scenario. The

calibration procedure can then be used to map the identified blurs to real depth val-

ues (distance from the camera). Tests on real data have shown that the given image

formation model is a reasonable approximation of what happens on a real device.
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Chapter 4

Depth and Image Estimation
from a Single Coded Image

We cannot change the cards we are dealt,

just how we play the hand.

Randy Pausch [1960-2008]

This chapter introduces the key problem tackled by this work: Depth and all-in-

focus image reconstruction from a single coded image. The problem is formulated

in a Bayesian framework (Section 4.1), using the image formation model described

in the previous chapter. Section 4.2 recalls the most important methods that have

been previously used to solve this task, illustrating both their achievements and their

limits. For the sake of clarity, the formulation of such methods is re-written by using

the notation introduced in this thesis. The subsequent Section 4.3 introduces two novel

approaches, which aim to solve the problem of 1) depth estimation alone and 2) both

depth and image estimation; these approaches will be described in depth in Chapter 5

and Chapter 6 respectively.

Since the depth estimation (or blur identification) depends on the blur pattern,

all the binary masks previously used in literature are described and illustrated in

Section 4.4.
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4.1 Problem Formulation in a Bayesian Framework

If one is given the depth map d, the sharp image f , and the camera parameters that

define the aperture mask, Hd, a realistic coded-aperture image can be simulated by

computing equation (3.27), which is reported here

g = Hdf + w.

In this manuscript, the goal is to address the inverse problem: Given a single coded-

aperture image g and the camera parameters, one seeks for the depth map d∗ and the

sharp image f ∗ that generate g. The main challenge in this inversion is ill-posedness

[36]. Or rather, the number of unknowns largely outnumbers the number of measure-

ments, and this results in multiple solutions that yield the same image g. For instance,

one can always consider the depth map as a plane in focus and the sharp image f ≡ g.

Therefore, the solutions must be restricted to belong to a certain family of functions.

This is somehow equivalent to introducing priors on what solutions one expects to ob-

tain. Such priors are denoted via the probability distribution densities, which express

an uncertainty about the depth, p(d), or about the sharp image, p(f ). The Bayesian

formulation of the posterior can be explicitly written as

p(d, f |g) ∝ p(g|f , d)p (f ) p (d) , (4.1)

where equation (3.27) defines p(g|f , d) as a Gaussian distribution with mean Hdf

and the same covariance as that of w

p (g | f , d ) = N
�
g

�� Hdf , σ2I
�

. (4.2)
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4.2 Previous Approaches

The inversion problem can then be posed as the following maximum a posteriori

(MAP) problem

d∗, f ∗ = argmax
d,f

p (d, f | g ) (4.3)

= argmax
d,f

p (g | f , d ) p (f ) p (d) . (4.4)

When applying a log-likelihood to equation (4.4), the problem is expressed as a

minimization of a functional

d∗, f ∗ = argmin
d,f



σ−2|g −Hdf |2� �� �
Edata(d,f)

+ log(p(f )) + log(p(d))� �� �
Eprior(d,f)



 , (4.5)

which is composed by two terms, Edata and Eprior. The former term is also called fidelity

term and it is based on the error between the measurements and the model assumed

for representing the data (equation (4.2)). The latter term contains the priors on depth

and texture.

Solving the task above requires estimating both d and f . Before presenting the

novel approaches of this thesis, the next section examines two important methods that

have recently tackled the same problem in the field of coded aperture imaging.

4.2 Previous Approaches

The most important contributions to solve the problem of depth and texture estimation

from a single coded image come from Veeraraghavan et al.[98] and Levin et al.[50]. The

two methods use the same approach to tackle the problem described in equation (4.5).

The approach can be divided in three parts: estimation of the hypothesis plane, depth

reconstruction, and image estimation. In this section, we resume the main steps of

these two methods, adapting their formulation to the notation that has been intro-

duced in this thesis.
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4.2 Previous Approaches

Suppose that the depth of the scene can be discretized in T levels, d1, . . . , dT, and

each depth level corresponds to a blur scale. Firstly, the authors consider a simplified

version of equation (4.5) to deblur the given image using different blur kernels

f ∗k = argmin
f

�
Edata(dk, f ) + Eprior(f )

�
, with k = 1, . . . , T , (4.6)

obtaining a sharp image fk for each hypothesis-plane k. The term Eprior contains only

texture prior, which is based on the concept that real-world images obey heavy-tail

distributions in their gradients, as analyzed in [71]

p(f ) = e−α|∆xf |γ , (4.7)

with γ = 1 for [98], and with γ = 0.8 for [50].

In a blurred image the high spatial gradients are suppressed, therefore the tail of

the gradient distribution is also suppressed. To overcome this problem, Veeraraghavan

et al.[98] use the fourth-order moment (kurtosis) of gradients as a statistic for charac-

terising the gradient distribution. Then the regularization term in [98] is defined as

Eprior(f ) = −
�
Kurt(∆xf ) + Kurt(∆yf )

�
(4.8)

Deblurring at an incorrect scale, larger than the correct scale, introduces high fre-

quency deconvolution artifacts in f . This may increase the gradient kurtosis, thereby

decreasing Eprior.

The depth is then estimated at each pixel p by the following minimization

d∗(p) = argmin
k

λk
�
|g(p)−Hdkf

∗
k (p)|2 + Eprior(d)

�
, (4.9)

where the weights λk are constant in [98]; while in Levin et al.[50] they are learnt to

minimize the scale classification error on a set of training images having a known

depth profile. Both methods implement the minimization in equation (4.9) using an

alpha-expansion graph-cut procedure [11]. Example of results on depth estimation
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(a) Input coded image (b) Result without user correction (c) Result after user correction

Figure 4.1: Results presented by Veeraraghavan et al.[98]. (a) Input image captured with
a coded aperture camera; (b) Depth map obtained without any user correction; (c) Final
depth map after user correction.

(a) Input coded image (b) Result without user correction (c) Result after user correction

Figure 4.2: Results presented by Levin et al.[50]. (a) Input image captured with a coded
aperture camera; (b) Depth map obtained without any user correction; (c) Final depth
map after user correction.

obtained by these two methods are illustrated in Figure 4.1 and Figure 4.2.

Once the depth map is estimated, the sharp image f can be obtained by selecting

the value of a pixel p from one of the hypothesis-planes fk, where the index k is given

by the depth map d∗.

4.2.1 Limitations

The main drawback of previous approaches is that they are limited to small amounts of

blur. The benefit of such restriction is that errors in the depth estimate do not strongly

affect the restored all-in-focus image. This however also limits the extension of the

depth of field of a coded-aperture camera and the ability to exploit 3D information.

When dealing with a wide range of depth levels the hypothesis-plane method

suffers from nonlocal artifacts introduced by structures that lie at depths different

from the hypothesis being tested. As one can observe in Figure 4.3(a), this effect is not
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(a) (b) (c)

Figure 4.3: Propagation of artifacts in the image reconstruction method. The images the
reconstruction of the image for three hypothesis-planes: (a) Image restored with hypothe-
sis plane in front of the object. (b) Image restored with hypothesis plane at the object. (c)
Image reconstructed with hypothesis plane at the background.

very strong for small depth variations (i.e., small amounts of blur). However, points on

the background in Figure 4.3(c) are largely affected by artifacts introduced by nonlocal

structures, although the correct hypothesis plane has been used. This encourages the

algorithm to have a bias towards small amounts of blur.

Since the hypothesis-planes fk are affected by this artifacts, the minimization of the

error in equation (4.9) for depth estimation is not reliable, when one considers a wide

range of depth values.

4.3 Novel Approaches

This section introduces two methods for restoring high quality depth maps over a

wide range of depth levels. Starting from the formulation of the problem in equa-

tion (4.3), the two approaches make different assumptions about priors, but both of

them obtain a formulation for the problem of depth estimation alone that avoids the

image reconstruction.

In Chapter 5 we focus our study on a generic set of aperture masks composed

by a small number of holes of identical size (e.g, the aperture masks in Figure 4.4(a)

and Figure 4.4(b)). This allows one to consider only a few pixel in the computation,
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instead that an entire patch. By reducing the estimation of the original sharp image

to the local space-varying statistic of the texture, we obtain a novel method to directly

estimate only depth, whilst still accounting for the statistics of the sharp image. This

problem, denominated shape from coded aperture, can be written as

d∗ = argmax
d

p (d | g, A ) (4.10)

where A represents the statistics of the sharp texture f .

In Chapter 6, instead, we have a more general algorithm, since we do not make

any restriction on the type of coded aperture and we do not make any assumption on

the texture statistics, but we learn it from natural images. We devise a novel method

to reduce the maximization (4.3) as the following equivalent coupled problems






d∗ = argmax
d

p (d | g )

f ∗ = argmax
f

p (f | g, d∗ ).
(4.11)

By solving (4.11) instead of (4.3) we can choose whether to recover depth alone or both

depth and sharp texture, without trading off optimality for computational efficiency.

Examples of aperture masks recently designed for coded-aperture imaging and

that we consider in the next Chapters are shown in Figure 4.4 and described in the

next section.

4.4 Aperture Masks in Literature

One of the earliest pattern designs in astronomy is the Modified Uniformly Redun-

dant Arrays (MURA) [34] for which a simple coding and decoding procedure was

devised (see one such pattern in Figure 4.4(h)). The MURA consists of nearly 50%

open space. Hiura and Matsuyama [39] use the two-hole (Figure 4.4(a)) and the 4-

hole (Figure 4.4(b)) aperture masks for depth estimation from multiple coded images.

Another interesting design, based on annular masks (Figure 4.4(c)), has also been pro-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.4: Coded aperture patterns. All the aperture patterns we consider in this work.
(a) and (b) aperture masks used by Hiura and Matsuyama [39]; (c) annular mask used by
McLean [64]; (d) pattern proposed by Levin et al.[50]; (e) pattern proposed by Veeraragha-
van et al.[98]; (f) and (g) aperture masks used by Zhou et al.[106]; (h) MURA pattern used
by Gottesman and Fenimore [34].

posed in [64], and successively exploited for the purpose of depth estimation by Farid

[24]. Coded patterns have also been used to design lensless systems, but these systems

require either long exposures or are sensitive to noise [110]. More recently, aperture

coding has been used to preserve high spatial frequencies in blurred images so that

deblurring is well-posed: for this goal Veeraraghavan et al.[98] propose the mask in

Figure 4.4(e). A study on good apertures for image deblurring via Wiener filtering has

instead led to novel designs [106]: in this thesis, two of their best performing aperture

masks are considered (Figure 4.4(f) and Figure 4.4(g)). Although these masks are pre-

sented as optimal for image deblurring, they have a very poor performance in depth

estimation, as one will see in Chapter 6.

Finally, image deblurring and depth estimation with a coded aperture camera has

also been demonstrated by Levin et al. [50]; One of their main contributions is the

design of an optimal mask (Figure 4.4(d)). This pattern has a very good performance
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for depth estimation (see results in Chapter 6), especially for the methods based on

deconvolution, like those described in Section 4.2.

4.5 Summary

This chapter presented, in a Bayesian framework, the problem of depth and all-in-

focus image reconstruction from a single image. The most important previous ap-

proaches to this problem comes from Veeraraghavan et al.[98] and Levin et al.[50].

Both depth estimation methods are based on deconvolution, which creates artifacts on

the hypothesis-planes when one deals with a wide range of depths. This limitation can

be overcome if the image reconstruction is avoided for depth estimation purpose only,

as shown in the novel methods that have been introduced here and will be described

in detail in the next chapters. Examples of aperture masks, that have been found to be

optimal for previous methods, are also illustrated here.
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Chapter 5

Shape from Coded Aperture
for Simple Patterns

Fundamentals, fundamentals, fundamentals.

You‘ve got to get the fundamentals down because

otherwise the fancy stuff isn‘t going to work.

Randy Pausch [1960-2008]

This chapter presents an analysis and a novel algorithm to estimate depth from

a single image captured by a coded aperture camera. Unlike previous approaches,

which need to recover both sharp image and depth, we consider directly estimating

only depth, whilst still accounting for the statistics of the sharp image. The problem

is formulated in a Bayesian framework, which enables a reduction of the estimation of

the original sharp image to the local space-varying statistics of the texture. This yields

an algorithm that can be solved via graph cuts (without user interaction). Performance

and results on both synthetic and real data are reported and compared with previous

methods.
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5.1 Shape from Coded Aperture

The aperture masks considered in this chapter consist of a pattern that is composed

of N squared openings, each offset by ∆i, i = 1 . . . N. As studied in Section 3.3.2, the

image g captured by a coded aperture camera with such a mask can be written as the

linear combination of N views:

g(p) =
1
N

� �
N

∑
i=1

δd(p + d(p)∆i, q)

�

� �� �
hd(p,q)

f (q) dq + w(p), (5.1)

where p is a pixel of the image g, q is a point of the object, and w is a zero-mean

uncorrelated additive Gaussian noise w(p) ∼ N (0, σ2).

5.1.1 Image Prior Model

Similarly to [16], an image prior is defined based on a set of P filtered versions of the

original image f :

f̂k = Ckf , k = 1, . . . , P. (5.2)

The operators Ck are zero mean conditional high-pass filters and each one of them is

used to impose a particular constraint on the restored image f .

Since g is Gaussian distributed (as defined in equation (4.2)) and Ck is a linear op-

erator, the commutative property1 can be utilised to obtain that ĝk = Ckg = Hdf̂k + Ckw

is also a Gaussian distributed, and its conditional distribution is given by

p
�
ĝk

�� f̂k, d
�

= N
�
ĝk

�� Hdf̂k, Ckσ2I
�

. (5.3)

The likelihood of our prior assumes that the kth filtered versions of the sharp image f

1Strictly this only holds for planar scenes; however we find this is a reasonable approximation if we
work with locally frontal-planar patches.
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follows a Gaussian distribution with zero mean

p
�
f̂k |Ak

�
= N

�
f̂k

��� 0, A−1
k

�
. (5.4)

where Ak is a diagonal matrix of variances ak(p) at each pixel p. Chantas et al.[16]

model the distribution of ak(p) as a Gamma distribution, which leads to a heavy-

tailed marginal distribution for f̂k. A similar approach has been used by Levin et

al.[50], but they impose Ak = αI . The assumption in this method is that Ak is a

diagonal matrix of unknown values which makes our marginalisation tractable. We

write A = {A1 · · ·AP}.

In general, as anticipated in Section 4.1, the complete inference problem may be

seen as estimating d, f̂ , and A from the observations ĝ = [ĝT
1 , · · · , ĝT

P ]T. Since the

interest here is in depth estimation alone, the following problem is instead considered

d∗ = argmax
d

p (d | ĝ, A ) (5.5)

= argmax
d

p (ĝ |d, A ) p (d) . (5.6)

In this case, shape from coded aperture refers to the problem of reconstructing the

projected depth map d given the set of observed filtered images ĝ, described in equa-

tion (5.5). In the next section the marginal likelihood in equation (5.6) is obtained.

