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Abstract: Multiple attribute group decision making (MAGDM) issues play important roles in our
daily life. In order to solve the problem that decision makers (DMs) may feel hesitant to select the
appropriate evaluation values from several possible values in the process of providing evaluations,
fuzzy theory and its extensions are widely applied in MAGDM problems. In this study, we first pro-
posed hesitant picture fuzzy sets (HPFSs), which is a combination of the hesitant fuzzy set and picture
fuzzy set. Subsequently, we introduced a novel Schweizer–Sklar t-norm and t-conorm operation rules
of HPFSs and proposed a family of hesitant picture fuzzy Schweizer–Sklar Maclaurin symmetric
mean operators. To show the application procedure of the proposed method to practical MAGDM
issues, a numerical example about enterprise informatization level evaluation was employed to
elaborate the calculation process with the proposed method. Finally, through the parameter analysis,
validity analysis, and comparative analysis with some existing methods, we found that our method is
more superior in providing DMs a greater decision-making freedom and relaxing the constraints on
expressing personal preferences. This study provides a general framework of the proposed method
to MAGDM problems under hesitant picture fuzzy environment, which enriches the fuzzy theory
and its applications.

Keywords: hesitant picture fuzzy set; Schweizer–Sklar t-norm and t-conorm; Maclaurin symmetric
mean operators; MAGDM

1. Introduction

Econophysics is a heterodox interdisciplinary research field, applying theories and
methods originally developed by physicists in order to solve problems in economics,
usually those including uncertainty or stochastic processes and nonlinear dynamics, which
have received widespread attention from scholars [1–3]. In recent years, with the increasing
complexity of the social economy, some scholars tend to apply fuzzy set theories into
complex economic problems, and multiple-attribute decision making (MAGDM) is one of
the hottest application areas. MAGDM is a situation faced when individuals collectively
make a choice from the alternatives with respect to a set of attributes. MAGDM problems
occupy important positions in the field of society decision making. For example, the
investor wants to select the optimal company to avoid investment risk and obtain the
maximum return, and the enterprise needs to evaluate its informatization level before
enhancing it. Generally, all these activities need to be evaluated with respect to several
attributes, which are also known as MAGDM problems and are very common in our
daily life. Therefore, MAGDM problems have received great attentions in the past few
decades [4–6]. With the increase in the complexity of the actual world, fuzzy set (FS) theory,
proposed by Zadeh in 1965 [7], which was designed to utilize the membership degree (MD)
to represent DMs’ expression information, has drawn more and more attention. FS theory
provides a brand-new viewpoint for solving the internal uncertainty of experts’ cognition
or insufficient information and the external ambiguity of coincidental chance events. From
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this foundation, the intuitionistic fuzzy set (IFS) which adds the no-membership degree
(NMD) on the basis of FS was proposed by Atanassov [8], and the Pythagorean fuzzy set
which relaxes the restrictions of IFS to the square sum of the MD and NMD cannot be
larger than one was proposed by Yager [9]. These two fuzzy sets have also been applied in
many fields since they were proposed [10,11]. Recently, Cuong proposed the picture fuzzy
set (PFS) to fill in the gap of no neutral membership degree in IFS and Pythagorean fuzzy
set [12]. The PFS further expands the freedom of decision makers (DMs) in the process
of expressing their evaluation values, and the only constraint is that the sum of its three
elements cannot be larger than one. Since its inception, some further studies according to
PFS have been conducted. Singh proposed the correlation coefficients of PFS and tested
the effectiveness in a bidirectional approximate reasoning system [13]. Son constructed a
classification algorithm on the basis of PFS and applied it to the prediction problems [14].
Furthermore, Son proposed a generalized distance measure method of PFS and also applied
it in clustering research [15]. Luo and Zhang designed a new similarity measure method
of PFS and put into use in pattern-recognition experiments [16]. Ullah [17] applied the
Maclaurin symmetric mean (MSM) operator to PFS environment and proposed a series of
picture fuzzy MSM operators. Liu and Zhang [18] combined PFS with linguistic terms to
describe the qualitative information. All the above studies provided the effectiveness of
methods based on PFS.

In practical decision-making problems, DMs may feel hesitant to select the most
appropriate one from several possible evaluation values. Although the theories introduced
above make great contributions to the development of MAGDM problems, they can only
include one value in every element, which may be insufficient for tackling DMs’ uncertainty
cognition sometimes (e.g., one DM is hesitant to assign 0.2 or 0.3 as the evaluation value).
To fill this gap, Torra proposed the hesitant fuzzy set (HFS) [19], which allows for full
or partial admission when DMs vacillate among several valuations. As its NMD part is
ignored, Peng et al. [20] combined the HFS with IFS and gave the definition of hesitant
intuitionistic fuzzy set. Subsequently, Yang [21] et al. took another step forward and
introduced the hesitant Pythagorean fuzzy set, as well as some of its aggregation operators.
We have known that PFS is more powerful than IFS and the Pythagorean fuzzy set. Thus,
the first question this paper aims to solve is how to combine the HFS and PFS and propose
a method with a much wider decision-making space. Motivated by these, this paper plans
to unite the HFS and the PFS and gives the concept of the hesitant picture fuzzy set (HPFS),
which simultaneously adopts the advantages of HFS and PFS.

In addition to information expression, another key point of the MAGDM method
is the information aggregation operator, which is used for concentrating on aggregating
the evaluation values of alternatives with respect to the attributes. Therefore, the second
question is how to establish a method to aggregate the evaluation information expressed
by hesitant picture fuzzy elements. In the past decades, many related studies have been
developed, such as the most traditional weighted average operator [22] and the geometric
average operator [23], with the hypothesis that the input arguments are independent from
each other, and the relative advanced Heronian mean operator [24] and the Bonferroni
mean operator [25], which are skilled in considering interrelationships between any two
attributes. The complexity of society deepens the individual’s cognition of the relationships
among different things and gradually realizes that it may have an important impact on the
final result. Under such circumstances, the Maclaurin symmetric mean (MSM) operator
comes into the individual’s view due to its powerful relation processing capabilities [26,27].
Compared with the other operators, the priority of the MSM operator is that it can handle
the number of attributes that have a correlation according to the actual situation with
a flexible parameter variable. Thus, this paper decides to employ the MSM operator
to aggregate the evaluation information expressed by HPFSs and propose a family of
HPFS MSM operators. Moreover, the aggregation operators should be utilized with the
operational laws. Thus, the third question is how to choose the appropriate operational
rules with more flexibility. There are several kinds of operational rules, such as the simple
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algebraic rules, the Archimedean t-norm and t-conorm (ATT) rules [28], the Einstein t-norm
and t-conorm rules [29], Dombi t-norm and t-conorm rules [30], Frank t-norm and t-conorm
rules [31], Hamacher t-norm and t-conorm rules [32], etc. Moreover, the Schweizer–Sklar
t-norm and t-conorm (SSTT) [33] operational rules are a special kind of ATT and are
demonstrated to be very flexible and effective in dealing with fuzzy information with a
parameter [34]. To our knowledge, it still has not been utilized in tackling the hesitant
picture fuzzy information. Therefore, this paper proposes the operational rules of HPFSs
and then a series of the HPF Schweizer–Sklar MSM (HPFSSMSM) operator, including the
HPFSSMSM operator and its weighted form, and the dual form and the weighted dual
form are defined accordingly.

The aims and motivations of this paper are: (1) to propose the concept of HPFS; (2) to
propose some HPFSSMSM operators; (3) to propose an SSTT operation for HPF elements;
and (4) to propose a novel method for MAGDM based on the proposed operators. Corre-
spondingly, the contributions of this paper are: (1) we introduced a family of information
aggregation operators by combining the HPFS and MSM operators based on SSTT opera-
tional rules; (2) we provided a general framework of the proposed method to MAGDM
problems; and (3) we applied the proposed method to enterprise informatization level
evaluation issues.

The rest of this paper is organized as follows: Section 2 recalls some basic notions
and gives the SSTT operational rules based on HPFS. Section 3 proposes a battery of
HPFSSMSM operators. Section 4 introduces a novel approach to MAGDM. Section 5
provides a numerical example to demonstrate the validity and merits of the proposed
approach. Section 6 summarizes the paper.

2. Preliminaries

In this section, we recall the concepts of PFS, SSTT, and MSM operator, which are
being utilized in the following section.

2.1. Picture Fuzzy Set and Hesitant Picture Fuzzy Set

Definition 1. Let X be an ordinary fixed set, a picture fuzzy set (PFS) A defined on X is given
by [12]

A = {〈x, µA(x), ηA(x), vA(x)〉 |x ∈ X }, (1)

where µA(x), ηA(x) and vA(x) represent the positive membership degree (PMD), neutral member-
ship degree (NLMD) and negative membership degree (NEMD), respectively, satisfying
µA(x) ∈ [0, 1], ηA(x) ∈ [0, 1], vA(x) ∈ [0, 1] and 0 ≤ µA(x) + ηA(x) + vA(x) ≤ 1, ∀x ∈ X.
Then, for x ∈ X, πA(x) = 1− (µA(x) + ηA(x) + vA(x)) is called the degree of refusal member-
ship of x in A. For convenience, α = (µα, ηα, vα) is called a picture fuzzy number (PFN), where
µα, ηα, vα ∈ [0, 1] and µα + ηα + vα ≤ 1.

Motivated by Torra’s [19] HFS, we propose the concept of HPFS.

Definition 2. Let X be an ordinary fixed set, a hesitant picture fuzzy set (HPFS) B defined on X is
defined as

B = {〈x, hB(x), gB(x), tB(x)〉 |x ∈ X }, (2)

where hB(x), gB(x) and tB(x) are three sets of values, representing the PMD, NLMD, and NEMD
of the element x ∈ X to the set B, respectively, satisfying χ, φ, τ,∈ [0, 1] and
maxχ + maxφ + maxτ ≤ 1, where χ ∈ hB(x), φ ∈ gB(x) and τ ∈ tB(x). For convenience,
we call d = (hB(x), gB(x), tB(x)) a hesitant picture fuzzy elements (HPFE), which can be sim-
ply denoted as d = (h, g, t), with the condition χ ∈ h, φ ∈ g, τ ∈ t, χ, φ, τ,∈ [0, 1] and
maxχ + maxφ + maxτ ≤ 1

Remark 1. In particular, if ∀φ ∈ gB(x), φ= 0, then the HPFS reduces to the hesitant fuzzy set; if
each of the collections hB(x), gB(x) and tB(x) contain only one element, then the HPFS reduces to
the intuitionistic fuzzy set.
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In order to improve the readability, we provide the following example to illustrate the
difference between PFS and HPFS.

Example 1. Suppose that in an MAGDM problem, one DM directly provides his/her evalua-
tion with a PFN α1 = (0.2, 0.3, 0.4), but another DM feels uncertain among whether to pro-
vide 0.2 or 0.3 as the membership degree. In this situation, we find that the PFN is insuffi-
cient to express the real opinion of the second DM. Thus, we can employ the proposed HPFE
d2 = {{0.2, 0.3}, {0.3}, {0.4}} as the assessment. On the other hand, we can also utilize
d1 = {{0.2, 0.2}, {0.3}, {0.4}} to express the evaluation value of the first DM, because the essence
of d1 and α1 is the same, which is consistent with Remark 1. Therefore, the proposed HPFS is more
flexible than PFS.

To compare any two HPFEs, we provide a comparison law for HPFEs.

Definition 3. Let d = (h, g, t) be an HPFE, then S(d) = 1
#h ∑

χ∈h
χ− 1

#t ∑
τ∈t

φ is the score function

of d and H(d) = 1
#h ∑

χ∈h
χ + 1

#g ∑
φ∈g

φ + 1
#t ∑

τ∈t
τ is the accuracy function of d respectively, where

#h, #g, and #t denote the numbers of values in h, g, and t, respectively. Let d1 = (h1, g1, t1) and
d2 = (h2, g2, t2) be any two HPFEs, S(d1) and S(d2) be score functions of d1 and d2, respectively,
H(d1) and H(d2)be accuracy function of d1 and d2, respectively. Then,

1. If S(d1) > S(d2), then d1 > d2;
2. If S(d1) > S(d2), then if H(d1) > H(d2), then d1 > d2; if H(d1) = H(d2), then d1 = d2

In the following, we provide an example to show the calculation details of Definition 3.

