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Abstract

In the paper we show that all combinatorial triangle-free configurations
for v ≤ 18 are geometrically realizable. We also show that there is a unique
smallest astral (183) triangle-free configuration and its Levi graph is the
generalized Petersen graph G(18, 5). In addition, we present geometric
realizations of the unique flag transitive triangle-free configuration (203)
and the unique point transitive triangle-free configuration (213).

1 Introduction

Close to a century ago, Steinitz [25, p. 490] stated that it appears that all
combinatorial configurations (v3) with v > 10 can be realized by geometric
configurations of points and straight lines, although this question has not been
decided so far. Steinitz’s expectation has been contradicted a few years ago by
an example with v = 16 (see [8], as well as [2]), which can be easily modified
to yield examples for all v ≥ 16. However, a modified version of this question,
which will be formulated below after the necessary definitions are presented, is
still open.

There exist methods (see for example [4, 26]) and algorithms (such as Vega,
see [17, 19]), that can be used to decide whether a given combinatorial config-
uration can be realized geometrically. Since the number of combinatorial con-
figurations grows very fast with v (see below, Table 1, adapted from [1]), it
is not feasible to check the realizability of all configurations (v3) with a given
reasonably large v. It is therefore of some interest to investigate the realizability
of certain special configurations, endowed with unusual properties. One of the
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v a b c d

7 1 1 0 0
8 1 1 0 0
9 3 3 0 0

10 10 10 0 0
11 31 25 0 0
12 229 95 0 0
13 2 036 365 0 0
14 21 399 1 432 0 0
15 245 342 5 799 1 1
16 3 004 881 24 092 0 0
17 38 904 499 102 413 1 0
18 530 452 205 445 363 4 0
19 7 640 941 062 1 991 320 14 0
20 ? ? 162 1
21 ? ? 4 713 1

Table 1: The numbers of various combinatorial (v3) configurations (from [1]; the
entries for v = 19 in columns a and b were obtained later by the same computer
program). Column a contains the numbers of combinatorial (v3) configurations,
column b the numbers of selfpolar (v3) configurations, column c the numbers of
triangle-free configurations, and column d the numbers of triangle free “point”
transitive configurations.

reasons is that very frequently configurations (or other mathematical entities)
that are special in some respect are also special in other ways as well.

We chose to investigate combinatorial configurations (v3) which are excep-
tional in that they contain no triangles. (A triangle in a configuration is a triplet
of points, not on one line of the configuration, such that each pair does lie on
a line of the configuration.) Relying on data from [1], we shall investigate the
triangle-free combinatorial configurations (v3) with v ≤ 18 on their realizabil-
ity as geometric configurations, and in particular, on the possibilities of finding
symmetric realizations. The same applies to the triangle-free configuration (203)
that is flag transitive and to the triangle-free configuration (213) that is point
transitive; by the data in Table 1 these two configurations are unique. As we
shall see, the expectations of finding interesting properties will be fulfilled.

The paper is organized as follows. Section 2 describes the combinatorial
prerequisites, Section 3 the geometric ones. Section 4 presents the results of a
detailed examination of the eight configurations under consideration. The last
section gives some additional information, as well as several open problems.

2 Combinatorial configurations

In this paper by combinatorial configuration or more specifically combinato-
rial (v3) configuration C we mean an incidence structure of v symbols called
“points” and v symbols called “lines”, such that three “lines” are incident with
each “point”, three “points” with each “line”, and two “lines” meet in at most
one “point”. No geometric significance is attached to the terms “point” and
“line”. It is often convenient to identify the “lines” of a combinatorial (v3) con-
figuration with the triplet of “points” incident with it. When there is no danger
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of confusion, we shall dispense with the quotation marks.
The known numbers of different (that is, non-isomorphic) combinatorial (v3)

configurations are shown in Table 1, together with the available information
about the triangle-free ones among them. While the entries for v ≤ 11 were
determined already in the nineteenth century, the other entries are very recent.
(Gropp [10] for v ≤ 14, [1] for the other values). The numbers in the last two
columns show how special are the triangle-free configurations.

