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EXECUTIVE SUMMARY

We use an Aotearoa-specific, individual-based network contagion model to simulate the spread of COVID-19 in the community
with control measures representing Alert Level 2.5 turned on when the first case is detected.

Our simulations for a community outbreak with no direct link to the border – similar to the 2020 Auckland August
outbreak situation – find that Alert Level 2.5 would be unlikely to suppress or eliminate the outbreak.

Only ∼ 19% of simulations with a case detected eliminated the outbreak within 150 days of detection. All others
had uncontrolled growth with Reff > 1. Furthermore, we find that Alert Level 2.5 would still be insufficient, even if augmented
by improved contact tracing through widespread use of QR code scanning, Bluetooth tracking of close contacts and faster
manual contact tracing. These contact tracing improvements slightly decreased Reff and the total number of cases at
150 days but had no statistically significant increase in the fraction of simulations with elimination in 150 days of detection or less.

The probability of elimination in our simulations is strongly linked to the outbreak size at initial detection when the
Alert Level 2.5 intervention is applied. Outbreaks with 10 or fewer total cases (including unknown cases) at the time of alert level
elevation have an approximately 60% chance of being eliminated within 150 days of detection, while if the outbreak size is 11 or
more at the point when alert levels are elevated, the probability of elimination falls to under 12%. This threshold behaviour under-
lines the importance of the second component of the Go Hard, Go Early strategy of the pandemic response pursued in Aotearoa.

We note that the magnitude of the impact of improved contact tracing on contagion control observed at Alert Level
2.5 would be different at other alert levels: the effects of various interventions combine non-linearly in our model. Furthermore,
we note that we are assuming a reasonably high level of contact tracing in the ‘baseline’, both in terms of the fraction of contact
that are knowable by the National Contact Tracing Service (NCTS) and the rate of successfully contacting them, with no
capacity constraints in the system.
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Introduction
We use a detailed individual-based network contagion model that explicitly represents ∼ 5 million individuals along with the

the contexts in which they interact. This network model includes stochasticity, spatial information, and individual demographic
information, along with multiple distinct ‘transmission contexts’ including dwellings, workplaces, schools, and more generally
in the community. It also includes an explicit representation of the contact tracing process.

We use this network-based contagion model to address the question of whether Alert Level 2.5 (AL2.5) is enough to
eliminate a community outbreak with no clear epidemiological link to the border —similar to that seen in the 2020 Auckland
August outbreak. This situation is distinct from (and more concerning than) the case of a positive test in a known MIQ worker
or person with an epidemiological link to a MIQ worker. We simulate the outbreak under two scenarios: firstly AL2.5 as it
was implemented in Auckland at the tail-end of the Auckland August outbreak (i.e. with the contact tracing processes and NZ
COVID Tracer app usage as observed) and secondly with AL2.5 augmented by improvements in contact tracing technology
and processes (i.e. higher rates of NZ COVID Tracer app usage, Bluetooth contact tracing, and improved speed of manual
contact tracing).

Characterisation and parameterisation of Alert Level 2.5
Motivated by the question of “Could Auckland have eliminated the August outbreak using AL2.5?” we have developed

a set of interaction, testing, and tracing parameters that is intended to reproduce as accurately as possible AL2.5 as it was
implemented at the end of the 2020 Auckland August outbreak. It is also possible to implement a combination of technological,
behavioural and procedural changes that could increase the effectiveness of contact tracing at AL2.5, without altering the
restrictions or gathering size limits that applied. The parameterisation and characterisation of both of these scenarios is given
below. Further details of the network-based model and the implementation of the test/trace/isolate (contact tracing and testing)
programme is given in the Method section.