5.2 Bayesian Depth Inference

This section describes how to estimate the depth map directly from the observations

without explicit estimation of the texture.
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5.2.1 Marginalisation

To begin the analysis, f̂k is marginalised as follows:

p (ĝk |d, Ak ) =
�

p
�
ĝk, f̂k |d, Ak

�
df̂k (5.7)

=
�

p
�
ĝk

�� f̂k, d
�

p
�
f̂k |Ak

�
df̂k (5.8)

= N (ĝk |µk(Ak), Σk(Ak) ) (5.9)

where1

µk(Ak) = 0 (5.10)

Σk(Ak) = HdA−1
k HT

d + Ckσ2I . (5.11)

This integration is achieved by applying the Gaussian integral.2 One could estimate

Ak and use the definition of Σk to evaluate the likelihood in equation (5.9). In this case,

for simplicity Σk is estimated directly from the data. This becomes tractable due to (i)

the fact that equation (5.9) is Gaussian, which allows us to work with local conditional

distributions (Section 5.2.2) and (ii) the structure of Σk (Section 5.2.3).

5.2.2 Local Factorisation of Σk

To work locally, the Markov Random Field (MRF) principle of conditional indepen-

dence may be applied, if it can be demonstrated that the pixel p only depends on

certain neighbours in a given small region Np:

p (ĝk[p] | ĝk[\p], d ) = p
�
ĝk[p]

�� ĝk[Np], d
�

. (5.12)

1The mean is given by µk(Ak) = Σ−1
k

�
σ−2I + H−T

d AkH
−1
d

�
σ−2H−1

d Akµ f̂ where µ f̂ = 0 in our
image prior model.

2Due to normalisation of the Gaussian distribution, we have in general that
�
· · ·

�

RP×1
exp

�
− 1

2
�
xTΓx− 2βTx + α

��
dx = (2π)P/2√

det |Γ|
exp

�
− 1

2

�
α− βTΓ−1β

��
.
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5.2 Bayesian Depth Inference

In other words, rather than considering all other pixels ĝk[\p] in the above expressions,

one can just work with ĝk[Np]. This will be shown in Section 5.2.3.

Since ĝk is Gaussian, the conditional distribution of one pixel ĝk[p] in the image

given the rest ĝk[\p] is also Gaussian, with PDF

p (ĝ[p] | ĝ[\p], d ) = N
�

ĝ[p]
��� νp|\p, Γp|\p

�
(5.13)

= N
�

ĝ[p]
��� νp|Np , Γp|Np

�
, (5.14)

with

νp|Np = µ[p] + Σ[p, Np]Σ[Np, Np]−1 �
ĝ[Np]−µ[Np]

�
(5.15)

Γp|Np = Σ[p, p]− Σ[p, Np]Σ[Np, Np]−1Σ[Np, p], (5.16)

and µ[p] and µ[Np] become zero from the assumption described in Section 5.1.1. The

subscripts (k) are assumed but omitted for clarity and indices inside brackets address

rows and columns of Σk, such that the following structure contains all non-zero ele-

ments pertaining to the pixel p



 Σ[p, p] Σ[p, Np]

Σ[Np, p] Σ[Np, Np]



 (5.17)

where Σ[p, Np] is of size 1× |Np| and Σ[Np, p] = Σ[p, Np]T.

5.2.3 Structure of the Local Neighbourhood in Σk

Since Ak is diagonal, the neighbourhood structure Np only depends on the offsets in

Hd. In fact, the contribution at a pixel p, generated by HdA−1
k HT

d for a given distance

d, is limited to a neighborhood, whose structure can be defined as

Np =
�
p + δijd |i �= j ∧ i, j ∈ M

�
(5.18)
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Saturday, 10 March 2012

Saturday, 10 March 2012

(a) mask (b) depth d1 (c) depth d2

Figure 5.1: Structure of Np for d1 < d2. Examples of the structure of Np in a coded image
for a 4-hole symmetric aperture mask (top row) and a 4-hole asymmetric mask (bottom).
We show the neighborhood for two depths, with depth d1 closer to the focal plane than
depth d2. Colored arrows may help the reader to link the structure of the mask to the
pixels belonging to Np, as defined in equation (5.18).

where δij = (∆i − ∆j) is a vector that represents the distance between the aperture i

and the aperture j in the mask M. In Figure 5.1 the same terminology is used to

illustrate how the neighborhood Np is related to the shape of the aperture mask and

how its structure changes with the distance d. The bright point at the center of each

image indicates the pixel p and the surrounding points represent the neighbourhood

Np.

The number of elements in Np is given by

|Np| =
N!

(N − 2)!
= N(N − 1), (5.19)

which indicates that the amount of computations of our algorithm increases with the

number of apertures N in the mask. This is also illustrated in Figure 5.2, where the

neighborhood Np is shown for different aperture masks.

Since it has been verified that the pixel p only depends on a small finite number of
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5.2 Bayesian Depth Inference

Figure 5.2: Neighborhood Np for different masks. The neighborhood of the aperture
masks in the first row is illustrated for two depths, d1 (central row) and d2 > d1 (bottom
row). For the second and for the last mask, some of the neighbours in Np are counted
more than once (brighter color).

neighbours Np, the MRF principle of conditional independence can be applied:

p (ĝ |A, d ) = ∏
p=1...M

p
�
ĝk(p)

�� ĝk(Np), d
�

. (5.20)

Due to just one observation of the image being available, the ergodicity assumption

of local stationarity is employed, that is a local window can be used to estimate the

required statistics at each point in the image.

5.2.4 MAP Estimation of Depth Map

Given the local estimates of the image mean and variance conditional on each possible

depth (assuming a discrete set of depth values corresponding to integer disparities),

one can consider maximising the posterior for d in equation (5.6). Due to the indepen-

dence of the filtered observations [16],

p (ĝ |A, d ) = ∏
k=1...P

p (ĝk |Ak, d ) . (5.21)
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The prior p (d) is defined as the penalty term on the gradients of the depth map

in the L1 norm (Gibbs distribution). The next step is to take the negative logarithm

of the likelihood in equation (5.6), apply the MRF principle in equation (5.20), and

successively equation (5.14); this yields

d∗ = argmin
d

(Edata(d) + Esm(d)) (5.22)

with

Edata(d) =
1
2 ∑

k
∑
p

�
(ĝk(p)− νp|Np)

TΓ−1
p|Np

(ĝk(p)− νp|Np) + log(2π det |Γp|Np |)
�

(5.23)

Esm(d) = − log p (d) = ∑
p,{q∈Vp}

min(|dp − dq|, T), (5.24)

where Vp is the neighborhood of a pixel p and T is a constant. Thus Esm penalizes

differences in the depths of neighboring pixels. The inference procedure consists of

minimising the energy given by equation (5.22) via Graph-Cuts [45]. In the implemen-

tation presented in thesis the number of operators Ck is P = 2, and they correspond

to discrete horizontal and vertical derivatives.

5.3 Results and Discussion

5.3.1 Performance

The proposed algorithm has been compared with five methods previously proposed

for coded aperture images, on different types of aperture. Since the computational cost

of the algorithm is rapidly increasing with the number of apertures in the mask (as

described in equation (5.19)), only 3 simple patters are considered: 2-hole, 3-hole, and

4-hole masks. Coded images have been synthetically simulated by placing a plane

of random texture at 33 different known depths. The coded images are then given

as input to the five algorithms and the estimated depths, d, are compared with the

ground-truth d̂. The distance between the two depth profiles represents the error
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5.3 Results and Discussion

Methods Masks (image noise level σ = 0.0001)
2-hole 3-hole 4-hole

Lucy-Richardson 14.2 15.4 13.9
Regular filters 11.9 14.9 13.9
Wiener filters 17.0 17.0 15.1
Gaussian priors 12.1 15.2 13.7
Levin et al. 13.9 15.2 13.7
Our method 8.7 9.3 8.7

Table 5.1: Performance comparison (mean error).

of the reconstruction: ERR = |d − d̂|. The mean error reported in Table 5.1 is the

average of all the errors for a given method and a given aperture mask (occlusions are

not considered). SNR is taken into account by considering the amount of light that

goes through each aperture. Since the proposed algorithm does not restore the sharp

image, its computational time is very low for the types of masks analysed here: it

takes about 1 minute (in a Pentium Core2Duo 3.00GHz) to compute the depth map of

a coded image of size 640× 480 taken with a 2-hole mask, such as the datasets shown

in Figure 5.5.

5.3.2 Real Data

Coded aperture images were obtained by inserting a mask into a 50mm f /1.4 lens

mounted on a Canon EOS-5D DSLR. The exposure time was set to 40ms (ISO 500)

for images captured with the 2-hole mask, 33ms (ISO 400) with the 3-hole mask, and

20ms (ISO 400) for the 4-hole mask. Each aperture in the mask is a 4× 4 mm square,

and the distance between the centers of the holes is about 13 mm.

The method was applied to two different kinds of scenario to show how it per-

forms with different ranges of depths and changes of mask. In order to maximise the

disparities, the focal plane of the camera lens is set to be just after the object of interest

(Figure 5.5(a) and Figure 5.3(a, c)) or just before them (Figure 5.4(d, f)). Figure 5.3(a-

c) displays a scene with several objects placed at distances between 80cm and 120cm

from the camera lens, while Figure 5.3(d, f) represents a scene with a wider range of
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5.3 Results and Discussion

(a) (b) (c)

Figure 5.3: Real data - Snacks dataset.. Images given as input to our algorithm (top) and
their relative depth map (bottom). The two scenes has been both captured with 3 different
aperture masks: 2-hole (a), 3-hole (b), and 4-hole (c). Red colour represents areas where
depth has not been estimated.

(a) (b) (c)

Figure 5.4: Real data - Person dataset. Images given as input to our algorithm (top) and
their relative depth map (bottom). The two scenes has been both captured with 3 different
aperture masks: 2-hole (a), 3-hole (b), and 4-hole (c). Red colour represents areas where
depth has not been estimated.
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5.3 Results and Discussion

(a) (b)

Figure 5.5: Depth estimation with the 2-hole mask. The input images at the top have
been capture with a 2-hole aperture mask. The dataset in (a) has been captured with our
coded aperture camera, while the image in (b) has been extracted from the paper of Hiura
and Matsuyama [39].

depths (from 200cm to 350cm). One can notice from the estimated depth maps that,

when the number of the apertures in the mask is increased, we loose details but we

solve some ambiguities due to occlusion or repeating texture which are present in im-

ages captured with masks with 2 or 3 apertures. Figure 5.5 shows two a depth maps

obtained from coded aperture images capture with a 2-hole mask. The dataset in Fig-

ure 5.5(a) has been captured with the focal plane set at 120cm and the objects placed

in a range of 50cm. The result obtained in Figure 5.5(b) is very interesting since the

dataset has not been captured with our coded aperture camera, but instead extracted

from the paper of Hiura and Matsuyama [39], who uses the same type of aperture

mask.
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5.4 Summary

5.4 Summary

The chapter has presented an analysis and an algorithm to solve shape from coded

aperture, without the need of recovering the sharp image. The novel depth inference

proposed here has higher performance then previous methods based on a single coded

image as input. Priors on the scene texture and depth map are also introduced to solve

ambiguities in the solution.
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Chapter 6

Blur Estimation and Image
Deblurring for General Patterns

You can always change you plan,

but only if you have one.

Randy Pausch [1960-2008]

The previous chapter described how to estimate the depth from a single coded image

bypassing the deblurring procedure. This chapter presents a more general approach

to solve the same initial problem: depth and all-in-focus image reconstruction from a

single coded image. The method described in this chapter has two main advantages

over the previous one: 1) it is not limited to a set of masks, and 2) no assumptions are

made on the statistics of the sharp image, but instead it is learned automatically from

a set of natural images. Moreover, the novel algorithm presented here is computation-

ally efficient and it achieves state-of-the-art performance in terms of depth and image

reconstruction with coded aperture cameras (Section 6.3).

Since the depth of an object is related to its blur size (and the relationship can

be obtained with the calibration procedure described in Section 3.4), the estimation is

restricted to the blur size.
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6.1 Single Image Blind Deconvolution

Blind deconvolution from a single image is a very challenging problem: One needs

to recover more unknowns than the available observations. This challenge will be

illustrated in the next section, where the image formation model of a coded image

will be recalled. To make the problem feasible and well-behaved, one can introduce

additional constraints on the solution. In particular, the higher-order statistics of sharp

texture are constrained (sec. 6.1.2) and the blur scale is imposed to be piecewise smooth

across the image pixels (sec. 6.1.3).

6.1.1 Problem Statement

Recalled below is the image formation model formulated in equation (3.27)

g = Hdf + w , (6.1)

where the i-th column of Hd is an image, rearranged as a vector, of the coded blur

with scale di generated by the i-th pixel of f . Given the blurred image g, to recover

the unknown sharp image f one needs to recover also the blur scale at each pixel d.

As described in Section 4.1, the problem can be formulated in a Bayesian framework

as

d∗, f ∗ = argmax
d,f

p (d, f | g )

= argmax
d,f

p (g | f , d ) p (f ) p (d) , (6.2)

where the prior on the sharp image p (f ) and on the blur scale (or depth) p (d) have to

be defined in order to obtain a unique reliable solution. Both definitions are based on

the observation that, typically, one expects the unknown sharp image and blur scale

map to have some regularity. For instance, both sharp textures and blur scale maps

are not likely to look like noise. The next two sections will present and illustrate our
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6.1 Single Image Blind Deconvolution

sharp image and blur scale priors.

6.1.2 Sharp Image Prior

Images of the real world exhibit statistical regularities that have been studied inten-

sively in the past 20 years and have been linked to the human visual system and its

evolution [73]. For the purpose of image deblurring, the most important aspect of

this study is that natural images form a much smaller subset of all possible images.

In general, the characterization of the statistical properties of natural images is done

by applying a given transform, typically related to a component of human vision.

Among the most common statistics used in image processing are the second order

statistics, i.e., relations between pairs of pixels. For instance, this category includes the

distributions of image gradients [80, 40].

However, a more accurate account of the image structure can be captured with

high-order statistics, i.e., relations between several pixels. In this work this general

case is considered, but the relations are restricted to linear ones of the form

Σf � 0 (6.3)

where Σ is a rectangular matrix. Equation (6.3) implies that all sharp images live

approximately on a subspace. Despite their crude simplicity, these linear constraints

allow for some flexibility. For example, the case of second-order statistics results in

rows of Σ with only two nonzero values. Also, by designing Σ one can selectively

apply the constraints only on some of the pixels. Another example is to choose each

row of Σ as a Haar feature applied to some pixels. Notice that this approach does not

make any of these choices. Rather, Σ is estimated directly from natural images.

Natural image statistics, such as gradients, typically exhibit a peaked distribution.

However, performing inference on such distributions results in minimizations of non

convex functionals for which there are probably not optimal algorithms. Furthermore,

our interest here is to simplify the optimization task as much as possible to gain in
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6.2 Blur Scale Identification and Image Deblurring

computational efficiency. To this end, one can enforce the linear relation above by

minimizing the convex cost

�Σf�2
2. (6.4)

As there is no analytical expression for Σ that satisfies equation (6.3), it has to be

learned directly from the data. This step is necessary only when performing the de-

blurring procedure given the estimated blur, as will be explained later. Instead, when

estimating the blur scale, the method allows us to use Σ implicitly, i.e., without ever

recovering it.