Combinatorial configurations are closely related to graphs. A Levi graph
L(C) (or incidence graph) of a (v3) configuration C (or of any incidence structure
with points and lines) is a bipartite graph with black vertices representing the
points, white vertices representing the lines and with an edge joining two vertices
if and only if the corresponding point and line are incident. Combinatorial
configuration can be characterized by their Levi graphs in the following way.

Proposition 1. An incidence structure C is a (v3) configuration if and only if
its Levi graph is trivalent and has girth (the length of the shortest cycle) at least
6.

For the proof of the Proposition and more about the relation between config-
urations and graphs, see for example [5]. The term Levi graph was introduced
in this paper; the concept seems to have originated in the little-known work [15]
by F. W. Levi who was also the author of the first book on configurations [14].

A cycle of length 2d in the Levi graph L(C) corresponds to a d-gon in the
combinatorial configuration C. In particular a hexagon in L(C) corresponds to
a triangle in C. A configuration C is triangle-free if and only if its Levi graph
has girth at least 8.

The primary purpose of this paper is to provide data on the triangle-free
combinatorial configurations (v3) with v ≤ 18. These previously unpublished
data were obtained by [1] in the course of calculations for the tables in that
paper. They are presented in Section 4, in a somewhat modified form, together
with the data on the configurations (203) and (213) which we consider.

A configuration C is said to be k-connected if its Levi graph L(C) is k-
connected. This is equivalent to saying that the deletion of any fewer than k
elements (points and/or lines) from C does not disconnect C. All combinatorial
(v3) configurations with v ≤ 13 are 3-connected, and so are most of the configu-
rations enumerated in Table 1. In particular, all the triangle-free configurations
listed in Section 4 are 3-connected.

The generalized Petersen graph G(n, r), introduced by Watkins [28] is a
graph with vertex set

V (G(n, r)) = {u0, u1, . . . , un−1, v0, v1, . . . , vn−1}

and edge set

E(G(n, r)) = {uiui+1, uivi, vivi+r : i = 0, . . . , n − 1}.

Since G(n, r) is isomorphic to G(n, n − r) and since G(n, n/2) is not a simple
graph, without loss of generality we shall assume that 0 < r < n/2. The graphs
G(n, r) constitute a standard family of graphs which is a generalization of the
renowned Petersen graph G(5, 2).

It is well-known, see [9], that the generalized Petersen graph G(n, r) is:
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(i) vertex transitive if and only if either n = 10 and r = 2, or r2 ≡ ±1
(mod n);

(ii) a Cayley graph if and only if r2 ≡ 1 (mod n);

(iii) flag-transitive only in the following seven cases: (n, r) = (4, 1) – the cube,
(5, 2) – the Petersen graph , (8, 3) – the Moebius-Kantor graph, (10, 2) –
the dodecahedron, (10, 3) – the Desargues graph, (12, 5) – the Levi graph
of one of the selfpolar (123) configurations, and (24, 5).

For the last, see in particular Coxeter [6].
The family of generalized Petersen graphs G(n, r) contains some other very

important graphs, such as the n-prism G(n, 1), the Dürer graph G(6, 2), etc.
We shall show that the graph G(18, 5) also deserves to be considered as special.

3 Geometric configurations

A geometric (v3) configuration is a set of v points and v (straight) lines in the
Euclidean plane, such that precisely three of the lines pass through each of the
points, and precisely three of the points lie on each of the lines. It is clear that
each geometric configuration determines a combinatorial configuration, while
the reverse is not true. For example, it is well known that the combinatorial
Fano configuration, the only combinatorial (73) configuration (projective plane
of order 2) cannot be realized (with points and lines) in the Euclidean plane. It
is also known that the unique combinatorial (83) configuration is not realizable.
However, with the exception of a single (103) configuration, all 3-connected (v3)
with v ≥ 9 for which the realizability has been decided, can be geometrically
realized in the plane. Indeed, we make the following Conjecture.

Conjecture 1. All 3-connected (v3) configurations with v > 10 are geometri-
cally realizable by points and straight lines.

We note that [26] showed the validity of this conjecture for v = 11 and 12. In
fact, they established the much stronger result that all such configurations can
be realized by points and lines in the rational plane. Probably all configurations
mentioned in the conjecture can be realized even in the rational plane.

As a small step towards the verification of our conjecture we shall show that
all six triangle-free (v3) configurations with v ≤ 18 are realizable as are the
unique (203) and (213) considered here.