Alert Level 2.5 (AL2.5)
For AL2.5 only, we assume a reduction in transmission occurs via various control policies. These reductions are relative to

the model’s calibrated default values, not relative to other scenarios.
We assume that schools are still open with attendance at 94% of usual, but there are some transmission reduction measures

in place such as reduced activities (like assemblies). These changes translate into our model as a close contact transmission risk
94% of default (no interventions) and a causal contact risk of about 80% of default. These measures roughly translate to an
overall reduction in the likelihood of transmission in schools by around 6%, as the transmission risk for close contacts is much
larger.

Workplaces can remain open under AL2.5, but working from home is encouraged where possible. Furthermore, additional
measures to keep workers safe are typically used, such as physical distancing, mask-wearing, and increased hygiene measures.
We model this using transmission rates in workplaces of around 70% of default for close contacts and around 60% of default
for casual contacts.

In the community under AL2.5, ‘close’ gatherings of over 10 people are not allowed, with appropriate considerations for
weddings, funerals, and tangihanga. We also expect a decrease in the number of events attended. We assume widespread
adoption of mask-wearing and distancing, which reduces casual contact transmission rates. These interventions translate into
our model as a reduction in all (non-dwelling) community interactions by around 50%. We do not strictly enforce the rule of no
groups over 10 but enforce no groups over 100 people. We note that these community gatherings are modelled as either ‘close’
or ‘casual’, with no specification on their type (e.g. public transport, weddings, religious gatherings). That is, all interaction
contexts, or group nodes, represented by the community layer are drawn from the same group size distribution and all follow
the same interaction mechanism, parameterised as either ‘close’ or ‘casual’ contact.

We include contact notification and tracing processes in our model. In reality, casual contacts are notified through media
announcements, NZ COVID Tracer app ‘exposure notifications’, and some manual contact tracing. Casual contacts are advised
to get a test regardless of symptoms. These translate to the following model parameter changes: Once the first case has
been detected, we assume there is a testing surge and 50% of mild symptomatic community cases get tested (the 80% test
positivity rate means 40% of cases test positive) and 80% of serious symptomatic community cases get tested (64% of cases
test positive). Tested individuals are notified of their test results in a mean of 4 days post symptom onset, matching rates seen
in the Auckland August 2020 outbreak.

Close contacts are traced at a rate fitted to fit to metric S0003 in the National Contact Tracing Performance reports.
Specifically, we use a Weibull distribution with parameters: scale = 3.04, shape = 2.66, which gives a median time (since
confirmed test) to notify a close contact of 2.65 days. There is a prioritisation in contact order such that household (dwelling)
contacts are contacted sooner than other contacts.
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It is assumed that all members of a confirmed case’s dwelling, 95% of close workplace or school contacts, and 80% of
community close contacts are known and reachable by contact tracers. Contact tracing attempts are then made with a 10%
chance of failure per attempt for contacts that do not share a dwelling with the confirmed case. If an attempt fails, up to 5 more
attempts are made at making contact, with an inter-attempt time modelled by an exponential distribution with rate = 4.

In the baseline AL2.5 scenario, we model the casual-plus category by assuming that 50% of casual contacts in dwellings∗,
50% of casual contacts in schools and workplaces, and 10% of casual contacts in the community would know they were a
casual contact and seek a test. For this percentage, the delay between the confirmed case notification and the casual contact
seeking a test is between 2.5 and 7 days, with the times modelled as a scaled Beta distribution with parameters a = 3,b = 5.

Alert Level 2.5 with improved contact tracing (AL2.5+)
We address the impact of QR codes, Bluetooth tracing, and manual improvements all together. In terms of parameter

changes in our model, we: increase the likelihood of casual contacts in the community getting tested to 25% (from 10%);
increase the proportion of community close contacts known to 95% (from 80%); and increase the speed of close contact
tracing by adjusting the parameters of the Weibull Distribution to: scale = 2.6, shape = 1.7. This is a reduction of the median
time (since confirmed test) to notify a close contact from 2.65 days in the baseline case to 2.10 days in this scenario.