6.1.3 Blur Scale Prior

The statistics of range images can be characterized with an approach similar to that

for optical images [41]. The study in [41] verified the random collage model, i.e., that

a scene is a collection of piecewise constant surfaces. This has been observed in the

distributions of Haar filter responses on the logarithm of the range data, which showed

strong cusps in the isoprobability contours. Unfortunately, a prior following these

distributions faithfully would result in non convex energy minimization. A practical

convex solution to enforce the piecewise constant model, is to use total variation [81].

Common choices are the isotropic and anisotropic total variation. In our algorithm the

latter is implemented. One has to minimize �∇d�1, i.e., the sum of the absolute value

of the components of the gradient of d.

6.2 Blur Scale Identification and Image Deblurring

When the image model introduced in sec. 6.1.1 is combined with the priors in sec. 6.1.2

and 6.1.3 one can formulate the following energy minimization problem

d∗, f ∗ = argmin
d,f

�g −Hdf�2
2 + α�Σf�2

2 + β�∇d�1, (6.5)
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where the parameters α, β > 0 determine the amount of regularization for texture

and blur scale respectively. Notice that the formulation above is common to many

approaches including, in particular, [50]. Our approach, however, in addition to us-

ing a more accurate blur matrix Hd, considers different priors and a different depth

identification procedure.

Our next step is to notice that, given d, the proposed cost is simply a least-squares

problem in the unknown sharp texture f . Hence, it is possible to compute f in closed-

form and plug it back in the cost functional. The result is a much simpler problem to

solve. All the steps are summarised in the following Theorem:

Theorem 6.2.1 The set of extrema of the minimization (6.5) coincides with the set of extrema

of the minimization






d∗ = argmin
d

�H⊥
d g�2

2 + β�∇d�1

f ∗ =
�

αΣTΣ + HT
d∗Hd∗

�−1
HT

d∗g
(6.6)

where

H⊥
d

.= I −Hd

�
αΣTΣ + HT

dHd

�−1
HT

d , (6.7)

and I is the identity matrix.

Proof To prove the theorem we rewrite the least squares problem in f as

�Hdf − g�2
2 + α�Σf�2

2 =

������



 Hd
√

αΣ



 f −



 g

0





������

2

2

= �H̄df − ḡ�2
2 (6.8)

where it is defined H̄d =
�
HT

d

√
αΣT�T and ḡ =

�
gT 0T�T. Then the solution in f can

be written as f ∗ =
�
H̄T

dH̄d

�−1
H̄T

d ḡ. By substituting the solution for f back in the

least squares problem,

�Hdf − g�2
2 + α�Σf�2

2 = �H̄⊥
d ḡ�2

2 (6.9)
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where

H̄⊥
d = I − H̄d

�
H̄T

dH̄d

�−1
H̄T

d (6.10)

=



 A B

C D



 (6.11)

with

A = I −Hd

�
HT

dHd + αΣTΣ
�−1

HT
d

.= H⊥
d (6.12)

B = −Hd

�
HT

dHd + αΣTΣ
�−1√

αΣT (6.13)

C = −
√

αΣ
�
HT

dHd + αΣTΣ
�−1

HT
d (6.14)

D = I −
√

αΣ
�
HT

dHd + αΣTΣ
�−1√

αΣT (6.15)

The step above is necessary to fully exploit the properties of H̄⊥
d . H̄⊥

d is a symmet-

ric matrix (i.e, (H̄⊥
d )T = H̄⊥

d ) and is also idempotent (i.e, H̄⊥
d = (H̄⊥

d )2). By applying

the above properties one can write the argument of the first term of the cost in equa-

tion (6.6) as

ḡTH̄⊥
d ḡ = ḡT(H̄⊥

d )TH̄⊥
d ḡ = ||H̄⊥

d ḡ||22 . (6.16)

By using the matrix structure in equation (6.11), equation (6.16) can be express as

�H̄⊥
d ḡ�2

2 =
�

gT 0T
�


 A B

C D







 g

0



 = gT Ag = �H⊥
d g�2

2 . (6.17)

Therefore one can use H̄⊥
d rather than H⊥

d and ḡ rather than g in the minimization

problem (6.6) without affecting the solution. The rest of the proof then assumes that

the energy in equation (6.6) is based on �H̄⊥
d ḡ�2

2.
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Moreover, from the definition of H̄⊥
d it is known that

H̄⊥
d

.= I − H̄d(H̄T
dH̄d)−1H̄T

d

= I − H̄dH̄†
d , (6.18)

where H̄†
d is the pseudo-inverse of H̄d [33]. Thus, the necessary conditions for an

extremum of equation (6.6) become






�
ḡ − H̄dH̄†

dḡ
�T �

∇H̄dH̄†
d + H̄d∇H̄†

d

�
ḡ = ∇ · ∇d

�∇d�1

f = H̄†
dḡ.

(6.19)

where ∇H̄d is the gradient of H̄d with respect to d, and the right hand side of the first

equation is the gradient of �∇d�1 with respect to d. Similarly, the necessary conditions

for equation (6.5) are






(ḡ − H̄df )T ∇H̄df = ∇ · ∇d

�∇d�1

H̄T
d (ḡ − H̄df ) = 0.

(6.20)

It is now immediate to apply the same derivation as in [27] and demonstrate that the

left hand side of the first equation in both system (6.20) and system (6.19) are identical.

Since the right hand sides are also identical, this implies that the first equations have

the same solutions. The second equations in (6.20) and (6.19) are instead identical by

construction.

Notice that the new formulation requires the definition of a square and symmetric

matrix H⊥
d . This matrix depends on the parameter α and the prior matrix Σ, both of

which are unknown. However, for the purpose of estimating the unknown blur scale

map d, it is possible to bypass the estimation of α and Σ by learning directly the matrix

H⊥
d from data.
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6.2.1 Learning Procedure and Blur Scale Identification

The complexity of solving equation (6.6) is broken down by using local blur uniformity,

i.e. by assuming that blur is constant within a small region of pixels. Then, we further

simplify the problem by considering only a finite set of L blur sizes d1, . . . , dL. In

practice, both assumptions work well. The local blur uniformity holds reasonably well

except at occluding boundaries, which form a small subset of the image domain. At

occluding boundaries the solution tends to favour small blur estimates. It has been

seen experimentally that the discretization is not a limiting factor in this method. The

number of blur sizes L can be set to a value that matches the level of accuracy of the

method without reaching a prohibitive computational load.

Now, by combining the assumptions, equation (6.6) can be written for one pixel p

as

d∗(p) = argmin
d(p)

�H⊥
d (p)g�2

2 + β�∇d(p)�1 (6.21)

can be approximated by

d∗(p) = argmin
d(p)

�H⊥
d(p)gp�2

2 (6.22)

where gp is a column vector of δ2 pixels extracted from a δ× δ patch centered at the

pixel p of g. It is found experimentally that the size δ of the patch should not be

smaller than the maximum scale of the coded blur in the captured image g. H⊥
d(p) is

a δ2 × δ2 matrix that depends on the blur size d(p) ∈ {d1, . . . , dL}. It is assumed that

H⊥
d (p, y) � 0 for y such that �y − p�1 > δ/2. Notice that the term β�∇d�1 drops

because of the local blur uniformity assumption. The next step is to explicitly compute

H⊥
d(p).

Learning procedure. Since the blur size d(p) is one of L values, there is only the

need to compute H⊥
d1

, . . . , H⊥
dL

matrices. As each H⊥
di

depends on α and the local Σ,

one can learn each H⊥
di

directly from data. Suppose that one is given a set of T column
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vectors gp1 , . . . , gpT extracted from blurry images of a plane parallel to the camera

image plane. The column vectors will all share the same blur scale di. Hence, the cost

functional in equation (6.22) can be rewritten for all p as

�H⊥
di

Gi�2
2 (6.23)

where Gi
.= [gp1 · · · gpT ]. By definition of Gi, �H⊥

di
Gi�2

2 = 0. Hence, we find

that H⊥
di

can be computed via the singular value decomposition of Gi = UiSiVT
i . If

Ui = [Qdi Udi ], where Udi corresponds to the singular values of Si that are zero (or

negligible), then

H⊥
di

= UdiU
T
di

. (6.24)

The procedure is then repeated for each blur scale di with i = 1, . . . , L.

The estimated matrices H⊥
d1

, . . . , H⊥
dL

can now be used on a new image g and opti-

mize with respect to d:

d∗ = argmin
d

∑
p
�H⊥

d(p)gp�2
2 + β�∇d(p)�1. (6.25)

The first term represents unitary terms, i.e., terms that are defined on single pixels;

the second term represents binary terms, i.e., terms that are defined on pairs of pixels.

The minimization problem (6.25) can then be solved efficiently via graph cuts [46].

The blur scale identification procedure is summarized in Algorithm 1.

Notice that the procedure above can be applied to other surfaces as well, so that

instead of a collection of parallel planes one can consider, for example, a collection of

quadratic surfaces. Also, there are no restrictions on the size of a patch. In particular,

the same procedure can be applied to a patch of the size of the input image. In the

experiments for depth estimation, however, only small patches and parallel planes as

local surfaces are considered.
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Input: A single coded image g and a collection of coded images of L planar
scenes.

Output: The blur scale map d of the scene.
Preprocessing (offline)
Pick an image patch size larger than twice the maximum blur scale;
for i = 1, . . . , L do

Compute the singular value decomposition UiSiVT
i of a collection of image

patches coded with blur scale di ;
Calculate the subspace Udi as the columns of Ui corresponding to singular
values of Si;
Calculate the projection matrix H⊥

di
= UdiU

T
di

;
end
Blur identification (online)
Solve d∗ = arg mind∈{d1,··· ,dL} ∑p �H⊥

d gp�2
2 + β�∇d(p)�1.

Algorithm 1: Blur scale identification from a single coded image via the subspaces
based method.

6.2.2 Image Deblurring

The previous section described the construction of a procedure to compute the blur

scale d∗ at each pixel. This section assumes that d∗ is given and devise a procedure to

compute the image f . In principle, one could use the closed-form solution

f =
�

αΣTΣ + HT
d∗Hd∗

�−1
HT

d∗g. (6.26)

However, notice that computing this equation entails solving a large matrix inversion,

which is not practical for moderate image dimensions. A simpler approach is to solve

the least squares problem (6.5) in f via an iterative method. Therefore, it is possible to

consider solving the problem

f ∗ = argmin
f

�g −Hd∗f�2
2 + α�Σf�2

2 (6.27)

by using a least-squares conjugate gradient descent algorithm in f [75]. The main

component for the iteration in f is the gradient ∇Ef of the cost (6.27) with respect to
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6.3 Experiments

f

∇Ef =
�

αΣTΣ + HT
d∗Hd∗

�
f −HT

d∗g. (6.28)

The descent algorithm iterates until ∇Ef � 0. Because of the convexity of the cost

functional with respect to f , the solution is also a global minimum.

To compute Σ one can use a database of sharp images F = [f1 · · · fT] (where

{fi}i=1,...,T are sharp images rearranged as column vectors), and compute the singular

value decomposition F = UFΣFVT
F . Then, one has to partition UF = [UF,1 UF,2] such

that UF,2 corresponds to the smallest singular values of ΣF. The high-order prior is

defined as Σ
.= UF,2UT

F,2, so that Σfi ≈ 0. The regularization parameter α is instead

manually tuned.

6.3 Experiments

This section will demonstrate the effectiveness of the presented approach on both syn-

thetic and real data. The algorithm performs better than previous methods on different

coded apertures and different datasets. It is also shown that the masks proposed in

the literature do not always yield the best performance.

6.3.1 Performance Comparison

Before proceeding with tests on real images, some extensive simulations are performed

to compare accuracy and robustness of the algorithm proposed here with four com-

peting methods including the current state-of-the-art approach. The methods are all

based on the hypothesis plane deconvolution used by [50] as explained in the Intro-

duction. The main difference among the competing methods is that the deconvolution

step is performed either using the Lucy-Richardson method [89], or regularized filter-

ing (i.e., with image gradient smoothness), or Wiener filtering [5], or Levin’s procedure

[50]. All the eight masks shown in Figure 4.4 are tested. All the patterns have been

proposed and used by other researchers [98, 50, 34, 39, 106, 64]. For each mask and a

given blur scale map d, a coded image is simulated by using equation (6.1), where f
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image noise level σ= 0

image noise level σ= 0.002

Figure 6.1: Patches of real texture. Some of the patches extracted from real images that
have been used in our tests. The same patches are shown with no noise (top part) and
when a Gaussian noise is added to them (bottom part).

is an image of 4, 875× 125 pixels with either random texture or a set of patches from

natural images (examples of these patches are shown in Figure 6.1). Then, a blur scale

map estimate d̂ is obtained for each algorithm and its discrepancy with the ground-

truth is computed. The ground-truth blur scale map d, used in the experiments, is

shown in pseudo-colors at the top-left of both Figure 6.2 and Figure 6.3 and it repre-

sents a stair composed of 39 steps at different distances (and thus different blur scales)

from the camera. It is assumed that the focal plane is set to be between the camera

and the first object of interest in the scene. With this setting, the bottom part of the

blur scale map (small blur sizes) corresponds to points close to the camera, and the

top part (large blur sizes) to points far from the camera. Each step of the stair is a

square of 125× 125 pixels, but is has been squeezed along the vertical axis in the the

actual illustration, to fit in the paper. The size of the blur ranges from 7 to 30 pixels.

Notice that in measuring the errors all pixels are considered, including those at the

blur scale discontinuities, given by the difference of blur scale between neighboring

steps. Figure 6.2 reports, for each aperture mask in Figure 4.4, the results of the pro-

posed method (right) together with the results obtained by the current state-of-the-art
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Far

Close

Tuesday, 15 February 2011

(a) Mask 4.4(a) (b) Mask 4.4(b) (c) Mask 4.4(c) (d) Mask 4.4(d)GT

(e) Mask 4.4(e) (f) Mask 4.4(f) (g) Mask 4.4(g) (h) Mask 4.4(h)

Figure 6.2: Blur scale estimation - random texture. GT: Ground-truth blur scale map.
(a-h) Estimated blur scale maps for all the eight masks we consider in the paper. For each
mask, the figure reports the blur scale map estimated with both Levin et al.’s method (left)
and our method (right).

algorithm (left) on random texture. The same procedure, but with texture from natural

images, is reported in Figure 6.3. For the three best performing aperture masks (mask

4.4(a), mask 4.4(b), and mask 4.4(d)), the results are reported with the same graphical

layout in Figure 6.4, in order to better appreciate the improvement of this method over

previous ones, especially for large blur scales. Every plot shows, for each of the 39

steps, the mean and 3 times the standard deviation of the estimated blur scale values

(ordinate axis) against the true blur scale level (abscissa axis). The ideal estimate is

the diagonal line where each estimated level corresponds to the correct true blur scale

level. If there is no bias in the estimation of the blur scale map, the ideal estimate

should lie between 3 times the standard deviation about the mean with probability

close to 1. This method performs consistently well with all the masks and at different

blur scale levels. In particular, the best performances are observed for the patterns
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Far

Close

Tuesday, 15 February 2011

(a) Mask 4.4(a) (b) Mask 4.4(b) (c) Mask 4.4(c) (d) Mask 4.4(d)GT

(e) Mask 4.4(e) (f) Mask 4.4(f) (g) Mask 4.4(g) (h) Mask 4.4(h)

Figure 6.3: Blur scale estimation - real texture. GT: Ground-truth blur scale map. (a-h)
Estimated blur scale maps for all the eight masks we consider in the paper. For each mask,
the figure reports the blur scale map estimated with both Levin et al.’s method (left) and
our method (right).

of the aperture mask 4.4(b) (Figure 6.4(b)) and the mask 4.4(d) (Figure 6.4(c)), while

the performance of competing methods rapidly degenerates with increasing pattern

scales. This demonstrates that this method has potential for restoring objects at a

wider range of blur scales and with higher accuracy than previous algorithms.