We note that geometric realizability of a (v3) configuration in the (real or
rational) Euclidean plane is equivalent to its realizability in the corresponding
projective plane. We shall work exclusively in the real Euclidean plane, since
this allows us to look for geometric realizations with isometric symmetries. Note
that with the term symmetry, we refer exclusively to isometric symmetries of
geometric configurations, while we use automorphism when we talk about com-
binatorial configurations.

Symmetries of a geometric configuration are reflected in the automorphisms
of the corresponding combinatorial configuration. Loss of symmetry may occur
when passing from a combinatorial to a geometric configuration – if the latter
exists at all.
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Symmetries make the configurations not only more appealing visually, but
also help in drawing them and understanding their structure. In particular, we
shall be interested in astral configurations, introduced in [11].

A (v3) configuration is said to be astral provided its points form two orbits
under its groups of (isometric) symmetries, and the lines form two orbits as well.
Clearly, no (v3) configuration can have a single orbit of points or of lines under
its symmetries. If both the points and the lines of a (v3) configuration form at
most three orbits, the configuration is called stellar.

4 Small triangle-free combinatorial (v3) configu-

rations

We come now to the main topic of our paper, the triangle-free configurations
with relatively few points. There are six such configurations – one (153) config-
uration, one (173) configuration, and four (183) configurations – which we shall
consider in turn. We also consider the unique flag transitive triangle-free (203)
configuration and the unique point transitive triangle-free (213) configuration.
We find that each of them has some interesting features. Since the triangle-
free (153) configuration and the triangle-free (173) configuration are the only
combinatorial triangle-free configurations with the given number of points, and
since the property of being triangle-free is (combinatorially and geometrically)
selfdual, these configurations are necessarily combinatorially selfpolar. Consid-
ering four triangle-free (183) configurations, two of them are selfpolar. All eight
configurations can be realized geometrically, as shown in Figures 2, 4, 6, 8, 10,
12, 14, 15, and 17.

4.1 The triangle-free configuration (153)

The selfpolar triangle-free configuration (153) is often called the Cremona-
Richmond configuration. It is highly symmetric: its automorphism group is
S6, the symmetric group of degree 6, and is transitive on its flags. Its Levi
graph (see Figure 1) is the remarkable and well-known Tutte 8-cage. There is
a 1-parameter family of different stellar realizations. One stellar realization is
shown in Figure 2. It can be proved that there is no astral realization of this
configuration. The Cremona-Richmond configuration (153) has lines:

1 2 3 5 4 7 6 11 10 9 8 15 14 13 12

1 1 1 2 2 3 3 4 4 5 5 6 6 7 7
2 4 6 8 10 12 14 8 10 9 11 8 10 9 11
3 5 7 9 11 13 15 12 14 13 15 15 13 14 12

It is flag transitive and combinatorially selfpolar (that is, has a selfduality of
order 2). This selfpolarity is given by the correspondence 1 ↔ 1 , 2 ↔ 2 , 3 ↔ 3 ,
. . . None of the other (v3), v ≤ 18, configurations considered here has a point
transitive group of automorphisms.

For an extensive note about the history of the Cremona-Richmond configu-
ration see the last section.
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Figure 1: The Levi graph of the
triangle-free combinatorially selfpo-
lar Cremona-Richmond (153) con-
figuration. This graph is the Tutte
8-cage.

Figure 2: A stellar realization of
the Cremona-Richmond (153) con-
figuration.

4.2 The triangle-free configuration (173)

The triangle-free configuration (173) has lines:

16 5 11 14 6 17 8 15 9 4 1 10 2 7 12 3 13

1 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 10
2 4 6 8 10 12 14 8 10 9 11 9 14 11 15 16 13
3 5 7 9 11 13 15 12 14 15 16 13 16 12 17 17 17

It is combinatorially selfpolar by the correspondence 1 ↔ 1 , 2 ↔ 2 , 3 ↔ 3 , . . .
Its group of automorphisms is the dihedral group D6. The generators a and

b satisfying the property a2 = b2 = (a b)6 = e (e is the identity) are

a = (2, 4)(3, 5)(8, 10)(9, 14)(11, 12)(13, 16)

b = (1, 3)(4, 12)(5, 13)(6, 15)(7, 14)(10, 11)(16, 17)

It has four point orbits, of three different sizes:

{1, 3, 13, 17, 16, 5}, {2, 12, 10, 8, 11, 4}, {7, 14, 9}, {6, 15}.