Example 2. Suppose that there are two HPFEs d1 = {{0.2, 0.3}, {0.3}, {0.4}} and
d2 = {{0.4, 0.5}, {0.3}, {0.1, 0.2}}, then we can obtain that

S(d1) =
1
2
× (0.2 + 0.3)− 0.4 = −0.15 and S(d2) =

1
2
× (0.4 + 0.5)− 1

2
× (0.1 + 0.2) = 0.3

Then, we can obtain S(d1) < S(d2), so that d1 < d2.

2.2. Schweizer–Sklar t-Norm and t-Conorm

The definitions of Schweizer–Sklar t-norm and t-conorm (SSTT) are presented
as follows:

Tss,γ(x, y) = (xγ + yγ − 1)1/γ; (3)

T∗ss,γ(x, y) = 1−
(
(1− x)γ + (1− y)γ − 1

)1/γ; (4)

where γ < 0, x, y ∈ [0, 1]. Additionally, when γ→ 0 , we have Tγ(x, y) = xy and T∗γ(x, y) =
x + y− xy. They are the algebraic t-norm and algebraic t-conorm (ATT).

Based on the Schweizer–Sklar t-norm and t-conorm, we provide some Schweizer–Sklar
operations for HPFEs.

Definition 4. Let d = (h, g, t), d1 = (h1, g1, t1) and d2 = (h2, g2, t2) be any three HPFEs, γ be
a negative real number and n be positive real number, then

1. d1 ⊕ d2 = ∪χ1∈h1,χ2∈h2,φ1∈g1,φ2∈g2,τ1∈t1,τ2∈t2{{
1−

(
(1− χ1)

γ + (1− χ2)
γ − 1

)1/γ
}

,
{
(φ1

γ + φ2
γ − 1)1/γ

}
,
{
(τ1

γ + τ2
γ − 1)1/γ

}}
;

2. d1 ⊗ d2 = ∪χ1∈h1,χ2∈h2,φ1∈g1,φ2∈g2,τ1∈t1,τ2∈t2{{
(χ1

γ + χ2
γ − 1)1/γ

}
,
{

1−
(
(1− φ1)

γ + (1− φ2)
γ − 1

)1/γ
}

,
{

1−
(
(1− τ1)

γ + (1− τ2)
γ − 1

)1/γ
}}

;

3. nd = ∪χ∈h,φ∈g,τ∈t

{{
1−

(
n(1− χ)γ − (n− 1)

)1/γ
}

,
{
(nφγ − (n− 1))1/γ

}
,
{
(nτγ − (n− 1))1/γ

}}
;

4. dn = ∪χ∈h,φ∈g,τ∈t

{{
(nχγ − (n− 1))1/γ

}
,
{

1−
(
n(1− φ)γ − (n− 1)

)1/γ
}

,
{

1−
(
n(1− τ)γ − (n− 1)

)1/γ
}}

Example 3. Suppose that there are two HPFE d1 = {{0.2, 0.3}, {0.3}, {0.4}} and
d2 = {{0.4, 0.5}, {0.3}, {0.1, 0.2}}. Let γ = −1 and n = 2; then, we can obtain that
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d1 ⊕ d2 =



 1−
(
(1− 0.2)−1 + (1− 0.4)−1 − 1

)−1
, 1−

(
(1− 0.2)−1 + (1− 0.5)−1 − 1

)−1
,

1−
(
(1− 0.3)−1 + (1− 0.4)−1 − 1

)−1
, 1−

(
(1− 0.3)−1 + (1− 0.5)−1 − 1

)−1

,

{(
0.3−1 + 0.3−1 − 1

)−1
}

,
{(

0.4−1 + 0.1−1 − 1
)−1,

(
0.4−1 + 0.2−1 − 1

)−1
}


= {{0.4783,0.5556,0.5227,0.5882}, {0.1765}, {0.0870,0.1538}},

Similarly, we can obtain that

d1 ⊗ d2 = {{0.1538,0.1667,0.2069,0.2308}, {0.4615}, {0.4375,0.4783}},

nd1 = {{0.3333,0.4615}, {0.1765}, {0.2500}},

dn
1 = {{0.1111,0.1765}, {0.4615}, {0.5714}}.

According to Definition 4, the following theorem can be derived.

Theorem 1. Let d = (h, g, t), d1 = (h1, g1, t1) and d2 = (h2, g2, t2) be any three HPFEs, γ1 and
γ2 be two positive real numbers, then

1. d1 ⊕ d2 = d2 ⊕ d1;
2. d1 ⊗ d2 = d2 ⊗ d1;
3. γ(d1 ⊕ d2) = γd1 ⊕ γd2, γ > 0;
4. γ1d⊕ γ2d = (γ1 ⊕ γ2)d, γ1 > 0, γ2 > 0;
5. dγ1 ⊗ dγ2 = dγ1+γ2 , γ1 > 0, γ2 > 0;
6. dγ

1 ⊗ dγ
2 = (d1 ⊗ d2)

γ, γ > 0;

2.3. Maclaurin Symmetric Mean

The MSM was firstly proposed by Maclaurin [27] for crisp numbers. The prominent
feature of the MSM is that it can capture the interrelationship among the
aggregated arguments.

Definition 5. [27] Let aj(j = 1, 2, . . . , n) be a collection of crisp numbers, and k = 1, 2, . . . , n. If

MSM(k)(a1, a2, . . . , an) =


∑

1≤i1<...<ik≤n

k
∏
j=1

aij

Ck
n


1/k

, (5)

then MSM(k) is called the MSM, where (i1, i2, . . . , ik) traversal all the k-tuple combination of
(1, 2, . . . , n), Ck

n is the binomial coefficient.

In addition, Qin and Liu [35] proposed the dual Maclaurin symmetric mean.

Definition 6. Let aj(j = 1, 2, . . . , n) be a collection of crisp numbers, and k = 1, 2, . . . , n. [35] If

DMSM(k)(a1, a2, . . . , an) =
1
k

(
∏

1≤i1<...<ik≤n

k

∑
j=1

aij

)1/Ck
n

, (6)

then, DMSM(k) is called DMSM, where (i1, i2, . . . , ik) traversal all the k-tuple combination of
(1, 2, . . . , n), Ck

n is the binomial coefficient.

3. The Hesitant Picture Fuzzy Schweizer–Sklar Maclaurin Symmetric Mean Operators

In this section, we extend the MSM to hesitant picture fuzzy environment and pro-
pose a family of hesitant picture fuzzy Maclaurin symmetric mean operators. More-
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over, some desirable properties and special cases of the proposed aggregation operators
are investigated.

3.1. The Hesitant Picture Fuzzy Schweizer–Sklar Maclaurin Symmetric Mean
(HPFSSMSM) Operator

Definition 7. Let dj =
(
hj, gj, tj

)
(j = 1, 2, . . . , n) be a collection of HPFEs, and k = 1, 2, . . . , n,

then the operator is defined as

HPFSSMSM(k)(d1, d2, . . . , dn) =


∑

1≤i1<...<ik≤n

k
∏
j=1

dij

Ck
n


1/k

, (7)

where (i1, i2, . . . , ik) traversal all the k-tuple combination of (1, 2, . . . , n) and Ck
n is the bino-

mial coefficient.

Based on the operations for HPFEs, the following theorem can be obtained.

Theorem 2. Let dj =
(
hj, gj, tj

)
(j = 1, 2, . . . , n) be a collection of HPFEs, and k = 1, 2, . . . , n,

then the aggregated value by the HPFSSMSM operator is still an HPFE and

HPFSSMSM(k)(d1, d2, . . . , dn) =

∪χij∈hij ,φij∈gij ,τij∈tij



 1

k

1−

 1
Ck

n
∑

1≤i1<...<ik≤n

1−
(

k
∑

j=1
χij − 1

) 1
γ

γ

+ 1


1
γ


γ

−
(

1
k − 1

)
1
γ

,

1−

 1
k

1−

 1
Ck

n
∑

1≤i1<...<ik≤n

1−
(

k
∑

j=1

(
1− φij

)γ
− 1

) 1
γ

γ

+ 1


1
γ


γ

−
(

1
k − 1

)
1
γ

,

1−

 1
k

1−

 1
Ck

n
∑

1≤i1<...<ik≤n

1−
(

k
∑

j=1

(
1− τij

)γ
− 1

) 1
γ

γ

+ 1


1
γ


γ

−
(

1
k − 1

)
1
γ


.

(8)

The detailed proof can be found in Appendix A (Proof of Theorem 2).
In the following, we discuss some desirable properties of the HPFSSMSM operator.

Theorem 3. (Idempotency). Let dj = d = (h, g, t), for all j = 1, 2, . . . , n, then

HPFSSMSM(k)(d1, d2, . . . , dn) = d (9)

The detailed proof can be found in Appendix A (Proof of Theorem 3).

Theorem 4. (Monotonicity). Let dj =
(
hj, gj, tj

)
and d′j =

(
h′j, g′j, t′j

)
be two sets of HPFEs, if

dj ≥ d′j holds for all j = 1, 2, . . . , n, then

HPFSSMSM(k)(d1, d2, . . . , dn) ≥ HPFSSMSM(k)(d′1, d′2, . . . , d′n
)
. (10)

The detailed proof can be found in Appendix A (Proof of Theorem 4).
Theorem 5. (Boundedness). Let dj =

(
hj, gj, tj

)
(j = 1, 2, . . . , n) be a collection of HPFEs, if

d− = min
j

dj and d+ = max
j

dj then

d− ≤ HPFSSMSM(k)(d1, d2, . . . , dn) ≤ d+. (11)

The detailed proof can be found in Appendix A (Proof of Theorem 5).
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In the following section, we shall discuss some special cases of the HPFSSMSM
operator based on the different values of the parameter k.

Case 1. If γ→ 0 , the HPFSSMSM is reduced to the hesitant picture fuzzy MSM
(HPFMSM) operator.

HPFSSMSM(k)(d1, d2, . . . , dn) =

= ∪χij
∈hij

,φij
∈gij

,τij
∈tij



1− ∏

1≤i1<...<ik≤n

(
1−

k
∏
j=1

χij

) 1
Ck

n


1
k

,

1−

1− ∏
1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1− φij

)) 1
Ck

n


1
k

,

1−

1− ∏
1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1− τij

)) 1
Ck

n


1
k


.

(12)

Case 2. If k = 1, based on the definition of HPFSSMSM, we have

HPFSSMSM(1)(d1, d2, . . . , dn) =
1
n

n
∑

i=1
di = ∪χij

∈hij
,φij
∈gij

,τij
∈tij

{{
1−

(
1
n

n
∑

i=1
(1− χi)

γ − 2
n + 1

) 1
γ

}
,{(

1
n

n
∑

i=1
φ

γ
ij
− 2

n + 1
) 1

γ

}
,

{(
1
n

n
∑

i=1
τ

γ
ij
− 2

n + 1
) 1

γ

}}
.

(13)

In this case, the HPFSSMSM reduces to the hesitant picture fuzzy Schweizer–Sklar
averaging (HPFSSA) operator. If γ→ 0 , the HPFSSMSM operator is reduced to hesitant
picture fuzzy averaging operator.