A quantitative comparison about depth estimation among all the methods and

masks is given in Tables 6.1 and 6.3 for random texture, and in Tables 6.2 and 6.4 for

real texture. Each table reports the average error of the blur scale estimate, measured

as ||d− d∗||1, where d and d∗ are the ground-truth and the estimated blur scale map

respectively.

The comparison about the deblurring procedure, instead, is given in Tables 6.5 and

6.7 for random texture, and in Tables 6.6 and 6.8 for real texture. The error on the

reconstructed sharp image f ∗ is measured as
�
||f − f ∗||22 + ||∇f −∇f ∗||22, where
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(a) Mask 4.4(a)
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(b) Mask 4.4(b)
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(c) Mask 4.4(d)

Figure 6.4: Blur scale estimation comparison for the 3 best performing methods, using
both random (top) and real (bottom) texture. Each graph reports the performance of the
algorithms with (a) masks 4.4(a), (b) masks 4.4(b), and (c) mask 4.4(d). Both mean and
standard deviation (in the graphs, we show three times the computed standard deviation)
of the estimated blur scale are shown in an error bar with the algorithms performances
(solid lines) over the ideal characteristic curve (diagonal dashed line) for 39 blur sizes.
Notice how the performance dramatically changes based on the nature of texture (top
row vs bottom row). Moreover, in the case of real images the standard deviation of the
estimates obtained with our method are more uniform for mask 4.4(b) than for mask
4.4(d). In the case of mask 4.4(d) the performance is reasonably accurate only with small
blur scales.

f is the ground-truth image. The gradient term is added to improve sensitivity to

artifacts in the reconstruction. Several levels of noise have been considered in the

performance comparison: σ = 0 (Tables 6.1, 6.2, 6.5, and 6.6), σ = 0.001, σ = 0.002,

and σ = 0.005 (Tables 6.3, 6.4, 6.7, and 6.8). The noise level is however adjusted to

accommodate the difference in overall incoming light between the masks, i.e., if the
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Methods Masks - (image noise level σ = 0)
a b c d e f g h

Lucy-Richardson 16.8 14.4 17.2 2.9 17.0 18.1 17.8 15.4
Regularized filtering 18.4 17.2 18.6 6.8 16.7 12.3 18.8 13.4
Wiener filtering 8.8 13.8 14.4 16.6 16.3 15.3 14.1 15.3
Levin et al. 16.7 13.7 16.7 1.4 16.6 16.8 17.6 13.3
Our method 1.2 0.9 3.7 0.9 4.2 10.3 3.8 9.6

Table 6.1: Blur estimation with random texture (without noise). Performance (mean
error) of 5 algorithms in blur scale estimation for the apertures in Figure 4.4, assuming
there is not noise.

Methods Masks - (image noise level σ = 0)
a b c d e f g h

Lucy-Richardson 17.0 16.4 18.4 15.6 17.9 18.5 18.0 18.3
Regularized filtering 18.5 16.8 18.2 8.6 16.8 11.4 17.9 15.4
Wiener filtering 17.1 16.4 18.2 14.4 17.0 18.0 17.5 17.6
Levin et al. 16.3 14.8 17.9 9.9 17.0 18.2 17.6 17.0
Our method 3.3 3.3 6.8 3.3 6.1 12.6 5.9 11.7

Table 6.2: Blur estimation with real texture (without noise). Performance (mean error)
of 5 algorithms in blur scale estimation for the apertures in Figure 4.4, assuming there is
not noise.

mask i has an incoming light of li1, the noise level for that mask is given by:

σi =
1
li
∗ σ. (6.29)

Thus, masks such as 4.4(f), 4.4(g) and 4.4(h) are subject to lower noise levels than

masks such as 4.4(a) and 4.4(b). The proposed method produces more consistent and

accurate blur scale maps than previous methods for both random texture and natural

images, and across the eight masks that it has been tested with.

With the increasing of the noise of the input image, less layers (or blur scales)

can be distinguished in the blur map, especially for big amounts of blur. When the

noise level σ > 0.005, the estimation is very poor for all the five methods. The worst

estimation happens when the reconstructed blur map is just one single layer: this

yields to a maximum error that is half of the number of blur scales that are considered

1The value of li represents the quantity of lens aperture that is open: when the lens aperture is totally
open, li = 1; instead, when the mask completely blocks the light, li = 0.
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Methods Masks - (image noise level σ = 0.001)
a b c d e f g h

Lucy-Richardson 18.5 17.1 18.2 11.7 16.6 16.2 18.3 17.3
Regularized filtering 19.0 17.5 19.0 14.3 16.8 18.3 18.9 15.6
Wiener filtering 15.7 16.7 16.8 17.5 17.2 17.6 16.8 17.0
Levin et al. 18.4 16.3 18.1 11.0 16.7 17.3 18.3 17.5
Our method 9.6 8.7 12.7 10.1 12.5 13.2 12.9 13.9
Methods Masks - (image noise level σ = 0.002)

a b c d e f g h
Lucy-Richardson 18.5 17.1 18.2 12.1 16.6 16.3 18.3 17.3
Regularized filtering 18.9 17.4 18.8 12.7 16.7 16.9 18.9 16.9
Wiener filtering 15.5 16.4 16.7 17.3 17.1 17.5 16.8 17.0
Levin et al. 18.5 16.9 18.0 12.1 16.7 17.6 18.4 17.7
Our method 11.3 11.1 13.2 11.3 12.6 13.5 12.8 14.0
Methods Masks - (image noise level σ = 0.005)

a b c d e f g h
Lucy-Richardson 18.4 17.0 18.2 12.6 16.5 16.6 18.4 17.3
Regularized filtering 18.9 17.4 18.8 13.1 16.6 17.1 18.8 16.9
Wiener filtering 15.4 16.2 16.5 17.3 17.2 17.3 16.7 17.0
Levin et al. 18.5 16.9 18.0 12.5 16.7 17.7 18.4 17.7
Our method 12.8 12.6 13.4 12.0 12.8 13.5 13.5 14.0

Table 6.3: Blur estimation with random texture (with noise). Performance (mean er-
ror) of 5 algorithms in blur scale estimation for the aperture masks in Figure 4.4, under
different levels of noise.

Methods Masks - (image noise level σ = 0.001)
a b c d e f g h

Lucy-Richardson 18.5 17.2 18.3 13.7 16.8 17.8 18.4 18.1
Regularized filtering 19.0 17.5 19.0 14.0 16.8 17.6 19.0 15.6
Wiener filtering 13.8 14.5 14.1 14.6 15.2 14.4 14.8 14.5
Levin et al. 18.4 16.8 18.1 10.6 16.7 17.0 18.2 17.8
Our method 8.7 7.8 11.8 7.7 11.9 13.5 11.5 13.8
Methods Masks - (image noise level σ = 0.002)

a b c d e f g h
Lucy-Richardson 18.5 17.2 18.3 13.2 16.7 17.5 18.4 17.9
Regularized filtering 19.0 17.5 19.0 14.1 16.8 18.1 19.0 15.7
Wiener filtering 14.7 15.8 15.2 15.8 16.0 15.1 15.0 15.7
Levin et al. 18.4 16.8 18.1 11.1 16.7 17.1 18.3 17.7
Our method 10.6 9.5 12.1 9.0 12.3 13.5 12.1 14.1
Methods Masks - (image noise level σ = 0.005)

a b c d e f g h
Lucy-Richardson 18.3 17.1 18.2 12.9 16.6 17.4 18.4 17.9
Regularized filtering 19.0 17.5 19.0 14.1 16.8 18.1 18.9 15.7
Wiener filtering 15.6 16.5 16.1 16.8 16.7 16.5 16.0 16.7
Levin et al. 18.5 16.9 18.1 11.3 16.7 17.4 18.4 17.7
Our method 12.2 11.8 13.3 10.8 12.7 13.7 13.4 13.7

Table 6.4: Blur estimation with real texture (with noise). Performance (mean error) of 5
algorithms in blur scale estimation for the aperture masks in Figure 4.4, under different
levels of noise.

in the test (in our case the maximum error for blur estimation is ∼ 20).
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Methods Masks - (image noise level σ = 0)
a b c d e f g h

Lucy-Richardson 0.22 0.22 0.21 0.22 0.22 0.22 0.22 0.21
Regularized filtering 0.30 0.32 0.27 0.32 0.25 0.42 0.23 0.25
Wiener filtering 0.23 0.29 0.29 0.33 0.31 0.32 0.27 0.30
Levin et al. 0.22 0.21 0.22 0.21 0.21 0.22 0.22 0.21
Our method 0.20 0.20 0.21 0.21 0.21 0.22 0.21 0.22

Table 6.5: Image deblurring with random texture (without noise). Performance (mean
error) of 5 algorithms in image deblurring for the apertures in Figure 4.4, assuming there
is not noise.

Methods Masks - (image noise level σ = 0)
a b c d e f g h

Lucy-Richardson 0.22 0.20 0.22 0.18 0.20 0.20 0.20 0.20
Regularized filtering 0.51 0.49 0.52 1.08 0.28 0.67 0.28 0.40
Wiener filtering 0.25 0.22 0.26 0.21 0.21 0.24 0.23 0.21
Levin et al. 0.25 0.21 0.23 0.19 0.20 0.21 0.21 0.20
Our method 0.18 0.16 0.21 0.16 0.17 0.21 0.19 0.21

Table 6.6: Image deblurring with real texture (without noise). Performance (mean error)
of 5 algorithms in image deblurring for the apertures in Figure 4.4, assuming there is not
noise.

6.3.2 Results on Real Data

The proposed blur scale estimation algorithm is now applied to coded aperture images

captured by inserting the selected mask into a Canon 50mm f /1.4 lens mounted on

a Canon EOS-5D DSLR as described in [50, 106]. Based on the performance analysis

from the previous section, the aperture masks 4.4(b) and 4.4(d) were chosen for our

experiments. Each of the four holes in the first mask is 3.5mm large, which corresponds

to the same overall section of a conventional (circular) aperture with diameter 7.9mm

( f /6.3 in a 50mm lens). All indoor images have been captured by setting the shutter

speed to 30ms (ISO 320-500) while outdoors the exposure has been set to 2ms or lower

(ISO 100).

Firstly, one needs to collect (or synthesize) a sequence of L coded images, where L

is the number of blur scale levels we want to distinguish. There are two techniques to

acquire these coded images: (1) If the aim is just to estimate the depth map (or blur
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Methods Masks - (image noise level σ = 0.001)
a b c d e f g h

Lucy-Richardson 0.39 0.36 0.27 0.28 0.35 0.29 0.26 0.27
Regularized filtering 0.88 0.96 0.61 1.03 0.93 0.61 0.61 0.91
Wiener filtering 0.35 0.37 0.36 0.39 0.38 0.38 0.35 0.38
Levin et al. 0.32 0.31 0.26 0.28 0.30 0.28 0.25 0.26
Our method 0.20 0.21 0.22 0.22 0.21 0.23 0.21 0.23
Methods Masks - (image noise level σ = 0.002)

a b c d e f g h
Lucy-Richardson 0.49 0.46 0.31 0.34 0.44 0.33 0.30 0.32
Regularized filtering 0.76 0.69 0.47 0.50 0.67 0.46 0.49 0.46
Wiener filtering 0.35 0.37 0.37 0.39 0.38 0.39 0.35 0.38
Levin et al. 0.39 0.38 0.29 0.34 0.37 0.31 0.28 0.29
Our method 0.22 0.22 0.23 0.23 0.22 0.23 0.23 0.24
Methods Masks - (image noise level σ = 0.005)

Image deblurring
a b c d e f g h

Lucy-Richardson 0.66 0.62 0.41 0.47 0.61 0.40 0.40 0.43
Regularized filtering 1.17 1.04 0.69 0.75 1.03 0.59 0.73 0.68
Wiener filtering 0.35 0.37 0.37 0.39 0.38 0.39 0.35 0.38
Levin et al. 0.55 0.54 0.37 0.45 0.51 0.37 0.36 0.39
Our method 0.25 0.25 0.26 0.25 0.25 0.26 0.26 0.27

Table 6.7: Image deblurring with random texture (with noise). Performance (mean error)
of 5 algorithms in image deblurring for the aperture masks in Figure 4.4, under different
levels of noise.

Methods Masks - (image noise level σ = 0.001)
a b c d e f g h

Lucy-Richardson 0.38 0.35 0.26 0.24 0.32 0.23 0.24 0.25
Regularized filtering 0.96 1.05 0.66 1.39 0.94 0.68 0.64 1.02
Wiener filtering 0.21 0.23 0.22 0.22 0.23 0.21 0.21 0.23
Levin et al. 0.34 0.33 0.27 0.30 0.30 0.27 0.24 0.25
Our method 0.21 0.18 0.22 0.17 0.19 0.20 0.20 0.20
Methods Masks - (image noise level σ = 0.002)

a b c d e f g h
Lucy-Richardson 0.47 0.44 0.30 0.29 0.40 0.26 0.27 0.30
Regularized filtering 1.26 1.38 0.87 1.72 1.30 0.74 0.87 1.34
Wiener filtering 0.23 0.25 0.24 0.24 0.25 0.24 0.22 0.25
Levin et al. 0.41 0.40 0.30 0.37 0.37 0.30 0.28 0.29
Our method 0.24 0.19 0.23 0.17 0.19 0.20 0.21 0.20
Methods Masks - (image noise level σ = 0.005)

a b c d e f g h
Lucy-Richardson 0.61 0.58 0.39 0.40 0.55 0.34 0.37 0.40
Regularized filtering 1.89 2.07 1.31 2.38 2.03 0.88 1.31 2.02
Wiener filtering 0.26 0.27 0.26 0.27 0.27 0.26 0.24 0.26
Levin et al. 0.56 0.55 0.38 0.49 0.51 0.37 0.35 0.39
Our method 0.26 0.22 0.24 0.19 0.21 0.22 0.22 0.25

Table 6.8: Image deblurring with real texture (with noise). Performance (mean error)
of 5 algorithms in image deblurring for the aperture masks in Figure 4.4, under different
levels of noise.

scale map), one can capture real coded images of a planar surface with sharp natural
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(a) Conventional aperture (b) Ground-truth (pinhole camera)

Figure 6.5: Conventional aperture and pinhole camera. (a) Picture taken with the con-
ventional camera without placing the mask on the lens. (b) Image captured by simulating
a pinhole camera (f/22.0), which can be used as ground-truth for the image texture.

texture (e.g., a newspaper) at different blur scale levels. (2) If the goal is to reconstruct

both depth map and all-in-focus image, one has to capture the PSF of the camera

at each depth level, by projecting a grid of bright dots on a plane and using a long

exposure; then, coded images are simulated by applying the measured PSFs on sharp

natural images collected from the web. In the experiments presented here, the latter

approach is used, since both blur scale map and all-in-focus image are estimated. The

PSFs have been captured on a plane at 40 different depths between 60cm and 140cm

from the camera. The focal plane of the camera was set at 150cm.