Simulation results
We ran 500 simulations for each of the Alert Level 2.5 (AL2.5) and Alert Level 2.5 plus improved contact tracing (AL2.5+)

scenarios. Each simulation was seeded by setting the state to infected (specifically to ‘Exposed’) for a single, randomly selected,
individual in Auckland. Pre-detection testing rates and behaviour were the best estimate of AL1. Further details of the initial
conditions and set-up are given in the Initial Conditions section.

Pre-detection phase
Since the simulation conditions before detection of the first case are identical for the AL2.5 and AL2.5+ scenarios, we can

combine the simulation results for any analysis of this phase of the outbreak. We exclude from analysis any simulations where
the infection died out without being detected (i.e. infections that do not spread and which remain unknown) or where there is
no further transmission from the first detected case (i.e. the infected case is isolated at detection and no outbreak occurs). This
leaves a remaining 766 (372 for AL2.5; 394 for AL2.5+) of the 1000 total simulations with an outbreak of total size of two or
more cases.

The median time from the initial seed case to detection of the first case in a community outbreak ranges from two to just
under four weeks (median = 20 days; [LQ = 14,UQ = 26]). The most common outbreak size at the time of detection is in the
range of 10–40 total cases.

Post-detection phase
One of the best measures of whether a specific intervention, or combination of interventions, would be sufficient to control

an outbreak is to count the fraction of outbreaks that are brought under control (either zero active cases, or zero non-isolated
active cases) in a specified time period. Here we report the fraction of outbreaks with zero active cases 150 days from detection.
Additionally, we report the estimated value of Reff during the period of the simulation when the intervention (AL2.5 or AL2.5+)
was active, along with the distribution of outbreak sizes at 60 and 150 days post-detection for both ‘total cases’ and the smaller
subset of ‘known (confirmed) cases’. Though Reff is not a basic input of our model, we can post-process our overall results to
provide estimates of it1. In the present work we post-process our results using the simple approximation2, 3 Reff ≈ r×generation
time + 1 to provide an indication of this, where r is the observed exponential epidemic growth rate.

Probability of elimination
We find that in simulations with AL2.5 applied post-detection, only 72 (19.4%) of the 372 simulations with a case detected

completely eliminated the outbreak within 150 days of detection. All others had uncontrolled growth with Reff > 1. Similarly,
we find that for Alert Level 2.5 with improved contact tracing (AL2.5+) applied post-detection, only 84 (21.3%) of the 394
simulations with a case detected completely eliminated the outbreak within 150 days of detection . All others had uncontrolled
growth with Reff > 1. A two-sample test for equality of proportions indicates no statistically significant difference between
the proportion of simulations that eliminate completely within 150 days of detection. That is, both AL2.5 and AL2.5+ are
insufficient to eliminate an outbreak and AL2.5+ gives no appreciable improvement of the likelihood of elimination. (The
evidence is that there is either no effect, or that the effect is too small to see in 500 simulation runs.)

It is worth noting that this does not imply that improved contact tracing measures have no effect on the probability of
elimination in other contexts. It is expected that the impact of such measures is non-linear and may for example, show an
∗all dwelling contacts will be close contacts except in large shared dwellings (occupancy over 12). NB: apartment complexes are not large dwellings, as

these are considered separate, and unlinked, dwellings in Census records.
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improvement in disease elimination at other Alert Levels where there are different transmission dynamics on account of
different interaction patterns between individuals.

The probability of elimination is strongly dependent on the size of the outbreak at first detection; when outbreaks are
detected sooner and are smaller, the likelihood of elimination within 150 days of detection is greatly increased. In Table 1 we
group the outbreaks by their size (cumulative cases) at detection in size bins defined by the Ministry of Health in the earlier
Elimination Strategy report4. We find that the probability of elimination for outbreaks of size 2–10 at detection is around
∼60% while for outbreaks detected at size 11–20 the probability of elimination falls dramatically to around ∼12%. Note: a
two-sample test for equality of proportions showed no evidence of a statistically significant difference between the AL2.5 and
AL2.5+ within any of the outbreak size bins.