HPFSSMSM(1)(d1, d2, . . . , dn) =
1
n

n
∑

i=1
di = ∪χij

∈hij
,φij
∈gij

,τij
∈tij{{

1−
(

n
∏
i=1

(1− χi)

) 1
n
}

,

{(
n
∏
i=1

φi

) 1
n
}

,

{(
n
∏
i=1

τi

) 1
n
}}

.
(14)

Case 3. If k = 2, based on the definition of HPFSSMSM, we have

HPFSSMSM(2)(d1, d2, . . . , dn) =

 1
n(n−1)

n
∑

i1, i2 = 1
i1 6= i2

(
di1 di2

)


1
2

= ∪χi1∈hi1 ,χi2∈hi2 ,φi1∈gi1 ,φi2∈gi2 ,τi1∈ti1 ,τi2∈ti2






1
2

1−

 1
n(n−1)

n
∑

i1, i2 = 1
i1 6= i2

(
1−

(
χ

γ
i1
+ χ

γ
i2
− 1
) 1

γ

)γ

+ 1



1
γ



γ

+ 1
2



1
γ


,


1−


1
2

1−

 1
n(n−1)

n
∑

i1, i2 = 1
i1 6= i2

(
1−

((
1− φi1

)γ
+
(
1− φi2

)γ − 1
) 1

γ

)γ

+ 1



1
γ



γ

+ 1
2



1
γ


,


1−


1
2

1−

 1
n(n−1)

n
∑

i1, i2 = 1
i1 6= i2

(
1−

((
1− τi1

)γ
+
(
1− τi2

)γ − 1
) 1

γ

)γ

+ 1



1
γ



γ

+ 1
2



1
γ



.

(15)
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In this case, the HPFSSMSM reduces to the hesitant picture fuzzy Schweizer–Sklar
Bonferroni mean (HPFSSBM) operator. If γ→ 0 , the HPFSSMSM operator is reduced to
the hesitant picture fuzzy Bonferroni mean operator.

HPFSSMSM(2)(d1, d2, . . . , dn) =

 1
n(n−1)

n
∑

i1, i2 = 1
i1 6= i2

(
di1 di2

)


1
2

= ∪χi1
∈hi1

,χi2
∈hi2

,φi1
∈gi1

,φi2
∈gi2

,τi1
∈ti1

,τi2
∈ti2





1−
n
∏

i1, i2 = 1
i1 6= i2

(
1− χi1 χi2

) 1
n(n−1)


1
2


,


1−

1−
n
∏

i1, i2 = 1
i1 6= i2

(
1−

(
1− φi1

)(
1− φi2

)) 1
n(n−1)


1
2


,


1−

1−
n
∏

i1, i2 = 1
i1 6= i2

(
1−

(
1− τi1

)(
1− τi2

)) 1
n(n−1)


1
2



.

(16)

Case 4. If k = 3, based on the definition of HPFSSMSM, we have

HPFSSMSM(3)(d1, d2, . . . , dn) =

(
n
∑

i1,i2,i3=1

(
di1 di2 di3

)) 1
3

= ∪χi1∈hi1 ,χi2∈hi2 ,χi3∈hi3 ,φi1∈gi1 ,φi2∈gi2 ,φi3∈gi3 ,,τi1∈ti1 ,τi2∈ti2 ,τi3∈ti3

 1

3

1−
(

n
∑

i1,i2,i3=1

(
1−

(
χ

γ
i1
+ χ

γ
i2
+ χ

γ
i3
− 1
) 1

γ

)γ

− 1

) 1
γ

γ

+ 2
3


1
γ

,

1−

 1
3

1−
(

n
∑

i1,i2,i3=1

(
1−

((
1− φi1

)γ
+
(
1− φi2

)γ
+
(
1− φi3

)γ − 1
) 1

γ

)γ

− 1

) 1
γ

γ

+ 2
3


1
γ

,

1−

 1
3

1−
(

n
∑

i1,i2,i3=1

(
1−

((
1− τi1

)γ
+
(
1− τi2

)γ
+
(
1− τi3

)γ − 1
) 1

γ

)γ

− 1

) 1
γ

γ

+ 2
3


1
γ


.

(17)

In this case, the HFPSSMSM reduces to the hesitant picture fuzzy Schweizer–Sklar
generalized Bonferroni mean (HFPSSGBM) operator. If γ→ 0 , the HPFSSMSM operator is
reduced to hesitant picture fuzzy generalized Bonferroni mean operator.

HPFSSMSM(3)(d1, d2, . . . , dn) =

(
n
∑

i1,i2,i3=1

(
di1 di2 di3

)) 1
3

= ∪χi1∈hi1 ,χi2∈hi2 ,χi3∈hi3 ,φi1∈gi1 ,φi2∈gi2 ,φi3∈gi3 ,,τi1∈ti1 ,τi2∈ti2 ,τi3∈ti3

(

1−
n
∏

i1,i2,i3=1

(
1− χi1 χi2 χi3

)) 1
3

,

1−
(

1−
n
∏

i1,i2,i3=1

(
1−

(
1− φi1

)(
1− φi2

)(
1− φi3

))) 1
3

,1−
(

1−
n
∏

i1,i2,i3=1

(
1−

(
1− τi1

)(
1− τi2

)(
1− τi3

))) 1
3


.

(18)

Case 5. If k = n, based on the definition of HPFSSMSM, we have

HPFSSMSM(n)(d1, d2, . . . , dn) =

(
n
∏
i=1

di

) 1
n
= ∪χi∈hi ,φi∈gi ,τi∈ti

{{(
1
n

n
∑

i=1
χ

γ
i −

2
n + 1

) 1
γ

}
,{

1−
(

1
n

n
∑

i=1
(1− φi)

γ − 2
n + 1

) 1
γ

}
,

{
1−

(
1
n

n
∑

i=1
(1− τi)

γ − 2
n + 1

) 1
γ

}}
.

(19)

In this case, the HPFSSMSM reduces to the hesitant picture fuzzy Schweizer–Sklar
geometric (HPFSSG) operator. If γ→ 0 , the HPFSSMSM operator is reduced to the hesitant
picture fuzzy geometric operator.
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HPFSSMSM(n)(d1, d2, . . . , dn) =

(
n
∏
i=1

di

) 1
n
= ∪χi∈hi ,φi∈gi ,τi∈ti{{(

n
∏
i=1

χi

) 1
n
}

,

{
1−

(
n
∏
i=1

(1− φi)

) 1
n
}

,

{
1−

(
n
∏
i=1

(1− τi)

) 1
n
}}

.
(20)

From the above analysis, we can further discuss the monotonicity of the HPFSSMSM
operator with respect to the parameter k. First, we introduce two lemmas which are used
in the following discussion.

Lemma 1. Let aj > 0, bj > 0(j = 1, 2, . . . , n), and
n
∑

j=1
bj = 1, then [36]

n

∏
j=1

a
bj
j ≤

n

∑
j=1

ajbj, (21)

with equality if and only if a1 = a2 = . . . = an.

Theorem 6. For the given HPFEs dj(j = 1, 2, . . . , n) and k = 1, 2, . . . , n, the HPFSSMSM is
monotonically decreasing function with the increase in the parameter k.

The detailed proof can be found in Appendix A (Proof of Theorem 6).

3.2. The Hesitant Picture Fuzzy Schweizer–Sklar-Weighted Maclaurin Symmetric Mean
(HPFSSWMSM) Operator

The advantage of the HPFSSMSM operator is that it can decide the interrelation-
ship among how many arguments can be considered with a parameter k. However, the
HPFSSMSM operator does not consider the self-importance of the aggregated arguments.
Therefore, we introduce the HFPSSWMSM operator, which can take the corresponding
weights of aggregated HPFS into consideration.

Definition 8. Let dj =
(
hj, gj, tj

)
(j = 1, 2, . . . , n) be a collection of HPFEs, and k = 1, 2, . . . , n.

w = (w1, w2, . . . , wn)
T be the weight vector of dj, satisfying wi ∈ [0, 1] and

n
∑

i=1
wi = 1, then the

operator is defined as

HPFSSWMSM(k)(d1, d2, . . . , dn) =


∑

1≤i1<...<ik≤n

k
∏
j=1

wij dij

Ck
n


1/k

. (22)

where (i1, i2, . . . , ik) traversal all the k-tuple combination of (1, 2, . . . , n) and Ck
n is the

binomial coefficient.

According to the operations of HPFEs, the aggregated value by the HPFSSWMSM can
be obtained, which is shown as Theorem 7.

Theorem 7. Let dj =
(
hj, gj, tj

)
(j = 1, 2, . . . , n) be a collection of HPFEs, and k = 1, 2, . . . , n,

then the aggregated value by the HPFSSWMSM operator is still an HPFE and
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HPFSSWMSM(k)(d1, d2, . . . , dn) = ∪χij∈hij ,φij∈gij ,τij∈tij
.


 1

k

1−

 1
Ck

n
∑

1≤i1<...<ik≤n

1−
(

k
∑

j=1

(
1−

(
wij

(
1− χij

)γ
−
(

wij − 1
)) 1

γ

)γ

− 1

) 1
γ

γ

+ 1


1
γ


γ

−
(

1
k − 1

)
1
γ
,

1−

 1
k

1−

 1
Ck

n
∑

1≤i1<...<ik≤n

1−
(

k
∑

j=1

(
1−

(
wij φ

γ
ij
−
(

wij − 1
)) 1

γ

)γ

− 1

) 1
γ

γ

+ 1


1
γ


γ

−
(

1
k − 1

)
1
γ

1−

 1
k

1−

 1
Ck

n
∑

1≤i1<...<ik≤n

1−
(

k
∑

j=1

(
1−

(
wij τ

γ
ij
−
(

wij − 1
)) 1

γ

)γ

− 1

) 1
γ

γ

+ 1


1
γ


γ

−
(

1
k − 1

)
1
γ


.

(23)

The detailed proof can be found in Appendix A (Proof of Theorem 7).

Theorem 8. (Monotonicity). Let dj =
(
hj, gj, tj

)
and d′j =

(
h′j, g′j, t′j

)
be two sets of HPFEs, if

dj ≥ d′j holds for all j = 1, 2, . . . , n, then

HPFSSWMSM(k)(d1, d2, . . . , dn) ≥ HPFSSWMSM(k)(d′1, d′2, . . . , d′n
)
. (24)

The proof of Theorem 8 is similar to that of Theorem 4, which is omitted here.

Theorem 9. (Boundedness). Let dj =
(
hj, gj, tj

)
(j = 1, 2, . . . , n) be a collection of HPFEs, if

d− = min
j

dj and d+ = max
j

dj then

d− ≤ HPFSSWMSM(k)(d1, d2, . . . , dn) ≤ d+. (25)

The proof of Theorem 9 is similar to that of Theorem 5, which is omitted here.

Theorem 10. For the given HPFEs dj(j = 1, 2, . . . , n), k = 1, 2, . . . , n, and their weight vector
w = (w1, w2, . . . , wn)

T , the HPFSSWMSM is monotonically decreasing function with the increase
in the parameter k.

The proof is similar to the Theorem 6, and it is omitted here.

3.3. The Hesitant Picture Fuzzy Schweizer–Sklar Weighted Maclaurin Symmetric Mean
(HPFSSWMSM) Operator

In this section, we extend the DMSM to aggregate hesitant picture fuzzy Schweizer–
Sklar environment.

Definition 9. Let dj =
(
hj, gj, tj

)
(j = 1, 2, . . . , n) be a collection of HPFEs, and k = 1, 2, . . . , n,

then the operator is defined as

HPFSSDMSM(k)(d1, d2, . . . , dn) =
1
k

(
∏

1≤i1<...<ik≤n

k

∑
j=1

dij

)1/Ck
n

, (26)

where (i1, i2, . . . , ik) traversal all the k-tuple combination of (1, 2, . . . , n) and Ck
n is the

binomial coefficient.

Based on the operational laws of HPFEs, the following theorem can be obtained.

Theorem 11. Let dj =
(
hj, gj, tj

)
(j = 1, 2, . . . , n) be a collection of HPFEs, and k = 1, 2, . . . , n,

then the aggregated value by the HPFSSDMSM operator is still an HPFE and
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HPFSSDMSM(k)(d1, d2, . . . , dn) = ∪χij∈hij ,φij∈gij ,τij∈tij
1−

 1
k

1−

 1
Ck

n
∑

1≤i1<...<ik≤n

1−
(

k
∑

j=1

(
1− χij

)γ
− 1

) 1
γ

γ

+ 1


1
γ


γ

−
(

1
k − 1

)
1
γ

,


 1

k

1−

 1
Ck

n
∑

1≤i1<...<ik≤n

1−
(

k
∑

j=1
φ

γ
ij
− 1

) 1
γ

γ

+ 1


1
γ


γ

−
(

1
k − 1

)
1
γ


 1

k

1−

 1
Ck

n
∑

1≤i1<...<ik≤n

1−
(

k
∑

j=1
τ

γ
ij
− 1

) 1
γ

γ

+ 1


1
γ


γ

−
(

1
k − 1

)
1
γ


.