The first experiments demonstrate the advantage of the presented approach over

Levin et al.’s method on a scene with blur sizes similar to the ones used in the perfor-

mance test. The same dataset has been captured by using mask 4.4(b) (see Figure 6.6)

and mask 4.4(d) (see Figure 6.7). The size of the blur, especially at the background, is

very large; This can be appreciated in Figure 6.5(a), which shows the same scenario

captured with the same camera setting, but without mask on the lens. For a fair com-

parison, no regularization or user intervention are used to the estimated blur scale

maps. As already seen in the Section 6.3.1 (especially in Figure 6.4), Levin et al.’s
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(a) Input image (b) Raw blur-scale map (c) Deblurred image

(d) Raw blur-scale map (e) Deblurred image

Figure 6.6: Comparison on real data - mask 4.4(b). (a) Input image captured by using
mask 4.4(b). (b-c) Blur-scale map and all-in-focus image reconstructed with Levins et al.’s
method [50]; (d-e) Results obtained from our method.

method yields an accurate blur scale estimate with mask 4.4(d) when the size of the

blur is small, but it fails with large amounts of blur. The proposed approach over-

comes this limitation and yields to a deblurred image that in both cases, Figure 6.6(e)

and Figure 6.7(e), is closer to the ground-truth (Figure 6.5(b)). Notice also that this

method gives an accurate reconstruction of the blur scale, even without using regular-

ization (β = 0 in equation (6.25)). Some artefacts are still present in the reconstructed

all-in-focus images. These are mainly due to the very large size of the blur and to the

raw blur-scale map: When adding regularization to the blur-scale map (β > 0), the

deblurring algorithm yields to better results, as one can see in the next examples.

In Figure 6.8 there is the same indoor scenario, but now the items are slightly

closer to the focal plane of the camera; then the maximum amount of blur is reduced.

Although the background is still very blurred in the coded image (Figure 6.8(a)), our
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(a) Input image (b) Raw blur-scale map (c) Deblurred image

(d) Raw blur-scale map (e) Deblurred image

Figure 6.7: Comparison on real data - mask 4.4(d). (a) Input image captured by using
mask 4.4(d). (b-c) Blur-scale map and all-in-focus image reconstructed with Levins et al.’s
method [50]; (d-e) Results obtained from our method.

accurate blur-scale estimation yields to a deblurred image (Figure 6.8(b)), where the

text of the magazine becomes readable. Since the reconstructed blur-scale map cor-

responds to the depth map (relative depth) of the scene, one can join it with the

all-in-focus image to generate a 3D image1. This image, when watched with red-cyan

glasses, allows one to perceive the depth information extracted with our approach.

All the regularized blur-scale maps in this work are estimated from equation (6.25)

by setting β = 0.5; the raw maps, instead, are obtained without regularization term

(β = 0).

The proposed approach has been tested on different outdoor scenes: Figure 6.10

and Figure 6.9. The filters that are used in these scenarios have been learned within

1In this work, a 3D image corresponds to an image captured with a stereo camera, where one lens
has a red filter and the second lens has a cyan filter. When one watches this type of images with red-cyan
glasses, each eye will see only one view: The shift between the two views gives the perception of depth.
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(a) Input (b) All-in-focus image

(c) Blur-scale map (d) 3D image

Figure 6.8: Close-range indoor scene [exposure time: 1/30s]. (a) coded image captured
with mask 4.4(b); (b) estimated all-in-focus image; (c) estimated blur-scale map; (d) 3D
image (to be watched with red-cyan glasses).

150cm from the camera, but works even for a very large range of depths. Several

challenges are present in these scenes, such as occlusions, shadows, and lack of texture.

This method demonstrates robustness to all of them. Notice again that the raw blur-

scale maps shown in Figure 6.10(c) and Figure 6.9(c) are already very close to the

maps that include regularization (Figure 6.10(d) and Figure 6.9(d) respectively). For

each dataset, a 3D image (Figure 6.9(e) and Figure 6.10(e)) has been generated by using
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just the output of our method: the deblurred images (b) and the blur-scale maps (d).

The ground-truth images have been taken by simulating a pinhole camera (f/22.0).

6.3.3 Computational Cost

The input images are downsampled 4 times from an original resolution of 12,8 megapixel

(4, 368 × 2, 912), and sub-pixel accuracy is used, in order to keep the algorithm effi-

cient. It has been noticed from experiments on real data that the raw blur-scale map

is already very close to the regularized map. This means that one can obtain a rea-

sonable blur scale map very efficiently: When β = 0 the value of the blur scale at

one pixel is independent of the other pixels and the calculations can be carried out in

parallel. Since the algorithm takes about 5ms for processing 40 blur scale levels at each

pixel, it is suitable for real-time applications. The algorithm was run on a QuadCore

2.8GHz with 16GB memory. The code has been written mainly in Matlab 7. The de-

blurring procedure, instead, takes about 100s to process the whole image for 40 blur

scale levels.

6.4 Summary

This chapter presented a novel method to recover the all-in-focus image from a single

blurred image captured with a coded aperture camera. The method is split in two

steps: A subspace-based blur scale identification approach and an image deblurring

algorithm based on conjugate gradient descent. The method is simple, general, and

computationally efficient. A clear advantage of this method is that the training set can

be obtained from real data, simply by capturing images of a plane at different distances

from the camera. The proposed method has also been compared to existing algorithms

in the literature and it was showed that it achieves state-of-the-art performance in blur

scale identification and image deblurring with both synthetic and real data.
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(a) Input image (b) Deblurred image

(c) Raw blur-size map (d) Estimated blur-size map

(e) 3D image (f) Ground-truth image

Figure 6.9: Long-range outdoor scene [exposure time: 1/200s]. (a) coded image captured
with mask 4.4(b); (b) estimated all-in-focus image; (c) raw blur-scale map (without reg-
ularization); (d) regularized blur-scale map; (e) 3D image (to be watched with red-cyan
glasses); (f) ground-truth image.
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(a) Input image (b) Deblurred image

(c) Raw blur-size map (d) Estimated blur-size map

(e) 3D image (f) Ground-truth image

Figure 6.10: Mid-range outdoor scene [exposure time: 1/200s]. (a) coded image captured
with mask 4.4(b); (b) estimated all-in-focus image; (c) raw blur-scale map (without reg-
ularization); (d) regularized blur-scale map; (e) 3D image (to be watched with red-cyan
glasses); (f) ground-truth image.
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Chapter 7

Extension to
Motion and Defocus Deblurring

If you can’t make it good,

at least make it look good.

Bill Gates [1955 - present]

In the previous chapter, an all-in-focus image is obtained by removing the blur

caused by defocus. However, if there are moving objects in the scene, they appear

blurred in the image because of their motion. In this case, to recover the sharp texture,

one has to identify and remove both defocus and motion blur. An example of this type

of scenario is shown in Figure 7.1, where the captured image is affected by motion (the

bus is moving) and defocus (the shops at the background are out-of-focus) deblurring.

This chapter introduces for the first time an efficient technique to identify and

perform space-varying defocus and motion deblurring from a single image. The pre-

sented algorithm estimates both motion blur magnitude and direction as well as defo-

cus blur scale at each pixel. It is also shown that, for the same overall incoming light,

a coded aperture leads to better motion and defocus deblurring than a (compact) con-

ventional circular aperture (Section 7.4). Finally, in Section 7.6 the method is tested
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Figure 7.1: Challenging scene. Example of a blurred image captured with a conventional
camera, where the degradation is due to both defocus (background) and motion (bus).

with both synthetic and real images.

7.1 Related Work

Motion and defocus deblurring from a single image when the scene is approximately

a fronto-parallel plane has been long known in the field of signal processing as blind

deconvolution [56, 65]. Recently, it has received renewed attention due to progress

achieved by using natural image priors [42, 49, 86, 30]. For this choice of priors, cur-

rently [102] achieves the best results and can deal with very large (although uniform)

blurs. Other recent methods deal with non-uniform motion-blur, but they assume that

the scene is rigid and the motion is due to the camera shake [101]. An analysis of blind

deconvolution algorithms in [52] finds that recovering blur first and then performing

deblurring is a key ingredient. It also shows that the shift invariance assumption in

all existing algorithms is often violated in real imagery. Our two-step approach for

space-varying deblurring is somewhat inspired by these conclusions.

Alternative approaches to motion-deblurring are shown in [51], where a prototype

camera moves with a parabolic motion during the exposure, and in [98, 3] where ex-

posure is coded to facilitate the inversion of the motion-blur kernel. These techniques,

however, have not been tested yet on images affected by space-varying defocus. Fur-

thermore, as coding the exposure results in limiting the amount of incoming light, a
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longer exposure is needed.

7.2 Motion and Defocus Deblurring

When imaging moving objects, the image undergoes a degradation that is made of

both defocus, which depends on the aperture and the location d of the object in space,

and motion blur, which depends on the object motion m. Since objects in the scene

may be placed at different locations and/or moving with different motions, the degra-

dation (or blur) may be different at each pixel in the image. Hence, we use the general

linear model, already studied in Section 3.3.2 and used in the previous chapter, to

express a blurred image g:

g = Hd,mf , (7.1)

with the matrix Hd,m = [h1 h2 . . . hM] ∈ RM×M, where M is the number of pixels of

the image. Each blurring kernel hi can be rearranged as a 2D matrix h�
i , which can be

thought as the result of a convolution between two simpler kernels

h�
i = h�

di
∗ h�

mi
(7.2)

where h�
di

contains only the degradation due to defocus and h�
mi

corresponds to the

motion blur.

The problem of deblurring a single image can be posed as

f̃ , d̃, m̃ = argmin
f ,d,m

�
||g − ĝ||2 + Ereg(f , d, m)

�
(7.3)

where we require the simulated blurred image ĝ = Hd,mf to match in a least square

sense the measured image g, and we impose in the regularization term Ereg(f , d, m)

that all unknowns be piecewise constant. This minimization problem is a formidable

challenge as we are given a single image g and we are looking for a 4-fold increase in

number of parameters. Hence, to reduce the complexity of the problem we quantize

the space of the scale and motion parameters so that only a finite set of possible values
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is allowed. Moreover, we break down the problem in two separate steps where we

first identify the blur parameters at each pixel Hd,m (see Sec. 7.3) and then estimate

the sharp image f (see Sec. 7.5).

Notice that the above model works with any type of lens aperture. Therefore,

we look for an aperture that allows a good reconstruction of both f and blur. We

find that solving the above problem for conventional compact aperture yields poor

results (see, for example, Table 7.1 in Sec. 7.6) due to a poor identifiability of the blur

parameters and a stronger degradation of the image f (Sec.7.4). Our analysis shows

that if the aperture is instead fragmented, both the parameter identification and the

image degradation improve not only with still images, as already shown in [50, 42, 30],

but also with motion-blur.

7.3 Motion and Depth Estimation

For now, assume that an aperture is given. As we consider a local patch of the input

image and use constant velocity motion and constant defocus assumption, we can look

for a blur identification method that does not require the simultaneous estimation of

the sharp image f . A successful method in blind deconvolution is the projection onto

subspaces [27]. The key idea is that instead of solving problem (7.3) one minimizes

d̃, m̃ = argmin
d,m

�
||H⊥

d,m g||2 + β||∇d||+ γ||∇m||
�

(7.4)

By solving this problem via subspace projections one can show that Gaussian priors

on the unknown image f are implicitly used. This however, is not a severe limita-

tion, as also noticed by [52]. For a given defocus scale di and motion mi, the local

kernel H⊥
di ,mi

is a collection of orthonormal vectors. The energy term corresponds to

the projection of a patch of g to a subspace. The local kernel can be computed di-

rectly from the analytic forms of the blur kernels or learned from synthetic and real

data as was shown in [27]. In our implementation we learn the local kernels by us-

ing real sharp images of size δ× δ synthetically motion-blurred and defocused. The
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procedure is rather straightforward, as one simply needs to: (1) generate a train-

ing set Gd,m = [g1 g2 . . . gM]T ∈ Rδ2×M of images blurred with a specific pa-

rameter choice, (2) perform its singular value decomposition Gd,m = USVT where

U = [U1 U2 . . . Uδ2 ] ∈ Rδ2×δ2 , V are orthonormal matrices, and S is diagonal with

the singular values of Gd,m, (3) define H⊥
d,m = Ut, with t = 1, . . . , T < δ2.

These local kernels can then be used to perform the discrete minimization in equa-

tion (7.4) for all possible parameters via graph cuts [47]. Notice that the second and

third terms are standard total variation penalization terms involving pairwise interac-

tions between neighboring pixels.

7.4 Analysis of aperture fragmentation

In this section we devise analysis and a procedure to determine what aperture is

most suitable for the purpose of motion and defocus deblurring. Similarly to [50],

we perform a frequency analyses of the aperture, in order to find a fragmentation

patter that allows to preserve more frequencies than the compact aperture for different

motions and defocus scales.

7.4.1 Combinatorics of Aperture Fragmentation

Consider partitioning a conventional aperture in a regular grid and moving the parti-

tions within the chosen grid. Fragmentation can be seen as an “n choose m” allocation

where m holes are assigned among n possible locations. The number of possible

combinations can be readily obtained as n!
m!(n−m)! , which grows rather quickly as we

increase the number of partitions. Hence, exhaustive search for the optimal fragmen-

tation becomes rapidly impractical. Fortunately, as seen in Section 3.3.1, diffraction

poses a limit to the number of possible partitions by introducing a lower bound on

the smallest diameter that we can consider before blur starts increasing rather than

decreasing. By using equation (3.21) we can obtain the smallest size of each opening

rmin such that a point will be reproduced clearly on the image sensor. We have that
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rmin ≈ 2.79 mm.