It has also four line orbits, with the same sets of lines. Its Levi graph is shown
in Figure 3, and a geometric realizations is presented in Figure 4.

4.3 The triangle-free configuration 18-A

The triangle-free configuration 18-A has lines

5 1 4 9 13 11 16 6 7 2 3 8 12 10 14 17 18 15

1 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 10 12
2 4 6 8 10 12 14 8 10 9 11 9 11 13 14 15 17 16
3 5 7 9 11 13 15 12 14 13 16 17 15 18 16 18 18 17
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Figure 3: Levi graph of the triangle-free combinatorially selfpolar configuration
(173).

Figure 4: A geometric realization of the triangle-free configuration (173).
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Figure 5: The Levi graph of the configuration 18-A.

It is combinatorially selfpolar by the correspondence 1 ↔ 1 , 2 ↔ 2 , 3 ↔ 3 ,
. . . It has seven point orbits, of three different sizes:

{1, 11, 12, 18}, {2, 8}, {3, 4, 10, 15}, {5, 6, 13, 17}, {7, 16}, {9}, {14}.

It has also seven line orbits, with the same sets of lines. Its automorphisms are
the permutations: e (identity), a, b, c, with a2 = b2 = c2 = e, ab = ba = c, which
form the noncyclic group of four elements (dihedral D2, Klein’s ”Vierergruppe”):

a = (1, 18)(2, 8)(3, 15)(4, 10)(5, 17)(6, 13)(11, 12),

b = (1, 11)(3, 10)(4, 15)(5, 6)(7, 16)(12, 18)(13, 17).

The Levi graph of the configuration 18-A is shown in Figure 5, its geometric
realization in Figure 6.

4.4 The triangle-free configuration 18-B

The triangle-free configuration 18-B has lines:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 11 11
2 4 6 8 10 12 14 8 10 9 16 9 10 13 14 16 12 15
3 5 7 9 11 13 15 12 14 13 17 15 16 18 17 18 17 18

It has two point orbits:

{1, 2, 4, 5, 7, 8, 9, 11, 14, 15, 17, 18}, {3, 6, 10, 12, 13, 16},
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Figure 6: A geometric realization of the 18-A configuration.

and three line orbits:

{1 , 3 , 5 , 7 , 8 , 9 , 10 , 11 , 12 , 14 , 16 , 17}, {2 , 4 , 15 , 18}, {6 , 13}.

which shows that it is not selfdual. This is the smallest known configuration
in which the number of line orbits is different from the number of point orbits.
The automorphism group is D12. The generators a and b satisfying a2 = b2 =
(a b)12 = e are:

a = (2, 7)(3, 6)(4, 5)(8, 17)(9, 14)(10, 13)(11, 18)(12, 16),

b = (1, 2)(4, 9)(5, 8)(6, 10)(7, 11)(12, 13)(14, 15)(17, 18).

The Levi graph of configuration 18-B in shown in Figure 7, its geometric
realization in Figure 8. It is of some interest that 18-B is a “double cover” of
the Pappus configuration, which results when the following identifications are
performed:

1 = 15, 2 = 14, 4 = 11, 5 = 18, 7 = 9, 8 = 17; 3 = 16, 6 = 12, 10 = 13.

This “double cover” is shown in Figure 9, where the identified points have been
separated, and the lines have been replaced by pseudolines for better intelli-
gibility. It should be pointed out, that our “double cover” is not a covering
projection in the usual sense of algebraic topology. Namely, it fails to be a local
isomorphism at three singular points.
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Figure 7: The Levi graph of the configurations 18-B (plain font) and 18-C (italic)

Figure 8: A geometric realization of the 18-B configuration.
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Figure 9: A schematic diagram (pseudoline configuration) of the triangle-free
18-B configuration as a “double cover” of the Pappus configuration.

11



Figure 10: A geometric realization of the 18-C configuration.