(27)

The proof of Theorem 11 is similar to that of Theorem 2, which is omitted here to
save space.

In the following section, we discuss some desirable properties of the HPFSSD-
MSM operator.

Theorem 12. (Idempotency). Let dj = d = (h, g, t), for all j = 1, 2, . . . , n, then

HPFSSDMSM(k)(d1, d2, . . . , dn) = d. (28)

The proof of theorem 12 is similar to that of Theorem 3, which is omitted here.

Theorem 13. (Monotonicity). Let dj =
(
hj, gj, tj

)
and d′j =

(
h′j, g′j, t′j

)
be two sets of HPFEs, if

dj ≥ d′j holds for all j = 1, 2, . . . , n, then

HPFSSDMSM(k)(d1, d2, . . . , dn) ≥ HPFSSDMSM(k)(d′1, d′2, . . . , d′n
)
. (29)

The proof of Theorem 13 is similar to that of Theorem 4, which is omitted here.

Theorem 14. (Boundedness). Let dj =
(
hj, gj, tj

)
(j = 1, 2, . . . , n) be a collection of HPFEs, if

d− = min
j

dj and d+ = max
j

dj then

d− ≤ HPFSSDMSM(k)(d1, d2, . . . , dn) ≤ d+. (30)

The proof of Theorem 14 is similar to that of Theorem 5, which is omitted here.
In the following, we shall discuss some special cases of the HPFSSDMSM, regarding

the parameter vector k.

Case 1. If γ→ 0 , the HPFSSDMSM operator is reduced to hesitant picture fuzzy
DMSM operator.

HPFSSDMSM(k)(d1, d2, . . . , dn) = ∪χij
∈hij

,φij
∈gij

,τij
∈tij

1−

1−

 ∏
1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1− χij

)) 1
Ck

n


1
k

,


1− ∏

1≤i1<...<ik≤n

(
1−

k
∏
j=1

φij

) 1
Ck

n


1
k

,


1− ∏

1≤i1<...<ik≤n

(
1−

k
∏
j=1

τij

) 1
Ck

n


1
k




(31)

Case 2. If k = 1, based on the definition of HPFSSDMSM, we have
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HPFSSDMSM(1)(d1, d2, . . . , dn) = ∪χij
∈hij

,φij
∈gij

,τij
∈tij

{{(
1
n

n
∑

i=1
χ

γ
ij
− 2

n + 1
) 1

γ

}
,{

1−
(

1
n

n
∑

i=1
(1− φi)

γ − 2
n + 1

) 1
γ

}
,

{
1−

(
1
n

n
∑

i=1
(1− τi)

γ − 2
n + 1

) 1
γ

}}
.

(32)

In this case, the HPFSSDMSM reduces to the hesitant picture fuzzy Schweizer–Sklar
geometric averaging (HPFSSGA) operator. If γ→ 0 , the HPFSSMSM operator is reduced
to hesitant picture fuzzy geometric averaging operator.

HPFSSDMSM(1)(d1, d2, . . . , dn) = ∪χij
∈hij

,φij
∈gij

,τij
∈tij{{(

n
∏
i=1

χi

) 1
n
}

,

{
1−

(
n
∏
i=1

(1− φi)

) 1
n
}

,

{
1−

(
n
∏
i=1

(1− τi)

) 1
n
}}

.
(33)

Case 3. If k = 2, based on the definition of HPFSSDMSM, we have

HPFSSDMSM(2)(d1, d2, . . . , dn) = ∪χi1
∈hi1

,χi2∈hi2 ,φi1
∈gi1

,φi2∈gi2 ,τi1
∈ti1

,τi2∈ti2


1−

 1
2

1−

 1
n(n−1)

n
∑

i1, i2 = 1
i1 6= i2

(
1−

((
1− χi1

)γ
+
(
1− χi2

)γ − 1
) 1

γ

)γ

+ 1


1
γ



γ

+ 1
2



1
γ


,



 1
2

1−

 1
n(n−1)

n
∑

i1, i2 = 1
i1 6= i2

(
1−

(
φ

γ
i1
+ φ

γ
i2
− 1
) 1

γ

)γ

+ 1


1
γ



γ

+ 1
2



1
γ


,



 1
2

1−

 1
n(n−1)

n
∑

i1, i2 = 1
i1 6= i2

(
1−

(
τ

γ
i1
+ τ

γ
i2
− 1
) 1

γ

)γ

+ 1


1
γ



γ

+ 1
2



1
γ




.

(34)

In this case, the HPFSSDMSM reduces to the hesitant picture fuzzy Schweizer–Sklar
geometric Bonferroni mean (HPFSSGBM) operator. If γ→ 0 , the HPFSSMSM operator is
reduced to hesitant picture fuzzy geometric Bonferroni mean operator.

HPFSSDMSM(2)(d1, d2, . . . , dn) = ∪χi1
∈hi1

,χi2∈hi2 ,φi1
∈gi1

,φi2∈gi2 ,τi1
∈ti1

,τi2∈ti2


1−

1−
n
∏

i1, i2 = 1
i1 6= i2

(
1−

(
1− χi1

)(
1− χi2

)) 1
n(n−1)


1
2


,



1−
n
∏

i1, i2 = 1
i1 6= i2

(
1− φi1 φi2

) 1
n(n−1)


1
2


,



1−
n
∏

i1, i2 = 1
i1 6= i2

(
1− τi1 τi2

) 1
n(n−1)


1
2



.

(35)
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Case 4. If k = 3, based on the definition of HPFSSDMSM, we have

HPFSSDMSM(3)(d1, d2, . . . , dn) = ∪χi1
∈hi1

,χi2∈hi2 ,χi3∈hi3 ,φi1
∈gi1

,φi2∈gi2 ,φi3∈gi3 ,,τi1
∈ti1

,τi2∈ti2 ,τi3∈ti3
1−

 1
3

1−
(

n
∑

i1,i2,i3=1

(
1−

((
1− χi1

)γ
+
(
1− χi2

)γ
+
(
1− χi3

)γ − 1
) 1

γ

)γ

− 1

) 1
γ

γ

+ 2
3


1
γ

,


 1

3

1−
(

n
∑

i1,i2,i3=1

(
1−

(
φ

γ
i1
+ φ

γ
i2
+ φ

γ
i3
− 1
) 1

γ

)γ

− 1

) 1
γ

γ

+ 2
3


1
γ

,


 1

3

1−
(

n
∑

i1,i2,i3=1

(
1−

(
τ

γ
i1
+ τ

γ
i2
+ τ

γ
i3
− 1
) 1

γ

)γ

− 1

) 1
γ

γ

+ 2
3


1
γ


.

(36)

In this case, the HFPSSDMSM reduces to the hesitant picture fuzzy Schweizer–Sklar
generalized geometric Bonferroni mean (HFPSSGGBM) operator. If γ→ 0 , the HPFSSMSM
operator is reduced to hesitant picture fuzzy generalized Bonferroni mean operator.

HPFSSDMSM(3)(d1, d2, . . . , dn) =

(
n
∑

i1,i2,i3=1

(
di1 di2 di3

)) 1
3

=

∪χi1
∈hi1

,χi2∈hi2 ,χi3∈hi3 ,φi1
∈gi1

,φi2∈gi2 ,φi3∈gi3 ,,τi1
∈ti1

,τi2∈ti2 ,τi3∈ti3
1−

(
1−

n
∏

i1,i2,i3=1

(
1−

(
1− χi1

)(
1− χi2

)(
1− χi3

))) 1
3
,

(
1−

n
∏

i1,i2,i3=1

(
1− φi1 φi2 φi3

)) 1
3
,


(

1−
n
∏

i1,i2,i3=1

(
1− τi1 τi2 τi3

)) 1
3

.

(37)

Case 5. If k = n, based on the definition of HPFSSDMSM, we have

HPFSSDMSM(n)(d1, d2, . . . , dn) = ∪χi∈hi ,φi∈gi ,τi∈ti

{{
1−

(
1
n

n
∑

i=1
(1− χi)

γ − 2
n + 1

) 1
γ

}
,{(

1
n

n
∑

i=1
φ

γ
i −

2
n + 1

) 1
γ

}
,

{(
1
n

n
∑

i=1
τ

γ
i −

2
n + 1

) 1
γ

}}
.

(38)

In this case, the HPFSSDMSM reduces to the hesitant picture fuzzy Schweizer–Sklar
averaging (HPFSSA) operator. If γ→ 0 , the HPFSSMSM operator is reduced to hesitant
picture fuzzy averaging operator.

HPFSSMSM(n)(d1, d2, . . . , dn) = ∪χi∈hi ,φi∈gi ,τi∈ti


1−

(
n

∏
i=1

(1− φi)

) 1
n
,


(

n

∏
i=1

χi

) 1
n
,


(

n

∏
i=1

χi

) 1
n

. (39)

Theorem 15. For the given HPFEs dj(j = 1, 2, . . . , n) and k = 1, 2, . . . , n, the HPFSSDMSM is
monotonically increasing function with the increase in the parameter k.

The proof is similar to the Theorem 6, and it is omitted here.
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3.4. The Hesitant Picture Fuzzy Schweizer–Sklar-Weighted Dual Maclaurin Symmetric Mean
(HPFSSWDMSM) Operator

Definition 10. Let dj =
(
hj, gj, tj

)
(j = 1, 2, . . . , n) be a collection of HPFEs, and k = 1, 2, . . . , n.

w = (w1, w2, . . . , wn)
T be the weight vector of dj, satisfying wi ∈ [0, 1] and

n
∑

i=1
wi = 1, then the

operator is defined as

HPFSSWDMSM(k)(a1, a2, . . . , an) =
1
k

(
∏

1≤i1<...<ik≤n

k

∑
j=1

(
wij aij

))1/Ck
n

, (40)

where (i1, i2, . . . , ik) traversal all the k-tuple combination of (1, 2, . . . , n)and Ck
n is the

binomial coefficient.

According to the operations of HPFEs, the aggregated value by the HPFSSWDMSM
can be obtained, which is shown as Theorem 16.

Theorem 16. Let dj =
(
hj, gj, tj

)
(j = 1, 2, . . . , n) be a collection of HPFEs, and k = 1, 2, . . . , n,

then the aggregated value by the HPFSSWDMSM operator is still an HPFE and

HPFSSWDMSM(k)(a1, a2, . . . , an) = ∪χij∈hij ,φij∈gij ,τij∈tij

 1

k

1−

 1
Ck

n
∑

1≤i1<...<ik≤n

1−
(

k
∑

j=1

(
1−

(
wij

(
1− χij

)γ
−
(

wij − 1
)) 1

γ

)γ

− 1

) 1
γ

γ

+ 1


1
γ


γ

−
(

1
k − 1

)
1
γ
,

1−

 1
k

1−

 1
Ck

n
∑

1≤i1<...<ik≤n

1−
(

k
∑

j=1

(
1−

(
wij φ

γ
ij
−
(

wij − 1
)) 1

γ

)γ

− 1

) 1
γ

γ

+ 1


1
γ


γ

−
(

1
k − 1

)
1
γ

,

1−

 1
k

1−

 1
Ck

n
∑

1≤i1<...<ik≤n

1−
(

k
∑

j=1

(
1−

(
wij τ

γ
ij
−
(

wij − 1
)) 1

γ

)γ

− 1

) 1
γ

γ

+ 1


1
γ


γ

−
(

1
k − 1

)
1
γ


.

(41)

The proof is similar to that of Theorem 7, which is omitted here.

Theorem 17. (Monotonicity). Let dj =
(
hj, gj, tj

)
and d′j =

(
h′j, g′j, t′j

)
be two sets of HPFEs, if

dj ≥ d′j holds for all j = 1, 2, . . . , n, then

HPFSSWDMSM(k)(d1, d2, . . . , dn) ≥ HPFSSWDMSM(k)(d′1, d′2, . . . , d′n
)
. (42)

The proof of Theorem 17 is similar to that of Theorem 8, which is omitted here.