By imposing that compact aperture and fragmented aperture must allow the same

incoming light, one obtains that the maximum number m of possible square apertures

is

m =

�
π

�
F

2F#

�2 1
r2

min

�
(7.5)

where �a� denotes rounding to the largest integer not exceeding a, and F# is the F-

number which indicates the size of the lens aperture. Conversely, given the number m

of possible square apertures, one obtains that the side of each square must be

ra =
�

π

m
F

2F#
. (7.6)

Let us illustrate these formulas with two examples. If we fix the aperture of the con-

ventional camera to, for instance, F# = F/9 (i.e., an aperture with diameter 5.6mm for

a 50mm focal length lens), then the area of the aperture is 24.2mm2. In the fragmented

aperture we aim at covering the same area with openings that have a minimum area

of

areamin = rmin × rmin = 7.8 mm2 (7.7)

each; this yields that no more than 3 square holes are possible, and therefore a modest

84 combinations in a 3× 3 grid. Vice versa, suppose that we use F# = F/7.1 and we

are interested in allocating 3 square holes, then each square must have sides of 3.6 mm

(which is the dimension that we use in our experiments). Clearly, by using larger lens

apertures, grids with more combinations are possible.

7.4.2 Frequency Analysis

Now that we have reduced the search space, we need to define a metric to com-

pare different apertures and establish how much degradation they introduce. The

analysis is carried out in the frequency domain of each fragmented aperture. A

small patch of f (e.g., 64× 64 pixels) is represented via the complex Fourier series:
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f (i1, i2) = ∑n1,n2
f̂n1,n2 ej(n1i1+n2i2), where f̂n1,n2 are the Fourier coefficients, and i1 and i2

are pixels of the image. If we assume that the signal f is corrupted by additional noise

bounded in absolute value by ω, we will not be able to recover frequencies correspond-

ing to Fourier coefficients below the noise level. Hence, we can define the number of

Fourier coefficients above a given noise level as a metric for the degradation intro-

duced by a certain aperture across several motion blur and defocus scale parameters.

If k̂d,m
n1,n2 denotes the Fourier coefficients of the blurring kernel kd,m, we can define the

degradation metric Mω as

Mω = ∑
d,m

∑
n1,n2

(|k̂d,m
n1,n2

f̂n1,n2 | > w). (7.8)

In comparing different apertures we fix f̂ = 1 at all frequencies and look for the high-

est Mω. This analysis results in three optimal apertures shown in Fig. 7.2, where we

have examined 10 noise levels for ω between 10−2 and 10−1. In Fig. 7.2 we show

1D slices corresponding to noise levels ω = 0.04, 0.05, 0.1 of the normalized 2D fre-

quency domain, to illustrate that fragmentation better distributes degradation across

the frequency domain. The frequency response of a conventional aperture (a disk with

diameter 6.8mm) is shown with a dashed red plot. We now consider fragmenting the

conventional disk aperture in a collection of smaller apertures, thus retaining the same

overall incoming light. All apertures have the same noise levels. The corresponding

response of the three best fragmented apertures for each noise level are shown in solid

blue and the noise level (constant across all frequencies) is shown in solid green. We

find that fragmentation results in more frequencies above the given noise level.

7.5 Space-Varying Deblurring

Given the blur parameters provided by the procedure in Sec. 7.3, the space-varying

deblurring task is a simpler problem. Indeed, the image formation model is linear

in the unknown sharp image (although not a convolution) and efficient and stable
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−0.5 −0.25 00 0.25 0.5 −0.5 −0.25 00 0.25 0.5 −0.5 −0.25 00 0.25 0.5

Figure 7.2: Frequency analysis of aperture patterns. The dashed red graph corresponds
to different 1D slices of the frequency response of a compact aperture, while the solid blue
corresponds to a fragmented aperture; the green threshold indicates the noise level. Left:
Best fragmentation (evaluated over the entire 2D spectrum, not just a 1D slice) for noise
levels ω = 0.01− 0.04. Middle: Best one for noise levels ω = 0.05− 0.08. Right: Best one
for noise levels ω = 0.09− 0.10.

schemes for piecewise constant regularization exist.

As a first step we compute the first-order variation of the cost functional in equa-

tion (7.3) and obtain a discrete linearized version of the Euler-Lagrange equations

HT
d̃,m̃ (g − ĝ) + α C · f = 0, (7.9)

where C is a matrix operator which performs a discretization of f based on the pre-

vious estimate, as described in [12]. As we reduced the cost functional minimization

in equation (7.3) to solving a linear system, standard numerical solvers can be used.

Unfortunately, because the linear system involves blur, it is not diagonally dominant

and fast solvers such as Gauss-Seidel or successive overrelaxation cannot be employed.

We resort to conjugate gradient descent which does not have such limitations: It con-

verges in a finite number of steps and it is fairly efficient (∼ 1 minute for a 640× 480

image with a Matlab implementation under a MacPro 2.6GHz quad-core CPU).
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Mask Mean error / Accuracy
defocus scale motion direction motion size

Disk 2.53 / 13.5% 0.22 / 88.8% 1.48 / 27.2%
Pattern A 0.41 / 80.8% 0.15 / 94.0% 1.48 / 31.0%
Pattern B 0.63 / 77.3% 0.24 / 89.5% 1.53 / 30.8%
Pattern C 0.35 / 85.0% 0.11 / 95.0% 1.39 / 33.2%

Table 7.1: Aperture performance.

7.6 Experiments

7.6.1 Performance

Before testing our algorithm with real images, we run a simulation to compare the

performance of both defocus and motion estimation with the conventional aperture

and the optimal patterns we have found in the frequency analysis (Sec. 7.4.2). The

performance is evaluated under the same overall aperture incoming light over a set

of 10 possible depth (defocus) and 64 different motions (8 directions by 8 sizes). For

each level we take the same image (70x70 pixels) of random texture and we simulate

both the defocus process and the motion blur using equation (7.1). Then we apply the

local kernel, learnt as described in Sec. 7.3, and obtain a blur estimation (defocus scale,

motion direction, and motion size). The output of the algorithm is then compared with

the groundtruth in order to compute the error at each pixels. Table 7.1 reports the

mean error and the accuracy (percentage of correct estimated pixels) for each type of

aperture: the first one (disk) is the aperture of a conventional camera, while masks A,

B, and C are the patterns shown in Fig. 7.2 from top to bottom respectively. Notice that

the fragmented apertures can reach an higher performance than a compact aperture.

7.6.2 Real Data

We capture real images with the aperture pattern C (the rightmost pattern in Fig. 7.2)

as it gives the best performance in the synthetic analysis. The size of each of the

3 square apertures is 3.6mm, which corresponds to a compact (circular) aperture of

about 7mm diameter (F/7.1 with a Canon 50mm lens). In Fig. 7.3 we captured a typical
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(a) Coded image (b) Sharp image (from compact aperture)

(c) Defocus deblurring only (from coded aperture) (d) Sharp image (from coded aperture)

Figure 7.3: Results on real data for motion and defocus deblurring. (a) Input image
when using the fragmented aperture (pattern C); (b) sharp image obtained by applying
the method presented here to Figure 7.1; (c) estimated image when only defocus blur is
removed; (d) sharp image when both defocus and motion blurs are removed.

scenario (the same picture with the relative compact aperture is shown in Fig. 7.1),

where the camera brings into focus an area close to the foreground (the red bus in

this scene), leaving the shops in the background out-of-focus. At the same time, the

bus is moving from right to left, while the rest of the scene is still. The maximum

motion blur magnitude in this dataset is ∼ 12 pixels. We show the reconstructed sharp

texture when only defocus blur is removed and when both defocus and motion-blur

are corrected.

7.7 Summary

The task of deblurring a single image degraded by space-varying motion blur and

defocus is extremely ill-posed: a small variation in the data (for instance, due to noise)

results in large variations of the blur parameters and the restored image. It shown that

blur parameters and details of the original sharp image can be recovered more easily if
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one considers a coded aperture instead of a conventional aperture lens. Based on this

analysis an algorithm has been proposed, where blur parameters are first identified by

using local projections onto subspaces and deblurring is then performed as a separate

step given all the blur parameters. This procedure is then successfully tested on a real

scenario. Although a parametric representation of motion is considered, it is believe

that this is the first solution for a space-varying deblurring algorithm from a single

image.
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Chapter 8

Depth from a Video with
Moving and Deformable Objects

It is not length of life, but depth of life.

Ralph Waldo Emerson [1803-1882]

Similarly to the previous chapter, a scene with moving and deformable objects is

considered, but this time the depth is estimated from a monocular video sequence.

While common techniques based on single camera view (e.g., optical flow) success-

fully estimate depth in a rigid scene, they fail when there is a deformable scene (see

Figure 8.1). Since no information about the motion and the deformation of the objects

is provided, one cannot rely on matching multiple frames; instead one must rely on

the information available in each single frame.

The depth estimation algorithm is based on the approach for general patterns

(Chapter 6). However, an approximation of the method is implemented here in or-

der to have a reasonably fast algorithm for processing several frames (Section 8.3).

Section 8.2.3 introduces a novel spatial and temporal depth smoothness constraint,

based on nonlocal-means (NLM) filtering, i.e., pixels whose intensities match within

windows and within neighbouring frames are likely to share similar depths. Finally,

in Section 8.4 the algorithm is successfully tested in real and challenging scenarios .
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(a) Frame t-1 (b) Frame t (c) Optical flow

Figure 8.1: Optical flow in a non-rigid scenario. (a)-(b) Neighborhing frames from a
video sequence, used as input for the optical flow estimated in (c). Notice that the result-
ing optical flow does not contain information about depth.

8.1 Related Work

Optical Flow and Structure from Motion. Depth estimation from a single video can

be carried out in several ways, when the scene is rigid. The two most common tech-

niques are optical flow and structure from motion. The former technique consists on

finding correspondences between neighbouring frames and measuring the difference

of their position: The shift is related to the depth of the scene only when the camera

is moving and the scene is rigid [57, 90]. Models for non-rigid structures have been

proposed in structure from motion [95, 96, 108], but they assume that feature corre-

spondences are known [108] or occluders are treated as outliers [95, 96, 105] and then

not reconstructed. Instead, the approach presented in this chapter estimates the depth

of the whole scenario, including possible occluders. High-quality depth maps have

been obtained in [104] from a video sequence captured with a freely moving camera.

However, the method fails when moving or deformable objects are present in most of

the area of the scene.

Nonlocal-Means Filters. To regularize the estimation, the concept of non-local mean

filters is applied to depth reconstruction: The main idea is to link the depth values of

pixels sharing the same colour (or texture). The concept of correlating pixels with

similar colour or texture has been shown to be particularly effective in preserving

edges in stereopsis [70, 87, 92] and thin structure in depth estimation [25, 90], as well
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as image denoising [13, 82, 94].

8.2 Depth Estimation from Monocular Video

When one brings a part of the scene into focus, objects placed at different location

appear out-of-focus; the amount of defocus depends on their location in the scene:

More precisely, it depends on the distance between the objects and the focal plane.

Because of this relationship, if we can identify the blur kernel for each object point in

the scene, we can reconstruct the relative depth of the items in the scene. The exact

distance from the camera can also be recovered from the blur size with a calibration

procedure, once the camera setting is known.

In this section, the depth estimation algorithm is presented. The input is a video

sequence captured by a single coded aperture camera. The scene is composed by object

that moves independently: Therefore, one cannot rely on matching multiple frames,

but has to extract as much depth information as possible at each single frame.

8.2.1 Imaging Formation Model

When we capture a video with a coded aperture camera, we have a set of T coded

frames g1, g2, . . . , gT. For each of these frames, the 3D scene, captured at a particular

time t, can be decomposed in two entities: a 2D sharp frame ft, whose texture is all-

in-focus, and a depthmap dt, which assigns a depth value (distance from the camera)

to each pixel in ft. Our aim is to recover the geometry dt of the scene at each time

instant t. As described previously, different depths corresponds to different blur size

in the coded image gt. Hence, the blur kernel hp, also called Point Spread Function

(PSF), must be allowed to vary at each pixel p. If we consider all the elements ordered
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as column vectors, we can write gt as a product of matrices

gt =
�
h1 h2 . . . hN

�

� �� �
Hdt

·





f1

f2
...

fN










ft, (8.1)

where N is the number of pixels of each frame and Hdt is a symmetric and sparse

matrix that contains the information about the depth of the scene.

Since the scene is non-rigid (hence cannot rely on matching multiple frames), and

since the sharp frames ft are also unknown, in principle we should estimate both

depth and all-in-focus image simultaneously from gt. However, it has been proved

in [27] that this problem can be divided and solved in two separate steps: 1) depth

estimation only and 2) image deblurring by using the estimated depth. In this paper,

we focus our work on the former step.

We formulate the problem of depth estimation as a minimization of the cost func-

tional

d̂ = argmin
d

Edata[d] + α1Etv[d] + α2Enlm[d] , (8.2)

where α1 and α2 are two positive constants. In our approach, the data fidelity term

Edata[d] is taken from depth from single image (see Section 8.2.2) and we concentrate

more on designing the regularization terms (Section 8.2.3).

8.2.2 Data Fidelity Term: Depth from Single Frame

The first term is based on the approach described in Chapter 6. The method identifies

the blur size (and therefore the depth) at each pixel of a coded image by using projec-

tion onto subspaces. In our case, the depth dt can be extracted from the single frame

gt without deblurring the image ft, by minimizing

Edata[d] = ∑
p
||H⊥

dt(p)g̃
p
t ||22 (8.3)
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where g̃
p
t indicates the patch of size δ× δ centred at the pixel p at time t, that has been

rearrange as a column vector. The symbol δ denotes the size of the maximum level

of defocus considered. The matrix H⊥
dt

is built via a learning procedure, described in

detail in Section 6.2.1, for each depth level d such that

H⊥
di

Hdj





≈ 0, if di = dj

� 0, if di �= dj

(8.4)

for any possible sharp texture ft.

Remarkable is the fact that, for depth estimation purpose only, there is no need to

know the shape of the mask: In fact, the learning is performed on real coded images

of a planar plane (with texture), placed at different distances from the camera.

Since we are processing videos, in Section 8.3.1 we work out possible solutions to

approximate equation (8.3) in order to increase the efficiency of this algorithm and

make it suitable for parallel computation.

8.2.3 Total Variation and Non-Local Means Filtering

The first regularization term Etv[d] in equation (8.2) represents the total variation

Etv[d] =
�
�∇d(p)� dp , (8.5)

which constrains the solutions to be piecewise constant [15]. However, this term alone

tends to misplace the edge location and to remove thin surfaces, since it can combine

together pixels that do not belong to the same surface.

To contrast this behaviour, we design a term that links depth values of pixels shar-

ing the same colour (or texture) Enlm[d]. Corresponding pixels can belong either to the

same frame (Section 8.2.3.1) or to different frames (Section 8.2.3.2).
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8.2 Depth Estimation from Monocular Video

8.2.3.1 Spatial Smoothness

In this section we briefly analyzed how neighbourhood filtering methods establish

correspondences between pixels and then extend the concept to our video sequence.