4.5 The triangle-free configuration 18-C

The triangle-free configuration 18-C is dual to configuration 18-B. To underscore
this, its points are denoted by italic, and lines by plain characters. It has lines

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 1 1 2 2 3 3 4 4 5 5 6 6 7 7 11 11 14
2 4 6 8 10 12 14 8 10 9 17 8 10 9 12 13 15 16
3 5 7 9 11 13 15 16 12 13 18 17 14 15 18 16 17 18

The configuration 18-C has three point orbits:

{1 , 3 , 5 , 7 , 8 , 9 , 10 , 11 , 12 , 14 , 16 , 17}, {2 , 4 , 15 , 18}, {6 , 13},

and two line orbits:

{1, 2, 4, 5, 7, 8, 9, 11, 14, 15, 17, 18}, {3, 6, 10, 12, 13, 16}.

The Levi graph of configuration 18-C in shown in Figure 7, its geometric real-
ization in Figure 10.

4.6 The triangle-free configuration 18-D

The triangle-free configuration 18-D has lines

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
5 6 7 8 9 1 2 3 4 18 10 11 12 13 14 15 16 17
10 11 12 13 14 15 16 17 18 16 17 18 10 11 12 13 14 15

This configuration has two point orbits under its automorphisms, given by the
permutations: (1, 2, 3, 4, 5, 6, 7, 8, 9) and (10, 11, 12, 13, 14, 15, 16, 17, 18), and the
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Figure 11: The Levi graph of the
triangle-free combinatorially selfpo-
lar configuration 18-D. This graph
is the generalized Petersen graph
G(18, 5).

Figure 12: A geometrically selfpolar
astral realization of the triangle-free
configuration 18-D.

same orbits of lines. The automorphism group of order 18 given by the genera-
tors

a = (2, 9)(3, 8)(4, 7)(5, 6)(10, 15)(11, 14)(12, 13)(16, 18),

b = (1, 2)(3, 9)(4, 8)(5, 7)(10, 16)(11, 15)(12, 14)(17, 18)

satisfying a2 = b2 = (a b)9 = e is the dihedral group D9.
The Levi graph of 18-D is shown in Figure 11. It is in fact a generalized

Petersen graph G(18, 5), which therefore is the smallest generalized Petersen
graph that represents a triangle-free configuration (v3). A geometric realization
of 18-D as an astral configuration is given in Figure 12. The symmetry group
of this realization is the cyclic group C9 of order 9.

We may summarize the previous discussion in a form of a theorem.

Theorem 2. There exists a unique smallest astral triangle-free configuration
(183) and its Levi graph is the generalized Petersen graph G(18, 5).

Proof. Configuration 18-D satisfies the conditions of the Theorem. Triangle free
configurations 18-A, 18-B, and 18-C lack the symmetries, while (153) and (173)
configurations cannot be astral since 15 and 17 are odd.

4.7 The flag transitive triangle-free configuration (203)

According to [1] there are altogether 14 triangle-free (193) configurations and
162 triangle-free (203) configurations. None of triangle-free (193) configurations
is point or line transitive, but there is an unique triangle-free (203) configuration
which is flag transitive (no other triangle-free (203) configuration is either point
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Figure 13: The Levi graph of the flag transitive triangle-free cconfiguration
(203). It is the Kronecker double cover of the dodecahedron graph G(10, 2).

or line transitive). Its lines are:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5 4 3 2 1 2 1 8 7 6 5 4 3 2 1
7 6 5 4 3 10 9 10 9 8 12 11 14 13 12
15 14 13 12 11 20 19 18 17 16 16 15 20 19 18

16 17 18 19 20

10 9 8 7 6
11 16 15 14 13
17 20 19 18 17

Its Levi graph is the Kronecker double cover of the dodecahedron graph G(10, 2),
see Figure 13. The configuration is combinatorially selfpolar by the correspon-
dence 1 ↔ 1 , 2 ↔ 2 , 3 ↔ 3 , . . . Its automorphism group of order 240 generated
by

a = (2, 7)(4, 17)(5, 20)(9, 12)(10, 15)(13, 14)(18, 19),

b = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)(11, 12, 13, 14, 15, 16, 17, 18, 19, 20)

is S5 × C2.
Its (cyclic) astral realization is shown in Figure 14. This configuration also

admits a dihedral astral realization, i.e. an astral realiztion with dihedral group
of symmetries. In fact, there exists an one-parametric family of dihedral astral
realizations. Two realizations from this family are shown in Figure 15.
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Figure 14: A geometrically selfpolar astral realization of the flag transitive
triangle-free configuration (203).

