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Robust Clustering

There are two major families of robust clustering methods. The first includes techniques which are directly based
on robust statistics. Rousseeuw extended the idea of robust estimators to  clusters with his -Medoid

algorithm [RL87]. However this extension is based on the Median estimator (also known as  regression)

which minimizes the sum of absolute (instead of squared) residuals. For the case of estimating the parameters of

a regression model, this estimator is resistant to outliers in the dependent variable, and enjoys a 

breakdown point for location estimation. However, for regression with multivariate data, it is no better than

regular LS in terms of its breakdown point ( ), because of its sensitivity to leverage points. The Generalized

MVE (GMVE) estimator [JMB91] searches for clusters one at a time by repeatedly performing MVE followed

by one-step of RLS after fixing the weights to 1 if a data point's Mahalanobis distance from the center is less than

 and 0 otherwise. In each pass, the Kolmogorov-Smirnov normality test is used to validate the fit of

each cluster found before removing from the data set the points with weights equal to 1 in that cluster. Instead of

fixing the fraction of inliers, , to  as in the original MVE, GMVE searches all possible values of  within

a prespecified interval with a suitable step size, to find each cluster. Hence, it is computationally quite expensive.

GMVE has the advantage that the number of clusters need not be known in advance. However, it can not handle
overlapping clusters.

The second family of robust clustering algorithms is based on modifying the objective of FCM to make the

parameter estimates more resistant to noise. The first such attempt was presented by Ohashi [Oha84] who

introduced the idea of a noise cluster indicated by the subscript (*), and modified the FCM criterion as follows 

(1)

where  is a parameter related to scale. Later, in an independent effort, Davé proposed a Noise Clustering
(NC) technique [Dav91] which uses a criterion similar to Ohashi's, 



(2)

Both of these methods are easy to optimize. However, they had two major shortcomings. First, a single
parameter is used to describe the scale or resolution parameter. This is clearly insufficient in the general clustering

problem where clusters are not guaranteeed to be of the same size or to have the same inlier bounds. Second,

the scale parameter needs to be known in advance, or pre-estimated from the data.

The Possibilistic -Means (PCM) family of clustering algorithms was proposed by Krishnapuram and Keller to

alleviate the noise problem by relaxing the constraint on memberships used in FCM [KK93,KK94]. It uses the

objective function 

 

  (3)

where  are suitable resolution parameters which are allowed to vary from cluster to cluster, hence allowing

clusters to have different sizes or inlier bounds. While the parameter update equations remain identical to those of

FCM, it is easy to show [KK93] that  may be a global minimum of  only if the memberships are

updated by 

(4)

Unlike the constrained FCM memberships, the Possibilistic memberships can be viewed as typicality values

which measure how typical a point is of a given cluster, regardless of all other clusters.

It has been shown [NK95] that the PCM can be considered as a robust estimator representing  independent 

-, and -estimators [Hub81,RL87], with  being the scale parameter related to the spread of cluster ,

and  being a parameter that determines the shape of the weight function. Since PCM tries to find the  best

clusters independently of each other, it is possible that  identical clusters minimize the PCM objective function,
while the remaining clusters are missed. Another problem that has proved to be a serious bottleneck for the

PCM is that its performance relies heavily on a good initialization of the cluster parameters, and accurate
estimates of . When the initial prototype parameters or the resolution parameter  are inaccurate, the PCM

can converge to a meaningless solution. In [KK93], it was suggested that the FCM algorithm be used to obtain



the initial estimates of the prototypes, as well as the . Several methods to estimate the  from the initial

partition were proposed [KK93]. However, these methods can fail in the presence of noise, because if the data
is noisy, the initial partition from the FCM may be too poor to yield good estimates of the . Nasraoui and

Krishnapuram used robust scale estimates along the lines of those used in robust statistics to initilialize the PCM
in [NK96]. However, robust scale estimates still do not solve the problem of the dependence of these estimates
on the accuracy of the initial prototype parameters. A better strategy to re-estimate the  in each iteration was

also proposed in [NK96], albeit at a high computational cost, by using high breakdown scale estimates such as
the median and the median of absolute deviations (MAD) [Hub81,RL87]. Also, it was recommended [NK95]

that the membership function be modified so that it becomes redescending, i.e., it drops to zero beyond a finite
rejection point.

Beni and Liu [BL94] proposed a Least Biased Fuzzy Clustering technique which minimizes for each cluster the

clustering entropy defined by , subject to the assumption that the centers are unbiased, i.e.,

. The optimal centers are identical to those of the FCM, while the memberships

are given by 

(5)

where  is a scale or resolution parameter resulting from the Lagrange multipliers used in the minimization

process, and  is the  norm. This approach, like NC, suffers from the fact that a single scale parameter is

used for all clusters, and this parameter has to be prespecified. It is also limited by the distance measure which is
only suitable for spheroidal clusters.

Recently, Frigui and Krishnapuram [FK95] proposed the Robust  Prototypes (RCP) which explicitly

incorporated M- and W-estimators into the FCM objective function as follows 

(6)

subject to the same constraints on the memberships as in the FCM. The optimal prototype parameters  of the

th cluster are derived by setting  resulting in a system of  equations for each cluster similar to the

W-estimator in (
[*]

), except that the contribution of each data sample inside the sum is multiplied by . RCP

offers several innovative concepts such as the use of both a set of constrained fuzzy memberships to describe the



degree of belonging of a data point to different clusters and a set of unconstrained robust weights for each

cluster, that describe the adherence of a data point to the fit of that cluster as in W-estimators. However, RCP

uses the Median and MAD to estimate the scale or resolution parameter used in the definition of the weights of

each cluster. This requires a heavy computational cost, in addition to assuming that the noise proportion is at the

most  in each cluster in each iteration.

Yager and Filev [YF94] proposed the mountain method which considers each data point as a candidate cluster

center and chooses as an optimal cluster center, the data point at which a density-like function,

, is maximized, where  is a resolution parameter. The algorithm

proceeds by identifying one cluster at a time, and removing identified clusters by discounting their contribution to

function  of all the remaining points. The mountain method suffers from a very high polynomial

complexity, . It is also limited by its use of a single scale parameter, , for all clusters, that is

assumed to be known in advance. Davé and Krishnapuram [Da97] show the relation between many of the

above-mentionned clustering algorithms, and discuss the role of validity in robust clustering.

Kim et al. [KKD95] proposed the Fuzy C Trimmed Prototypes algorithm (FCTP) which is based on the

reformulated objective function of the FCM. The reformulated objective function of FCM is 

(7)

where , and . The FTCP objective function is 

where  and . They propose a heuristic algorithm to minimize  and

estimate . However, this procedure assumes a good initialization.

Choi and Krishnapuram [CK96] proposed a robust version of FCM based on the reformulated objective

function of FCM. The objective function of this algorithm is given by 



This algorithm uses only one robust weight per point as opposed to  weights in the formulation of (6). The
weight is interpreted as the goodness of the point. This algorithm works only for spheroidal clusters. The choice

of the loss function and the weights are not discussed in this paper.

We conclude from our review of existing robust estimation and clustering methods that they all suffer from the
fact that they either depend on prespecified values for the scale parameters or the fraction of inliers, which makes

them very sensitive to initialization; or they have to perform a quasi-exhaustive search on these parameters, which

makes them require a very high computational cost.
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