Scenario % of all outbreaks
that reach elimination

By size of outbreak at detection
2-10 11-20 21-50 51-100

AL2.5 19% 58% 11% 2% 0%
AL2.5+ 22% 65% 14% 0% 0%

Table 1. Percentage of simulations that reach elimination by day 150 for different initial outbreak sizes at detection and
interventions. The number of runs in each bin of outbreak sizes is noted in table 4. Note: a two-sample test for equality of
proportions showed no evidence of a statistically significant difference between the two scenarios for any of the outbreak sizes.

Figures 1 and 2 show trajectories, under AL2.5 for the cumulative cases and new daily cases, respectively, along with the
corresponding median and upper and lower quartiles.
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Figure 1. Cumulative cases on a log scale, for 150 days post-detection under Alert Level 2.5. Although some simulations
eliminate (as indicated by trajectories that flatten out and end before 150 days), the number of infected cases continues to grow
exponentially for 80% of simulations.
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Figure 2. Daily new cases, for 150 days post-detection under Alert Level 2.5. Around 20% of trajectories die out, reaching
zero daily new cases within 150 days of initial detection. However, the majority of simulations show an increasing number of
new cases per day.

Estimate of Reff during intervention period
During the simulation period when AL2.5 is in effect, we calculate a median Reff of 1.12 [1.1,1.14] from the active number

of cases. If AL2.5 intervention is replaced by AL2.5+ then the median Reff is 1.11 [1.08,1.12]. The very slightly lower value of
Reff for AL2.5+ is statistically significant, however the difference is very small (95% confidence interval of 0.013-0.022) and
since both values of Reff are greater than 1, this difference is inconsequential in the context of an Elimination Strategy.

Size of outbreak at 60 and 150 days post-detection
To better quantify the nature of the outbreaks seen under AL2.5 and AL2.5+ we report the outbreak sizes at 60 and 150

days post-detection. The results for 60 days post-detection are reported in Table 2 and distributions of the cumulative outbreak
sizes at 60 and 150 days post-detection are shown in Figure 3.

For AL2.5, there are a median of 493.5 [128, 1161] cumulative cases from the first seed case until 60 days post-detection,
and a median of 8259 [1327, 15246] cumulative cases after 150 days post-detection. If we consider only ‘known’ (confirmed
through testing) cases, the cumulative case counts are a median of 213 [67, 486] after 60 days post-detection, and a median of
3899 [621, 7516] after 150 days post-detection.

With the improved contact tracing under AL2.5+, there are a median of 453.5 [108, 973] cumulative cases from the first
seed case until 60 days post-detection, and a median of 5054 [678, 9634] cumulative cases after 150 days post-detection. If we
consider only ‘known’ (confirmed through testing) cases, the cumulative case counts are a median of 200 [48, 432] after 60
days post-detection, and a median of 2430 [365, 4861] after 150 days post-detection.
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This suggests that even when it is insufficient to control an outbreak, improved contact tracing is likely to still play a role in
reducing the size of an outbreak.

Scenario Case type Cumulative number of cases at 60 days Cumulative number of cases at 150 days

AL2.5 Confirmed 213 [67, 486]* 3899 [621, 7516]*
Total 493.5 [128, 1161] 8259 [1327, 15246]*

AL2.5+ Confirmed 200 [48, 432]* 2430 [365, 4861]*
Total 453.5 [108, 973] 5054 [678, 9634]*

Table 2. Cumulative Cases (confirmed cases and total cases) at day 60 and 150 post-detection for all outbreaks. Results shown
are reported as median [lower quartile, upper quartile]. Note: a Mann-Whitney-Wilcoxon test was performed and showed
evidence (at the 0.05 level) of difference between the two Scenarios for the results indicated with an asterix *.
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Figure 3. Distribution of Total Cumulative Cases at day 60 and day 150 by Scenario and Outbreak Size at Initial
Detection. This plot shows the distribution of the total cumulative number of cases (i.e. both confirmed cases and unknown
cases) at day 60 and day 150 after detection on a log scale. Note: the scale of the y-axis differs between the two times. Results
are split across the scenarios of AL2.5, and AL2.5+. Density plots indicate the lower quartile, median, upper quartile, and
distribution of outbreak sizes across the set of simulations for each intervention scenario.