Many depth estimation methods assume that pixels with the same color or texture

are likely to share also the same depth value. This can be obtained with a non-local

sigma-filter [48], based on intensity differences

W1(p, q) = e−
|g(p)−g(q)|2

τ1 , (8.6)

where the weight assigned to W1(p, q) represents how strong is the link between p and

q; or in other words, how likely they are to be located at the same depth. The symbol τ1

indicates the bandwidth parameter determining the size of the filter. Loosely speaking,

pixels with values much closer to each other than τ1 are linked together, while the ones

with values much more distant than τ1 are not.

This type of filter has been largely used for image denoising, although they create

some irregularities at the edges and in uniform regions [14], probably due to the

pixel-based matching being sensitive to noise: To reduce this effect, one could use

region-based matching as in the non-local means filter [25]:

W1(p, q) = e−
Gσ∗|g(p)−g(q)|2(0)

τ1 (8.7)

where G is an isotropic Gaussian kernel with variance σ such that

Gσ ∗ |g(p)− g(q)|2(0) =
�

R2
Gσ(x)|g(p + x)− g(q + x)|2|dx. (8.8)

Now we have obtained a neighbourhood filter for combining pixel of the same

frame. However, since we have multiple frames, we can extend the correspondences

to multiple frames.
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8.2 Depth Estimation from Monocular Video

8.2.3.2 Temporal Smoothness

Objects do not move much between neighbouring frames and we can still find some

correspondences (although the region may be deformed).

Consider a pixel p from a frame gt0 (captured at time t0). We can rewrite the filter

in equation (8.7) in a more general form, where the pixel q is now free to belong to

any frame gt of the video sequence

W1(p, t0, q, t) = e−
Gσ∗|gt0 (p)−gt(q)|2(0)

τ1 , (8.9)

which included the case when t = t0. Indeed, when considering the frame gt0 , the

probability to find the same objects (or part of them) in another frame gt decays mov-

ing away from the time t0. Hence, we can add a filter that implements this likelihood:

W2(t0, t) = e−
|t−t0 |

τ2 (8.10)

where τ2 is the bandwidth parameter in the temporal domain. This parameter is very

important in deciding the amount of frames to consider in the regularization.

We can now combine the spatial (equation (8.7)) and the temporal (equation (8.10))

filters together to obtain the final filtering weights

W(p, t0, q, t) = e−
|t−t0 |

τ2 e−
Gσ∗|gt0 (p)−gt(q)|2(0)

τ1 . (8.11)

Notice that, when the temporal term considers only 2 frames, t0 and t1, the corre-

sponding pixels given by W(p, q, t0, t1) include the matchings obtained from optical

flow.

Finally, we use the sparse matrix W(p, t0, q, t) to define our neighbourhood regu-

larization term, so that pixels with similar colors are encouraged to have similar depths

value, i.e.

Enlm[d] =
� �

W(p, t0, q, t) (dt(q)− dt0(p))2 dq dt. (8.12)
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where p and q represent any pixel in the video sequence.

The term Enlm is quadratic in the unknown depth map d and therefore it can be

easily minimized.

8.3 Implementation Details

In this section we first study the data fidelity term equation (8.2) and find a sound

approximation to improve the efficiency of the proposed method (Section 8.3.1). Sec-

ondly, we describe the iterative approach we adopt to minimize the cost functional in

equation (8.2) (Section 8.3.2).

8.3.1 Filters Decomposition for Parallel Computation

We focus now on the computation of the data term Edata[d]. This term can quickly

generate a non-regularized depthmapth (also called raw depthmap), when α1 = α2 = 0

in equation (8.2)). In this section, the subscripts (t) are assumed but omitted for clarity;

the patches g̃
p
t will then be denoted as g̃p.

Since H⊥
d is a projection, we can rewrite equation (8.3) as

Edata[d] = ∑
p

g̃T
p H⊥

d(p) g̃p . (8.13)

The computation of this term is suitable for parallel computation, since we can

obtain a depth value at each pixel p, independently on the other depth. Also, we

have that H⊥
d = Ud U T

d for construction, as defined in equation (6.24). With this

observations, equation (8.13) becomes more memory efficient:

Edata[d(p)] = �g̃T
p Ud(p)�. (8.14)

When using equation (8.14) as fidelity term, a raw depthmap of size 500× 600 pixels

can be obtained in about 200 s.
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We look now into the bunch of filters Ud to check if there are possible approxi-

mations that can be adopted. The matrix Ud = [u1,d u2,d . . . uM,d] has size δ2 × M,

and its columns are orthonormal filters (Section 6.2.1). Therefore, equation (8.14) can be

thought as a series of 2D convolutions between the whole image g and each column

of Ud (both reshaped to 2D). This is done for each depth level d: we can then say that,

to estimate the depth map for each frame of the video sequence, we have to compute

M × Nd 2D-convolutions, where Nd is the number of depth levels considered. Just

to have an idea of the dimensions we are dealing with, in our experiments we have

M � 150 and Nd = 30.

Since the total numbers of filters we use for each mask is much bigger than the size

of each filter itself (δ× δ, with δ = 33), we can express each orthonormal filter uk,d as

a linear combination of a common base B:

uk,d =
�
b1 b2 . . . bL

�

� �� �
B

· ak,d, (8.15)

where ak,d is a column vector containing the coefficients for the k-th filter at the depth

d. By substituting equation (8.15) in equation (8.14), we can rewrite the fidelity term

as

Edata[d(p)] =
���g̃T

p B Ad(p)

��� . (8.16)

with Ad(p) = [a1,d a2,d . . . aM,d].

Notice that with this formulation we have reduced the number of 2D convolutions

to the number of columns of B; in other words, the complexity corresponds to the

number of vectors that compose the common base (in our experiments, there are about

200 vectors). The depth map at each frame (500× 600 pixels) can now be estimated in

about 4 seconds.

In the following two section we illustrate how to estimate the common base B and

the matrix of coefficients A. These steps have to be run once, just after the learning of

H⊥
d for a given mask.

117



8.3 Implementation Details

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5

3 x 105

Index of S

Va
lu

e

Figure 8.2: Eigenvalues of the matrix S in the SVD. The graph shows the values along
the diagonal of S; such values correspond to the eigenvalues of the matrix Ũ .

8.3.1.1 Estimating the common base B.

We build Ũ (of size δ2 × M × Nd) by joining in the third dimensions the matrices

Ud for all possible depth levels, 1 < d < Nd. We then perform the singular value

decomposition (SVD) of Ũ = WSV T: the most important orthogonal vectors that are

in the left part of the matrix W .

The diagonal of S contains the eigenvalues, i.e. the values that indicates the im-

portance of each column of W to generate the space Ũ . The values along the diagonal

are displayed with a graph in Figure 8.2.

The base B is then composed by the most important column of W ; experimentally,

we have seen that the first 200 vectors are a good approximation for generating the

space of Ũ .
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8.3.1.2 Estimating the coefficients of the base.

Now that we have the common base B, for each filter uk,d we have to estimate the

coefficients ak,d, such that equation (8.15) is satisfied. This yields to:

aT
k,d = uT

k,dB
T(BBT). (8.17)

8.3.2 Iterative Linearization Approach

We solve the Euler-Lagrange equations of the cost functional in equation (8.2)

∇E[d] .= ∇Edata[d] + α1∇Etv[d] + α2∇Esm[d] (8.18)

via iterative linearization [12]. The second and third terms are can be computed easily

as

∇Etv[d] = −∇ ·
� ∇d(p)
|∇d(p)|

�
(8.19)

and
∇Enlm[d] =

� �
W(p, q, t0, t) (d(p)− d(q)) dq dt (8.20)

while the data fidelity term requires a further analysis. In fact, the energy Edata[d] has

an irregular behaviour. Therefore, we expand our energy in Taylor series (stopping at

the third term)

Edata[d] = Edata[d0] + ∇Edata[d0](d− d0) (8.21)

+
1
2
(d− d0)T HEdata[d0](d− d0) , (8.22)

where H indicates the Hessian. Now we can compute its derivative with respect to d

∇Edata[d] = ∇Edata[d0] + HEdata[d0](d− d0) , (8.23)

where d0 represents the initial depth estimation obtained when setting α1 = α2 = 0.

Since the conditions for convergence require HEdata[d0] to be positive-definite, we
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Frame #30 Frame #50 Frame #210

Figure 8.3: Depth estimation with objects deforming.. Top row: Some of the frames
of the coded input video; Central row: Raw depth maps, estimated only with the data
fidelity term, without any regularization (α1 = α2 = 0) ; Bottom row: Final depth maps
obtained from our method.

consider instead |HEdata[d0]| and make it strictly diagonally dominant [103].

8.4 Experiments on Real Data

The videos have been captured by using a coded aperture camera, a Canon EOS-5D

Mark-II with a mask inserted into a 50mm f/1.4 lens. The two datasets shown in this

paper, Figure 8.3 and Figure 8.5, are very challenging scenario for depth estimation

using a single camera. For both datasets, we show some coded frames from the video

sequence and their relative depth maps that we have estimated. Below each input
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Frame #230 Frame #250 Frame #280

Figure 8.4: Depth estimation with objects moving. Top row: Some examples of frames
from the coded input video; Bottom row: Depth maps reconstructed from our method.

frame there are two depth maps: 1) the raw depthmap (central row), obtained by

minimizing only the term Edata and 2) the final depthmap (bottom row) resulting from

minimizing the cost in equation (8.2).

Both videos have been taken with the camera "in hands", therefore the camera is

also moving. The depth estimation, however, it is not affected by this shake. The video

shown Figure 8.5 has been captured indoor in a very low light condition; therefore the

input video is very noisy (ISO 2000). Nevertheless, the method still outputs impressive

results, proving its robustness and consistency. Moreover, the quality of the results in

this dataset may suggest that they can be used for tasks such as body pose estimation,

or body part recognition.

8.5 Summary

A method to estimate depth from a single video with moving and deformable objects

is presented for the first time. The approach is based on coded aperture technology,

where a mask is placed on the lens of a conventional camera. Firstly, there is a deep
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Frame #20 Frame #50 Frame #60 Frame #130

Figure 8.5: People Dataset. Top row: Some examples of frames from the coded input
video; Bottom row: Depth maps reconstructed from our method.

analysis of the single image depth estimation method for general patterns in order to

improve its efficiency; this is essential if dealing with video sequences. Secondly, a

regularization term based non-local means filtering is introduced. This term creates at

the same time a spatial and temporal neighbourhood of pixels that are likely to share

the same depth value. The method is then tested on real data and high-quality depth

maps are obtained from very challenging scenarios.
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Chapter 9

Coded Aperture Selection

One more thing.

Steve Jobs [1955-2011]

This chapter exploits a geometric interpretation of the blur, based on subspaces,

which will be used to develop a mask selection criterion.

By using the formulation derived in Chapters 6, one can think blurred patches to

be elements of different subspaces, where each subspace is characterised by a spe-

cific blur scale (Section 9.1). In this context, the procedure of blur estimation can be

described as establishing the closest subspace to a given blurred patch. Ideally, one

would like to have these subspaces as separate as possible from each other, in or-

der to better distinguish the blur scale. However, the distances between the subspace

changes depending on the pattern of the blur, which is in turn given by the aperture

mask. Section 9.2 describes a possible metric to measure distances between subspaces

and discusses how to obtain an optimal pattern for the purpose of depth and all-in-

focus image reconstruction. All the aperture masks presented in literature, and used

in this work, are tested under this criterion.

Moreover, in Section 9.3 the structures of asymmetric and symmetric aperture

masks are investigated to comprehend wether one can distinguish the blur generated

before and after the focal plane.
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9.1 A Geometric Viewpoint on Blur Scale Identification

9.1 A Geometric Viewpoint on Blur Scale Identification

Chapter 6 has shown the blur scale at each pixel can be obtained by minimizing equa-

tion (6.25): One has to search among matrices H⊥
d1

, . . . , H⊥
dL

the one that yields the

minimum �2 norm when applied to the vector gp. This has a geometrical interpreta-

tion: Each matrix H⊥
di

defines a subspace and �H⊥
di

gp�2
2 is the distance of each vector

gp from that subspace.

Recall that H⊥
di

= UdiU
T
di

and that Ui = [Qdi Udi ] is an orthonormal matrix. Then

the data term in equation (6.25) can be written as

�H⊥
di

gp�2
2 = �UdiU

T
di
gp�2

2 = �U T
di
gp�2

2 = �gp�2
2 − �QT

di
gp�2

2. (9.1)

Equation (9.1) can now be divided by the scalar number �gp�2
2 : This yields exactly to

the square of the subspace distance [91]

M(g, Qdi) =

����1−
K

∑
j=1

�
QT

di ,j
g

�g�

�2
, (9.2)

where K is the rank of the subspace Qdi , Qdi = [Qdi ,1 . . . Qdi ,K], and Qdi ,j, j = 1, · · · , K

are orthonormal vectors.

The geometrical interpretation brings a fresh look to image blurring and deblur-

ring. Consider the image model (3.27), where a blurred image g is generated by multi-

plying a sharp image f on the right by a matrix Hd. The singular value decomposition

of the blur matrix Hd is given by

Hd = UdSdVT
d (9.3)

where Sd is a diagonal matrix with positive entries, and both Ud and Vd are orthonor-

mal matrices. Formally, the vector f undergoes a rotation (VT
d ), then a scaling (Sd),

and then again another rotation (Ud) (see Figure 9.1). This means that if f lives in

a subspace, the initial subspace is mapped to another rotated subspace, possibly of
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Hd

VT

Hd = U . S . VT

S

U

Wednesday, 13 July 2011

Figure 9.1: Geometric interpretation of SVD. Based on the singular value decomposition
of Hd, the effect of the blur on a sharp image is described as a rotation (V T), a scaling
(S), and a second rotation (U ).

smaller dimension (see Figure 9.2(b)). Notice that as the blur scale changes, the rota-

tions and scaling are also changing and this may result in yet a different subspace (see

Figure 9.2(c)).

It is important to understand that rotations of the vector f can result in blurring. To

clarify this, consider blurred and sharp images with only 3 pixels (we cannot visualize

the case of more than 3 pixels), i.e., g1 = [g1,x g1,y g1,z]T and f1 = [f1,x f1,y f1,z]T. Then,

one can plot the vectors g1 and f1 as 3D points (see Figure 9.2). Let �g1� = 1 and

�f1� = 1. Then, f1 can be rotated aroud the origin and overlap it exactly on g1. In this

case rotation corresponded to blurring. The opposite is also true. The vector g1 can be

rotated onto the vector f1 and thus perform deblurring. Furthermore, notice that in

this simple example the most blurred images are vectors with identical entries. Such

blurred images lie along the diagonal direction [1 1 1]T. In general, blurry images

tend to have entries with similar values and hence tend to cluster around the diagonal

direction.
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]
f1
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f3

(a) Sharp patches
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g2
g3

Hd1

(b) Patches blurred with Hd1

g1

g2

g3

Hd2

(c) Patches blurred with Hd2

Figure 9.2: Coded images subspaces. (a) Patches of sharp images on a subspace. (b)
Subspace containing images blurred with Hd1 ; blurring has the effect of rotating and
possibly reducing the dimensionality of the original subspace. (c) Subspace containing
images blurred with Hd2 .