Theorem 18. (Boundedness). Let dj =
(
hj, gj, tj

)
(j = 1, 2, . . . , n) be a collection of HPFEs, if

d− = min
j

dj and d+ = max
j

dj then

d− ≤ HPFSSWDMSM(k)(d1, d2, . . . , dn) ≤ d+. (43)

The proof of Theorem 18 is similar to that of Theorem 9, which is omitted here.

4. A Novel Approach to MAGDM Based on the Proposed Operators

In this section, we shall apply the proposed aggregation operators to solving MAGDM
problems in hesitant picture fuzzy environment. Let A = {A1, A2, . . . , Am} be a set of
alternatives, and G = {G1, G2, . . . , Gn} be a set of attributes. The weight vector of attributes
is w = (w1, w2, . . . , wn)

T . A group of decision makers is responsible for the evaluation of
each alternative under each attribute. The evaluation results of attribute Gj(j = 1, 2, . . . , n)
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of alternative Ai(i = 1, 2, . . . , m) are denoted by an HPFE dij =
{{

hij
}

,
{

gij
}}

. The decision-
making method consists of the following steps.

Step 1. Normalize the original decision matrix. Generally, attributes can be divided
into two types: benefit type and cost type. Therefore, the original decision matrix should
be normalized by

dij =

{ {{
hij
}

,
{

gij
}}

Gj ∈ I1{{
gij
}

,
{

hij
}}

Gj ∈ I2
(44)

where I1 and I2 represent the benefit type and cost type of attributes, respectively.
Step 2. Utilize HPFWMSM operator

di = HPFWMSM(k)(di1, di2, . . . , din) (45)

or
di = HPFWDMSM(k)(di1, di2, . . . , din), (46)

to aggregate the decision makers’ preference information and calculate the overall values
of alternatives.

Step 3. Rank di(i = 1, 2, . . . , m) according to Definition 3 and select the best alterna-
tive accordingly.

5. The Application of the Proposed Method to Enterprise Informatization
Level Evaluation

Example 4. In the information age, the operation and development of enterprise are inseparable from
information construction. Enterprise information construction aims to improve the management
level of the entire company through the computer science and information technology. Enterprises
can improve the efficiency of their operations and management by setting up the information
director, equipping with automatic and intelligent high-tech hardware and software equipment and
facilities, establishing a work platform including network databased on all kinds of information
management systems, to meet the requirement of modern enterprise management. In general,
it is necessary to make an informatization level assessment before the formal implementation of
enterprise informatization construction. In reality, DMs should provide their evaluations for the
enterprise with respect to a set of attributes; thus, the evaluation process can be regarded as a typical
MAGDM problem. Suppose that a group is planning to help its four subsidiaries to improve their
informatization construction level. In line with the principle of maximum resource utilization, the
group decided to invite three experts to make information level evaluation for the four subsidiaries
Ai(i = 1, 2, 3, 4) with respect to four attributes Gi(i = 1, 2, 3, 4). Considering the availability of
information and the feasibility of the survey, four attributes are ultimately selected: G1 (IT coverage
rate), G2 (IT resource coverage rate), G3 (IT contribution rate), and G4 (proportion of investment
for informatization). The weight vector of three experts is v = (0.2, 0.3, 0.5)T , and the weight
vector of four attributes is w = (0.25, 0.35, 0.15, 0.25)T . Taking into account the complexity of
real-world scenarios and the accessibility of information, the final decision maker requires DMs
to employ hesitant picture fuzzy elements to express their evaluation information. Therefore, the
decision matrices given by DMs are shown in Tables 1–3.

Table 1. The evaluation values given by DM D1.

G1 G2 G3 G4

A1 ({0.1, 0.2}, {0.5}, {0.3, 0.5}) ({0.2}, {0.5}, {0.2, 0.3}) ({0.3, 0.4}, {0.1, 0.2}, {0.4}) ({0.09, 0.12}, {0.13}, {0.66, 0.71})
A2 ({0.14, 0.23}, {0.03}, {0.65, 0.7}) ({0.03, 0.34}, {0.2}, {0.44}) ({0.12, 0.34}, {0.02}, {0.44, 0.5}) ({0.06}, {0.04}, {0.78, 0.85})
A3 ({0.25}, {0.08}, {0.64}) ({0.18, 0.22}, {0.03}, {0.6, 0.67}) ({0.13, 0.21}, {0.03, 0.06}, {0.72}) ({0.04, 0.06}, {0.08, 0.12}, {0.8})
A4 ({0.09, 0.13}, {0.02}, {0.76}) ({0.02, 0.05}, {0.02}, {0.68}) ({0.13}, {0.15}, {0.65}) ({0.14, 0.23}, {0.05}, {0.55, 0.68})
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Table 2. The evaluation values given by DM D2.

Tab G1 G2 G3 G4

A1 ({0.06}, {0.06}, {0.76, 0.86}) ({0.07}, {0.2, 0.23}, {0.55}) ({0.13, 0.24}, {0.01, 0.02}, {0.73}) ({0.05, 0.08}, {0.1}, {0.7, 0.81})
A2 ({0.23}, {0.12}, {0.62}) ({0.45, 0.5}, {0.05}, {0.2}) ({0.3, 0.34}, {0.2}, {0.24}) ({0.2}, {0.03}, {0.6, 0.73})
A3 ({0.02}, {0.01}, {0.82, 0.91}) ({0.52}, {0.02}, {0.43}) ({0.22, 0.24}, {0.06}, {0.64}) ({0.34}, {0.12}, {0.5})
A4 ({0.04, 0.07}, {0.05}, {0.76, 0.81}) ({0.55}, {0.03}, {0.4}) ({0.05}, {0.03}, {0.81}) ({0.02, 0.05}, {0.02}, {0.68})

Table 3. The evaluation values given by DM D3.

G1 G2 G3 G4

A1 ({0.1}, {0.01}, {0.66, 0.72}) ({0.04}, {0.2}, {0.6, 0.73}) ({0.04}, {0.17, 0.2}, {0.64}) ({0.08}, {0.04}, {0.72, 0.8})
A2 ({0.3}, {0.1}, {0.6}) ({0.23, 0.25}, {0.02}, {0.52, 0.6}) ({0.2, 0.25}, {0.1}, {0.62}) ({0.13}, {0.04}, {0.78})
A3 ({0.2}, {0.01, 0.04}, {0.72}) ({0.38, 0.42}, {0.09}, {0.43}) ({0.15, 0.2}, {0.18}, {0.67}) ({0.18, 0.22}, {0.07}, {0.62})
A4 ({0.07}, {0.23}, {0.64}) ({0.23}, {0.12}, {0.62}) ({0.2}, {0.03}, {0.6, 0.73}) ({0.09, 0.13}, {0.02}, {0.76})

5.1. Enterprise Informatization Level Evaluation Process with HPFSSWMSM Operator

Step 1. According to the case description, all attributes are classified as positive and
therefore no need to be normalized.

Step 2. We know that the parameter variable (PV) k plays an important role in considering
the interrelationship among the input arguments. As for the DMs in this example are
independent among each other, it is appropriate to take k = 1 as the value of PV. Then,
the HPFSSWMSM operator reduces to the weighted form of Equation (47), that is,
hesitant picture fuzzy Schweizer–Sklar-weighted averaging (HPFSSWA) operator:

HPFSSWMSM(1)(d1, d2, . . . , dn) =
1
n

(
n
∑

i=1
widi

)
= ∪χi∈hi ,φi∈gi ,τi∈ti{{

1−
(

1
n

(
n
∑

i=1

(
wi(1− χi)

γ − (wi − 1)
)
− 1
)
−
(

1
n − 1

))1/γ
}

,{(
1
n

(
n
∑

i=1

(
wiφ

γ
i − (wi − 1)

)
− 1
)
−
(

1
n − 1

))1/γ
}

,{(
1
n

(
n
∑

i=1

(
wiτ

γ
i − (wi − 1)

)
− 1
)
−
(

1
n − 1

))1/γ
}}

.

(47)

Compute the overall comprehensive assessments d′ij =
{{

h′ij
}

,
{

g′ij
}

,
{

t′ij
}}

of alter-
natives Ai(i = 1, 2, . . . , m) with respect to Gj(j = 1, 2, . . . , n). According to Equation (47)
(suppose that γ = −1), we can obtain the comprehensive evaluations, which is shown in
Appendix A (Comprehensive matrix of subsection 5.1).

Step 3. Compute the global evaluation values with the proposed HPFSSWMSM operator
(suppose that k = 2, γ = −1) and the scores of alternatives with Definition 3, we
can derive

s(d1) = −0.8480, s(d2) = −0.7705, s(d3) = −0.8018, s(d4) = −0.8190

According to the scores of alternatives, the ranking order is A2 � A3 � A4 � A1.
Therefore, A2 is the best alternative.

5.2. Enterprise Informatization Level Evaluation Process with HPFSSWDMSM Operator

Step 1. The step 1 of decision-making process with HPFSSWDMSM operator is same as
the above.

Step 2. For the same reason as the above, we assign k = 1 to the HPFSSWDMSM operator,
which can make it reduce to the weighted form of Equation (48), that is, hesitant
picture fuzzy Schweizer–Sklar-weighed geometric (HPFSSWG) operator:
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HPFSSWDMSM(1)(d1, d2, . . . , dn) =

(
n
∏
i=1

(di)
wi

) 1
n
= ∪χi∈hi ,φi∈gi ,τi∈ti{{(

1
n

(
n
∑

i=1
(wiχ

γ − (wi − 1))− 1
)
−
(

1
n − 1

))1/γ
}

,{
1−

(
1
n

(
n
∑

i=1

(
wi(1− φ)γ − (wi − 1)

)
− 1
)
−
(

1
n − 1

))1/γ
}

,{
1−

(
1
n

(
n
∑

i=1

(
wi(1− τ)γ − (wi − 1)

)
− 1
)
−
(

1
n − 1

))1/γ
}}

.

(48)

Compute the overall comprehensive assessments d′ij =
{{

h′ij
}

,
{

g′ij
}

,
{

t′ij
}}

of alter-
natives Ai(i = 1, 2, . . . , m) with respect to Gj(j = 1, 2, . . . , n). According to Equation (48)
(suppose that γ = −1), then we can obtain the comprehensive evaluations, which is shown
in Appendix A (Comprehensive matrix of subsection 5.2).

Step 3. Compute the global evaluation values with the proposed HPFSSWDMSM operator
(suppose that k = 2, γ = −1) and the scores of alternatives with Definition 3, we
can derive

s(d1) = −0.8802, s(d2) = −0.8059, s(d3) = −0.8267, s(d4) = −0.8320

According to the scores of alternatives, the ranking order is A2 � A3 � A4 � A1.
Therefore, A2 is the best alternative.

5.3. Parameter Analysis

The proposed method contains two parameters, k and γ, which definitely affect the
final result. To illustrate the functions of these two parameters, we assign different values
to k and γ to solve the Example 1, the results and detail explanations are shown in the
following section.

5.3.1. The Influence of k

Bulleted lists look like this: As mentioned above, the PV k of the proposed method
is of great significance in the information aggregation process. With the PV, the proposed
method can not only realize different functions by assigning different values to k but
can also degenerate into other simpler operators in some special cases. To give a more
explanatory and persuasive illustration, we provide several calculation results with some
different values of the PV k, which is shown in Table 4.