As expected, the outbreak dynamics are influenced by the initial size of the outbreak. At 60 days post-detection, outbreaks
with a size at detection in the range 2–10 and AL2.5 (respectively AL2.5+) had a median of 36.5 (resp. 25) total cases compared
with a median of 374 (resp. 302.5) for outbreaks with a size at detection in the range of 11-20. Table 3 reports cumulative
number of total and ‘known’ cases at 60 days post-detection, while Figure 4 shows the distribution of the total cumulative
outbreak sizes at 60 and 150 days post-detection for a range of different initial outbreak sizes.

Scenario Case type Size of outbreak at detection
2-10 11-20 21-50 51-100

AL2.5 Confirmed 19 [5,67] 167 [95,237]* 351 [233, 538]* 802 [667, 972]*
Total 36.5 [9, 144] 374 [212, 586] 823 [570, 1271]* 1891 [1498, 2418]*

AL2.5+ Confirmed 15 [4, 52] 137.5 [58, 239]* 321.5 [218, 468]* 691 [563, 887]*
Total 25 [6,121] 302.5 [123.5, 589] 747 [483, 1100]* 1596 [1288, 2059]*

Table 3. Cumulative Cases (confirmed cases and total cases) at day 60 post-detection binned by different initial outbreak sizes
at detection. Results shown are median [lower quartile, upper quartile] unless otherwise stated. Note: a Mann-Whitney test
was performed and showed evidence of difference between the two Scenarios for the results with an asterix *.
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Figure 4. Distribution of Total Cumulative Cases at day 60 and 150 post-detection by Scenario and Outbreak Size at
Initial Detection. This plot shows the distribution of the total cumulative number of cases (i.e. both confirmed cases and
unknown cases) at day 60 and 150 post-detection on a log scale, with the scale of the y-axis differing for 60 and 150 days.
Results are split by outbreak size at initial detection (four sub-figures) and across the scenarios of AL2.5, and AL2.5+. Density
plots indicate the lower quartile, median, upper quartile, and distribution of cumulative outbreak sizes across the set of
simulations for each initial outbreak size and intervention scenario. Note that outbreaks that eliminated stay under around 100
cases in total, so the split that is evident especially in the 11to20 outbreak size bins is the split between simulations that
eliminate and those that don’t.
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Method
Description of model and key assumptions

We implement a stochastic model of infection dynamics on a detailed interaction network of all ∼ 5 million individuals
in Aotearoa NZ. Each individual is represented by a node in this network; additional group nodes are used to represent the
different infection contexts through which individuals can interact and transmit infection. Each individual has the demographic
characteristics of age, sex, ethnicity, and geographic location (Statistical Area 2 (SA2)) of usual residence. These are sourced
from Census 2018 figures. Individuals are placed in dwellings, with other individuals, in the same geographic location (SA2)
based on Census 2018 dwelling size and age structure within that SA2. Besides dwellings, many individuals have places of
work (tax data from the Statistics NZ Integrated Data Infrastructure (IDI)) and/or education (Ministry of Education roll data),
and all individuals participate in so-called community events which capture all interactions which are not with other people in
their dwelling, or work/school (i.e socialising, shopping, using public transport, and attending church or sporting events). The
community interactions also include long-range travel within Aotearoa New Zealand, based on cellphone movement data5. As
was noted earlier, we do not currently distinguish between different types of community interactions: the community interaction
event groups sizes are drawn from a single distribution.