The ability to discriminate between different blur scales in a blurry image boils

down to being able to determine the subspaces where the patches of such blurry image

live. If sharp images do not live on a subspace, but uniformly in the entire space, the

only way to distinguish the blur size is that the blurring Hd scales some dimensions

of f to zero and that the scaling varies with blur size. This case has links to the zero-

sheet approach in the Fourier domain [74]. However, if the sharp images live on a

subspace, the blurring Hd may preserve all the directions and blur scale identification

is still possible by determining the rotation of the sharp images subspace. This is the

principle that is exploited here.

Notice that the evaluation of the subspace distance M involves the calculation of

the inner product between a patch and a column of Udi . Hence, this calculation can

be done exactly as the convolution of a column of Udi , rearranged as an image patch,
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with the whole image g. In conclusion, the algorithm requires computing a set of

L× K convolutions with the coded image, which is a stable operation of polynomial

computational complexity.

9.2 Coded Aperture Selection Criterion

This section discusses how to obtain an optimal pattern for the purpose of depth and

all-in-focus image reconstruction. As pointed out in [21] there are two main chal-

lenges: The first one is that accurate estimation of depth and texture requires accurate

identification of the blur scale; the second one is that accurate deblurring requires lit-

tle texture loss due to blurring. A first step towards addressing these challenges is to

define a metric for blur scale identification and a metric for texture loss. Our metric

for blur scale identification can be defined directly from section 9.1. Indeed, the ability

to determine which subspace a coded image patch belongs to can be measured via the

distance between the subspaces associated to each blur scale

M̄(Ud1 , Ud2) =
�

K−∑
i,j

�
UT

d1,iUd2,j

�2
. (9.4)

Clearly, the wider apart all the subspaces are, and the less prone to noise the subspace

association is. We find that a good visual summary of the “spacing” between all the

subspaces is a (symmetric) matrix with distances between any two subspaces. We

compute such matrix for a conventional camera and show the results in Figure 9.3,

together with the ideal distance matrix. In each distance matrix, subspaces associated

to blur scales ranging from the smallest to the largest ones are arranged along the

rows from left to right and along the columns from top to bottom. Along the diagonal

the distance is necessarily 0 as we compare identical subspaces. Also, by definition

the metric cannot exceed
√

K, where K is the minimum rank among the subspaces.

In Figure 9.5 we report the distance matrices computed for each of the apertures we

consider in this work (see Figure 9.4).
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d

d

(Ud10, Ud20) = !K

(Ud25, Ud25) = 0

8 Manuel Martinello and Paolo Favaro

Input: A single coded image g and a collection of coded images of L planar
scenes.

Output: The blur scale map d of the scene.
Preprocessing (offline)
Pick an image patch size larger than twice the maximum blur scale;
for i = 1, . . . , L do

Compute the singular value decomposition UiSiV
T

i of a collection of images
patches coded with blur scale di ;
Calculate the subspace Udi as the columns of Ui corresponding to nonzero
singular values of Si;

end
Blur identification (online)

for each patch gx centered at a pixel x of g do
Solve d̂(x) = arg mind∈{d1,··· ,dL} M(gx , Ud).

end

Algorithm 1: Blur scale identification from a single coded image via the
subspace distance method.
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(a) Ideal distance matrix
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Figure 9.3: Distance matrix computation. The top-left corner of each matrix is the dis-
tance between subspaces corresponding to small blur scales, and, vice versa, the bottom-
right corner is the distance between subspaces corresponding to large blur scales. Notice
that large subspace distances are bright and small subspace distances are dark. The max-
imum distance (

√
K) is achievable when two subspaces are orthogonal to each other.

Notice that the subspace distance map for a conventional camera (Figure 9.3(b)) is

overall darker than the matrices for coded aperture cameras (Figure 9.5). This shows

the poor blur scale identifiability of the circular aperture and the improvement that

can be achieved when using a more elaborate pattern.

The rank K can be used to address the second challenge, i.e., the definition of a

metric for texture loss. So far we have seen that blurring can be interpreted as a

combination of rotations and scaling. Deblurring can then be interpreted as a com-

bination of rotations and scaling in the opposite direction. However, when blurring

scales some directions to 0, part of the texture content has been lost. This suggests that

a simple measure for texture loss is the dimension of the coded subspace: The higher

the dimension and the more texture content can be restored. As the (coded images)

subspace dimension is K, one can immediately conclude that the subspace distance

matrix that most closely resembles the ideal distance matrix (see Figure 9.3(a)) is the

one that simultaneously achieves the best depth identification and the least texture

loss. Finally, we propose to use the average L1 fitting of any distance matrix to the

ideal distance matrix scaled of
√

K, i.e., |
√

K(11T − I) − M̄|. The fitting yields the

values in Table 9.1. We can also see visually in Figure 9.5 that mask 4.4(b) and mask

4.4(d) are the coded apertures that we can expect to achieve the best results in texture
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 9.4: Coded aperture patterns and PSFs. All the aperture patterns we consider in
this work (top row) and their calibrated PSFs for two different blur scales (second and
bottom row). (a) and (b) aperture masks used in both [39] and [62]; (c) annular mask used
in [64]; (d) pattern proposed by [50]; (e) pattern proposed by [98]; (f) and (g) aperture
masks used in [106]; (h) MURA pattern used in [34].

(a) Mask 9.4(a) (b) Mask 9.4(b) (c) Mask 9.4(c) (d) Mask 9.4(d)

(e) Mask 9.4(e) (f) Mask 9.4( f ) (g) Mask 9.4(g) (h) Mask 9.4(h)

Figure 9.5: Subspace distances for the eight masks in Figure 9.4. Notice that the subspace
rank K determines the maximum distance achievable, and therefore, coded apertures with
overall darker subspace distance maps have poor blur scale identifiability (i.e., sensitive to
noise).
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9.3 Symmetric vs. Asymmetric Masks

Masks
4.4(a) 4.4(b) 4.4(c) 4.4(d) 4.4(e) 4.4(f) 4.4(g) 4.4(h)

L1 fitting 8.24 6.62 8.21 5.63 8.37 16.96 8.17 16.13

Table 9.1: L1 fitting of any distance matrix to the ideal distance matrix scaled of
√

K.

deblurring.

The quest for the optimal mask is, however, still an open problem. Even if we

look for the optimal mask via brute-force search, a single aperture pattern requires

the evaluation of equation (9.4) and the computation of all the subspaces associated

to each blur scale. In particular, the latter process requires about 8 minutes on a

QuadCore 2.8GHz with Matlab 7, which makes the evaluation of a large number of

masks unfeasible.

9.3 Symmetric vs. Asymmetric Masks

This section presents an investigation on whether the choice of the aperture mask can

be crucial to distinguish when an object is placed before from when it is placed after the

focal plane. The image generated in the two cases can be easily simulated by using

the image formation model described in Chapter 3. An object point placed between

the camera and the focal plane generates a blur that has exactly the same shape than

the aperture mask. Instead, an object point located after the focal plane generates

a blur whose shape is a flipped version of the mask. Therefore, the first conclusion

can be drawn: to distinguish the two sides of the scene, the aperture mask cannot be

symmetric.

Nevertheless, there is a problem even with an asymmetric mask. To be able to

distinguish the two blurs, one has to have access to the blur matrix Hd, which contains

the blur kernel d that generated the image g. However, recalling the depth estimation

methods previously presented in this work, one notice that Hd is always multiplied

by its transpose, HT
d . The first approach (Chapter 5) is derived from the following
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9.3 Symmetric vs. Asymmetric Masks

Saturday, 10 March 2012

Saturday, 10 March 2012

(a) mask (b) before focal plane (c) after focal plane

Figure 9.6: Before and after the focal plane. The structure of Np described in Chapter 5
is base on the product HdH

T
d . Such a structure is shown, for the same blur scale, before

and after the focal plane for a symmetric (top) and an asymmetric mask (bottom).

definition of Σk (from equation (5.11))

Σk(Ak) = HdA
−1
k HT

d + Ckσ2I ; (9.5)

The second approach (Chapter 6) is based on the bank of filters H⊥
d , which is defined

from equation (6.6) as

H⊥
d

.= I −Hd

�
αΣTΣ + HT

d Hd

�−1
HT

d . (9.6)

To better illustrate the problem, we recall the structure of Np, described in Chapter 5,

which is base on the product HdH
T
d . Figure 9.6 show such a structure, for the same

blur scale, before and after the focal plane for a symmetric (top row) and an asymmet-

ric (bottom row) mask. When the product is computed, there asymmetric property

is lost and it is not possible to distinguish between a blur generated before and one

generated after the focal plane.
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9.4 Summary

9.4 Summary

This chapter presents the blur effect as a rotation and a scaling of subspaces. Based on

this interpretation, blurred images lives in different subspaces, each of them charac-

terised by a specific blur. For the benefit of blur identification, these subspaces should

lie as far as possible from each other. Hence, a mask selection criterion has been devel-

oped to find the aperture pattern that maximises subspaces distances. However, given

the current procedure of the mask selection criterion, the evaluation of a large number

of masks is unfeasible. Devising a fast procedure to determine the optimal mask will

be subject of future work.

The difference in using symmetric and asymmetric masks has also been investi-

gated, in order to distinguish between the two sides of the scene divided by the focal

plane. However this task requires further research, since the depth estimation methods

presented here cannot solve this ambiguity.
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9.4 Summary

This page has been left intentionally blank.
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Chapter 10

Conclusions

The questions are always more

important than the answers.

Randy Pausch [1960-2008]

This thesis presented analysis and methods to address the problem of 3D scene

reconstruction and all-in-focus image estimation from a single 2D image captured by

a coded aperture camera. A coded aperture device consists of a conventional camera

with a modified aperture mask placed on the main lens. With this device the depth

information of the scene can be encoded in a single 2D image, to be later extracted and

separated from the texture. The depth encoding is obtained by using the properties

of defocus blur: Objects placed at different distances from the camera appear to have

different blur scales in the captured image. The shape of the blur generated by out-of-

focus objects takes the form of the lens aperture. The key advantage of using a coded

aperture mask in the camera lens is that one can change the shape of the blur, such

that it is more distinguishable from natural texture, and therefore easier to identify.

When blur scale is identified, one can 1) extract the real depth value through a cali-

bration procedure, 2) estimate the all-in-focus image, and also 3) combine the depth

and the sharp image together to simulate stereoscopic vision (as illustrated with some

anaglyphs in the thesis).
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This work has analyzed the problem of depth and all-in-focus image reconstruction

from a single 2D coded image, and has demonstrated that this problem can be split in

two steps, without compromises or approximations: first depth estimation and then

image deblurring. The latter step uses the estimate of the former one.

Regarding the first step, two approaches have been proposed, depending on the

complexity of the pattern in the aperture mask. If the pattern can be decomposed as a

small set of identical openings, one can estimate the depth by considering the contri-

butions of just a few pixels instead of the whole patch, hence reducing drastically the

computational complexity. If the pattern is more complex, the depth can be estimated

with a bank of orthogonal filters previously learned. One of the main advantages of

this method is that, for the purpose of depth estimation alone, it does not require to

have any information about the shape of the aperture mask: The bank of filters can be

learned directly from a set of blurred images. The second important advantage is that

the learning procedure has to be carried out only once for a given mask. The range of

distinguishable depth levels can then be easily re-mapped to any other scenario, using

the image formation model described in the thesis.

The second part of the problem consists of recovering the all-in-focus image. This

is achieved by using a deconvolution step with the estimated depth map. Its imple-

mentation is based on a gradient descent algorithm.

The proposed solution has also been extended to a non rigid scenario, where ob-

jects can deform and move independently. Under these circumstances, the algorithm

can successfully remove the degradation created in an image by both defocus and mo-

tion blur. Although only a parametric representation of motion is considered, it is the

first solution for a space-varying deblurring algorithm from a single image. Similarly,

another problem has also been successfully addressed for the first time in the litera-

ture: depth reconstruction from a video sequence with moving and deformable objects

in the scene. An import contribution of this approach is the introduction of a regular-

ization term that creates, at the same time, a spatial and temporal neighbourhood of

pixels that are likely to share the same depth value.
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10.1 Limitations of this Work

Results on both synthetic and real data are presented and compared to existing

algorithms in the literature, showing that the proposed methods achieve state-of-the-

art performance, without any user intervention. This big improvement is due to the

fact that the proposed solutions bypass the reconstruction of the sharp image, allowing

the method to deal with a larger amount of blur.

The quality of the results on real data and the robustness of the methods show the

possibility for this technique to be used in applications that require depth estimation,

such as obstacle avoidance. In addition, this technology can be adopted by applications

that normally use only the texture information of an image, but that can gain accuracy

from the additional 3D information; an example of such application is object detection.

Furthermore, the quality of the results obtained from video sequences suggest that

this technique may be very useful to tasks such as body pose estimation or body part

recognition.

The next sections will discuss the drawbacks of this work, and how these could be

addressed in future work.

10.1 Limitations of this Work

The first and most evident limitation of this approach is that the 3D information of

the scene can be reconstructed only if the scene is not in-focus. Moreover, as already

discussed in the Section 9.3, the proposed methods have an ambiguity: they cannot

distinguish between before and after the focal plane. Therefore, the focal plane has to

be set outside the scene of interest.

Another limitation in the depth estimation is the type of lens. Similarly to what

happens in stereo, the depth resolution achievable with a coded aperture device is

given by the size of the pattern, which is limited by the size of the lens aperture.

A minor limitation is that, when a binary mask is placed on a the lens of a conven-

tional camera, it reduces the amount of light that goes through the lens, and therefore

reduces the signal-to-noise ratio. However, this does not affect the proposed depth
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10.2 Future Work

estimation algorithms, which have been shown to be robust and achieve good results

even in low-light conditions.

10.2 Future Work

The performance of the proposed approaches with different masks has shown that the

design of an optimal mask is still an open problem. A mask selection criterion has

been proposed in Chapter 9, but at the moment the evaluation of a large number of

masks is unfeasible. Devising a fast procedure to determine the optimal mask will be

subject of future work. Regarding the search for the optimal mask, further research is

also required in order to distinguish between the two sides of the scene divided by the

focal plane, since the depth estimation methods presented in this thesis cannot solve

this ambiguity.

In the depth estimation method for general pattern, a bank of filters is learned

from a set of blurred images. This is very useful for depth estimation, but for the all-

in-focus image estimation one still needs to know the blur kernel. A very interesting

work would be to identify the pattern of the aperture mask from the filters or directly

from the blurred images.

The all-in-focus image estimation has been presented and implemented for a single

image. However this can be extended to a video sequence. As for the depth estima-

tion method, the quality of the deblurring results is expected to improve from the

additional information regarding neighbouring frames.

Another approach to image reconstruction, which is not discussed in this work, is

to estimate the sharp image that is “seen” at each opening of the mask. This would

require 1) to include a model for occlusion in the image deblurring, 2) a very precise

depth estimation at the edges.
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