Table 4. The calculation results by different values of k with HPFSSWMSM operator (γ = −1).

k Score Function s(di)(i=1,2,3,4) Ranking Orders

k = 1 s(d1) = −0.8828, s(d2) = −0.8215,
s(d3) = −0.8471, s(d4) = −0.8605 A2 � A3 � A4 � A1

k = 2 s(d1) = −0.8480, s(d2) = −0.7705,
s(d3) = −0.8018, s(d4) = −0.8190 A2 � A3 � A4 � A1

k = 3 s(d1) = −0.6981, s(d2) = −0.5600,
s(d3) = −0.6083, s(d4) = −0.6399 A2 � A3 � A4 � A1

k = 4 s(d1) = −0.1199, s(d2) = 0.1416,
s(d3) = 0.0996, s(d4) = 0.0394 A2 � A3 � A4 � A1

As we can see from Table 4, the score functions of alternatives Ai(i = 1, 2, 3, 4) changes
with the value of PV k, and the scores become much higher when the value of k becomes
much larger, which indicates that the PV k indeed has an influence on the decision-making
result. Figure 1 clearly shows this characteristic in a visual form. The PV k can improve the
flexibility of the method because that value of k represents the number of attributes that
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have interrelationships, and k = 4 means that there are no independent attributes and all
of them are in a codependent relationship, which promotes alternative A1 but inhibits A4.
The slight changes of ranking results proves that the PV k has an effective influence on the
decision making. In practical applications, it should be noted that the value of PV k should
be considered according to the actual situation.

Entropy 2022, 24, x FOR PEER REVIEW  24 of 41 
 

 

 

Figure 1. Score functions calculated by different values of PV k when  1   . 

5.3.2. The Influence of γ 

The parameter γ also has some influences on the aggregation result. We know that 

parameter γ is a negative real number and the Schweizer–Sklar t‐norm and t‐conorm re‐

duces to the algebraic t‐norm and algebraic t‐conorm when  0  . To further explore its 

role in information aggregation, this subsection provides additional experiments for the 

changes of the calculation results when γ takes different values, the experimental results 

are shown in Table 5, and the visual graph is shown in Figure 2. 

Table 5. The calculation results by different values of 𝛾 with HPFSSWMSM operator ( 2k  ) 

𝛾  Score Function    1,2,3,4
i

s d i    Ranking Orders 

𝛾 = −1 
 1 0.8480s d   ,  2 0.7705s d   , 

 3 0.8018s d   ,  4 0.8190s d    

2 3 4 1
A A A A  

 

𝛾 = −2 
 1 0.8228s d   ,  2 0.7182s d   , 

 3 0.7773s d   ,  4 0.8009s d    

2 3 4 1
A A A A  

 

𝛾 = −3 
 1 0.7883s d   ,  2 0.6501s d   , 

 3 0.7426s d   ,  4 0.7797s d    

2 3 4 1
A A A A  

 

𝛾 = −4 
 1 0.7436s d   ,  2 0.5647s d   , 

 3 0.6988s d   ,  4 0.7560s d    

2 3 1 4
A A A A  

 

Figure 1. Score functions calculated by different values of PV k when γ = −1.

5.3.2. The Influence of γ

The parameter γ also has some influences on the aggregation result. We know that
parameter γ is a negative real number and the Schweizer–Sklar t-norm and t-conorm
reduces to the algebraic t-norm and algebraic t-conorm when γ→ 0 . To further explore its
role in information aggregation, this subsection provides additional experiments for the
changes of the calculation results when γ takes different values, the experimental results
are shown in Table 5, and the visual graph is shown in Figure 2.

Table 5. The calculation results by different values of γ with HPFSSWMSM operator (k = 2).

γ Score Function s(di) (i=1,2,3,4) Ranking Orders

γ = −1 s(d1) = −0.8480, s(d2) = −0.7705,
s(d3) = −0.8018, s(d4) = −0.8190 A2 � A3 � A4 � A1

γ = −2 s(d1) = −0.8228, s(d2) = −0.7182,
s(d3) = −0.7773, s(d4) = −0.8009 A2 � A3 � A4 � A1

γ = −3 s(d1) = −0.7883, s(d2) = −0.6501,
s(d3) = −0.7426, s(d4) = −0.7797 A2 � A3 � A4 � A1

γ = −4 s(d1) = −0.7436, s(d2) = −0.5647,
s(d3) = −0.6988, s(d4) = −0.7560 A2 � A3 � A1 � A4

As we can see from Table 4, the score functions of alternatives Ai(i = 1, 2, 3, 4) change
with the value of PV k, and the scores become much higher when the value of k becomes
much larger, which indicates that the PV k indeed has an influence on the decision-making
result. Figure 1 clearly shows this characteristic in a visual form. The PV k can improve
the flexibility of the method because that value of k represents the number of attributes
that have interrelationships, and k = 4 means that there are no independent attributes and
all of them are in a codependent relationship, which promotes alternative A1 but inhibits
A4. The slight changes of ranking results prove that the PV k has an effective influence on
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decision making. In practical applications, it should be noted that the value of PV k should
be considered according to the actual situation.
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5.4. Validity Analysis

To show the validity and effectiveness of our method, we utilize it and Wang and
Liu’s [33] method based on intuitionistic fuzzy Schweizer–Sklar-weighed MSM (IFSS-
WMSM) operator and Biswas and Deb’s [37] method based on Pythagorean fuzzy Schweizer–
Sklar power-weighed aggregation (PFSSPWA) operator to solve the numerical example in
Reference [33] (details can be found in section of Reference [33]), and the calculation results
are shown in Table 6.

Table 6. The calculation results by different methods.

Methods Score Function s(di)(i=1,2,3,4) Ranking Orders

Wang and Liu’s [33] method based on IFSSWMSM operator
(k = 1, γ = −2)

s(d1) = −0.6704, s(d2) = −0.1488,
s(d3) = −0.2831, s(d4) = −0.4569,

s(d5) = −0.6489
A2 � A3 � A4 � A5 � A1

Biswas and Deb’s [37] method based on PFSSPWA operator
(η = −2)

s(d1) = 0.4876, s(d2) = 0.8263,
s(d3) = 0.6308, s(d4) = 0.5659,

s(d5) = 0.5324
A2 � A3 � A4 � A5 � A1

Our method with HPFSSWMSM operator (k = 1, γ = −2)
s(d1) = −0.6704, s(d2) = −0.1488,
s(d3) = −0.2831, s(d4) = −0.4569,

s(d5) = −0.6489
A2 � A3 � A4 � A5 � A1

Our method with HPFSSWDMSM operator(k = 1, γ = −2)
s(d1) = −0.5131, s(d2) = 0.0925,

s(d3) = −0.0890, s(d4) = −0.2755,
s(d5) = −0.4675

A2 � A3 � A4 � A5 � A1

The original data of the numerical example in Reference [33] are expressed in intu-
itionistic fuzzy number with a MD and an NMD. It is entirely appropriate to utilize the
PFSSPWA operator [37] to process this batch of data. However, the HPFE is expressed with
a PMD, an NLMD, and an NEMD. To enable the proposed operator effectively applied to
this case, we set all the NLMDs to 0, so that the information contained in the original data
is not affected and our proposed method can be well matched. As can be seen from Table 6,
the results obtained by the four methods are the same, e.g., A2 � A3 � A4 � A5 � A1,
which demonstrates that our method proposed in this paper is valid and effective in deal-
ing with these kinds of multiple-attribute decision-making problems. It is noted that the
score functions obtained by Wang and Liu’s [33] method (k = 1, γ = −2) is the same as
that obtained by our method with HPFSSWMSM operator (k = 1, γ = −2). In fact, when
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all the NLMDs take the value 0 and there is only one element in PMD and NEMD, the
proposed HPFSSWMSM operator degenerates into IFSSWMSM operator [33], as we dis-
cussed in Remark 1. Therefore, it is not surprising that the two methods can reach exactly
the same conclusions, which from the other side proves our method is more flexible and
more applicable.

5.5. Comparative Analysis

To further illustrate the merits and superiorities of the proposed method, we conduct
some comparative analysis. The methods utilized to participate in the comparison include:
Wang and Liu’s [33] method based on IFSSWMSM operator, Wei’s [38] method based on
picture fuzzy weighted average (PFWA) operator, and Wang et al.’s [39] method based on
picture fuzzy weighted Muirhead mean (PFWMM) operators.

The fuzzy information that different fuzzy sets can handle is different, and the most
basic is IFS. To make all the fuzzy sets participating in the comparison be effectively
involved in making decisions, we decided to employ the example of Wang and Liu [33]
for comparative analysis, because their method is based on IFSSWMSM operator which is
built on top of IFS. In the following, we give a briefly description of the example.

Example 5. (Adopted from Reference [33]). Consider an investment problem, which aims to
choose the best company from five possible companies Ai(i = 1, 2, 3, 4, 5); three DMs Mr(r = 1, 2, 3)
with the weight of v = (0.35, 0.4, 0.25)T are invited and required to provide their evaluations by
the intuitionistic fuzzy numbers with respect to four attributes Gj(j = 1, 2, 3, 4), including the
risk factor G1, the growth factor G2, the social-political impact G3, and the environmental impact
G4. The weight of the attributes is w = (0.2, 0.1, 0.3, 0.4)T . We show the decision matrix of the
second DM D2 =

(
d2

ij

)
5×4

in Table 7, and the rest of which can be found in Reference [33].

Table 7. The evaluation values of Example 2 given by DM D2.

G1 G2 G3 G4

A1 (0.4, 0.5) (0.6, 0.2) (0.5, 0.4) (0.5, 0.3)
A2 (0.5, 0.4) (0.6, 0.2) (0.6, 0.3) (0.7, 0.3)
A3 (0.4, 0.5) (0.3, 0.5) (0.4, 0.4) (0.2, 0.6)
A4 (0.5, 0.4) (0.7, 0.2) (0.4, 0.4) (0.6, 0.2)
A5 (0.6, 0.3) (0.7, 0.2) (0.4, 0.2) (0.7, 0.2)

The same as the previous analysis, to enable the proposed operator effectively applied
to this case, we make some small changes to the original data by setting all the NLMDs to 0
without changing the information contained in them (the adjusted data of Table 7 in shown
in Table 8). The methods in [38,39] are based on PFS, which also consists of a PMD and an
NEMD. Therefore, there is no need to worry about the case suitability. After calculation,
the results obtained from these methods are shown in Table 9.

Table 8. The adjusted evaluation values of Example 2 given by DM D2.

G1 G2 G3 G4

A1 {{0.4}, {0}, {0.5}} {{0.6}, {0}, {0.2}} {{0.5}, {0}, {0.4}} {{0.5}, {0}, {0.3}}
A2 {{0.5}, {0}, {0.4}} {{0.6}, {0}, {0.2}} {{0.6}, {0}, {0.3}} {{0.7}, {0}, {0.3}}
A3 {{0.4}, {0}, {0.5}} {{0.3}, {0}, {0.5}} {{0.4}, {0}, {0.4}} {{0.2}, {0}, {0.6}}
A4 {{0.5}, {0}, {0.4}} {{0.7}, {0}, {0.2}} {{0.4}, {0}, {0.4}} {{0.6}, {0}, {0.2}}
A5 {{0.6}, {0}, {0.3}} {{0.7}, {0}, {0.2}} {{0.4}, {0}, {0.2}} {{0.7}, {0}, {0.2}}
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Table 9. The calculation results by different methods of Example 2.