Group nodes are further classified as involving close or casual (background) contact behaviour. In small dwelling, school,
and workplace groups, we assume that all contacts are both close and casual contacts. But if groups are larger (e.g. a whole
school or a large workplace), we create smaller groups within the large group which represent the smaller number of close
contacts such as a class within a school or a team within a workplace. Within the large school and workplace groups, we assume
only a casual contact level of interaction. For community events, however, we categorise these as either close or casual contact
type interactions in advance.

Close contacts are assumed to be contact traceable, if ‘known’ (by the National Contact Tracing Solution team), and the
proportion of close contacts who would be ‘known’ varies by context (e.g. all dwelling close contacts are known, but only
a lower proportion of social/community close contacts are known) and is influenced by contact tracing effectiveness and
technology assumptions. In our model, casual contacts are not directly traced, but if they know that their casual contact(s) have
been confirmed as COVID-19 positive (through e.g. media reports, NZ COVID Tracer app alerts), then they increase their
likelihood of seeking a COVID test. The proportion of casual contacts who would know that they may have been exposed,
and who subsequently, would seek a test varies by interaction context. This number is also influenced by the methods used
by public health officials for notifying people and what the advice to casual contacts is. Our model also includes policy
effects, representing non-pharmaceutical interventions such as Alert Levels, which reduce the chance of transmission in various
interaction contexts, and increase community (general public) test-seeking behaviour.

We use the Gillespie algorithm6 to simulate our contagion dynamics. This algorithm is a so-called exact algorithm for
simulating realisations from a collection of independent transition processes with rates (or hazards) of the form:

Probability of transition i per unit time = hi(system state) (1)

for i = 1, ...,n. In this context, a transition consists of one or more individuals changing their state; for example, a susceptible
individual becoming exposed due to an encounter with an infected individual. This simulation approach was popularised in the
stochastic chemical kinetics literature, but also has a long history of applications to population dynamics7 and is now standard
in the network contagion literature8.

Key assumptions
Full model details are described elsewhere9, but key assumptions and parameters include:

• Disease progression for infected individuals proceeds through a sequence of states. Initially, exposed individuals are
infected but not yet infectious, they transition to either pre-symptomatic or asymptomatic states (both infectious). Cases
that will go on to develop symptoms (pre-symptomatic) are further split into being ‘mild’ or ‘severe’ cases, with this
varying by age. Note that this case severity is based on eventual outcome, and is not specifically the symptom severity
at onset. Severe cases can become hospitalised and can die while the remainder of the infected cases recover. The
parameters controlling transitions between these states are based on international literature — primarily from Fraser et
al.10.

• There is negligible difference in the rate of recovery from exposure between different symptom presentations.

• The proportion of infections that are asymptomatic varies with age, and equates to about 16% over the whole population,
in line with findings from PCR based studies with inclusive symptom case definitions11, 12. Asymptomatic cases are
assuming to have zero chance of being tested for COVID-19 unless they have been identified as a casual or close contact
of a confirmed case.
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• The split of (pre-)symptomatic cases into being ‘mild’ or ‘severe’ cases, also varies by age. Case severity determines
primarily the probability of hospitalisation (zero for mild cases)9, but also affects the likelihood of infected individuals to
seek testing (severe cases are more likely to seek medical attention and thus have a higher testing probability).

• Infectiousness of individuals at any infectious (asymptomatic, pre-symptomatic, or symptomatic) stage of their infection
is identical to any other individual in the same infectious stage of infection.

• Infectiousness of asymptomatic and pre-symptomatic individuals is identical to symptomatic individuals.

• Individuals have a probability of getting a test depending on their infection state and scenario settings. Given that they do
get tested, the time it takes from symptom onset to receiving a positive result is modelled as an exponential distribution,
with the speed dependent on scenario settings.