Figure 15: Two dihedral astral realizations of the flag transitive triangle-free
configuration (203).
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4.8 The point transitive triangle-free configuration (213)

Among 4 713 triangle-free (213) configurations there exists an unique point tran-
sitive configuration, see [1]. Its lines are:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 4 6 8 2 12 7 15 11 5 14 9 3 2
2 4 6 8 10 10 13 13 16 16 18 19 20 17 6
3 5 7 9 11 12 14 15 17 18 19 20 21 21 18

16 17 18 19 20 21

1 5 8 4 3 7
9 12 17 14 11 10
15 21 19 16 13 20

Its Levi graph is shown in Figure 16. While this configuration is point transitive,
it is not line transitive; the two orbits are

{1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14}, {15 , 16 , 17 , 18 , 19 , 20 , 21}.

Its automorphism group of order 42 is generated by

a = (1, 13, 21, 10, 19, 6, 16)(2, 14, 9, 11, 5, 7, 17)(3, 12, 20, 8, 18, 4, 15),

b = (1, 2, 3)(4, 10, 17)(5, 12, 21)(6, 11, 15)(7, 8, 16)(9, 18, 13)(14, 20, 19),

c = (1, 19)(2, 14)(3, 20)(4, 18)(6, 16)(7, 11)(8, 15)(9, 17)(10, 13).

It turns out that this group is the automorphism group of the dihedral group
D7.

Of course, it can not be realized as an astral configuration, but it admits a
stellar realization. It is shown in Figure 17.

5 Additional data and comments

It is well known that drawings of configurations can be misleading regarding the
existence; this can happen either inadvertently (as in the well-known case of the
ten configurations (103) by Kantor [12]), or intentionally (as in [8]). Hence, the
diagrams in Section 4 by themselves do not prove the existence of the geometric
configurations in question. Therefore, to show their realizability, we give the
coordinates of points for each of them. These values were obtained by the
Vega program using the algorithm described in [4].

Coordinates of points of the triangle-free (173) configuration:

i 1 2 3 4 5 6 7 8 9
xi 1 5

4

1

2

1

4

1

2
− 15

47
− 65

59
− 5

4
− 25

118

yi 0 − 433

1000

433

500
− 1299

1000
− 433

500

433

1175

866

1475

433

1000

433

5900

i 10 11 12 13 14 15 16 17
xi − 1

4

13

8
− 13

8
− 1

2
− 25

118
− 5

4
− 1

2
−1

yi
1299

1000
− 433

500

433

500

433

500

1299

1180

433

300
− 433

500
0

Coordinates of points of the triangle-free configuration 18-A:
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Figure 16: The Levi graph of the unique point transitive triangle-free config-
uration (213). The picture above is from [1] and was obtained by subdividing
the Heawood graph (Levi graph of the Fano configuration) and connecting each
set of 3 “collinear” vertices with valency 2 to a new vertex. The vertices of the
Heawood graph correspond to the lines of the larger line orbit, the subdivision
points correspond to the points, while the “new vertices” correspond to the lines
of the smaller line orbit.

Figure 17: A stellar realization of the unique point transitive triangle-free con-
figuration (213).
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i 1 2 3 4

xi 1 236458621907666150781840+48633027845686079003753x

114931140149531570038800+136064638041848583497585x
− 761

655

3

5

yi 0 1973963333642016495120−1420146210813374013671x

22986228029906314007760+27212927608369716699517x
− 23

131
− 4

5

i 5 6 7 8 9
xi

124010+124591x

37150−27020x

3

5
− 9

10
− 297

85

2946000−6653199x

13520800+18088230x

yi
86860+151611x

18575−13510x

4

5

19

5
− 31

17

6347680+10418226x

6760400+9044115x

i 10 11 12 13 14 15 16 17 18
xi − 81

35

3−x

5+5x
− 1

5
− 9

10
− 11

10
− 1

5
− 8437

7130

17

10
− 9

10

yi
2

5

4+5x

5+5x
−1 − 2

5
− 1

10
1 − 6148

3565

2

5

2

5

where x is a root of the polynomial

148356340695120+ 340383889522429x+ 168711078656205x2.