Methods Score Function s(di) (i=1,2,3,4) Ranking Orders

Wei’s [38] method based on PFWA operator
s(d1) = −0.008, s(d2) = 0.2718,
s(d3) = 0.1751, s(d4) = 0.2302,

s(d5) = 0.4069
A5 � A2 � A4 � A3 � A1

Wang et al.’s [39] method based on PFWMM operator
(P = [1, 1, 1, 1])

s(d1) = −0.2641, s(d2) = 0.1238,
s(d3) = 0.0698, s(d4) = −0.1206,

s(d5) = 0.2071
A5 � A2 � A3 � A4 � A1

Wang and Liu’ [33] method based on IFSSWMSM operator
(k = 2, γ = −2)

s(d1) = −0.6369, s(d2) = −0.1851,
s(d3) = −0.3354, s(d4) = −0.4193,

s(d5) = −0.0462
A5 � A2 � A3 � A4 � A1

Our method with HPFSSWMSM operator (k = 1, γ = −2)
s(d1) = −0.6467, s(d2) = −0.2479,
s(d3) = −0.3787, s(d4) = −0.4545,

s(d5) = −0.1241
A5 � A2 � A3 � A4 � A1

Our method with HPFSSWMSM operator (k = 1, γ→ 0)
s(d1) = −0.9351, s(d2) = −0.8343,
s(d3) = −0.8854, s(d4) = −0.8819,

s(d5) = −0.8064
A5 � A2 � A4 � A3 � A1

Our method with HPFSSWMSM operator (k = 2, γ = −2)
s(d1) = −0.6369, s(d2) = −0.1851,
s(d3) = −0.3354, s(d4) = −0.4193,

s(d5) = −0.0462
A5 � A2 � A3 � A4 � A1

Our method with HPFSSWMSM operator (k = 3, γ = −2)
s(d1) = −0.4121, s(d2) = 0.0912,

s(d3) = −0.0287, s(d4) = −0.1440,
s(d5) = 0.2499

A5 � A2 � A3 � A4 � A1

Our method with HPFSSWMSM operator (k = 4, γ = −2)
s(d1) = 0.2994, s(d2) = 0.6295,
s(d3) = 0.5988, s(d4) = 0.4982,

s(d5) = 0.7270
A5 � A2 � A3 � A4 � A1

From Example 2, we can easily find that the attributes are interdependent and have
interrelationships with each other. Table 9 shows the score values and ranking orders of
all operators participating in the comparative analysis. We can see that ranking orders of
Wei’s [38] method based on PFWA operator and the proposed method based on HPFSS-
WMSM operator when k = 1, γ→ 0 are the same. This is because the weighted Maclaurin
symmetric mean operator can reduce to weighted average operator when k = 1, the SSTT
operational rules can reduce to ATT when γ→ 0 , and the hesitant picture fuzzy set can
be regarded as a special kind of Pythagorean fuzzy set when the elements of NLMD are
0. In other words, Wei’s [38] method can be deemed a degenerate case of the proposed
method. By comparison, the ranking result of our method with HPFSSWMSM operator
when k = 1, γ = −2 is different from Wei’s [38] method because the parameter γ plays a
role in the final result.

In addition, ranking orders of Wang et al.’s [39] method based on PFWMM (P = [1, 1, 1, 1])
is the same as our proposed method when the PV k takes values of 2, 3 and 4. We have
known that our methods have the ability to capture the possible interrelationships from
multiple attributes, and similarly, the fusion operator weighted Muirhead mean of Wang
et al.’s [39] method also possesses this skill with the PV P. Under the premise of consid-
ering the interaction, the two methods have reached the same conclusion. As for Wang
and Liu’s [33] method based on the IFSSWMSM operator, it has the same information
fusion operator just as our proposed method, the difference is that in our method DMs
utilize HPFEs to express their assessments while Wang and Liu’s [33] method utilizes the
intuitionistic fuzzy numbers. However, in this case, the original data are adjusted so that
both fuzzy sets can be applied to solve it, and the priority of the HPFS cannot be incarnated.
To further highlight the advantages of this point, we further adjust the data in Table 8 into
the following form, shown in Table 10.
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Table 10. The adjusted evaluation values of Table 8 given by DM D2.

G1 G2 G3 G4

A1 {{0.4}, {0.1}, {0.5}} {{0.6}, {0.02}, {0.2}} {{0.5}, {0.06}, {0.4}} {{0.5}, {0.14}, {0.3}}
A2 {{0.5}, {0.09}, {0.4}} {{0.6}, {0}, {0.2}} {{0.6}, {0.07}, {0.3}} {{0.7}, {0}, {0.3}}
A3 {{0.4}, {0}, {0.5}} {{0.3}, {0.1}, {0.5}} {{0.4}, {0.02}, {0.4}} {{0.2}, {0}, {0.6}}
A4 {{0.5}, {0.08}, {0.4}} {{0.7}, {0.01}, {0.2}} {{0.4}, {0}, {0.4}} {{0.6}, {0.04}, {0.2}}
A5 {{0.6}, {0}, {0.3}} {{0.7}, {0.05}, {0.2}} {{0.4}, {0.2}, {0.2}} {{0.7}, {0}, {0.2}}

Formally, we can divide the data in Table 10 into two types: one can be degenerated
into intuitionistic fuzzy numbers, such as d2

22 = {{0.6}, {0}, {0.2}}; the other one cannot
do that, such as d2

52 = {{0.7}, {0.05}, {0.2}}. When combined with the conversion from
Tables 7 and 8, we can find that the intuitionistic fuzzy numbers can be easily expanded
to HPFEs, but the reverse is difficult to achieve. Therefore, our proposed method is much
more common than Wang and Liu’s [33] model and can be applied to many scenarios.

In the following section, we summarize the results of the comparative analysis
as follows:

1. Compared with Wei’s [38] method, our proposed method is more generic and flexible.
Wei’s method is based on the PFWA operator, which consists of the Pythagorean
fuzzy sets and basically the most traditional weighted average operator. Both the
information expression method and the information aggregation method of Wei’s [38]
basic operator is only suitable for simple and independent general fuzzy decision-
making problems. The information aggregation method is based on the premise that
the input variables are independent of each other. This harsh assumption severely
limits the scope of application of this method. In real-life decision-making problems,
it is common that the evaluation criteria are interdependent and are related to each
other. Therefore, our method with the MSM operator as the information fusion
operator has much stronger practical application value. Because of that, by assigning
different values to the PV k, our method can handle several kinds of situations with
complex relationships.

2. Compared with Wang et al.’s [39] method, our proposed method can be employed
in a wider range. Wang et al.’s [39] method is based on the PFS just as Wei’s [38]
method, and it allows the square sum of the PMD and the NEMD to be no larger
than one, which is a strict condition for DMs to spend time and energy to confirm
their evaluations. The proposed method gives DMs the greatest tolerance, allowing
them to provide several possible values of their uncertain information with nothing to
worry about. On the other hand, Wang et al.’s [39] method is based on the traditional
operational rules of ATT, while our method is based on the new operational rules of
SSTT, which is more flexible and can take the risk preference of DMs into consideration
by the parameter γ.

3. Compared with Wang and Liu’s [33] method, our proposed method provides DMs
more freedom when they feel hesitant or uncertain among several evaluation values
and thus more adaptive at coping with the MAGDM problems with a high degree of
complexity and more friendly to the qualitative problems that rely on the subjective
decision making of DMs. These advantages are due to the fact that the information
expression module of our method is based on the hesitant picture fuzzy set, whose
elements are constructed with a PMD, an NLMD, and an NEMD, with which the
HPFEs are able to tolerate the ambiguity of DMs’ assessments to the greatest extent.

In the following section, we summarize the comparison of the proposed method with
Wang and Liu’s [33], Wei’s [38], and Wang et al.’s [39] methods in Table 11.
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Table 11. A comprehensive comparison of different methods.

Capture
Relationship among

Attributes

Deal with Evaluation
Information with

Several Elements in
MD and NMD

Based on a Flexible
Operational Rule

Capture Neutral
Membership Degree

Wang and Liu’s [33] method Yes No No No
Wei’s [38] method No No No Yes

Wang et al.’s [39] method Yes No No Yes
The proposed method Yes Yes Yes Yes

6. Conclusions

The main purpose of this paper was to present a novel MAGDM problem and apply
it to a real enterprise informatization level evaluation problem. To achieve this goal, we
mainly focused on three parts: information expression method, information aggregation
method, and the operational rules in the process of information aggregation. Firstly, we
proposed the concept of HPFS, which is an effective and powerful information expression
method in coping with uncertainty. The advantage of the proposed HPFS is that it can
provide DMs more freedom with several possible elements in PMD, NLMD, and NEMD.
Furthermore, the Schweizer–Sklar t-norm and t-conorm operational rules for HPFEs were
proposed to provide a more flexible computing environment. In order to capture the inter-
relationship among attributes, we employed the MSM operator to aggregate evaluation
information with HPFEs and introduced a series of operators combining HPFS and MSM
under which SSTT operational rules were introduced, that is, the HPFSSMSM operator,
HPFSSWMSM operator, HPFSSDMSM operator, and HPFSSWDMSM operator. With the
proposed operator, the interrelationship among different attributes could be taken into con-
sideration. Then, a novel approach to MAGDM problems based on the proposed operators
was given. Finally, we applied the proposed method to an enterprise informatization level
evaluation problem, and the HPFSSWMSM and HPFSSWDMSM operators were utilized to
solve the problem, respectively. To illustrate the advantages of the proposed method, we
utilized it to compare with some existing methods, and the results showed that our method
is more flexible, more effective, and more liberal for decision makers. In future works, we
will explore the application possibility of more algorithms in hesitant picture fuzzy sets
and more aggregation operators, such as the Muirhead mean operator and power average
operator also being worth exploring. In addition, our proposed method can be applied to
more areas, such as the supplier selection problem, investment issues, etc. The comparison
between the proposed method and some traditional methods can be conducted to show
the validity.
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Appendix A

Proof of Theorem 2. According to the operations for HPFEs, we can obtain
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Then, it is easy to prove that χ, φ, τ,∈ [0, 1].
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Which means the aggregated value by the HPFSSMSM operator is also an HPFE.
Therefore, the proof of Theorem 2 is complete. �

Proof of Theorem 3. Since d = (h, g, t), based on Theorem 2, we obtain
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Thus, the proof of Theorem 3 is completed. �

Proof of Theorem 4. Since dj ≥ d′j holds for all j = 1, 2, . . . , n, we can gather that
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i.e.,
HPFSSMSM(k)(d1, d2, . . . , dn) ≥ HPFSSMSM(k)(d′1, d′2, . . . , d′n

)
.

Therefore, the proof of Theorem 4 is complete. �

Proof of Theorem 5. According to Theorem 3 and Theorem 4, we can obtain

HPFSSMSM(k)(d1, d2, . . . , dn) ≥ HPFSSMSM(k)(d−, d−, . . . , d−
)
= d−,

and
HPFSSMSM(k)(d1, d2, . . . , dn) ≤ HPFSSMSM(k)(d+, d+, . . . , d+

)
= d+.
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Thus, we can obtain

d− ≤ HPFSSMSM(k)(d1, d2, . . . , dn) ≤ d+.

Therefore, the proof of Theorem 5 is complete. �

Proof of Theorem 6.

Let f (k)χ =

1
k

1−

 1
Ck

n
∑

1≤i1<...<ik≤n

1−
(

k

∑
j=1

χij − 1

) 1
γ

γ

+ 1


1
γ


γ

−
(

1
k
− 1
)

1
γ

,

f (k)φ = 1−

1
k

1−

 1
Ck

n
∑

1≤i1<...<ik≤n

1−
(

k

∑
j=1

(
1− φij

)γ
− 1

) 1
γ

γ

+ 1


1
γ


γ

−
(

1
k
− 1
)

1
γ

,

f (k)τ = 1−

1
k

1−

 1
Ck

n
∑

1≤i1<...<ik≤n

1−
(

k

∑
j=1

(
1− τij

)γ
− 1

) 1
γ

γ

+ 1


1
γ


γ

−
(

1
k
− 1
)

1
γ

.

Based on Theorem 1, we have HPFSSMSM(k)(d1, d2, . . . , dn) =
(

f (k)χ, f (k)φ, f (k)τ

)
.