• Individuals will not isolate or change their behaviour until they either receive a positive test, or are contacted by contact
tracing.

• Individuals will stay in self-isolation for 14 days, starting from when they are first contacted by contact tracing.

• Individuals that receive positive tests will stay in an MIQ facility until they recover.

• Infected individuals in self-isolation can infect others in their dwelling and have a small (1%) chance to infect others
outside of isolation.

• Infected individuals in MIQ (confirmed cases) have a small (1%) chance to infect others outside of isolation/quarantine.

• Contact tracing traces a proportion of close contacts of a confirmed case. The proportion depends on the interaction
group type, as well as scenario settings.

• Close contact tracing is modelled by a finite number of attempts at contact, each with a small chance of failure, dependent
on the type of group (e.g. work vs dwelling) that connects the close contact with the confirmed case.

• Casual contacts of a confirmed case have a certain probability that they would both i) know they were a close contact,
and then ii) would go to get a test; with some delay between the confirmed case notifying and a test being returned to the
casual contact. The probability that a casual contact would seek a test depends on the interaction group type or context,
as well as scenario settings.

Initial conditions
In order to create initial conditions for each Alert Level 2.5 intervention, we set 500 simulations running using parameters

for our best estimate of a ‘Baseline Alert Level 1’4 to simulate infection spread prior to detection of the first case. Once the first
infected case is detected and confirmed we turn on the Alert Level 2.5 simulation parameters described above.

This approach ensures that we start with not just an initial number of infections but with an epidemiologically based
contagion tree to allow for contact tracing. This provides more realistic infection histories for each simulation, but means that
the number of simulations and the size of the outbreaks at detection are not identical for each simulation run. This increases the
run-to-run variability within and between different interventions.

For Baseline Alert Level 1 (pre-detection) we assume that there is some mask wearing and social distancing which
will reduce casual community transmission by 10% below the model’s calibrated default values. We set the proportion of
symptomatic cases who would seek a test to 10% for mild/moderate cases and 50% for severe cases†, based on levels of testing
in Auckland estimated from FluTracking data13. We assume a test positivity rate of 80%14, which equates to a probability of
detection of 8% for mild/moderate cases, and 40% for severe. Finally, we assume the time from symptom onset to test result is
exponentially distributed with a mean time from symptom onset to test result of 5 days. It is worth noting that the proportion of
cases detected will vary depending on age solely due to the the higher proportion of asymptomatic cases and lower proportion
of severe cases for younger individuals. For example, in the baseline case 0–14 year olds will have a case detection of ≈7%
whereas over 60s will have a case detection of ≈16%. We know from FluTracking data13 that testing rates are much lower
in younger age groups even after accounting for symptom presentation. Based on this, we suspect that the parameters in our
scenarios correspond to a higher rate of testing in under 15s than is actually observed.

Even though the transmission settings in the simulation are identical for the AL2.5 and the AL2.5+ scenarios during the
pre-detection phase, the distribution of the outbreak sizes at detection can differ between the two sets of simulations, due to
stochastic effects. Since the outbreak size at detection is an important factor in the progression of an outbreak, post-detection,

†severe cases are those that would be expected to seek medical attention for breathing difficulties, pneumonia, etc.
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we compare the distribution of outbreak sizes at detection for the simulation runs that are used for the AL2.5 and AL2.5+
scenarios. See Table 4 and Figure 5.