Note that this polynomial has two different roots, which give two different re-
alizations. This is also true for the other two cases below.

Approximate coordinates of this realization are (taking x = −1.38064):

i 1 2 3 4 5 6 7 8 9
xi 1. −2.3218 −1.1618 0.6 −0.6448 0.6 −0.9 −3.4941 −1.0593

yi 0. −0.2698 −0.1758 −0.8 −3.2895 0.8 3.8 −1.8235 1.4034

i 9 10 12 13 14 15 16 17 18
xi −2.3143 −2.3017 −0.2 −0.9 −1.1 −0.2 −1.1833 1.7 −0.9

yi 0.4 1.5254 −1. −0.4 −0.1 1. −1.7245 0.4 0.4

Coordinates of vertices of the triangle-free configuration 18-B:

i 1 2 3 4 5 6 7 8
xi

79

40
1 313

235
1 2

5
− 7

5
− 1

2

12675−348134x

−54060+138290x

yi
91

40
1 337

235
0 − 7

5

2

5

9

10

88725−135212x

108120−276580x

i 9 10 11 13 14 15 16

xi − 1474

2975

9−99x

189−103x

−45+2471x

225+2465x
− 6

5
2 6

5

2−15x

5+5x

yi
4657

5950

990−22x

−945+515x

−3555+26261x

2250+24650x

5

2

11

10

3

2

−14+7x

10+10x

i 17 18 12

xi −3 1

5

45725101459368951645+255306412168693568577x

−4488673325035103100+113405009755911353090x

yi
7

10
− 7

10

−56409224487583483215+237466049852213264047x

−8977346650070206200+226810019511822706180x

where x is a root of the polynomial

−13479623775− 957906403010x+ 2628530183883x2.

Approximate values (taking x = −0.0135669) are:

i 1 2 3 4 5 6 7 8 9
xi 1.975 1. 1.3319 1. 0.4 −1.4 −0.5 −0.3110 −0.4955

yi 2.275 1. 1.4340 0. −1.4 0.4 0.9 0.8095 0.7827

i 9 10 12 13 14 15 16 17 18
xi 0.0543 −0.4099 −7.0118 −1.2 2. 1.2 0.4468 −3. 0.2

yi −1.0402 −2.0418 4.9468 2.5 1.1 1.5 −1.4289 0.7 −0.7
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Coordinates of points of the triangle-free configuration 18-C:

i 1 2 3 4 5 6
xi

3

2
0 3

4
− 29

170

1

2

−127758+76424x

−124905+14580x

yi 0 0 0 71

425

1

10

−97071−50180x

−249810+29160x

i 7 8 9 10 11
xi

−21541448038524141−101354635205108530x

−239476524018894084+338566522189666178x
− 4

5
− 2

5
− 4

5
− 2

5

yi
−65960848220166003+255765499569786740x

−239476524018894084+338566522189666178x

13

10

13

20
− 13

10
− 13

20

i 12 13 14 15 16 17 18
xi

1065949

21301980
− 283

1000

−2789+2332x

−7460+1320x

−2+x

5+5x
− 3

10

1

5

4

5

yi
9544093

21301980

1157

2000

793−976x

−3730+660x

−13+16x

20+20x

2

5

4

5
− 3

5

where x is a root of the polynomial

−374743077758166+ 284285457716057x+ 40064761902780x2.

Approximate values (taking x = −8.23189) are:

i 1 2 3 4 5 6 7 8 9
xi 1.5 0. 0.75 −0.1706 0.5 3.0902 −0.2686 −0.8 −0.4

yi 0. 0. 0. 0.1671 0.1 −0.6451 0.7175 1.3 0.65

i 9 10 12 13 14 15 16 17 18
xi −0.8 −0.4 −0.0500 −0.283 1.1997 0.2830 −0.3 0.2 0.8

yi −1.3 −0.65 0.4480 0.5785 −0.9634 1.0005 0.4 0.8 −0.6

As for the configuration 18-D, a simpler description is possible due to its high
degree of symmetry. The outer nine vertices are those of a regular nonagon,
as are the inner nine. The lines passing through pairs of outer vertices are
determined by the sides of a regular {9/4}-gon, those passing through two of
the inner vertices by the sides of a regular {9/2}-gon. Each inner vertex is
situated on one of the former lines and divides the side of the {9/4}-gon in ratio
1 : 2.637 . . . .