Based on the Lemma 1, we can obtain

f (k)χ =

1
k

1−

 1
Ck

n
∑

1≤i1<...<ik≤n

1−
(

k

∑
j=1

χij − 1

) 1
γ

γ

+ 1


1
γ


γ

−
(

1
k
− 1
)

1
γ

=

1
k

1−

 1
Ck

n
∑

1≤i1<...<ik≤n

1−
(

k

∑
j=1

χij − 1

) 1
γ

γ

+ 1


1
γ


γ

− 1
k
+ 1


1
γ

=

1
k


1−

 ∏
1≤i1<...<ik≤n

1−
(

k

∑
j=1

χij − 1

) 1
γ


γ

Ck
n

+ 1


1
γ


γ

− 1

+ 1


1
γ

≤



1−

 ∏
1≤i1<...<ik≤n

1−
(

k

∑
j=1

χij − 1

) 1
γ


γ

Ck
n

+ 1


1
γ


γ

− 1

+ 1


1
γ

= 1−

 ∏
1≤i1<...<ik≤n

1−
(

k

∑
j=1

χij − 1

) 1
γ


γ

Ck
n

+ 1


1
γ

≤ 1−

 ∏
1≤i1<...<ik≤n

1−
(

k

∑
j=1

χij − 1

) 1
γ


γ

Ck
n


1
γ
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= 1− ∏
1≤i1<...<ik≤n

1−
(

k

∑
j=1

χij − 1

) 1
γ


1

Ck
n

Then, we can take the following proof by using contradiction method. We sup-
pose that the function f (k)χ monotonically increases with the increase in k, and then,
it follows that

f (n)χ > f (n− 1)χ > . . . > f (1)χ

Since,

f (1)χ ≤ 1−
n

∏
i=1

1−
(

1

∑
j=1

χij − 1

) 1
γ


1

C1
n

= 1−
n

∏
i=1

(
1− (χi − 1)

1
γ

) 1
n

,

then f (n)χ > f (1)χ, and

f (n)χ = 1− ∏
1≤i1<...<ik≤n

1−

 k

∑
j=1

χij − 1

 1
γ


1

Ck
n

= 1− ∏
1≤i1<...<ik≤n

1−

 n

∑
j=1

χij − 1

 1
γ

 = 1−

1−

 n

∑
j=1

χij − 1

 1
γ



= 1−

1−
(

n

∑
i=1

χi − 1

) 1
γ

 =

(
n

∑
i=1

χi − 1

) 1
γ

> 1−
n

∏
i=1

(
1− (χi − 1)

1
γ

) 1
n
= f (1)χ (A1)

However, according to the Lemma 1, we have

1− ∏
1≤i1≤n

(
1−

(
χi1 − 1

) 1
γ

) 1
n
≥ 1− 1

n

n

∑
i=1

(
1− (χi − 1)

1
γ

)
= 1−

n

∑
i=1

(χi − 1)
1
γ >

(
n

∑
i=1

χi − 1

) 1
γ

. (A2)

Clearly, Equation (A1) is a contradiction to Equation (A2). Therefore, the function
f (k)χ monotonically decreases with the increase in k. Similarly, we can prove the function
f (k)φ and f (k)τ monotonically increase with the increase in k.

Then, by utilizing the score function of HPFE, we have

S
(

HPFSSMSM(k)(d1, d2, . . . , dn)
)
=

1
#h ∑

χ∈h
f (k)χ −

1
#t ∑

τ∈t
f (k)τ . (A3)

For any k ∈ [0, n− 1], we can obtain

S
(

HPFSSMSM(k+1)(d1, d2, . . . , dn)
)
− S

(
HPFSSMSM(k)(d1, d2, . . . , dn)

)
=

1
#h ∑

χ∈h
f (k + 1)χ −

1
#t ∑

τ∈t
f (k + 1)τ −

1
#h ∑

χ∈h
f (k)χ +

1
#t ∑

τ∈t
f (k)τ

=

(
1

#h ∑
χ∈h

f (k + 1)χ −
1

#h ∑
χ∈h

f (k)χ

)
+

(
1
#t ∑

τ∈t
f (k)τ −

1
#t ∑

τ∈t
f (k + 1)τ

)

=
1

#h

(
∑
χ∈h

f (k + 1)χ − ∑
χ∈h

f (k)χ

)
+

1
#t

(
∑
τ∈t

f (k)τ −∑
τ∈t

f (k + 1)τ

)

=
1

#h ∑
χ∈h

(
f (k + 1)χ − f (k)χ

)
+

1
#t ∑

χ∈h
( f (k)τ − f (k + 1)τ)
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Since the values of function f (k)χ, f (k)τ are non-negative numbers, and function
f (k)χ decreases and the function f (k)τ increases with the increase in k, therefore,

S
(

HPFSSMSM(k+1)(d1, d2, . . . , dn)
)
≤ S

(
HPFSSMSM(k)(d1, d2, . . . , dn)

)
. (A4)

According to the comparison methods between two HPFEs in Definition 3, we can
obtain HPFSSMSM(k+1)(d1, d2, . . . , dn) ≤ HPFSSMSM(k)(d1, d2, . . . , dn) for any integer
k ∈ [0, n− 1], which completes the proof of Theorem 6. �

Proof of Theorem 7. According to the operations for HPFEs, we can obtain

wij dij = ∪χij
∈hij

,φij
∈gij

,τij
∈tij

{{
1−

(
wij

(
1− χij

)γ
−
(

wij − 1
)) 1

γ

}
,

{(
wij φ

γ
ij
−
(

wij − 1
)) 1

γ

}
,
{(

wij τ
γ
ij
−
(

wij − 1
)) 1

γ

}}
,

and,

k

∏
j=1

wij dij = ∪χij
∈hij

,φij
∈gij

,τij
∈tij



(

k

∑
j=1

(
1−

(
wij

(
1− χij

)γ
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(

wij − 1
)) 1

γ

)γ

− 1

) 1
γ

,

1−
(
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j=1

(
1−

(
wij φ

γ
ij
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(

wij − 1
)) 1

γ

)γ

− 1

) 1
γ

,

1−
(

k

∑
j=1

(
1−

(
wij τ

γ
ij
−
(

wij − 1
)) 1

γ

)γ

− 1

) 1
γ


.

Further,

∑
1≤i1<...<ik≤n

k

∏
j=1

wij dij = ∪χij
∈hij

,φij
∈gij

,τij
∈tij


1−

 ∑
1≤i1<...<ik≤n

1−
(

k
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(
wij

(
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)γ
−
(
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(
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(
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(
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γ
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(

wij − 1
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(
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(
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(
wij τ

γ
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(

wij − 1
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γ
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,

and,

∑
1≤i1<...<ik≤n

k
∏
j=1

wij dij

Ck
n

= ∪χij
∈hij

,φij
∈gij

,τij
∈tij
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 1
Ck
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1≤i1<...<ik≤n
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 1
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n

∑
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Therefore,
∑

1≤i1<...<ik≤n

k
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wij dij

Ck
n


1/k

= ∪χij
∈hij

,φij
∈gij

,τij
∈tij





1
k

1−

 1
Ck

n
∑

1≤i1<...<ik≤n

1−
(

k

∑
j=1

(
1−

(
wij

(
1− χij

)γ
−
(

wij − 1
)) 1

γ

)γ

− 1

) 1
γ


γ

+ 1


1
γ


γ

−
(

1
k
− 1
)

1
γ

,

1−

1
k

1−

 1
Ck

n
∑

1≤i1<...<ik≤n

1−
(

k

∑
j=1

(
1−

(
wij φ

γ
ij
−
(

wij − 1
)) 1

γ

)γ

− 1

) 1
γ

γ

+ 1


1
γ


γ

−
(

1
k
− 1
)

1
γ

1−

1
k

1−

 1
Ck

n
∑

1≤i1<...<ik≤n

1−
(

k

∑
j=1

(
1−

(
wij τ

γ
ij
−
(

wij − 1
)) 1

γ

)γ

− 1

) 1
γ

γ

+ 1


1
γ


γ

−
(

1
k
− 1
)

1
γ




Therefore, the proof of Theorem 7 is completed. �

[Comprehensive matrix of subsection 5.1]

d′11 = {{0.0884, 0.1109}, {0.0181}, {0.5498, 0.6442, 0.5640, 0.6638, 0.5695, 0.6715, 0.5848, 0.6929}}
d′12 = {{0.0854}, {0.2273,0.2378}, {0.4204,0.4889,0.4484,0.5271}};

d′13 = {{0.1315,0.1676,0.1660,0.1993}, {0.0286,0.0290,0.0501,0.0513,0.0295,0.0299,0.0528,0.0541}, {0.5909}}
d′14 = {{0.0733,0.0820,0.0796,0.0883}, {0.0587}, {0.7012,0.7119,0.7311,0.7427,0.7371,0.7489,0.7702,0.7830}}

d′21 = {{0.2518,0.2667}, {0.0706}, {0.6154,0.6239}};
d′22 = {{0.2862,0.2949,0.3130,0.3210,0.3324,0.3400,0.3558,0.3629}, {0.0312}, {0.3429,0.3587}}

d′23 = {{0.2193, 0.2439, 0.2348, 0.2584, 0.2629, 0.2848, 0.2767, 0.2979}, {0.0606}, {0.3982, 0.4071}};
d′24 = {{0.1398}, {0.0364}, {0.7156, 0.7266, 0.7634, 0.7768}}

d′31 = {{0.1651}, {0.0121, 0.0222}, {0.7284, 0.7482}};
d′32 = {{0.4031, 0.4223, 0.4075, 0.4264}, {0.0367}, {0.4558, 0.4632}};

d′33 = {{0.1686, 0.1932, 0.1755, 0.1998, 0.1843, 0.2081, 0.1910, 0.2144}, {0.0692, 0.0900}, {0.6699}}
d′34 = {{0.2142, 0.2331, 0.2170, 0.2357}, {0.0824, 0.0884}, {0.6037}}
d′41 = {{0.0653, 0.0741, 0.0741, 0.0827}, {0.0550}, {0.6949, 0.7068}};

d′42 = {{0.3421, 0.3449}, {0.0414}, {0.5404}};
d′43 = {{0.1458}, {0.0357}, {0.6616, 0.7337}};

d′44 = {{0.0810, 0.1018, 0.0891, 0.1096, 0.1034, 0.1232, 0.1111, 0.1306}, {0.0227}, {0.6837, 0.7178}}�
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[Comprehensive matrix of subsection 5.2]

d′11 = {{0.0833, 0.0909}, {0.1831}, {0.6674, 0.6989, 0.7435, 0.7627, 0.6795, 0.7089, 0.7508, 0.7690}}

d′12 = {{0.0562}, {0.2857, 0.2931}, {0.5385, 0.6388, 0.5459, 0.6434}};

d′13 = {{0.0646, 0.0694, 0.0653, 0.0702},

{0.1132, 0.1306, 0.1156, 0.1330, 0.1345, 0.1511, 0.1368, 0.1533}, {0.6471}};

d′14 = {{0.0691, 0.0818, 0.0719, 0.0857}, {0.0775},

{0.7036, 0.7554, 0.7470, 0.7857, 0.7123, 0.7613, 0.7533, 0.7903}};

d′21 = {{0.0691, 0.0818, 0.0719, 0.0857}, {0.0775},

{0.7063, 0.7554, 0.7470, 0.7857, 0.7123, 0.7613, 0.7533, 0.7903}};

d′22 = {{0.2273, 0.2604}, {0.0931}, {0.6170, 0.6305}};

d′23 = {{0.1052, 0.1071, 0.1059, 0.1079, 0.2916, 0.3072, 0.2874, 0.3137}, {0.0706}, {0.4362, 0.4955}}

d′24 = {{0.1935, 0.2143, 0.1981, 0.2198, 0.2446, 0.2787, 0.2519, 0.2881}, {0.1187}, {0.5164, 0.5262}}

d′31 = {{0.1935, 0.2143, 0.1981, 0.2198, 0.2446, 0.2787, 0.2519, 0.2881}, {0.1187}, {0.5164, 0.5262}};

d′32 = {{0.1152}, {0.0370}, {0.7457, 0.7671, 0.7704, 0.7880,}};

d′33 = {{0.0546}, {0.248, 0.0396}, {0.7505, 0.8238}};

d′34 = {{0.3329, 0.3474, 0.3569, 0.3736}, {0.0582}, {0.4747, 0.5024}};

d′41 = {{0.3329, 0.3474, 0.3569, 0.3736}, {0.0582}, {0.4747, 0.5024}};

d′42 = {{0.1604, 0.1851, 0.1634, 0.1891, 0.1770, 0.2076, 0.1806, 0.2127}, {0.1190, 0.1241}, {0.6735}}

d′43 = {{0.1115, 0.1226, 0.1430, 0.1541}, {0.0875, 0.0957}, {0.6570}};

d′44 = {{0.0593, 0.733, 0.0618, 0.0771}, {0.1447}, {0.7120, 0.7369}}.
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