Scenario All runs Distribution of different initial outbreak sizes
2-10 (n) 11-20 (n) 21-50 (n) 51-100 (n)

AL2.5 19 [9,41] (372) 5.5 [4, 7] (104) 15 [13, 18] (91) 32 [26, 41] (115) 71 [56, 82] (62)
AL2.5+ 20.5 [9,37] (394) 6 [4, 8] (111) 15 [12, 19] (86) 33 [26, 38] (140) 67 [61,81] (57)

Table 4. Distribution of initial outbreak sizes within each size band for the simulations from the pre-detction phase of the
AL2.5 and AL2.5+ scenarios. The number of simulations (with at least one post-detection transmission event) in each size band
is indicated in parentheses (n). Results shown are median [lower quartile, upper quartile] unless otherwise stated.
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Figure 5. Distribution of Initial Outbreak Sizes by Scenario. This plot shows the distribution of initial outbreak sizes
across the scenarios of AL2.5, and AL2.5+. The distributions of the initial outbreak sizes used for the simulations are
comparable across intervention scenarios.
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Figure 6. Distribution of Initial Outbreak Sizes within each size bin, by Scenario. This plot shows the distribution of
initial outbreak sizes within each outbreak size bin, across the scenarios of AL2.5, and AL2.5+. The distributions of the initial
outbreak sizes used for the simulations are comparable across intervention scenarios and within groups of initial outbreak size.
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Discussion
The results presented here show that Alert Level 2.5 is unlikely to lead to elimination of a community outbreak of COVID-19,

in a scenario similar to that observed in the 2020 Auckland August outbreak. Improving contact tracing through higher rates of
QR code scanning, Bluetooth tracing and faster manual contact tracing has little to no effect on the probability of eliminating
such an outbreak.

We find that both the probability of elimination and the total cumulative size of an outbreak are strongly linked to the size
of the outbreak at initial detection. Outbreaks smaller than 10 cases at initial detection are around five times more likely to
eliminate and around 10 times smaller in cumulative size than outbreaks with more than 10 cases at initial detection. It is
important to note that the threshold for the initial outbreak size of greater or less than ten is not a ‘magic number’ of cases with
different dynamics on either side of a sharply defined bound. The bin sizes used in this report (2–10, 11–20, 21–50, 51–100)
are those used in a previous report prepared for the Ministry of Health4. The key message from this finding is that the
smaller an outbreak is when interventions, such as increasing Alert Levels, are first applied, the higher the probability
of elimination and the smaller the total outbreak size. A forthcoming report will specifically address the question of the
effect of delays in elevating Alert Levels after initial detection of a case of community transmission.

Although the simulations here suggest that improved contact tracing at Alert Level 2.5 has little to no effect on increasing
the chance of elimination, this will not necessarily be true at all Alert Levels. The effect of any interventions will typically be
non-linear and context dependent and hence it is typically not possible to assume that the effect of applying an intervention in
one scenario will lead to the same increase or decrease in Reff in another scenario.

Furthermore, the parameters used here for the baseline level of contact tracing are relatively optimistic and assume no
capacity constraints on the speed of identifying close contacts through case interviews or number of contact tracing attempts
per day. Improvements in contact tracing technology may reduce outbreak size or duration, not because they improve the speed
or effectiveness of contact tracing, but because they increase the number of contact tracing attempts that can be made before
capacity constraints are reached. At lower Alert Levels, when few other contagion limiting interventions, such as restricting
interactions, are in effect, contact tracing is likely to be a significant factor in controlling infection spread.

The parameters used in these simulations are the best that the authors were aware of at the time of running these simulations
in late 2020 and the best available estimates for a mathematical parameterisation of interaction and COVID control measures
under Alert Level 2.5. However, as with any model, they require making a number of assumptions and best guesses in order to
incorporate limited empirical data into a mathematical model. Obviously, changes to these parameters will change the results of
the simulations.

Uncertainty also arises from the stochastic nature of the simulations . Most of the results reported here are medians and in
most cases we have also included interquartile (25th percential and 75th percential) ranges. Figures illustrating the run-to-run
variability (Figures 1 and 2) show trajectories of all simulations. These give an indication of the degree of stochasticity in the
simulations.

Finally, the simulations here do not consider the presence of newer and more highly transmissible variants of COVID.
These will be addressed in a forthcoming report.
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