Unlike other configurations mentioned in the paper, the smallest triangle-free
(v3) configuration, the Cremona-Richmond configuration, has a long history.

Although the name Cremona-Richmond configuration for the smallest tri-
angle-free configuration is used by some writers, there seems to be no easily
available explanation for the name. As we were curious, we investigated and
here is what we found.

The beginnings of the history of this configuration are somewhat opaque.
The first mentions of objects that appear related to the configuration are in the
plethora of writings about cubic surfaces that were fashionable in the second half
of the nineteenth century. It seems that the set of people who thoroughly under-
stand these papers and books is today very small; it certainly does not include
the authors of the present note. Another complication in tracing the history is
that the papers in question appeared well before the concept of configurations
was formulated by Reye [20] in 1876.

In connection with studies of the families of straight lines on cubic surfaces, it
was noted by Schläfli [22, p. 117] in 1858 that there exist such surfaces on which
it is possible to find families of 15 lines and 15 special tangent planes with the
correct number of mutual incidences. A somewhat more accessible account of
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this is in [23], see in particular p. 197. Cremona [7] seems to have been the first to
give an explicit list (on pp. 111–112) of the incidences of these lines and planes.
From our perspective, with the concept of configuration available, this can be
interpreted in two ways. On the one hand, from the lines and planes in question,
by intersection with a suitable plane, one can obtain our configuration (153) of
points and lines. On the other hand, it is possible to interpret Cremona’s list as
a combinatorial configuration. Coming from a somewhat different point of view,
the Cremona-Richmond configuration was considered by Martinetti [16], who
stressed that it is triangle-free. He also studied the triangle-free configurations
(n3) for 16 ≤ n ≤ 18; his enumeration is consistent with the one in [1]. However,
although Martinetti’s presentation is couched in geometric terminology (points,
lines, polygons, etc.), his treatment is purely combinatorial. It is appropriate
to recall that this was before the discovery by Schroeter [24] that one of the
ten combinatorial configurations (103) cannot be geometrically realized; hence
Martinetti may possibly have thought that the establishment of a combinatorial
configuration implies the existence of a configuration of real points and lines.
We guess that his name is not attached to the configuration for two reasons.
First, the paper [16] seems to have been largely forgotten; it is not mentioned
in the survey [25], which is the basic reference for configurations. Second, as
mentioned in the report [13] on [16], some of Martinetti’s claims are incorrect.
In the following years, the next mention and description of the triangle-free
geometric configuration (153) as consisting of points and lines appears in the
1900 paper [21] by Richmond (his Theorem on page 128). This seems to have
earned him the inclusion of is name in the designation of the configuration.

Visconti [27] in 1916 found that the configuration can be presented as a self-
inscribed/circumscribed polygon (with cycle of vertices such as (1, 4, 8, 15, 5, 13,
12, 11, 2, 9, 7, 6, 10, 14, 3) in the notation of our Figure 2), but does not admit a
presentation as three pentagons inscribed cyclically into each other. She also
discovered the astral character of the configuration we denoted 18-D, albeit only
in the combinatorial version of the configuration.

None of these works contains any depiction of the Cremona-Richmond con-
figuration. Zacharias [30] rediscovered the Cremona-Richmond configuration,
and found a stellar realization for it; he seems not to have been aware of prior
results concerning the configuration and, in particular, does not mention that
it is triangle-free. Another geometric realization appears in Wells [29, p. 40]; it
is not stellar, but Wells notes that it is triangle-free. The stellar realization of
the configuration in Figure 2 is from [3].

Some general questions arise naturally in connection with the consideration
of the particular configurations. For example, is there a way of determining
how symmetric can a geometric realization of a configuration be, given the
knowledge of the automorphism groups, the point- and line-orbits, and whatever
other information is inherent in the combinatorial description. In the specific
cases considered here, can one find “nicer” realizations than the ones given in
Figures 4, 6, 8, 10?

The triangle-free configurations (v3) considered here can be thought of as
one extreme, to be contrasted with those configurations that have the maximal
possible number of triangles for a given v. This question seems not to have been
considered in the literature.
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